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Abstract. Ozone pollution is secondarily produced through a complex, non-linear chemical process. Our under-
standing of the spatiotemporal variations in photochemically produced ozone (i.e., PO3) is limited to sparse air-
craft campaigns and chemical transport models, which often carry significant biases. Hence, we present a novel
satellite-derived PO3 product informed by bias-corrected TROPOspheric Monitoring Instrument (TROPOMI)
HCHO, NO2, surface albedo data, and various models. These data are integrated into a parameterization that
relies on HCHO, NO2, HCHO /NO2, jNO2, and jO1D. Despite its simplicity, it can reproduce ∼ 90 % of the
variance in observationally constrained PO3, with minimal biases in moderately to highly polluted regions. We
map PO3 across various regions with respect to July 2019 at a 0.1°× 0.1° spatial resolution, revealing accelerated
values (> 8 ppbv h−1) for numerous cities throughout Asia and the Middle East, resulting from elevated ozone
precursors and enhanced photochemistry. In Europe and the United States, such high levels are only detected
over Benelux, Los Angeles, and New York City. PO3 maxima are observed in various seasons and are attributed
to changes in photolysis rates, non-linear ozone chemistry, and fluctuations in HCHO and NO2. Satellite errors
result in moderate errors (10 %–20 %) in PO3 estimates over cities on a monthly average basis, while these er-
rors exceed 50 % in clean areas and under low light conditions. Using the current algorithm, we demonstrate
that satellite data can provide valuable information for robust PO3 estimation. This capability expands future
research through the application of data to address significant scientific questions about locally produced ozone
hotspots, seasonality, and long-term trends.
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1 Introduction

Tropospheric ozone (O3) is a secondary pollutant formed
through complex photochemical reactions involving various
precursors, including nitrogen oxides (NOx =NO+NO2),
volatile organic compounds (VOCs), aerosols, and halogens
(Kleinman et al., 2002; Simpson et al., 2015; Li et al.,
2019). Ozone not only poses significant risks to human health
(Fleming et al., 2018) and agricultural productivity (Mills et
al., 2018) but also influences the radiation budget, thereby
affecting the climate (Gaudel et al., 2018). To mitigate the
problem of elevated locally produced ozone, it is crucial to
understand the spatiotemporal variability in the ozone pro-
duction rate (PO3), defined as the number of ozone molecules
generated through secondary chemical pathways in the at-
mosphere. Comprehensive studies of ozone chemistry, in-
formed by observations, are typically confined to observa-
tionally rich air quality campaigns (e.g., Cazorla et al., 2012;
Ren et al., 2013; Mazzuca et al., 2016; Souri et al., 2020a;
Schroeder et al., 2020; Brune et al., 2022; Wolfe et al., 2022;
Souri et al., 2023), which are sparse in time and space.

Significant advancements have been made in using vari-
ous measurable ozone indicators to simplify the non-linear
relationship between PO3, NOx , and VOCs into linear forms
(Sillman and He, 2002). These forms include NOx-sensitive
regimes (where PO3 is sensitive to NOx), VOC-sensitive
regimes (where PO3 is sensitive to VOCs), and transi-
tional regimes (where PO3 is sensitive to both NOx and
VOCs). Among the numerous proposed indicators, the ratio
of formaldehyde (HCHO) to nitrogen dioxide (NO2) (known
as the FNR) has gained popularity (Tonnesen and Dennis,
2000a, b), despite its less effective performance compared to
that of the H2O2 /HNO3 ratio in fully explaining the HOx–
ROx cycle (Silman and He, 2002; Souri et al., 2023). The
preference for the FNR stems from the fact that both HCHO
and NO2 can be informed by UV–Vis radiance data, such as
those provided by the Ozone Monitoring Instrument (OMI)
and the TROPOspheric Monitoring Instrument (TROPOMI)
(Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012;
Choi and Souri, 2015a, b; Jin and Holloway, 2015; Jin et
al., 2017; Schroeder et al., 2017; Souri et al., 2017; Jeon
et al., 2018; Tao et al., 2022). Several limitations associated
with the application of satellite-based FNRs have been iden-
tified, such as (i) the inherent limitations in understanding
the radical termination in the HOx–ROx cycle (Souri et al.,
2020a, 2023), (ii) the challenges associated with converting
the column vertical density to near-surface concentrations
(Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2023),
(iii) the spatial representativity associated with large satellite
pixels (Souri et al., 2020a, 2023; Johnson et al., 2023), and
(iv) retrieval errors (Souri et al., 2023; Johnson et al., 2023).
Souri et al. (2023) concluded that retrieval errors make up
the largest portion of the total errors associated with FNRs.
These errors are becoming smaller with improved sensor de-
signs, retrieval algorithms, and calibration over time.

While the characterization of ozone regimes offers valu-
able insights for regulators to prioritize effective emission
control strategies, it does not provide information about the
magnitude of PO3 or the absolute quantities of PO3 deriva-
tives relative to its precursors. Consequently, chemical trans-
port models under various emission scenarios are typically
employed (e.g., Pan et al., 2019). These models allow for
the execution of process-based scenarios to elucidate the re-
sponse of PO3 to different emissions and can simulate four-
dimensional PO3 data. However, the results of these simu-
lations are based on various assumptions and inputs, which
carry significant uncertainties. Therefore, it is essential to
optimize some of the models’ prognostic inputs using ob-
servations through inverse modeling/data assimilation. The
primary advantage of inverse modeling/data assimilation us-
ing satellite observations is its ability to account for satel-
lite errors and eliminate the influence of the a priori profile,
thereby carrying only radiance information into the emission
estimation. Numerous studies have utilized satellite observa-
tions to constrain NOx and VOC emissions for various ap-
plications (e.g., Stavrakou et al., 2016; Souri et al., 2016a;
Miyazaki et al., 2017; Souri et al., 2017, 2020b, 2021; Choi
et al., 2022; DiMaria et al., 2023). Souri et al. (2020b) made
an early attempt to simultaneously optimize both NOx and
VOC emissions over eastern Asia for a more accurate repre-
sentation of PO3. Their joint inversion was able to account
for the intertwined relationships between HCHO–NOx and
NO2–VOC. However, the execution of chemical transport
models optimized by multiple satellite observations remains
prohibitively expensive, particularly with respect to high-
resolution domains, such as those demanded by regulatory
agencies.

Data-driven methods for estimating PO3 can serve as a
more cost-effective alternative to physics-based methods.
While using constrained chemical transport models provides
a relatively robust framework grounded in certain explicit
governing equations, these models require extensive com-
putation resources and expertise. Conversely, data-driven al-
gorithms make use of large datasets to identify patterns and
make predictions with significantly reduced computational
expenses. However, it is important to recognize that data-
driven algorithms lack the ability to provide solid physical
interpretability and generalizability. Despite this fundamen-
tal limitation, they are sensible tools for applications where
rapid analysis over a wide spatial coverage is prioritized.
Data-driven parameterizations for several components of at-
mospheric chemistry, such as OH (Anderson et al., 2022)
and dry deposition (Silva et al., 2019), have been crafted
for this reason. However, to our best knowledge, Chatfield
et al. (2010) and Souri et al. (2023) are the only studies that
have attempted to empirically parameterize PO3 using infor-
mation from HCHO and NO2 mixing ratios.

Inspired by these works, we developed a novel product
using TROPOMI observations, in conjunction with ground-
based remote sensing and atmospheric models, to estimate
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Figure 1. The locations of the seven different atmospheric compo-
sition aircraft campaigns used in this study. KORUS-AQ: Korea–
United States Air Quality. ATom: Atmospheric Tomography Mis-
sion. INTEX-B: Intercontinental Chemical Transport Experiment –
Phase B. SENEX: Southeast Nexus. DISCOVER-AQ refers to the
Deriving Information on Surface Conditions from Column and Ver-
tically Resolved Observations Relevant to Air Quality campaigns in
Texas (TX), Washington DC (DC), and Colorado (CO).

PO3 and associated errors within the planetary boundary
layer (PBL) across the globe. This enabled us to map PO3
across various regions at fine scales (i.e., 0.1°× 0.1°) for the
first time.

2 Data

2.1 Aircraft

To study PO3, we use various aircraft observations from
several National Aeronautics and Space Administration
(NASA) and National Oceanic and Atmospheric Adminis-
tration (NOAA) atmospheric composition campaigns. We se-
lected three sets of aircraft campaigns for the purpose of PO3
estimation, targeting (i) urban and suburban air quality using
the Deriving Information on Surface Conditions from Col-
umn and Vertically Resolved Observations Relevant to Air
Quality (DISCOVER-AQ) Baltimore–Washington (2011),
DISCOVER-AQ Texas (2013), DISCOVER-AQ Colorado
(2014), and Korea–United States Air Quality (KORUS-AQ;
2016) campaigns (Crawford et al., 2021); (ii) remote ar-
eas using the Atmospheric Tomography Mission (ATom)
(Thompson et al., 2022) and the Intercontinental Chemical
Transport Experiment – Phase B (INTEX-B) (Singh et al.,
2009); and (iii) a mixture of isoprene-rich environments and
large emitters using SENEX (Southeast Nexus) (Warneke et
al., 2016). Figure 1 shows the locations of these campaigns.
Inspired by a study by Miller and Brune (2022), we list the
“when”, “where”, and “why” characteristics of these cam-
paigns in Table S1 in the Supplement.

For aircraft campaigns targeting polluted areas, includ-
ing DISCOVER-AQ, KORUS-AQ, and SENEX, we use
10 s merged data, whereas for measurement campaigns con-
ducted in relatively remote areas, such as INTEX-B and
ATom, we use 30 s merged data. A more detailed description

of the measurements is provided in Sect. 3.2. We exclude
times with no measurements of NO, NO2, or HCHO. The
concentrations of OH and HO2 were only measured during
the INTEX-B, ATom, and KORUS-AQ campaigns. Likewise,
we void any data points lacking either HO2 or OH measure-
ments for these campaigns. There are frequent gaps in some
measurements, especially for VOCs, due to instrument issues
or measurement techniques. Following Souri et al. (2020a),
Miller and Brune (2022), Souri et al. (2023), and Bottorff et
al. (2023), we fill the gaps in the measurements using a lin-
ear interpolation method, with no extrapolation allowed be-
yond 15 min. We drop any remaining gaps from the analysis.
To better capture the rapid fluctuation in VOCs, we select
the proton-transfer-reaction time-of-flight mass spectrome-
ter (PTR-ToF-MS) instrument with high temporal resolution
over the whole air sampler (WAS) when both instruments
have measured the same quantity. Regarding the INTEX-B
campaign, we drop the isoprene observations due to infre-
quent samples that downgrade the performance of our box
model.

2.2 TROPOMI NO2 and HCHO

We use recently reprocessed daily Level-2 (L2) TROPOMI
tropospheric NO2 and total HCHO columns (v2.4), de-
rived from UV–Vis radiances captured by the European
Space Agency (ESA) Sentinel-5 Precursor (S5P) spacecraft
(∼ 328–496 nm) (Veefkind et al., 2012; De Smedt et al.,
2021; van Geffen et al., 2022). This sensor has been oper-
ational since May 2018, providing global coverage of NO2
and HCHO at ∼ 01:30 local standard time at the Equator.
Since NO2 and HCHO are optically thin absorbers in the
UV–Vis range, meaning their concentrations do not substan-
tially affect the sensitivity of the radiance to the optical thick-
ness of the absorber, the retrieval follows a conventional
two-step algorithm involving spectral fitting for slant column
density (SCD) retrieval and air mass factor (AMF) calcula-
tions for conversion from SCDs to vertical column densi-
ties (VCDs). The product has a spatial resolution of 7.2 km
(5.6 km as of August 2019) by 3.6 km at nadir. To remove un-
fit measurements, we use the provided quality flag (q_value)
and choose only measurements above 0.75 for NO2 and 0.5
for HCHO. As the L2 product is not provided on a regular
grid, we use a mass-conserved regridding technique based
on barycentric linear interpolation to map the data onto a
0.1°× 0.1° regular grid.

Van Geffen et al. (2022) demonstrated that the reprocessed
TROPOMI tropospheric NO2 columns exhibit a good level
of correspondence with those obtained from ground-based
MAX-DOAS (Multi-Axis Differential Optical Absorption
Spectroscopy) sky spectrometers, with a correlation of 0.88
and a median bias of −23 %, improving on the older product
versions, which were biased low by about 30 % with respect
to ground-based measurements at polluted sites (Verhoelst
et al., 2021). More information about the new modifications
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and their impacts on the retrieval can be found in van Geffen
et al. (2022).

Studies by Vigouroux et al. (2020) and De Smedt
et al. (2021) validated the reprocessed monthly-mean
TROPOMI HCHO columns against Fourier-transform in-
frared (FTIR) and MAX-DOAS observations and found a
good correlation above 0.8, with a negative bias of 20 %–
30 % for polluted sites. The bias tends to be slightly positive
or neutral over clean sites.

Error characterization of TROPOMI NO2 and HCHO
using ground-based retrievals

To propagate TROPOMI retrieval errors to the PO3 prod-
uct and to remove potential biases, we assume three ori-
gins for the errors: (i) random errors resulting from instru-
ment noise, (ii) a fixed additive component that is magnitude-
independent (i.e., a uniform offset persisting over all pix-
els), and (iii) unresolved systematic biases that are multi-
plicative and irreducible by oversampling. The first com-
ponent is derived from the column precision variable pro-
vided along with the L2 product. In the spatial domain, we
interpolate the squares of these errors in the same way we
map the irregular L2 pixels onto the 0.1°× 0.1° regular grid.
Moreover, we average the random errors over a month to
reduce random noise by the square root of the number of
pixels available at the same location (Eq. 3). Two other er-
rors are determined by comparing FTIR observations for
HCHO and MAX-DOAS observations for tropospheric NO2
with TROPOMI data (Sect. 4.3.3). A detailed explanation of
how these datasets are paired can be found in Vigouroux et
al. (2020) and Verhoelst et al. (2021). Both datasets cover the
period from 2018–2023.

To achieve an optimal linear fit (y = ax+ b+ ε) between
the paired observations – where a and b are the slope and off-
set to be determined, respectively – we follow a Monte Carlo
chi-squared minimization such that χ2

=
∑
[y−f (xi ,a,b)]2

σ 2
y+a

2σ 2
x

is

minimized. In this equation, σ 2
y and σ 2

x are the variances of
y (TROPOMI) and x (the benchmark, i.e., FTIR or MAX-
DOAS), respectively; the subscript i refers to the ith ob-
servation point; and f is the proposed linear fit subject to
optimization. In terms of TROPOMI NO2 and HCHO, the
errors are populated based on the L2 information. Accord-
ing to Verhoelst et al. (2021), a fixed error of 30 % is as-
sumed for MAX-DOAS NO2 observations whose values are
above 1.4× 1015 molec. cm−2. Because of the detection limit
of MAX-DOAS NO2, we set errors for values below that
threshold to 1.4× 1015 molec. cm−2. The FTIR retrieval er-
rors described in Vigouroux et al. (2020) were used to pop-
ulate the errors associated with this benchmark. The mini-
mization is performed 10 000 times, each time with a set of
random perturbations of x and y within their respective pre-
scribed errors. This approach allows us to assess the robust-

ness of the estimates across the range of errors associated
with each data point.

The offset (a uniform additive term) and slope (a multi-
plicative error) drawn from the ground validation are used to
correct the biases associated with TROPOMI via

VCDbias-corrected =
VCDoriginal− offset

slope
. (1)

Since there are errors associated with this adjustment result-
ing from instrument and representation errors, we augment
the error in the slope and offset with respect to the total error
and label it as the constant error (econst) using

e2
const = e

2
offset+ e

2
slope×VCD2

bias-corrected, (2)

where e2
offset and e2

slope are the squares of the errors in the
offset and slope, calculated from the linear regression (Eq. 1).
Ultimately, the sum of all three errors constitutes the total
error, as shown in the following:

e2
= e2

const+
1
m2

m∑
i=1

e2
random,i, (3)

where m is the number of samples for a given grid and time
frame and e2

random represents the square of the random errors.

2.3 TROPOMI surface albedo

To account for the effect of surface albedo on photolysis
rates (Sect. 2.5), we use a newly developed algorithm based
on the directionally dependent Lambertian-equivalent reflec-
tivity (DLER) UV surface albedo climatology derived from
TROPOMI radiance (Tilstra et al., 2024). This new database
leverages 60 months of TROPOMI reprocessed radiance data
and is produced at a grid resolution of 0.125°× 0.125°. This
product outperformed traditional Lambertian-equivalent re-
flectivity (LER) products, such as OMI, when they were
compared to MODIS surface bidirectional reflectance distri-
bution function (BRDF) results (Tilstra et al., 2024).

2.4 Modern-Era Retrospective analysis for Research
and Applications, Version 2 – Global Modeling
Initiative (MERRA-2 GMI)

To convert TROPOMI vertical column densities of HCHO
and NO2 to their volume mixing ratios in the PBL region, we
use the MERRA-2 GMI (M2GMI) model (https://acd-ext.
gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/, last ac-
cess: 10 September 2023). This model serves as NASA’s
Goddard Earth Observing System (GEOS) chemistry–
climate model (CCM), spanning the period of 1980–
2019 and exploiting MERRA-2 (the second version of the
Modern-Era Retrospective analysis for Research and Appli-
cations) to constrain meteorological fields (Orbe et al., 2017).
The model uses the Global Modeling Initiative (GMI) chem-
ical mechanism (Duncan et al., 2007), which involves over
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120 species and 400 reactions. It has a resolution of approxi-
mately 0.5° latitude by 0.625° longitude, with 72 vertical lay-
ers stretching from the surface up to 0.1 hPa. Additional in-
formation about the configuration of this model can be found
in Strode et al. (2019). To carry out the conversion, we apply
the following conversion factor (γ ) to the TROPOMI VCDs:

γ =
qPBLH

NA
g×Mair

∑
qdp

, (4)

where qPBLH is the average of the target trace gas mixing ra-
tios within the planetary boundary layer height (PBLH), g is
the acceleration of gravity (assumed to be 9.81 m s−2), NA is
the Avogadro constant, Mair is the air molecular weight (as-
sumed to be 28.96 g mol−1), q is the target trace gas mixing
ratio at a given altitude, and dp is the thickness of each ver-
tical grid box in the model (simulated in hectopascals). The
denominator in Eq. (4) represents the modeled VCD. We in-
tegrate the modeled partial VCDs up to the top of the atmo-
sphere for HCHO and up to the tropopause pressure layer for
NO2.

2.5 The National Center for Atmospheric Research
(NCAR) Tropospheric Ultraviolet and Visible (TUV)
photolysis rate lookup table

To estimate the photolysis rates, JNO2 (NO2+hν) and
JO1D (O3+hν), we use a comprehensive lookup table pro-
vided by the Framework for 0-D Atmospheric Modeling
(F0AM) model (Sect. 3.2), created for clear-sky conditions.
This lookup table is based on the calculation of more than
20 064 solar spectra over a wide range of solar zenith an-
gles (SZAs) (a 0–90° range in steps of 5°), altitudes (a 0–
15 km range in steps of 1 km), overhead total ozone column
values (a 100–600 DU range in steps of 50 DU), and sur-
face UV albedo values (a 0–1 range in steps of 0.2), using
NCAR’s Tropospheric Ultraviolet and Visible (TUV) radia-
tion model (v5.2) and cross sections and quantum yields from
the International Union of Pure and Applied Chemistry (IU-
PAC) and the Jet Propulsion Laboratory (JPL) (Wolfe et al.,
2016). The L2 TROPOMI granule information populates the
SZA, surface elevation, and surface UV albedo, while over-
head total ozone columns are obtained from MERRA-2 GMI
(Sect. 2.4), which is found to agree well with satellite obser-
vations (Souri et al., 2024). Any values between these tables
are bilinearly interpolated for a smoother result.

3 Methods

In this section, we begin by discussing a robust regression
model specifically developed for feature selection in the pa-
rameterization of PO3. We then describe the training dataset
created for this purpose. Following that, we introduce a clus-
tering technique, utilized to organize the training data, which

enables us to identify the key drivers of PO3 variability. Fi-
nally, we provide a comprehensive overview of the PO3 es-
timation algorithm by integrating data from the TROPOMI
retrievals, ground-based remote sensing, and various models.

3.1 Least absolute shrinkage and selection operator
(LASSO)

Through the use of multilinear regression models, it is pos-
sible to establish a simple but robust relationship between
multiple variables and a target. However, when dealing with
a large number of variables, there is a chance of introducing
overfitting issues. This can lead to predictions that are either
overly optimistic or unrealistic for values outside of the train-
ing dataset. To avoid this, it is recommended to simplify the
model by removing variables that are loosely connected with
the target or highly correlated with other variables. This pro-
cess is known as “model shrinkage” and can narrow down
the number of possible solutions (i.e., variance) at the cost
of increasing the biases between the observed target and pre-
dictions. Ideally, we want a model that minimizes the sum of
the bias and the variance. To achieve this, we can use the least
absolute shrinkage and selection operator (LASSO) (Tibshi-
rani, 1996). This operator considers the following regression:

Y =Xβ +α+ ε, (5)

where Y = (y1, . . .,yn)T is the response, X corresponds to
n×p explanatory variables, β = (β1, . . .,βp)T represents
the coefficients, α is the intercept, and ε = (ε1, . . . , εn)T rep-
resents the noise variables. Moreover, n represents the num-
ber of data points, and p represents the number of explana-
tory variables. We can label the regression model as sparse
when many of the β values are zero, and we can label it
as high-dimensional when p� n. LASSO attempts to select
variables such that the following cost function is minimized:

(α̂β̂)= argmin

{
‖Y −Xβ −α‖22+ λ

p∑
i=1

|βi |

}
, (6)

where α̂ and β̂ represent the optimized intercept and coeffi-
cients, respectively; λ is a non-negative regularization factor
subject to tuning; i is the subscript of the ith explanatory
variable; and ‖.‖2 is the L2-norm-based operator. The first
term on the right side of Eq. (6) minimizes the squares of
the residuals, whereas the second term reduces the sum of
the absolute values of the coefficients, resulting in a simpler
model with fewer parameters. Without the second term, the
regression model becomes an ordinary least-squares estima-
tion. The most critical element here is λ. A large λ value
results in more aggressive regularization, leading to more
model shrinkage, whereas a small value preserves a high-
dimensional model. To optimize this value, we discretize λ
into 100 values between 10−4 and 101, divide the training
dataset into 10 folds (i.e., split the dataset into equally sized
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segments), determine the average of the cross-validated error
prediction among all folds, and find the λ value that yields the
smallest error. The final solution ensures a balanced model
with respect to model parsimony and bias. All explanatory
variables are standardized during the regularization proce-
dure such that their mean becomes zero and their standard
deviation becomes 1.

3.2 Photochemical box modeling

To produce training datasets for LASSO-based PO3 estima-
tion, we use the Framework for 0-D Atmospheric Model-
ing (F0AM) box model (v4; Wolfe et al., 2016), constrained
by a wide range of observations. These observations ensure
that the model achieves a realistic range of values consistent
with those found in the atmosphere. We follow past setups
that apply the Carbon Bond 6 (CB06, r2) chemical mech-
anism within the F0AM model (Souri et al., 2020a, 2023).
The model is constrained by aircraft data, including mete-
orology, photolysis rates, and trace gas concentrations. The
model configuration and observations used are listed in Ta-
ble S2.

Once the model is initialized and held constant with re-
spect to a wide range of constraining quantities, it runs with
a 30 min integration time cycle for 5 d to approach a steady-
state environment. Several key compounds, including OH,
HO2, HCHO, polyacrylonitrile (PAN), NO, and NO2, are ini-
tialized with aircraft observations, but they are left free to
cycle with incoming solar-radiation variability. These com-
pounds play a crucial role in validating the efficacy of model
performance as well as the adequacy of the observations used
as constraints. In particular, allowing HCHO to vary freely
enables us to assess whether our mechanism for VOC treat-
ment, the steady-state conditions, and the number of mea-
sured VOCs are sufficient for reasonably reproducing its con-
centrations. Although the individual concentrations of NO2
and NO are not constrained, we constrain the total NOx
(NO+NO2). Not all aircraft campaigns measured all pho-
tolysis rates included in the chemical mechanism. We first
initialize the photolysis rates included in CB06 using the
lookup tables described in Sect. 2.5. If any photolysis re-
action rates in CB06 were measured, we replace the initial
guess with the observed values. For reactions with unmea-
sured photolysis rates, we apply a scaling factor made from
the average ratio of the observed J values to the modeled
J values. This approach is a sensible choice for accounting
for large particles, such as clouds, as their extinction coeffi-
cient is somewhat non-selective in the UV–Vis range; how-
ever, applying a wavelength-independent scaling factor may
introduce some biases into optically complex environments
introduced by aerosols.

It is essential to acknowledge the inherent limitations of
the box model in our research. The model does not consider
the diverse physical loss pathways that trace gases may un-
dergo, including deposition and transport. As a result, we

simplify the physical loss by employing a first-order dilution
rate equivalent to a lifetime of 24 h. This approach ensures
that unconstrained trace gases, which take longer to break
down, do not accumulate over time. Exact knowledge of di-
lution factors requires understanding molecular and turbulent
diffusion, entrainment, detrainment, and deposition rates, all
of which are unknown at the microscale level of aircraft
observations. Nonetheless, studies by Brune et al. (2022)
and Souri et al. (2023) showed that HO2, OH, NOx , and
HCHO are relatively immune to the choice of dilution fac-
tor, whereas RO2 mixing ratios can vary, introducing some
biases into PO3 estimates.

We determine the simulated PO3 using

PO3 = FO3−LO3, (7)

where LO3 represents all possible chemical loss pathways of
ozone (a negative stoichiometric multiplier matrix) and FO3
represents all possible chemical pathways producing ozone
molecules (a positive stoichiometric multiplier matrix). This
calculation is theoretically equivalent to the value obtained
from a chemical solver quantifying the number of ozone
molecules produced/lost at each model time step. The adop-
tion of Eq. 7 facilitates the direct comparison of PO3 esti-
mations with estimations derived from other models, includ-
ing chemical-transport-model-based results (see Fig. 10 in
Souri et al., 2021). Furthermore, it allows for seamless inte-
gration of these estimates into Lagrangian transport models
for ozone forecasting purposes.

3.3 Clustering

The aim of using a classifier to categorize the large quantity
and variety of aircraft data into groups with similar features
is to enable us to study the primary contributors to PO3 un-
der different chemical, solar, and meteorological conditions.
Additionally, this approach helps us understand the range of
atmospheric conditions included in the training dataset. To
accomplish this, we employ a widely used technique known
as k-means, which has been used in a variety of applications
(e.g., Beddows et al., 2009; Souri et al., 2016b; Govender and
Sivakumar, 2020). In this approach, centroids are distributed
randomly throughout a multidimensional dataset, with each
centroid representing a distinct class. The algorithm then as-
signs a label to each data point by identifying its shortest Eu-
clidean distance to the centroids. Following the labeling of
all data points, the algorithm updates the centroids based on
the means of the newly labeled groups. This process contin-
ues iteratively until there is minimal change in the location of
the centroids. It is worth noting that k-means does not guar-
antee an optimal solution, so we reinitialize the classifica-
tion 1000 times with a new set of initial centroids. We select
the result with the lowest value for the sum of the Euclidean
distances among the data points and centroids to ensure the
outcomes are not influenced by random seeding.
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Redundant features in the input can significantly compro-
mise the effectiveness of the classification, so we apply prin-
cipal component analysis (PCA) to a matrix of datasets (Z)
with n data points and p features to reduce the dimensions
to those of a PCA-transformed matrix (Z′), i.e., n× q, where
q <p. Despite this reduction in dimensions, Z′ preserves a
significant variance in Z, helping us to overcome issues of
dimensionality or overfitting.

We select 11 features simulated by the F0AM model,
many of which are set to the observed values or have ob-
servationally constrained precursors. These features com-
prise the SZA, HCHO /NO2, HCHO×NO2, HCHO,
NO2, pressure, temperature, jNO2, jO1D, H2O, and
NO2 /NOy (NOy =NO+NO2+PAN+HNO3+ alkyl ni-
trate+N2O5). There are indeed correlations among these
features, such as between the SZA and jNO2 or between
HCHO and HCHO×NO2; nonetheless, we use PCA to elim-
inate the possibility of these correlated factors causing over-
fitting issues.

3.4 The estimation of PO3

In order to predict PO3, we developed empirical equations
using LASSO to link PO3 with various relevant prognos-
tic candidates related to ozone chemistry. A schematic pre-
sentation of how this estimation can be carried out to pro-
vide daily PO3 maps corresponding to the TROPOMI re-
visit time across the globe is shown in Fig. 2. It is impor-
tant to note that relying solely on linear regressions for a
non-linear problem is not a viable approach. To address this,
we divided the data points into four distinct groups based
on FNR values, meaning we divided a non-linear realm into
smaller linear segments (i.e., an empirical linearization). In
a study by Souri et al. (2023), a wide range of aircraft ob-
servations and box model results were used to determine that
FNR values of ∼ 1.7 were a universal threshold for separat-
ing NOx-sensitive from VOC-sensitive regimes. We found
that by breaking down the data points into slightly weaker
or stronger variations within the regimes, we can improve
the accuracy of our results. As a result, we established four
distinct groups: VOC-sensitive regimes (FNR< 1.5), transi-
tional regimes (1.5<FNR< 2.5 and 2.5<FNR< 3.5), and
NOx-sensitive regimes (FNR> 3.5). The coefficients and in-
tercepts based on the LASSO regressions for each group
were computed separately. From a long list of explana-
tory parameters, we selected the SZA, temperature, pressure,
H2O, jNO2, jO1D, HCHO, and NO2 as the most sensible
candidates. The reasoning behind this selection will be dis-
cussed in Sect. 4.2.

Once the LASSO parameters are determined, we apply
the linear functions to the variables modeled/observed in
the PBL region. We show that the LASSO method suggests
dropping the SZA, temperature, water vapor, and pressure
as they do not provide significant information on PO3 com-
pared to the other parameters. As for jNO2 and jO1D, we

use the NCAR’s TUV lookup table, described in Sect. 2.5.
HCHO and NO2 are derived by converting the bias-corrected
TROPOMI VCDs into PBL mixing ratios using MERRA-2
GMI, as described in Sect. 2.4. To carry out this conversion,
we multiply the satellite VCDs by the ratio of the averaged
modeled mixing ratios of a target gas (i.e., NO2 or HCHO)
in the PBL region, divided by the modeled VCDs (Sect. 2.4).
The PBL field also comes from MERRA-2 GMI.

4 Results and discussion

4.1 Box model validation

In order to assess the accuracy of the assumptions used in
the box model’s setup, which involves factors such as chem-
ical mechanisms, dilution rates, and photolysis rate correc-
tions, we will compare the simulated values of HCHO, NO2,
NO, PAN, HO2, and OH with their actual measured values.
This comparison will help us determine whether our model
falls within an acceptable range of errors, as seen in other
reputable studies of photochemical box modeling. This com-
parison is shown in Fig. 3, which displays scatterplots illus-
trating data collected from all seven aircraft campaigns. A
discussion of each parameter follows:

– HCHO. The box model is proficient in capturing over
77 % of the variance in observations with less than 15 %
absolute bias. While many box modeling studies pre-
fer to have this compound constrained to potentially
enhance the representation of HOx , doing so comes
with the trade-off of hindering our ability to validate
the number and quality of observed HCHO precursors
and/or the treatment of VOCs. Besides the study by
Souri et al. (2023), the work of Marvin et al. (2017)
serves as one of the few studies that did not constrain
this compound, aiming to verify the efficacy of differ-
ent pathways involved in HCHO formation and loss
as simulated by various chemical mechanisms. Marvin
et al. (2017) reproduced HCHO formation during the
SENEX campaign using the CB06 mechanism, achiev-
ing an R2 value of 0.66 and a bias of 32 % with 1 min
averaged samples. In comparison, we recreated a vari-
ance of 86 % in observed HCHO during the same cam-
paign, with a bias of 23 % (Fig. S1), using 10 s aver-
aged samples. The remaining unresolved variance can
be attributed to an incomplete list of VOC measure-
ments from several campaigns, including DISCOVER-
AQ, and errors in VOC measurements. It is unlikely that
the chemical mechanism is the reason for this, as Mar-
vin et al. (2017) did not observe substantial differences
in R2 values among various chemical mechanisms, in-
cluding the near-explicit Master Chemical Mechanism
(MCM). A mild underestimation of HCHO could likely
be due to the steady-state assumption, a fixed arbi-
trary dilution factor, or uncertain isoprene chemistry
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Figure 2. Schematic illustration of the daily PO3 estimation process demonstrated in this study. This process consists of two major steps: (1)
formulating PO3 as a function of various prognostic inputs derived from the box model results and (2) predicting PO3 based on optimized
features/coefficients suggested by LASSO and using information obtained from TROPOMI, the TUV model, and M2GMI. LUT: lookup
table. Trop columns: tropospheric columns.

(Archibald et al., 2010; Wolfe et al., 2016; Marvin et
al., 2017).

– NO2 and NO. Comparisons for both species demon-
strate a high degree of correspondence for values above
0.1 ppbv. Nonetheless, we note a substantial amount of
fluctuation in the simulations in clean regions, partic-
ularly for NO. While we cannot rule out the possi-
bility of chemical-mechanism uncertainty contributing
to this deviation, the reported measurement errors for
NO2 and NO are usually ±0.05 and ±0.1 ppbv, respec-
tively. Consequently, it is likely that the measurement
errors resulted in more spread in the comparisons. In
particular, Shah et al. (2023) found that these measure-
ments could be contaminated by various reactive nitro-
gen species in remote regions, precluding a robust vali-
dation of atmospheric models.

– PAN. Our model reproduced 61 % of the variance ob-
served in PAN with marginal absolute bias. According
to Xu et al. (2021), the presence of oxygenated VOCs,
particularly acetaldehyde, and the NO /NO2 ratio are
key factors controlling PAN levels. Although we con-
strained acetaldehyde, variations in the NO /NO2 ratio
in heavily polluted regions (where NOx levels exceed
1 ppbv) may have potentially led to biases in PAN sim-
ulations. Furthermore, our model’s dilution factor was
arbitrarily set, and it is possible that any bias caused
by this factor was canceled out by other effects, leading
to seemingly bias-free performance. However, Souri et
al. (2023) showed that an incorrect dilution factor can

significantly impact PAN performance, causing a sharp
decline in R2, resulting in a value below 30 %. There-
fore, the fact that our box model performed well with
respect to PAN could be an indication that our choice of
dilution factor was reasonable.

– HO2 and OH. Based on our analysis of HO2 and OH
simulations during the KORUS-AQ, INTEX-B, and
ATom campaigns, we found a reasonable level of cor-
respondence (R2> 0.6) with the performance observed
in previous studies conducted by Souri et al. (2020a),
Brune et al. (2022), Miller and Brune (2022), and Souri
et al. (2023), which focused on some of these cam-
paigns. Although the box model OH simulations re-
ported in Brune et al. (2020) regarding the ATom cam-
paign seemed to be better than ours (an R2 value of
∼ 0.8 vs. an R2 value of ∼ 0.6), it is important to con-
sider that their observations were averaged over 1 min
intervals as opposed to 30 s intervals, as seen in our
study. It should also be noted that there can be large er-
rors in ATHOS (Airborne Tropospheric Hydrogen Ox-
ides Sensor) HOx measurements, reaching up to±40 %
(Miller and Brune, 2022), so recreating the exact vari-
ance in the observations should not be the main objec-
tive. Nonetheless, the performance of our simulations
in terms of HOx compared to observations suggests
that the number of measured compounds and chemi-
cal mechanisms used in the model was effective. Our
model’s performance with respect to HOx is compara-
ble to that of more sophisticated mechanisms that en-
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compass a larger number of measured species (Brune et
al., 2022; Miller and Brune, 2022).

Overall, while there are inevitably some differences be-
tween the box model results and observations, they are con-
sistent with what other studies have found in similar air-
craft campaigns. Our extensive box model results, which
consider a variety of meteorological, chemical, and photol-
ysis rates, demonstrate satisfactory results for unconstrained
compounds across a wide range of atmospheric conditions.
This suggests that our training dataset, derived from the box
model, is a reliable source for understanding local PO3.

It is important to note that even if a simulated data point
does not match up perfectly with actual observations, it still
plays a role in establishing PO3 and other explanatory vari-
ables. Hypothetically, one can generate synthetic training
data points by running the box model with random numbers
for the inputs; however, only a fraction of these can be truly
observed in nature. Therefore, a mild outlier in our training
dataset should be viewed as less likely to occur in nature (pre-
suming that these campaigns represent all conditions occur-
ring in nature) but still as a valuable data point derived from
a physical model that can help bridge PO3 with explanatory
variables.

4.2 Classification of aircraft data

Following the method described in Sect. 3.3, we cluster the
cloud of aircraft data (∼ 133 000 points) into seven distinct
classes. We describe these classes using three categories: pol-
lution level, altitude, and SZA magnitude. Figure 4 illustrates
violin plots of these classes for various chemical, solar, and
meteorological conditions. Figure 5 presents corresponding
violin plots of simulated PO3. A discussion of each class and
its relationship to PO3 follows:

– Class 1 (C1) – clean, high-altitude, high-SZA condi-
tions. Characterized by high-altitude flights, cold ambi-
ent temperatures, and a negligible water vapor content,
this class consists of observations typically taken at a
relatively high SZA, with a median value of 50°. While
high-altitude observations under clear-sky conditions
often exhibit high photolysis rates due to reduced over-
head ozone, the relatively high SZA of this class leads
to low photolysis rates. FNRs tend to be large in this
class due to a higher amount of HCHO relative to NO2,
while FNP (HCHO×NO2) values and NO2 /NOy ra-
tios are low due to the pristine conditions. The lack of
sufficient ozone precursors and reduced photochemistry
make this class undergo the lowest PO3 rates, with a
median of 0.11 ppbv h−1.

– Class 2 (C2) – clean, high-altitude, low-SZA conditions.
This category represents samples collected under low-
SZA conditions, resulting in the highest photolysis rates
among all classes. The mass of the ozone precursors

and the ozone sensitivity conditions are similar to those
in C1. However, C2 PO3 rates are approximately 60 %
higher than those in C1 due to increased photochem-
istry.

– Class 3 (C3) – moderately clean, medium-altitude,
high-SZA conditions. This class is characterized by ob-
servations collected at medium altitudes and a high
SZA. Airsheds in C3 experienced more polluted air
compared to those in C1 and C2 due to their proxim-
ity to the surface. Photolysis rates in C3 are lower than
those in C1, possibly due to higher levels of overhead
ozone, although we cannot rule out the influence of
varying surface albedo between the classes. Despite the
lower photolysis rates, C3 PO3 levels (0.28 ppbv h−1)
are higher than those of C2 and C1, indicating that pol-
lution levels can have a more significant impact than fa-
vorable conditions for photochemistry.

– Class 4 (C4) – moderately clean, medium-altitude, low-
SZA conditions. This class differs from C3 in having
a lower SZA (resulting in more photochemistry) and a
slightly smaller number of ozone precursors. As a result
of the lower ozone precursor concentration, C4 PO3 lev-
els (0.19 ppbv h−1) are not only lower than those in C3
but also comparable to those in C2. This again implies
that the concentration of ozone precursors is more im-
portant than photochemistry under these conditions.

– Class 5 (C5) – extremely polluted, low-altitude, low-
SZA conditions. This class features the highest concen-
tration of ozone precursors among all classes (median
FNP value of ∼ 58 ppbv2). Furthermore, it is charac-
terized by low photolysis rates, due to its proximity to
the surface, and high NO2 /NOy ratios, indicative of a
localized polluted airshed. Compared to the aforemen-
tioned classes, this class has the lowest FNR, indicating
that it is mainly located in the VOC-sensitive regime.
C5 PO3 values are much higher than those in the afore-
mentioned classes, reaching 3.0 ppbv h−1.

– Class 6 (C6) – polluted, low-altitude, low-SZA condi-
tions. While this class shares similar features with C5 in
terms of altitude, photolysis rates, and meteorology, it
has a lower value (with a median value of 8 ppbv2). De-
spite the lower FNP value, C6 exhibits the highest levels
of PO3 (5.2 ppbv h−1) among all classes. This is a result
of reduced non-linearities as this class does not often
fall into an extreme VOC-sensitive regime (with a me-
dian FNR of ∼ 1.0), where nitrogen oxides (NOx) can
hamper ozone production. This tendency aligns with the
findings of Souri et al. (2023), who also found that the
highest amount of PO3, lying between the transitional
regimes, gravitated toward the VOC-sensitive regime
due to abundant ozone precursors and reduced negative
chemical feedback from NOx .
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Figure 3. A scatterplot comparison of simulations with observed concentrations for six unconstrained species. More than ∼ 133 000 obser-
vations were used for HCHO, NO2, NO, and PAN. HOx data points were limited to ∼ 55 000 observations. Heat maps show the density of
the data. Linear fits were calculated using the ordinary least-squares method. MB: mean bias. MAB: mean absolute bias.

– Class 7 (C7) – moderately polluted, low-altitude, low-
SZA conditions. C7 is characterized by aged air close
to the surface and slightly higher photolysis rates com-
pared to those in C5 and C6. C7 PO3 levels amount to
2.5 ppbv h−1, only slightly lower than the C5 value, de-
spite having a much lower FNP value (with a median
of 0.9 ppbv2). This could be due to the combined effect
of higher photolysis rates and reduced non-linear ozone
chemistry.

An analysis of the aircraft data revealed that the levels of
HCHO and NO2, as well as the rates of jNO2 and jO1D
photolysis, play an important role in influencing PO3. Ad-
ditionally, the FNR can offer insights into the sensitivity of
PO3 to its main precursors. These findings align with nu-
merous studies that have examined the factors driving PO3
(e.g., Duncan and Chameides, 1998; Thornton et al., 2002;
Kleiman et al., 2002; Gerasopoulos et al., 2006; Chatfield et
al., 2010; Baylon et al., 2018; Wang et al., 2020; Souri et al.,
2023). Consequently, our PO3 estimates incorporate HCHO,
NO2, jNO2, jO1D, and FNRs. While the cluster analysis did
not definitively indicate whether meteorological conditions
impact PO3, we also include ambient temperature, water va-
por, pressure, and the SZA to determine whether they provide
any additional insights into PO3 estimates.

4.3 Estimates of PO3

4.3.1 LASSO coefficients

Armed with a procedure that identifies important features in
a linear model (Sect. 3.1), we now explore the use of LASSO
for PO3 estimation. We make use of all data points generated

by the observationally constrained box model across various
atmospheric composition campaigns. Regarding the selected
variables shown in Fig. 2, the LASSO algorithm assigns zero
coefficients to the SZA, pressure, temperature, and water va-
por, indicating that they offer less valuable information com-
pared to the other variables. This decision was made by sys-
tematically adjusting the regularization factor within a 10-
fold cross-validation framework to identify the optimal fac-
tor that balances solution variance and prediction bias. As
a result, the LASSO algorithm suggests that HCHO, NO2,
jNO2, and jO1D contain sufficient information to accurately
predict PO3 for the most part.

Table 1 provides the intercepts and corresponding coeffi-
cients for four different regions, classified by FNRs. While
we do not expect a statistical model to fully single out the
cause-and-effect relationship between explanatory variables
and the target, we note that it exhibits a basic understand-
ing of ozone chemistry; specifically, the HCHO coefficients
increase as the FNR decreases (i.e., in more VOC-sensitive
conditions). The same tendency is evident with respect to
NO2 and higher FNRs (i.e., more NOx-sensitive conditions).
The negative coefficient of NO2 in regions where FNR val-
ues≤ 1.5 implies some level of non-linear feedback embed-
ded in this parameterization. Both jNO2 and JO1D have
positive coefficients across all chemical conditions, suggest-
ing that higher photolysis rates accelerate PO3. JO1D has a
smaller effect than jNO2 on PO3 over remote regions (with
FNR values ≥ 3.5), perhaps due to redundant information
compared to that concerning jNO2.
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Figure 4. Violin plots illustrating six different parameters derived from the box model, clustered into seven distinct categories. Each cluster
is described using three types of labels: one for air pollution levels (C (clean), M (moderately clean), P (moderately polluted), P+ (polluted),
and P++ (extremely polluted)), one for altitude (H (high), M (medium), and L (low)), and one for the SZA (H (high) and L (low)). Each
white dot represents the median, and the bars indicate the 75th and 25th percentiles. Both the FNRs and FNPs are scaled using a logarithmic
function to enable the simultaneous visualization of both low and high values within a single plot.

Table 1. Calibrated coefficients derived from the LASSO estimator using seven atmospheric composition aircraft campaigns.

Group Criteria for Intercept HCHO NO2 jNO2× 103 jO1D× 106

the FNR (ppbv) (ppbv) (s−1) (s−1)

1 FNR≤ 1.5 −1.98 1.85 −0.14 0.12 0.09
2 1.5<FNR< 2.5 −3.38 1.79 0.98 0.19 0.07
3 2.5<FNR< 3.5 −3.27 1.07 3.48 0.21 0.03
4 FNR≥ 3.5 −1.63 0.41 6.54 0.11 0.01

Figure 5. Violin plots of simulated PO3 corresponding to the seven
clusters described in Fig. 4. The lowest PO3 levels are seen in re-
mote regions (air pollution levels: C–M), where ozone precursors
are minimal. The highest PO3 levels do not occur in the most pol-
luted (P++) regions due to the non-linear ozone chemistry.

4.3.2 Validation of PO3 predictions

The validation of PO3 predictions against the box model
results is performed in three progressively stringent stages:

(i) using all data points included in the LASSO algorithm,
(ii) randomly dropping data points, and (iii) dropping each
air quality campaign from the LASSO estimation and using
its data as a benchmark.

Figure 6a shows the scatterplot of predicted PO3 against
the box model for all data points used to estimate the co-
efficients described in Sect. 4.3.1. Despite the algorithm’s
simplicity, we can recreate more than 88 % of the variance
in PO3 with negligible absolute bias. Importantly, this sug-
gests that our scientific problem is not overly complex. There
is less than 30 % bias relative to the mean absolute bias of
the prediction. The positive offset and slope smaller than 1
indicate a mild underestimation (overestimation) of PO3 in
polluted (clean) regions. Figure 6b shows the same analy-
sis for 20 000 randomly chosen data points (∼ 15 % of the
total), which we purposefully dropped from the LASSO es-
timation to assess whether the predictor model can replicate
values for points not used during the training. We find al-
most identical statistics for these points, suggesting that the
prediction stays robust for points outside the training dataset.
However, the most stringent method involves dropping each
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Figure 6. Scatterplots comparing observationally constrained
F0AM model PO3 with predictions based on proposed algorithms
for either (a) all data points or (b) 20 000 data points randomly
dropped as benchmarks. Despite the simplicity of the algorithm, we
can reproduce a large variance in PO3 using only four explanatory
variables.

campaign dataset entirely to understand where the prediction
model struggles most.

Figure 7 shows several subplots pertaining to campaigns
dropped from the analysis. It is immediately evident that
our PO3 estimation demonstrates considerable skill in cap-
turing PO3 in most polluted cases, including those from
DISCOVER-AQ, KORUS-AQ, and SENEX, without us-
ing their individual datasets. This provides convincing ev-
idence of a high degree of generalizability for the predic-
tor. However, the model shows reduced performance with
respect to INTEX-B for PO3 values< 1 ppbv h−1. More-
over, the model’s predictive power is consistently poor for
ATom, where a significant fraction of airsheds were sam-
pled in pristine areas. We observe similarly poor performance
for PO3 values< 1 ppbv h−1 in other campaigns, such as
KORUS-AQ. Therefore, it is difficult to have confidence in
the model’s predictive power in remote regions, which may
be due to the lack of inclusion of HOx , halogens, and H2O in
the fit, as these can serve as important sinks for tropospheric
ozone in those areas (Simpson et al., 2015). Nonetheless,
while our predictive accuracy remains poor for this specific
subset of data, the practical utility and significance of these
specific regions (i.e., pristine areas) for air quality applica-
tions are notably limited. Given these results, we limit our
predictions to PO3 values> 1 ppbv h−1 for the subsequent
analyses.

4.3.3 TROPOMI NO2 and HCHO validation

To build confidence in our quantitative application of
TROPOMI data for PO3 estimates, we validate the daily
tropospheric NO2 and total HCHO columns against MAX-
DOAS and FTIR observations based upon the validation
framework outlined in Vigouroux et al. (2020) and Verhoelst
et al. (2021). Both paired datasets were expanded to cover
late 2023, providing a fuller picture of TROPOMI error char-
acterization compared to previous studies. Figure 8 presents
a comparison of daily TROPOMI data, the benchmarks, and

the optimal fit associated with their errors for the period
2018–2023.

In the context of tropospheric NO2 comparison, we ob-
serve a slope smaller than 1 (∼ 0.66) with a positive offset
(0.32× 1015 molec. cm−2). This tendency has been repeat-
edly documented in various studies for different satellites or
benchmarks (e.g., Griffin et al., 2019; Choi et al., 2020; Ver-
hoelst et al., 2021; van Geffen et al., 2022). A slope smaller
than 1, originating from unresolved systematic biases, im-
plies that TROPOMI is biased low in polluted regions. A
slightly positive offset suggests that TROPOMI NO2 is bi-
ased high in remote regions. The errors in the slope and offset
are relatively small, providing evidence of the robustness of
the optimal fit against the dataset variance. Nonetheless, we
incorporate them into Eqs. (2) and (3) to take the adjustment
error into consideration.

Despite the inherent difficulty in obtaining HCHO ob-
servations from UV–Vis imagery (Gonzalez Abad et al.,
2019), the HCHO comparison exhibits good alignment
with the benchmarks. As in the previous comparison, the
slope is smaller than 1 (∼ 0.59), and the offset is positive
(∼ 0.9× 1015 molec. cm−2), agreeing within 10 % of stud-
ies by Vigouroux et al. (2020) and De Smedt et al. (2021).
Consequently, we consider the fit errors and adjust all VCDs
based on the slope and offset obtained from this comparison.

4.3.4 Maps of PO3 across various regions with
qualitative descriptions

Taking advantage of the wealth of bias-corrected TROPOMI
observations, we present the first-ever reported maps of PO3
at a 0.1× 0.1° resolution within the PBL for July 2019 across
various geographic regions. Moreover, due to the explicit na-
ture of our algorithm, it is straightforward to break down the
contributors of PO3 to gain insights into how each driver has
shaped the distribution of PO3. Therefore, in addition to PO3
maps, we will show the magnitudes of various drivers of PO3,
including NO2, HCHO, and FNR concentrations in the PBL
region and the sum of scaled jO1D and jNO2 values, as well
as their contributions to PO3. It is worth noting that these
maps are only a snapshot of PO3 as its precursors can ex-
hibit large interannual and interdecadal variability caused by
meteorology, chemistry, and emissions. A discussion of each
region follows.

Africa and the Middle East. Figure 9 illustrates accel-
erated rates of PO3 over this region, particularly concen-
trated over major cities, such as Tehran (Iran), Cairo (Egypt),
Riyadh (Saudi Arabia), Baghdad (Iraq), Algiers (Algeria),
and Johannesburg (South Africa). These urban areas consis-
tently experience episodes of poor air quality (e.g., Chaichan
et al., 2018; Belhout et al., 2018; Yousefian et al., 2020;
Thompson et al., 2014; Boraiy et al., 2023; Choi and Souri,
2015a; Bililign et al., 2024). Biomass-burning activities in
Africa (see Fig. 1 in Roberts et al., 2009) significantly con-
tribute to the high rates of PO3. Moreover, we see acceler-
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Figure 7. As in Fig. 6b but with each campaign dropped from the LASSO estimation and subsequently used as an independent benchmark.
The designed algorithm demonstrates a high degree of skill in predicting PO3 in polluted regions; however, it performs poorly in pristine
areas.

Figure 8. Comparisons of TROPOMI tropospheric NO2 with MAX-DOAS observations (a) and TROPOMI HCHO with FTIR observa-
tions (b). The data points cover the period from 2018–2023. Errors in both ground-based remote sensing measurements and TROPOMI are
considered in the fit. The data curation procedure is discussed in Verhoelst et al. (2021) and Vigouroux et al. (2020). A slope smaller than 1
suggests that both HCHO and NO2 retrievals are underestimated in polluted regions.

ated PO3 rates over the Persian Gulf, a region housing oil
and gas production facilities, leading to high PO3 rates in
this region (Lelieveld et al., 2009; Choi and Souri, 2015a).
Figure 10 shows that NO2 and HCHO concentrations are
highly correlated in the Middle East (r = 0.82) due to co-
emitted NOx and VOC emissions, predominantly from an-
thropogenic sources. Over the entire region, HCHO and NO2
concentrations are only moderately correlated (r = 0.61).
This is due to the strong spatial heterogeneity of NOx and
VOC emissions over Africa, which are not spatially corre-
lated. One possible explanation for this could be the emis-

sions’ dependence on the type of fire combustion in Africa
(van der Velde et al., 2021) and the location of biogenic
isoprene emissions (Marais et al., 2014). For the most part,
FNRs tend to fall within ranges of values above 3.5 (LASSO
group 4 – highly NOx-sensitive). However, lower FNRs are
prevalent in the core of cities due to elevated NOx emis-
sions. The contributions of HCHO to PO3 occur predomi-
nantly over areas with low FNRs. These results suggest that
NOx emissions dictate the locations of the maximum VOC
contributions to PO3. The contribution of NO2 to PO3 be-
haves non-linearly, with negative values observed in the core
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Figure 9. Spatial distribution of PO3 within the PBL region,
averaged over July 2019, for Africa and the Middle East.
PO3< 1 ppbv h−1 is masked due to algorithm deficiencies. Acceler-
ated PO3 rates can be seen over major cities and regions of biomass-
burning activity in Africa.

of cities such as Johannesburg and Tehran (Fig. S2). Pho-
tolysis rates are high over areas with a low SZA and bright
surface albedo (i.e., arid land). Accordingly, photolysis rates
exhibit a latitudinal gradient in response to changes in the
SZA. Greater contributions of photolysis rates to PO3 are ob-
served in areas with low FNRs, as determined by the LASSO
estimator (Table 1).

Contiguous United States (CONUS). New York City, Los
Angeles (LA), the San Francisco Bay Area, and Lake Michi-
gan all experienced accelerated PO3 rates in July 2019, as
shown in Fig. 11. All these regions fall into non-attainment
areas (marginal to extreme) with respect to ozone standards
and have been extensively studied (Wu et al., 2024; Kim et
al., 2022; Stanier et al., 2021). A robust relationship between
PO3 and ozone concentrations can only be established by
factoring in physical processes such as horizontal and verti-
cal transport, dry-deposition rates, and background values. In
regions with high background ozone concentrations – for ex-
ample, mountainous areas – even a moderate level of PO3 can
elevate ozone concentrations to unhealthy levels. Conversely,
if there is a strong correlation between PO3 and frequent
ozone exceedances, such as those observed in the mentioned
US cities, this indicates that locally produced ozone from
chemical reactions is the primary factor contributing to such
events. Except for LA, the vast majority of the CONUS ex-
hibits large FNRs (> 3.5), meaning NO2 levels largely shape
the spatial distribution of PO3 (Fig. 12). HCHO levels are
found to be relatively large over LA, causing PO3 to increase
due to its greater sensitivity to VOCs. In addition to high lev-
els of HCHO and NO2 in several Californian regions, accel-
erated photochemistry caused by the bright surface albedo
enhances PO3.

Eastern and southeastern Asia. Figure 13 shows extremely
accelerated PO3 rates over eastern Asia, particularly over
the North China Plain, the Yangtze River Delta, the Pearl
River Delta, and Seoul. These regions have experienced
severely degraded air quality with respect to ozone (Souri
et al., 2020a, b; Li et al., 2019; Colombi et al., 2023;
Schroeder et al., 2020; Wang et al., 2017; Zhang et al.,
2007). In southeastern Asia, Hanoi (Vietnam), Kuala Lumpur
(Malaysia), and Jakarta (Indonesia) – which have also ex-
perienced heightened PO3 – have received less attention in
the literature (Ahamad et al., 2020; Kusumaningtyas et al.,
2024; Sakamoto et al., 2018). Figure 14 suggests that the
chemical conditions of many regions in China and South Ko-
rea, falling within the transitional regimes (LASSO groups 2
and 3 – 1.5<FNR< 3.5), have made them susceptible to
high PO3 levels due to concurrently high concentrations of
HCHO and NO2. Moreover, photochemistry appears to be
active throughout the region.

Europe. Figure 15 reveals high PO3 levels over Benelux
(Belgium, the Netherlands, and Luxembourg); the Po Valley
(Italy); and several major cities, such as Barcelona (Spain)
and Rome (Italy). Benelux exhibits the largest hotspot of PO3
in the region (e.g., Zara et al., 2021). Benelux and a signifi-
cant portion of England fall into the VOC-sensitive or transi-
tional regimes (FNR< 2.5), as shown in Fig. 16. Due to di-
minished photochemistry in these high-latitude regions, we
do not observe significant PBL concentrations of HCHO that
would allow for PO3 levels to be as high as in the previous ar-
eas; moreover, non-linear NOx feedback has led to negative
contributions of NO2 to PO3 in several cities, such as Lon-
don. In general, low photolysis rates compared to the afore-
mentioned regions have made most of Europe less prone to
elevated PO3.

4.3.5 Seasonality of PO3 over the Middle East

It is valuable to study the seasonal variations in the contribu-
tors to PO3 over several major cities because the seasonality
of PO3 drivers can vary from location to location. We de-
cided to focus on several Middle Eastern regions that have
experienced rapid growth and deteriorating air quality: Cairo
(Egypt), Gaza (Palestine), Baghdad (Iraq), Riyadh (Saudi
Arabia), Tehran (Iran), and the Persian Gulf. We illustrate
the seasonality of the four major contributors to PO3 – NO2,
HCHO, jNO2, and jO1D – with respect to 2019 in Fig. 17.

HCHO levels (a proxy for VOCs) consistently have the
greatest impact on PO3 throughout the year in these regions.
Specifically, both Baghdad and Tehran experience high levels
of HCHO, even during the colder months, which can be ob-
served using TROPOMI. This suggests that regulations tar-
geting the reduction of human-made VOC emissions should
be prioritized in these regions. PO3 levels over Cairo, Gaza,
Baghdad, and the Persian Gulf peak during summertime,
while Tehran experiences a comparable peak in fall due to in-
creased VOC emissions. Additionally, we notice a decrease
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Figure 10. The first row shows the PBL concentrations of HCHO, NO2, and FNRs, as well as the sum of scaled jO1D and jNO2, derived
from TROPOMI and models with respect to July 2019. The second row shows the contributions of HCHO, NO2, and photolysis rates to
PO3, along with the defined LASSO ozone production sensitivity regimes for PO3 estimates. Contrib: contribution. Js: photolysis rate.

Figure 11. As in Fig. 9 but for the CONUS. Elevated PO3 prevails
over various areas, such as New York City, Los Angeles, the San
Francisco Bay Area, and Lake Michigan.

in PO3 levels over the Persian Gulf and Riyadh in July, possi-
bly due to a decline in HCHO contributions caused by mete-
orological factors. Even though NO2 concentrations decline
in the summertime due to shorter lifetimes against OH, the
higher amount of HCHO makes PO3 more sensitive to NO2
during this season. Gaza exhibits the least seasonal variation
among these regions, likely due to consistently active photo-
chemistry throughout the year.

4.3.6 The effect of satellite errors on PO3

Satellite retrieval errors have been identified as the primary
obstacle to achieving a robust understanding of ozone chem-
istry using HCHO and NO2 data (Souri et al., 2023; Johnson
et al., 2023); therefore, generating uncertainty maps is crucial
for informing the scientific community about the credibility
of our PO3 estimates. In this study, we utilize the equations
outlined in Sect. 2.2 to propagate the errors in HCHO and
NO2 retrievals to the final PO3 estimates. We achieve this by
recalculating the PO3 value for a given pixel 10 000 times,
with each recalculation based on a sample drawn from a nor-
mal distribution with a standard deviation equal to the satel-
lite’s total error. The standard deviation of these samples of-
fers a good approximation of the impact of satellite errors on
PO3 estimates.

Figure 18 illustrates the maps of absolute and relative PO3
errors over the targeted regions for the month of July. The er-
rors in the PO3 estimates tend to be high (> 50 %) in remote
regions, where the trace gas signals are small. However, the
PO3 errors are within 10 %–20 % in polluted regions, where
the signals are larger. Currently, the absence of absolute mea-
surements of PO3 across this vast spatial coverage makes it
challenging to assess the severity of these errors for PO3 ap-
plications. Nonetheless, any application based on this prod-
uct should be recalculated within the reported errors using a

https://doi.org/10.5194/acp-25-2061-2025 Atmos. Chem. Phys., 25, 2061–2086, 2025



2076 A. H. Souri et al.: Ozone production rates from space

Figure 12. As in Fig. 10 but for the CONUS.

Figure 13. As in Fig. 9 but for eastern and southeastern Asia. Due
to heightened levels of photochemistry, NO2, and HCHO, we ob-
serve accelerated PO3 rates across the majority of the cities in east-
ern and southeastern Asia.

Monte Carlo approach to gauge the significance of the out-
come.

5 Conclusion

Providing data-driven and integrated maps of the ozone pro-
duction rate (PO3) using a synergy of satellite retrievals,
ground-based remote sensing, and atmospheric models en-
abled us to generate the first satellite-informed product of
its kind, offering extensive spatial coverage and important
applications for atmospheric chemistry. These data have in-
deed extended the use of the ratio of formaldehyde (HCHO)
to nitrogen dioxide (NO2), known as the FNR, beyond its
current role. Through this product, we can shed light on the
effects of emission regulations, wildfires, widespread lock-

downs, wars, and economic recessions on PO3 levels. Fur-
thermore, using long-term records of satellite observations
(e.g., those from OMI, starting in 2005, and TROPOMI, from
2018 onward), this product can inform emission regulators
about locally produced ozone hotspots and, ultimately, en-
hance our understanding of the spatiotemporal variability in
ozone formation over the past 2 decades.

In this study, we generated PO3 maps within the plan-
etary boundary layer (PBL), constrained by bias-corrected
TROPOspheric Monitoring Instrument (TROPOMI) obser-
vations, using a piecewise regularized regression model.
This model was calibrated using a blend of data from a
comprehensive suite of aircraft observations and a well-
characterized box model. These maps, produced for various
regions, allowed us to identify hotspots of locally produced
ozone pollution with unprecedented resolution. Our findings
indicate that numerous urban areas in the Middle East, east-
ern Asia, and southeastern Asia exhibit accelerated PO3 rates
(> 8 ppbv h−1), attributed to high levels of anthropogenic
nitrogen oxides (NOx =NO+NO2), volatile organic com-
pounds (VOCs), and active photochemistry. In contrast, such
elevated PO3 levels were less prevalent in the United States
and Europe, with exceptions including Los Angeles, New
York City, and the entire region of Benelux. Additionally,
biomass-burning activities in Africa contributed to high PO3
rates across extensive areas. The seasonality of PO3 peaked
around summer in several regions in the Middle East due
to active photochemistry and concurrently high HCHO and
NO2 levels; however, Tehran experienced elevated PO3 dur-
ing fall due to large HCHO values, possibly produced from
anthropogenic emissions.

The production of these maps relied heavily on a ro-
bust training dataset. To this end, we incorporated an ex-
tensive array of aircraft observations from multiple atmo-
spheric composition campaigns, including DISCOVER-AQ,
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Figure 14. As in Fig. 10 but for eastern and southeastern Asia.

Figure 15. As in Fig. 9 but for Europe. Due to reduced photo-
chemistry, PO3 values tend to be smaller than in the previous cases.
Benelux experiences the highest PO3 levels in this region.

KORUS-AQ, INTEX-B, ATom, and SENEX, into the Frame-
work for 0-D Atmospheric Modeling (F0AM) photochemical
box model. This box model demonstrated a high level of cor-
respondence (R2> 0.6, with minimal biases) between sev-
eral unconstrained compounds (e.g., HCHO, OH, HO2, PAN,
NO, and NO2) and their observed counterparts, indicating
its effectiveness in understanding local ozone chemistry. Uti-
lizing a classification algorithm applied to the data obtained

from the constrained box model, we identified HCHO; NO2;
the ratio between HCHO and NO2 (known as the FNR); pho-
tolysis rates; and, to some extent, meteorological factors as
good candidates for reproducing PO3 variability and magni-
tudes.

Subsequently, we employed a piecewise linear model
known as LASSO, which performs feature selection by elim-
inating unimportant inputs, to parameterize PO3. A key com-
ponent of this parameterization was the use of FNRs to
empirically linearize the non-linear ozone chemistry. The
LASSO algorithm indicated that more than 88 % of the vari-
ance in PO3 could be reproduced with low bias using only
five parameters: the FNR, HCHO, NO2, jNO2 (the photol-
ysis rate for NO2+hν), and jO1D (the photolysis rate for
O3+hν). This parameterization demonstrated remarkable
performance for the majority of air parcels collected in mod-
erately to extremely polluted regions (PO3> 1 ppbv h−1).
However, it performed poorly in pristine regions due to
the exclusion of certain ozone loss pathways, such as HOx
(OH+HO2), which are more challenging to predict.

Fortunately, TROPOMI provides critical data for enhanc-
ing the representation of the FNR, HCHO, NO2, jNO2, and
jO1D. We utilized TROPOMI’s viewing geometry, UV sur-
face albedo, and total ozone overhead from a model to predict
jNO2 and jO1D, using lookup tables derived from NCAR’s
TUV model. To convert TROPOMI tropospheric NO2 and
HCHO columns into their corresponding PBL mixing ratios,
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Figure 16. As in Fig. 10 but for Europe.

Figure 17. The contributions of NO2, HCHO, jNO2, and jO1D to PBL PO3 for several major regions in the Middle East. These estimates
are based on the proposed algorithm, which integrates TROPOMI, ground-based remote sensing, and atmospheric models to estimate PO3
using a statistical approach. PO3 tends to spike during summer due to increased HCHO levels, a higher sensitivity of PO3 to NOx , and
enhanced photochemistry. However, Tehran shows a second peak in fall due to unusually high values of HCHO.

we employed the MERRA-2 GMI global transport model,
which is extensively used in various studies. However, the
coarse resolution of this model might have introduced un-
derrepresentation issues, which could be mitigated in future
research by using higher-spatial-resolution models.

To address the biases associated with the TROPOMI
observations, we updated comparisons from Verhoelst et
al. (2021) and Vigouroux et al. (2020) with a larger dataset
of paired TROPOMI–FTIR and TROPOMI–MAX-DOAS
measurements. TROPOMI retrievals significantly underesti-
mated HCHO and NO2 magnitudes in polluted regions (ex-
hibiting slope values of ∼ 0.6–0.7) and moderately overes-

timated them in pristine areas. These biases were corrected
using regression lines, enabling a relatively unbiased appli-
cation of the data.

To build confidence in our product, we propagated
TROPOMI HCHO and NO2 errors to PO3 estimates using
a Monte Carlo approach. The results indicated that PO3 esti-
mates were uncertain (> 50 %) in clean regions due to a low
trace gas signal in TROPOMI retrievals. However, in pol-
luted regions, the errors were more moderate (10 %–20 %)
due to the stronger signal.

Over the years, extensive efforts have been devoted to
measuring various critical atmospheric compounds globally,
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Figure 18. The influence of satellite errors on PO3 estimates (both absolute and relative) over four major regions addressed in this work. The
errors are based on monthly averaged TROPOMI errors. The errors tend to be mild over polluted regions (10 %–20 %), but they can exceed
50 % over pristine regions. Note that “err” stands for error.

developing robust atmospheric models, and enhancing satel-
lite retrievals and their benchmarks. These advancements
have enabled us to estimate PO3 maps within the PBL.
Nonetheless, it is crucial to acknowledge some limitations of
our work, many of which are the focus of ongoing research
within our team:

i. Direct measurements of PO3 using specialized instru-
ments (Cazorla and Brune, 2010; Sadanaga et al., 2017;
Sklaveniti et al., 2018) are lacking in most atmospheric
composition datasets, limiting our ability to fully under-
stand the effects of assumptions made in the box model
(such as the exclusion of heterogeneous chemistry) on
PO3.

ii. There is potential for improvement in the parameteri-
zation process by employing more sophisticated algo-
rithms, such as neural networks, which could increase
the explained variance in the predicted PO3.

iii. The conversion of satellite column data to PBL mix-
ing ratios requires error characterization and the use of
finer-resolution models that are comparable in size to
the PO3 grid boxes.

iv. Partially cloudy pixels and aerosols can affect photoly-
sis rates, which should be considered in future parame-
terization efforts.

It is important to recognize that PO3 maps are just one
piece of the puzzle when it comes to determining ozone con-
centrations. Several studies have indicated that accurately

representing surface ozone is challenging due to difficul-
ties in representing background ozone, transport, and dry-
deposition rates (e.g., Zhang et al., 2023; Clifton et al., 2020).
Therefore, we advise against directly linking high PO3 rates
from our product to increased unhealthy ozone exposure.
However, our product does provide indications as to whether
heightened ozone concentrations are associated with chem-
istry contributions as opposed to other processes (e.g., mete-
orology or dry-deposition rates). Further investigation using
additional tools/data is necessary to gather a full picture of
these processes.

Despite these limitations, our novel product is a valu-
able asset to the atmospheric science community. It pro-
vides a more comprehensive understanding of the complexi-
ties associated with spatiotemporal variability in non-linear
ozone chemistry over a large domain and enhances confi-
dence in high-resolution maps of chemically produced ozone
hotspots.

Code and data availability. TROPOMI satellite data are derived
from https://doi.org/10.5270/S5P-9bnp8q8 (Copernicus Sentinel-
5P, 2021) and https://doi.org/10.5270/S5P-vg1i7t0 (Copernicus
Sentinel-5P, 2020). The FTIR and MAX-DOAS observations
were partly obtained from the Network for the Detection of
Atmospheric Composition Change (NDACC) and are avail-
able through the NDACC website at https://ndacc.larc.nasa.
gov (NDACC, 2025). The box model can be obtained from
https://github.com/AirChem/F0AM (last access: 10 November
2024; https://doi.org/10.5281/zenodo.10069985, Wolfe and Hask-
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