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Abstract. Simultaneous monitoring of greenhouse gases and air pollutant emissions is crucial for combat-
ing global warming and air pollution. We previously established an air-pollution-satellite-based carbon dioxide
(CO2) emission inversion system, successfully capturing CO2 and nitrogen oxide (NOx) emission fluctuations
amid socioeconomic changes. However, the system’s robustness and weaknesses have not yet been fully eval-
uated. Here, we conduct a comprehensive sensitivity analysis with 31 tests on various factors including prior
emissions, model resolution, satellite constraint, and inversion system configuration to assess the vulnerabil-
ity of emission estimates across temporal, sectoral, and spatial dimensions. The relative change (RC) between
these tests and base inversion reflects the different configurations’ impact on inferred emissions, with 1 stan-
dard deviation (1σ ) of RC indicating consistency. Although estimates show increased sensitivity to tested factors
at finer scales, the system demonstrates notable robustness, especially for annual national total NOx and CO2
emissions across most tests (RC< 4.0 %). Spatiotemporally diverse changes in parameters tend to yield incon-
sistent impacts (1σ ≥ 4 %) on estimates and vice versa (1σ < 4 %). The model resolution, satellite constraint, and
NOx emission factors emerge as the major influential factors, underscoring their priority for further optimiza-
tion. Taking daily national total CO2 emissions as an example, the RC± 1σ they incur can reach −1.2± 6.0 %,
1.3± 3.9 %, and 10.7± 0.7 %, respectively. This study reveals the robustness and areas for improvement in our
air-pollution-satellite-based CO2 emission inversion system, offering opportunities to enhance the reliability of
CO2 emission monitoring in the future.

1 Introduction

The knowledge of emissions, i.e., how much, where, and
by what activity pollutants are released into the atmosphere,
lays the foundation for understanding the changes in atmo-
spheric compositions and managing emissions toward cli-
mate and air quality targets (Meinshausen et al., 2022; Li et
al., 2022; Zhang et al., 2019). Anthropogenic emissions are
strongly modulated by socioeconomic events (e.g., holidays,
economic recession, and recovery). Therefore, it is essential
to monitor emissions timely to interpret atmospheric species

concentrations (Shan et al., 2021; Le Quéré et al., 2021; Gue-
vara et al., 2023). Currently, numerous nations, particularly
those within the Global South (i.e., China), grapple with the
dual imperatives of mitigating air pollution and addressing
climate change challenges. To effectively navigate these in-
tertwined challenges in a harmonized and resource-efficient
manner, the development of a system capable of disentan-
gling variations in emissions and their driving factors for
greenhouse gases and air pollutants is indispensable (Ke et
al., 2023).
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Recently, a discernible trend is emerging towards infer-
ring anthropogenic carbon dioxide (CO2) emissions from
well-observed and co-emitted air pollutants (i.e., nitrogen
dioxide, NO2) given their co-emission characteristics in time
and space (Wren et al., 2023; Yang et al., 2023; F. Liu et
al., 2020a; Reuter et al., 2019). NO2 forms rapidly after NO
is emitted from sources and is also the primary nitrogen ox-
ide detectable by most satellites (Ye et al., 2016). This makes
NO2 a reliable and widely adopted proxy in nitrogen ox-
ide (NOx = NO2+NO) emission inversions. However, the
co-emission of NOx and CO2 does not imply synchronized
trends in their emissions, as the CO2-to-NOx emission ra-
tios and activity trends vary across different sectors (Li and
Zheng, 2024). The introduction of NO2 in the CO2 emis-
sion estimation presents several distinct advantages. NO2
has a short lifetime of several hours, rendering its source-
contributing plumes readily detectable via remote sensing
techniques (Goldberg et al., 2019). This short lifespan of
NO2 facilitates mass-balance approaches for estimating NOx
emissions, which rely on the assumption of a linear rela-
tionship between NO2 columns and local NOx emissions
(Cooper et al., 2017; Mun et al., 2023; Martin et al., 2003).
In contrast, the longevity of CO2, spanning hundreds of
years, combined with its elevated background concentration
reaching hundreds of parts per million (ppm), obscures the
detection of local source-triggered concentration enhance-
ments (i.e., several ppm) (Nassar et al., 2017; Reuter et
al., 2019). Moreover, remote sensing technologies for NO2
remain generally more mature, as indicated by the broader
coverage and improved signal-to-noise ratio in column con-
centration observation (MacDonald et al., 2023; Cooper et
al., 2022). Recent advancements in CO2 satellite technol-
ogy are promising, such as Orbiting Carbon Observatory-3
(OCO-3), which can generate CO2 maps with a resolution of
up to 1.6 km× 2.2 km and monitor CO2 columns at differ-
ent times throughout the daytime to elucidate diurnal emis-
sion patterns (Taylor et al., 2023), while its spatial coverage
may not be sufficient for large-area inversions at high tem-
poral resolution. The synergistic quantification of CO2 and
NOx emissions has gained substantial attention, not to men-
tion that it could provide valuable guidance for a joint effort
in monitoring and mitigating air pollutants and carbon emis-
sions concurrently (Miyazaki and Bowman, 2023).

We have developed an air-pollution-satellite-based CO2
emission inversion system, which is capable of concurrently
estimating the 10 d moving average of sector-specific anthro-
pogenic NOx and CO2 emissions by integrating top-down
and bottom-up methods. This integrated methodology has
proven effective in capturing emission fluctuations, particu-
larly during the coronavirus disease 2019 (COVID-19) pan-
demic (Zheng et al., 2020; Li et al., 2023). While previous
sensitivity tests have suggested a certain level of accuracy,
the system has not yet undergone a comprehensive evalua-
tion to thoroughly assess its robustness and weaknesses and
thereby clearly imply its future developmental trajectory. To

bridge this gap, we undertake an extensive sensitivity analy-
sis with 31 tests using the 2022 anthropogenic NOx and CO2
emission estimation as a case study. This study investigates
how emission outcomes respond to a variety of sensitivity as-
sessments across temporal, sectoral, and spatial dimensions.
This study aims to diagnose and rank the uncertainty sources,
providing insights to prioritize improvements of this inver-
sion system in the future.

2 Materials and methods

Our air-pollution-satellite-based CO2 emission inversion
system has been elucidated in our previous studies (Zheng et
al., 2020; Li et al., 2023). In essence, this system integrates
top-down and bottom-up data streams to infer the 10 d mov-
ing average of anthropogenic NOx and CO2 emissions by
sector in China based on the mass-balance approach (Cooper
et al., 2017). Comprising three key components, the system
involves the bottom-up inference of prior emissions for NOx
and CO2 with a sectoral profile, the top-down estimation of
total NOx emissions constrained by satellite observation, and
the integration of both sources to derive satellite-constrained
NOx and CO2 emissions by sector (Fig. S1 in the Supple-
ment). Each of these processes could introduce uncertainties
in the final emission estimates. To assess the potential un-
certainties, we establish a baseline (base) for emissions com-
puted using our conventional settings (Li et al., 2023; Zheng
et al., 2020) and further investigate sensitivity tests to char-
acterize the impacts of the different configurations on final
estimates.

2.1 Inversion methodology and base inversion

We use the base inversion as a case to provide a detailed ex-
planation of this inversion system. In the base inversion, we
adhered to the same parameters and configurations outlined
in previous studies for estimating the 10 d moving average
of anthropogenic NOx and CO2 emissions by sector in 2022
(Table 1) (Li et al., 2023; Zheng et al., 2020). Succinctly,
we first updated sectoral NOx and CO2 emissions from
the Multi-resolution Emission Inventory for China (MEIC)
(Zheng et al., 2018) through the bottom-up process. This in-
volved utilizing indicators including industrial production,
thermal power generation, freight turnover, and population-
weighted heating degree days as proxies for changes in in-
dustry, power, transport, and residential activity levels (de-
tails are shown in Sect. S1 and Table S1 in the Supple-
ment). Notably, to reconcile the resolution between the prior
emissions and the model, we aggregated the original MEIC
emissions from a resolution of 0.25°× 0.25° (Fig. S2 in the
Supplement) to 0.5°× 0.625°. Secondly, we inferred the to-
tal anthropogenic NOx emissions constrained by TROPO-
spheric Monitoring Instrument (TROPOMI) NO2 retrievals
(v2.4) (van Geffen et al., 2022) (Eq. 1). A critical step in this
process was establishing a linear relationship between NO2
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tropospheric vertical column densities (TVCDs) and anthro-
pogenic NOx emissions under the mass-balance assumption
(Eq. 2) through the GEOS-Chem (GC) simulation (v12.3.0,
https://geoschem.github.io/, last access: 1 October 2019) at a
horizontal resolution of 0.5°× 0.625°. Our analysis focused
on the grids where anthropogenic emissions prevail (F. Liu et
al., 2020b), characterized by a 10 d moving average of NO2
TVCDs exceeding 1× 1015 molec. cm−2.
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where t , i, and y represent the 10 d window, model grid
cell (i.e., 0.5°× 0.625°), and target year 2022, respectively.
Et,i,TROPOMI,y is the anthropogenic total NOx emissions
constrained by TROPOMI NO2 TVCDs. Et,i,bottom-up,2019 is
the anthropogenic NOx emissions in 2019 from the MEIC.
βt,i is a unitless factor relating the changes in NO2 TVCDs
to anthropogenic NOx emissions (Lamsal et al., 2011).
1Et,i,bottom-up,2019/Et,i,bottom-up,2019 represents the imple-
mented 40 % reduction in anthropogenic NOx emissions over
China. The 40 % reduction was selected after a series of
sensitivity tests, which demonstrated that this perturbation
level exerts a limited impact on the β estimates (Zheng et
al., 2020). �t,i,−40 % emi,2019 and �t,i,base,2019 are GEOS-
Chem-simulated NO2 TVCDs at the TROPOMI overpass
time in 2019 with a 40 % emission reduction and with-
out any emission reduction, respectively. (1�/�)t,i,anth,y
refers to the relative changes in NO2 TVCDs due to
anthropogenic NOx emission changes between 2019 and
2022. �t,i,sate,y/�t,i,sate,2019 indicates the relative differ-
ences in TROPOMI NO2 TVCDs between 2019 and 2022,
and �t,i,simu_fixemis,y/�t,i,simu,2019 represents the relative
changes in NO2 TVCDs caused by inter-annual meteorolog-
ical variation, which are derived from GEOS-Chem simula-
tions with the fixed 2019 emissions and meteorological field
in the target year.

Thirdly, we integrated the bottom-up and top-down data
flows to yield TROPOMI-constrained sectoral NOx emis-
sions. Assuming that each grid’s emission variability was
primarily driven by its dominant source sectors (contributing
over 50 %), we utilized the discrepancy between the bottom-
up and top-down estimates in grid cells dominated by a par-
ticular sector to derive sector-specific scaling factors, which

were subsequently applied to correct the bottom-up sectoral
NOx emissions (Eq. 4). For grids without a sector contribut-
ing over 50 %, we excluded them from sectoral scaling factor
calculations, instead applying scaling factors derived from
grids meeting this criterion. The number of these grids ac-
counts for less than 20 % of total grids, making their im-
pact negligible. Following this adjustment, we rescaled the
corrected bottom-up emissions to ensure alignment with the
TROPOMI-constrained total emissions. The overall sectoral
correction factors mainly range from 0.5 to 1.5 (Fig. S3).

scale factort,s,y = 1+

∑
i

(
Est,i,sate,y −E

s
t,i,bottom-up,y

)
∑
iE

s
t,i,bottom-up,y

, (4)

where t , s, i, and y represent the 10 d window, sector,
grid cell (i.e., 0.5°× 0.625°), and year 2022, respectively.
Est,i,sate,y and Est,i,bottom-up,y are TROPOMI-constrained and
bottom-up-estimated NOx emissions on grid cell i with dom-
inated source sector s, respectively. The scale factor t,s,y is
the scaling factor used to correct the bottom-up-estimated
NOx emissions from sectors in time t in year y.

Finally, we converted the sectoral NOx emissions to cor-
responding CO2 emissions with the CO2-to-NOx emission
ratios derived from the bottom-up process (Eq. 5). The CO2-
to-NOx emission ratios in 2022 are updated by reducing NOx
emission factors (EFs) while keeping CO2 EFs unchanged
based on the 2019 MEIC. The default assumption that the re-
duction rate halves annually is due to the limited potential for
further reductions. In contrast, the CO2 EFs are assumed to
remain unchanged, as they are primarily determined by fuel
type and combustion conditions (Cheng et al., 2021) (details
shown in Sect. S2).

Cs,t,i,TROPOMI,y = Es,t,i,TROPOMI,y

×
EFCO2s,i,bottom-up,2019

EFNOxs,i,bottom-up,2019×
(
1− rNOxs,i,y

) , (5)

where Cs,t,i,TROPOMI,y and Es,t,i,TROPOMI,y are CO2 and
NOx emissions from sector s. EFCO2s,i,bottom-up,2019 and
EFNOxs,i,bottom-up,2019 are the sectoral EFs of CO2 and NOx
in 2019 derived from the MEIC emission model. rNOxs,i,y is
the reduction ratio in NOx EFs by sector from 2019 to 2022
derived from the bottom-up estimation.

We approximate the annual NOx and CO2 emissions as the
sum of the 10 d moving average of NOx and CO2 emissions
in 2022 with a vacancy in the first and last 5 d. This approx-
imation, however, does not impact our analysis, as our pri-
mary objective is to identify potential sources of uncertainty
within the system and thereby highlight areas for future im-
provement.

2.2 Sensitivity settings

The sensitivity inversion experiments comprise 31 tests de-
signed to provide a comprehensive evaluation of the system.
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Table 1. Configurations of base inversion.

Factors/parameters Base setting

GEOS-Chem (GC) resolution GEOS-Chem simulation with the resolution of 0.5°× 0.625°

TROPOMI retrieval version v2.4 of TROPOMI NO2

TROPOMI screening schemes Cloud fraction (CF)< 0.4, quality flag (QA)> 0.5

Reference year 2019

NOx emission factors (EFs) The reduction ratio of NOx EFs halves annually∗

Threshold value to identify dominant emission source
50 %

sectors for each grid

Sectors in bottom-up estimation
eight sectors (power, industry, cement, iron, residential, residential biofuel,
on-road, and off-road)

∗ Each year’s reduction rate for NOx EFs is set to decrease by half compared to the previous year. For example, if the reduction of NOx EFs from 2019 to 2020 were 4 %, the
reduction from 2020 to 2021 would be set at 2 %.

To facilitate a clearer discussion of their impacts, we catego-
rized these tests into four classes based on their roles within
the system: prior information, GEOS-Chem model resolu-
tion, satellite observational constraints, and inversion system
parameters (Fig. 1 and Table 2). Each test is conducted as a
controlled experiment, where only one parameter is altered,
while the rest remain the same as their base inversion set-
ting. The rationale behind the settings and their design will
be elaborated on in the following sections.

2.2.1 Modifying prior emission estimates

The prior provides the sectoral profile for subsequent emis-
sion attribution. We conducted a comprehensive examina-
tion of associated parameters when updating the prior from
the 2019 MEIC (0.5°× 0.625°), including NOx EFs influ-
encing the conversion of NOx to CO2 emissions by sector,
threshold value defining the dominant sector for each grid,
and sector classification. For NOx EF settings, we devised
a 10-level gradient ranging from −10 % to −1 % (referred
to as ef_[−10 %, −1 %]). Regarding the threshold value,
we varied it from 50 % to 40 % and to 60 % (referred to as
thre_40 % and thre_60 %), respectively. For sector classifica-
tion, the original prior NOx and CO2 emissions were updated
based on eight sectors in the bottom-up process: power, in-
dustry, cement, iron, residential, residential biofuel, on-road,
and off-road. This detailed sectoral structure facilitates rel-
atively detailed bottom-up estimations with specific sectoral
activity levels. These eight sectors were then aggregated into
four categories: power, industry (sum of original industry,
cement, and iron), residential (sum of original residential
and residential biofuel), and transport (sum of original on-
road and off-road) when allocating TROPOMI-constrained
total NOx emissions into sectors. Here, this sector consoli-
dation, specifically implemented before the bottom-up esti-

mation (4_sectors), was designed to evaluate the influence of
sector classification on the inversion results.

2.2.2 Employing coarser model resolution

The model resolution of the GEOS-Chem simulation inher-
ently shapes the localized relationship between NO2 TVCDs
and NOx emissions established in the top-down process.
Finer resolution is advantageous for establishing localized
connections between air pollutant emissions and atmospheric
concentrations, as well as the attribution of sectoral emis-
sions. However, excessively fine resolution is not applica-
ble due to the inter-grid transport when employing the mass-
balance method (Turner et al., 2012). To explore the impact
of resolution on emission estimates, we performed an inver-
sion experiment with simulations at a coarser resolution of
2°× 2.5° (Res_2× 2.5).

2.2.3 Changing satellite observational constraints

The TROPOMI NO2 retrievals serve as a constraint in
the top-down NOx emission estimation. We conducted ex-
periments on the TROPOMI NO2 retrievals through three
distinct approaches. Firstly, we used XGBoost (eXtreme
Gradient Boosting) to fill the invalid satellite retrievals in
v2.4 TROPOMI (Trop_fill) by establishing relationships be-
tween TROPOMI NO2 TVCDs and meteorological vari-
ables, as well as GEOS-Chem-simulated NO2 TVCDs
(modeled_NO2 in Eq. 6) (Wei et al., 2022). The meteoro-
logical variables were derived from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 dataset
(Hersbach et al., 2020), including boundary layer height
(BLH), surface pressure (SP), temperature (TEM), dew-point
temperature (DT), 10 m u component (WU), 10 m v com-
ponent of winds (WV), total precipitation (TP), evaporation
(EP), downward UV radiation at the surface (surUV), and
mean surface downward UV radiation flux (downUV). In the
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Figure 1. Overview of the sensitivity inversion tests in this study. Details on the processes and settings are presented in Fig. S1 and Table 2.

XGBoost process, we trained the relationship for daily NO2
TVCDs throughout the year grid by grid, with 80 % of the
data used as the training set and 20 % as the test set.

TROPOMI_NO2 ∼ fXGBoost(
modeled_NO2,BLH,SP,TEM,DT,WU,WV,TP,
EP,surUV,downUV

)
(6)

The comparison of NO2 TVCDs before and after data fill-
ing revealed minimal impact from the original missing data
(Fig. S4). This is attributed to our system’s utilization of a
10 d moving average of NO2 TVCDs, which effectively mit-
igates the influence of missing data at the grid scale.

Secondly, we evaluated the impact of different ver-
sions of TROPOMI NO2 retrievals by substituting the v2.4
TROPOMI data with the older v2.3 TROPOMI NO2 columns
(Trop_v2.3). Updates in TROPOMI data products generally
help address the low bias of NO2 concentrations, particularly
in heavily polluted regions (Lange et al., 2023; van Geffen
et al., 2022). Thirdly, we adjusted the satellite data screen-
ing protocols to investigate the uncertainties associated with
satellite observations in emission estimates, which involved
varying the cloud fraction (CF) limit to 0.3 (Trop_cf03) or
0.5 (Trop_cf05) and modifying the quality flag (QA) limit
to 0.6 (Trop_qa06) or 0.7 (Trop_qa07), respectively. CF and
QA serve as crucial parameters in screening applicable NO2
TVCDs, representing primary sources of uncertainty in satel-
lite observations (van Geffen et al., 2022; Lange et al., 2023).

2.2.4 Tests on inversion system parameters

In previous studies, the reference year for updating emissions
for target years was 2019. Here, we modified the reference
year to 2021 (2021_base) to assess its impact. The parameter
β represents the localized relationship between changes in

NO2 TVCDs and changes in anthropogenic NOx emissions
(Eq. 2), determining the transition from observed changes in
NO2 TVCDs to changes in anthropogenic NOx emissions
in the top-down process. To explore potential nonlinear re-
sponses in the estimated results to this parameter, we devised
a 10-level gradient for β, ranging from −20 % to 20 % (re-
ferred to as β_[−20 %, 20 %]).

2.3 Evaluation of different configurations’ impact

The sensitivity analysis of the NOx and CO2 emissions es-
timated by our inversion system has illuminated potential
sources of uncertainty and the magnitude of their impacts.
To quantify the influence of sensitivity tests on emission esti-
mates, we calculated the relative change (RC) between emis-
sions estimated under different tests and the base inversion
and 1 standard deviation (1σ ) of RC to evaluate the consis-
tency of their impact across temporal, sectoral, and spatial
scales (details shown in Table 3). It is noteworthy that on
the annual national total emission scale (maximization of all
three dimensions), the value of 1σ equals 0.0 %.

In this context, a condition where 1σ is below 4.0 % is
deemed a consistent impact on emission outcomes within
certain dimensions (the determination of 4.0 % shown in
Fig. S5). Conversely, when 1σ exceeds or equals 4.0 %, it
is indicative of an inconsistent impact. For instance, a daily-
scale σt value of 6.2 % in the Res_2× 2.5 test (Fig. S6) sug-
gests that the model resolution exerts a temporally inconsis-
tent influence on daily emission estimates, whereas a daily-
scale σt = 0.0 % under ef_−10 % indicates temporal consis-
tency in its influence. These principles extend to other di-
mensions (i.e., sectoral and spatial). Factors whose sensitiv-
ity tests yield large and inconsistent RC across finer time,
sector, or region scales tend to introduce high uncertainty and
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Table 2. Settings of 31 sensitivity inversion tests.

Category Number Name Setting description Test objectives

GC 1 Res_2× 2.5 GEOS-Chem simulation with the resolution of 2°× 2.5° Model resolution

2 Trop_fill Complementing TROPOMI NO2 with machine learning Sampling coverage

3 Trop_v2.3 Substituting TROPOMI NO2 from v2.4 to v2.3 Satellite data version

4 Trop_cf03 Changing CF limit from 0.4 to 0.3

Satellite data filtering conditionSatellite constraint 5 Trop_cf05 Changing CF limit from 0.4 to 0.5

6 Trop_qa06 Changing QA limit from 0.5 to 0.6

7 Trop_qa07 Changing QA limit from 0.5 to 0.7

8 2021_base Changing the reference year from 2019 to 2021 Reference year

9 β_−20 % Scaling β down by 20 %

10 β_−15 % Scaling β down by 15 %

11 β_−10 % Scaling β down by 10 %

12 β_−5 % Scaling β down by 5 %

Inversion system parameters 13 β_−1 % Scaling β down by 1 % β

14 β_1 % Scaling β up by 1 %

15 β_5 % Scaling β up by 5 %

16 β_10 % Scaling β up by 10 %

17 β_15 % Scaling β up by 15 %

18 β_20 % Scaling β up by 20 %

19 ef_−10 % Scaling changes in NOx EFs down by 10 %

20 ef_−9 % Scaling changes in NOx EFs down by 9 %

21 ef_−8 % Scaling changes in NOx EFs down by 8 %

22 ef_−7 % Scaling changes in NOx EFs down by 7 %

23 ef_−6 % Scaling changes in NOx EFs down by 6 %

24 ef_−5 % Scaling changes in NOx EFs down by 5 %

Prior 25 ef_−4 % Scaling changes in NOx EFs down by 4 % NOx EFs

26 ef_−3 % Scaling changes in NOx EFs down by 3 %

27 ef_−2 % Scaling changes in NOx EFs down by 2 %

28 ef_−1 % Scaling changes in NOx EFs down by 1 %

29 thre_40 % Changing the dominant sector threshold from 50 % to 40 %
Threshold

30 thre_60 % Changing the dominant sector threshold from 50 % to 60 %

31 4_sectors Aggregating the sectors from 8 to 4 in prior estimates Sector’s classification

become a priority for future optimization. Conversely, small
and consistent RC suggests sources with low uncertainty and
a higher level of robustness in the system to those particular
factors.

3 Results

3.1 Overview of the emission responses to sensitivity
tests

For a comprehensive understanding of emission sensitivity
across various dimensions, we compute the sum of abso-

lute average RC and 1σ (i.e.,
∣∣RC

∣∣+ 1σ ) to delineate po-
tential most likely uncertainties associated with tested fac-
tors across spatial, temporal, and sectoral scales (Fig. 2). The
impacts of these tests on emissions are comparable between
NOx and CO2, except for the NOx EF tests (first column
in Fig. 2), which distinctly influence NOx and CO2 emis-
sions. CO2 emissions display high sensitivity to NOx EFs
across all dimensions compared to NOx emissions, except in
the residential sector where NOx emissions are more respon-
sive while CO2 emissions are not. For instance, ef_−10 %
(maximum reduction in NOx EF tests) incurs a

∣∣RC
∣∣+ 1σ

Atmos. Chem. Phys., 25, 1949–1963, 2025 https://doi.org/10.5194/acp-25-1949-2025
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Table 3. Calculation of RC and 1σ across different dimensions.

Dimension Equations Parameters

Temporal – t represents timescale, denoting year, month, or 10 d window.
RCt =

Et,sensi−Et,base
Et,base

– Etsensi and Et,base denote the national total emissions under a specific sensitivity test
and base on corresponding temporal scale t .

σt =

√∑n
t

(
RCt−RCt

)2
n – RCt and σt indicate the RC and its 1σ of national total emissions across temporal scales.

The σt equals 0.0 % when t is the yearly scale.

Sectoral – s represents sector source.
RCt,s =

Et,s,sensi−Et,s,base
Et,s,base

– Et,s,sensi and Et,s,base refer to national sectoral emissions under sensitivity test and
base on temporal scale t (annual and daily).

σs =

√∑n
t

(
RCs−RCs

)2
n (daily) – RCt,s indicates the RC of national sectoral emissions on a temporal scale t .

– σs indicates 1σ of RC of national sectoral emissions on a daily scale.

Spatial – p and r represent province and region (i.e., provincial clusters), respectively.

RCt,p/r =
Et,p/r,sensi−Et,p/r,base

Et,p/r,base
– Et,p/r,sensi and Et,p/r,base refer to provincial/regional total emissions under sensitivity

test and base on temporal scale t (annual and daily).

σp =

√∑m
p

(
RCp−RCp

)2
m (annual) – RCt,p/r indicates the RC of provincial/regional total emissions on a temporal scale t .

σr =

√∑n
t

(
RCr−RCr

)2
n (daily) – σp indicates 1σ of RC of annual total emissions on the provincial scale.

– σr indicates 1σ of RC of regional total emissions on a daily scale.

of 10.7 % in annual national CO2 emissions, with no cor-
responding impact on NOx emissions. The relationship be-
tween annual national CO2 emissions and NOx EFs exhibits
linearity (Fig. S7), remaining within a 4.0 % range if NOx
EF reductions are kept below 4.0 % (i.e., ef_[−4 %, −1 %]).
In contrast, daily residential emissions show a

∣∣RC
∣∣ of only

1.0 % in CO2 but up to 9.1 % in NOx emissions under the
ef_−10 % test.

The remaining sensitivity tests, excluding the NOx EFs,
demonstrate comparable influences on both NOx and CO2
emissions. Among all dimensions examined, the annual na-
tional total NOx and CO2 emissions emerge as robust results,
with a

∣∣RC
∣∣+1σ of no more than 4.0 % across tests. At a finer

temporal scale (i.e., daily basis), the impacts of model reso-
lution, reference year, and satellite constraint on estimated
emissions are amplified, with their

∣∣RC
∣∣+ 1σ tripling com-

pared to the annual scale. This amplification primarily arises
from the increased 1σ on the daily scale (Fig. S6), indicat-
ing the substantial impact of these factors on daily emission
estimates. At a finer spatial scale, provincial emissions are
vulnerable to changes in model resolution, reference year,
and satellite constraint due to their impacts’ inconsistency
in space (Fig. S6). Concerning sectoral emissions, indus-
try and power sector emissions exhibit robustness, whereas
transport and residential emissions present vulnerabilities to
model resolution and dominant sector threshold values, re-
spectively. In the following sections, we elaborate on the im-
pacts of all sensitivity tests on NOx and CO2 emissions from
temporal, sectoral, and spatial perspectives. To clarify the RC
across different dimensions, we adopt RCt , RCs , and RCp/r

to signify RC in temporal, sectoral, and spatial contexts, re-
spectively.

3.2 Emission sensitivity at different temporal scales

To exclusively examine emission sensitivities in the temporal
dimension, this section focuses on the variation of national
total emissions in each test. Tests influencing both NOx and
CO2 emissions exhibit comparable effects, while prior tests
exclusively influence CO2 emissions (Fig. 3). For concise-
ness, we focus on the RCt in CO2 emissions in tests here (dis-
cussion on NOx emissions shown in Sect. S3). The average
RCt of national total emissions are comparable across tem-
poral scales with differences below 1 % (lines in Figs. 3, S8–
S9). However, the consistency of RCt weakens from yearly
to monthly to daily scales (increased 1σt as shown by the
shaded area in Fig. 3). To better characterize the extent of the
tests’ impact, the discussion here focuses on the RCt ± 1σt
on a daily scale, reflecting the magnitude and consistency of
the impact concurrently.

At the national total scale, prior tests (ef_[−10 %, −1 %],
thre_40 % / 60 %, and 4_sectors) influence CO2 emissions
consistently over time while leaving NOx emissions unaf-
fected (Fig. 3). This occurs because these tests only im-
pact sectoral attribution and CO2-to-NOx emission ratios.
Total NOx emissions are determined in the top-down pro-
cess before sectoral attribution, thus remaining unchanged
(Fig. S1). However, sector-specific CO2 emissions, derived
from NOx emissions, are influenced due to the varying CO2-
to-NOx emission ratios among sectors (Fig. S10). A reduc-
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Figure 2. An overview of sensitivity inversion tests’ impacts on (a) NOx and (b) CO2 emissions. The color blocks in this figure represent
the sum of absolute average RC and 1σ (i.e.,

∣∣RC
∣∣+ 1σ ), which reflect the extent of the corresponding tests’ impacts. The numbers within

each grid represent the maximum value of
∣∣RC

∣∣+1σ under tests on corresponding factors. For example, the
∣∣RC

∣∣+1σ noted in the emission
factors column refers to ef_−10 %. It is noteworthy that the sectoral dimensions in this figure display their absolute average RC on the daily
scale, with their corresponding 1σ shown separately in Fig. S6.

tion in NOx EFs increases rNOx , thereby increasing the sec-
toral CO2-to-NOx emission ratios since CO2 EFs are as-
sumed to be unchanged (Eq. 5). This results in a linear el-
evation of CO2 emissions in tandem with the decreased NOx
EFs (Fig. S7), with CO2 emission variations reaching up
to 10.7± 0.7 % under ef_−10 %. Similarly, modifications in
threshold values and sector classification alter the identifica-
tion of dominant sectors per grid, changing the sectoral at-
tribution. Thre_40 %, thre_60 %, and 4_sectors bring about
RCt ± 1σt of 0.6± 1.5 %, −0.2± 1.7 %, and 0.2± 0.8 % in
CO2 emissions, respectively, demonstrating their low influ-
ence on emission estimates. Despite differences in the mag-
nitude of prior tests’ impacts (RCt ), they share a consistency
at finer temporal scales, with daily 1σt below 4.0 %.

Changes in model resolution (Res_2× 2.5) introduce the
largest variation in estimates among all sensitivity tests, trig-
gering RCt±1σt of−1.2± 6.0 % in daily CO2 emissions. Its
notable inconsistency of impact on the finer temporal scale
(1σt > 4.0 %) can be traced back to its induced spatiotempo-
rally diverse changes in β (Fig. S11a and b). The overall low
estimate of β under Res_2× 2.5 results in negative RCt , and
the uneven spatial distribution of β explains the large 1σt .

As for the impact of satellite constraint, the systematic
changes such as missing value supplementation (Trop_fill) or
version changes (Trop_v2.3) have a larger impact with daily
CO2 emission variations of 1.3± 3.9 % and −0.4± 5.9 %,

while alterations in satellite data quality screening conditions
(Trop_cf/Trop_qa) exert a relatively minor impact on esti-
mates with RCt ± 1σt less than 0.5± 1.8 %. The spatiotem-
poral changes in satellite NO2 retrievals contribute to the in-
consistent effects of Trop_fill and Trop_v2.3 on daily emis-
sions. However, the small 1σt in screening condition tests
suggests that the uncertainty in satellite retrievals has a mi-
nor impact on estimates unless there are systematic changes,
possibly because we used the 10 d moving average of satel-
lite observation data to constrain emissions.

Among inversion system parameter tests, the alteration of
the reference year (2021_base) exhibits a notable temporally
inconsistent impact, with RCt ± 1σt of−0.6± 6.9 % in daily
CO2 emissions. This inconsistency can be attributed to the
spatiotemporally diverse changes in β, similar to the model
resolution test (Fig. S11c and d). In contrast, changes in β
(β_[−20 %, 20 %]) exert a more notable but consistent im-
pact on estimates, linearly strengthening as the tested ampli-
tude increases (Fig. S7), with β_−20 % triggering variations
of 2.6± 3.0 % in CO2 emissions. The spatiotemporally uni-
form changes in β act linearly on the inversion estimate of
NOx emissions (Eq. 1) and then on CO2 emissions. There-
fore, their impact remains consistent on a daily scale.
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Figure 3. Comparison of the impacts of various tests on national total (a) NOx and (b) CO2 emissions at different timescales. Gray lines
correspond to the RCt in annual emissions. Blue lines depict the average RCt in monthly emissions, with the shaded blue area indicating
monthly-scale 1σt . Red lines illustrate the average RCt in daily emissions, accompanied by the shaded red indicating daily-scale 1σt .

3.3 Emission sensitivity across source sectors

Regarding daily national sectoral NOx and CO2 emissions,
their responses to different sensitivity tests, in terms of
both emission magnitude and consistency (RCs ± 1σs), are
largely similar, except for NOx EF tests (ef_[−10 %, −1 %])
(Fig. 4). Therefore, we primarily discuss the impacts of tests
on sectoral emissions using CO2 as a representative (refer to
Sect. S4 for discussion on sectoral NOx emission) and then
delve into elucidating the divergent impact of NOx EFs on
sectoral NOx and CO2 emissions.

Irrespective of NOx emission factor changes (ef_[−10 %,
−1 %]), industrial and power emissions exhibit greater ro-
bustness than transport and residential emissions, which
are more susceptible to different configurations. Specifi-
cally, residential emissions demonstrate the highest sus-
ceptibility to reference year, showing RCs ± 1σs of up to
−6.7± 7.3 % in CO2 emissions in 2021_base test, and ex-
clusively display notable sensitivity to prior tests (4_sectors
and thre_40 % / 60 %) compared to other sectors (Fig. 4).
In contrast, transport emissions are notably influenced by
model resolution, with Res_2× 2.5 incurring CO2 emission
variations of −7.8± 12.2 %. Among all sensitivity tests, the
model resolution stands out as the most influential factor on

sectoral emissions, because the resolution of grid cells affects
the determination of the dominant source sector.

The overall largest sensitivity of residential emissions to
sensitivity tests is potentially attributed to its low proportion
to total emissions (Fig. S12). Take thre_40 % / 60 % as an ex-
ample: lowering the threshold from 50 % to 40 % results in
identifying more grids as residential-source-dominant. This,
in turn, leads to an increase in residential emission pro-
portions when allocating the total TROPOMI-constrained
NOx emissions into sectors and subsequently CO2 emis-
sions. Conversely, fewer grids are assigned as residential-
dominant when the threshold rises from 50 % to 60 %, re-
sulting in lower residential emissions (Fig. S13). The next
sensitive sector is transport, particularly vulnerable to model
resolution, which may be associated with its characteris-
tics in spatial distribution. Transport-dominant grids, partic-
ularly those with truck emissions, are typically located close
to industry-dominant grids whose NOx emissions outweigh
those of the transport (Zheng et al., 2020). The use of coarser
horizontal resolution could result in a diminished attribution
of emissions to transport (Fig. S14).

The reduction in NOx EFs (ef_[−10 %, −1 %]) is the
only test impacting sectoral NOx and CO2 emissions differ-
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Figure 4. Response of sectoral national NOx and CO2 emissions to different sensitivity tests on a daily scale. From left to right, the panels
correspond to the (a) industry, (b) power, (c) transport, and (d) residential source sectors, as the label notes. The dots inside each figure are
the average RCs of daily NOx (deep color) and CO2 (light color) emissions incurred by corresponding tests. The shaded area indicates the
1σs of RCs of daily sectoral emissions in different tests.

ently. For NOx emissions, the residential sector shows the
strongest sensitivity with RCs ± 1σs of up to −9.1± 4.5 %
under ef_−10 %. However, its influence on CO2 emis-
sions is most pronounced in all sectors except residential,
with variations of 12.4± 1.1 % in CO2 emissions from in-
dustry, 11.9± 1.9 % from transport, and 10.8± 1.2 % from
power but only 1.0± 4.9 % from residential sectors un-
der ef_−10 %. The reduction in NOx EFs shifts the domi-
nant sector attribution, substantially lowering NOx emissions
from the residential sector due to its vulnerability to these
changes, similar to the impact seen with the thre_60 %. The
other sectoral (industry, transport, and power) CO2 emissions
present stronger sensitivity to NOx EF tests, linearly corre-
lated with the extent of EF changes. The decline in sectoral
NOx EFs linearly reduces rNOx (Eq. 5), raising the corre-
sponding CO2 emissions by increasing sectoral CO2-to-NOx
emission ratios.

3.4 Emission sensitivity at subnational scales

Refining spatial coverage from national to subnational level
(i.e., province) reveals that factors causing inconsistent im-

pacts over finer timescales also tend to induce inconsistent
impacts on more granular spatial regions (Fig. 5). On an-
nual total scales, the RCp of NOx and CO2 emissions at the
provincial scale closely resemble each other under most sen-
sitivity tests, except for prior tests that only influence CO2
emissions (Fig. S15). When comparing across provinces, the
sensitivity of emissions to tests correlates with the size of the
provincial area, with smaller regions exhibiting greater sus-
ceptibility. Shanghai, the smallest provincial-level adminis-
trative unit in China in terms of area, experiences the largest
RCp throughout China in nearly all tests. Conversely, Inner
Mongolia, one of China’s top three largest provinces, under-
goes the minimum RCp in all tests. Under Res_2× 2.5, the
RCp of annual total NOx and CO2 emissions in Shanghai
are 19.6 % and 22.6 %, respectively, while in Inner Mon-
golia, they are −3.2 % and −3.3 %. Employing a resolu-
tion of 2°× 2.5° in Shanghai is impractical in real-world ap-
plications, as it would result in fewer than two grids cov-
ering the area. Henan also encounters substantial RCp un-
der Res_2× 2.5, reaching as high as −15.8 % and −12.4 %
in annual total NOx and CO2 emissions. This could be at-
tributed to its proximity to Shandong, a province with ap-

Atmos. Chem. Phys., 25, 1949–1963, 2025 https://doi.org/10.5194/acp-25-1949-2025



H. Li et al.: Air-pollution-satellite-based CO2 emission inversion 1959

proximately twice the emissions of Henan, making Henan
particularly sensitive to the changes in model resolution due
to the overlapping grid cells. It is noteworthy that Guizhou
exhibits the highest sensitivity to satellite constraints, with
RCp reaching up to 11.9 % and 11.8 % in annual total NOx
and CO2 emissions under Trop_v2.3. This sensitivity is
attributed to the high cloudiness of the Yunnan–Guizhou
Plateau, causing satellite observations to be highly uncer-
tain over Guizhou (Wang et al., 2023; Li et al., 2021; Cai
et al., 2022).

To further investigate the daily total emission response
(RCr± 1σr) to tests at the regional scale, we select and an-
alyze Jing–Jin–Ji (JJJ, including Beijing, Tianjin, and Hebei)
clusters; Inner Mongolia; Yangtze River Delta (YRD) clus-
ters (including Shanghai, Zhejiang, and Jiangsu); and Guang-
dong (the location of the Pearl River Delta). These regions re-
spectively represent an industrialized region with high pop-
ulation density, an industrialized region with sparse popu-
lation density, and two major economic development zones
with high population density in China (Fig. 6). Geographi-
cally, these regions span northern China (JJJ and Inner Mon-
golia), eastern China (YRD), and southern China (Guang-
dong), thereby covering different meteorological and geo-
graphic factors. Overall, the RCr±1σr of daily regional emis-
sions are similar for NOx and CO2 except for ef_[−10 %,
−1 %], resembling their daily national emission responses
(Fig. 3). The RCr± 1σr of daily regional emissions is es-
pecially notable in YRD and Guangdong (southern part of
China). This could be attributed to the relatively low NO2
concentration in southern China (Fig. S4), making them par-
ticularly sensitive to spatial variations in parameters, such
as the β in 2021_base (Fig. S11) and NO2 TVCDs in the
Trop_v2.3 test. Besides, the cloud fraction is higher in south-
ern China, introducing larger uncertainties in remote sensing
(Liu et al., 2019; Latsch et al., 2022). The emission responses
to prior and β_[−20 %, 20 %] tests are close for these four
regions, particularly in the prior tests, suggesting that these
impacts on emissions are less dependent on geographic fac-
tors.

4 Discussion

This study delineates an approximate spectrum of uncer-
tainties inherent in deriving conclusions of varying preci-
sion with our air-pollution-satellite-based CO2 emission in-
version system. When interpreting conclusions based on the
emission data derived from such an inversion system, it is
practical and imperative to aggregate emissions across differ-
ent dimensions to fulfill specific usage requirements. Direct
utilization of data with all fine-grained resolutions at tem-
poral, sectoral, and spatial dimensions poses challenges. If
adhering to a variation tolerance of 5 %, the reliability of
annual national NOx and CO2 emissions is established in
most cases. Notably, careful attention is needed when se-

lecting model resolution and attributing sectoral emissions.
Expanding the tolerance to 10 %, which is still below the
conventional bottom-up method’s uncertainty range of 13 %–
37 % (Zhao et al., 2011; Huo et al., 2022), renders an-
nual regional or daily national emissions robust from an av-
erage perspective. Nevertheless, meticulous scrutiny is ad-
vised when drawing conclusions based on daily sectoral or
daily regional emissions, especially in specific regions (e.g.,
Shanghai, Guizhou). The large uncertainty of daily sectoral
emission is typically observed in other emission datasets,
such as the Carbon Monitor dataset (up to 40 % uncertainty)
(Liu et al., 2020; Huo et al., 2022). Further liberalizing the
tolerance to 25 %, which is quite uncertain for scientific and
policy-making purposes, a majority of conclusions derived
from our estimates stand as reliable. The extensive toler-
ance range primarily stems from regional emissions, posing
a challenging issue for many emission inversion techniques.
For example, the uncertainty in NOx emissions derived from
the 2D MISATEAM (chemical transport Model-Independent
SATellite-derived Emission estimation Algorithm for Mixed-
sources) method is approximately 20 % for large and mid-
size US cities (Liu et al., 2024), and the uncertainty for daily
NOx and CO2 emissions based on the superposition model
ranges from 37 % to 48 % on a city scale (Zhang et al., 2023).
Notably, remarkable advancements have been achieved in es-
timating subnational CO2 emissions through CO2-observing
satellites, such as sectoral CO2 assessments with OCO-3
(Roten et al., 2023) and urban emission optimizations uti-
lizing the Orbiting Carbon Observatory-2 (OCO-2) (Yang et
al., 2020; Ye et al., 2020). Yet reducing uncertainties at sub-
national scale remains an ongoing challenge.

This study paves the way for the continuous improve-
ment of the current air-pollution-satellite-based CO2 emis-
sion inversion system. Firstly, prioritizing a nimble and
appropriate horizontal resolution is crucial for establish-
ing accurate localized relationships between NO2 TVCDs
and NOx emissions, contributing to improved NOx and
CO2 emission estimations from temporal, sectoral, and spa-
tial perspectives. Secondly, the more accurate satellite ob-
servation is conducive to reducing the uncertainty in fi-
nal results, presenting increasing promise with advance-
ments in remote sensing technology. Besides, the progress
in multi-species synchronous observations through satellite
and aircraft platforms offers alternative verification for multi-
species emission inversion, such as the Copernicus Anthro-
pogenic Carbon Dioxide Monitoring constellation (CO2M)
(Sierk et al., 2021). Thirdly, the reliability of sectoral NOx
EF changes, which determine CO2-to-NOx emission ratios,
is essential for the accurate conversion from NOx to CO2
emissions. This underscores the need to acquire more ac-
curate NOx EFs. While obtaining on-site measurements of
CO2-to-NOx emission ratios is challenging, efforts are un-
derway to enhance its configuration. An iterative modifi-
cation of NOx EFs within the current system could be in-
corporated, minimizing the gap between bottom-up updated
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Figure 5. Response of provincial annual total NOx and CO2 emissions to different tests. Panels (a) and (b) show RCp of NOx emissions
incurred by tests. Panels (c) and (d) are plotted for CO2 emission as panels (a) and (b). Lines refer to the RCp caused by the corresponding
test or the averaged RCp caused by corresponding test clusters (ef_[−10 %, −1 %] and β_[−20, 20 %]), and the shaded area refers to the
RCp range in test clusters. Only provinces with enough TROPOMI observations are shown here (i.e., grids with NO2 TVCDs larger than
1× 1015 molec. cm−2 cover more than 90 % of anthropogenic NOx emissions within provinces). The provinces are arranged by area.

Figure 6. Response of regional total NOx and CO2 emissions to tests on a daily scale. Panels (a), (b), (c), and (d) show the RCr± 1σr
of daily NOx (deep color) and CO2 (light color) emissions in different tests in Jing–Jin–Ji clusters (Beijing, Tianjin, and Hebei); Inner
Mongolia; Yangtze River Delta clusters (Shanghai, Zhejiang, and Jiangsu); and Guangdong. The shaded area inside each figure refers to the
corresponding 1σr. It is worth noting that the Res_2× 2.5 test is not shown here since the resolution of 2°× 2.5° proves too coarse for certain
regions, rendering it unrealistic for real-world applications. The result containing Res_2× 2.5 is present in the Supplement as Fig. S16 for
reference.
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and TROPOMI-constrained sectoral NOx emissions to be-
low 2 %. This approach yields more accurate CO2-to-NOx
emission ratios and CO2 emissions (Fig. S17). The opti-
mized CO2 emission change from 2021 to 2022 is +0.6 %,
reflecting a more precise representation of the growth in fos-
sil fuel consumption (+1.9 %). Fourthly, utilizing a more re-
fined approach to determine dominant sectors at a grid level
can reduce the uncertainty of sectoral emissions with lower
contributions, particularly in the residential sector. These en-
hancements will improve the system’s accuracy in estimating
emissions across all dimensions, positioning it as a valuable
tool for simultaneous inversion-based monitoring of green-
house gas and air pollutant emissions, ultimately supporting
a strategic roadmap for the vision of clean air and climate
warming mitigation.

Code and data availability. The source code of the GEOS-Chem
model is available at https://doi.org/10.5281/zenodo.2620535 (The
International GEOS-Chem User Community, 2019). The prior
NOx and CO2 emissions of the 2019 MEIC (v1.4) are avail-
able at http://meicmodel.org.cn/?page_id=541&lang=en (Zheng et
al., 2018). The v2.4.0 TROPOMI NO2 column concentrations
are publicly available at https://www.temis.nl/airpollution/no2col/
no2regio_tropomi.php (Geffen et al., 2024). The activity level data
of China from 2019 to 2022, including the industrial production of
cement, iron, and thermal electricity, are available at https://data.
stats.gov.cn/english/easyquery.htm?cn=C01 (Chinese National Bu-
reau of Statistics, 2024).
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