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Abstract. Ozone (O3) pollution is posing significant challenges to urban air quality improvement in China.
The formation of surface O3 is intricately linked to chemical reactions which are influenced by both meteoro-
logical conditions and local emissions of precursors (i.e., NOx and volatile organic compounds, VOCs). When
meteorological conditions deteriorate, the atmosphere’s capacity to cleanse pollutants decreases, leading to the
accumulation of air pollutants. Although a series of emission reduction measures have been implemented in
urban areas, the effectiveness of O3 pollution control proves inadequate. Primarily due to adverse changes in
meteorological conditions, the effects of emission reduction are masked. In this study, we integrated a machine
learning model, an observation-based model, and a positive matrix factorization model based on 4 years of con-
tinuous observation data from a typical urban site. We found that transport and dispersion impact the distribution
of O3 concentration. During the warm season, positive contributions of dispersion and transport to O3 concentra-
tion ranged from 12.9 % to 24.0 %. After meteorological normalization, the sensitivity of O3 formation and the
source apportionment of VOCs changed. The sensitivity of O3 formation shifted towards the transition regime
between VOC- and NOx-limited regimes during the O3 pollution event. Vehicle exhaust became the primary
source of VOC emissions after “removing” the effect of dispersion, contributing 41.8 % to VOCs during the
pollution periods. On the contrary, the contribution of combustion to VOCs decreased from 33.7 % to 25.1 %.
Our results provided new recommendations and insights for implementing O3 pollution control measures and
evaluating the effectiveness of emission reduction in urban areas.

1 Introduction

Ozone (O3) plays a significant role in atmospheric oxida-
tion and global climate. It is also considered one of the ma-
jor atmospheric pollutants. A high concentration of surface
O3 is harmful to human health, such as causing respiratory
diseases and even cancer (Cohen et al., 2017; Monks et al.,
2015). In recent years, China has been in a stage of rapid
economic development, accompanied by the emergence of

various air pollution problems due to industrialization and
urbanization (Zhang et al., 2012). In order to deal with the
air pollution, the Chinese government has issued some con-
trol policies, such as the Clean Air Action Plan in 2013 (Chi-
nese State Council, 2013) and the Blue Sky Protection Cam-
paign in 2018 (Chinese State Council, 2018). These policies
have resulted in reductions in the concentrations of particu-
late matter (PM), nitrogen dioxide (NO2), and sulfur dioxide
(SO2) (Zheng et al., 2018). However, O3 pollution has be-
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come increasingly serious, especially in typical urban clus-
ters such as Beijing–Tianjin–Hebei (BTH), the Yangtze River
Delta (YRD), and the Fenwei Plain (FWP). In 2022, the
90th percentile of maximum daily 8 h average (MDA8) O3
was 179 µg m−3 in the BTH, 162 µg m−3 in the YRD, and
167 µg m−3 in the FWP, 4.7 %, 7.3 %, and 1.2 % higher than
that in 2021, respectively (Ministry of Ecology and Environ-
ment of China, https://www.mee.gov.cn/hjzl/dqhj/qgkqzlzk/,
last access: 31 January 2025). Frequent O3 pollution events
have attracted the attention of the public and the govern-
ment. Surface O3 is mainly formed by the photochemical re-
actions of volatile organic compounds (VOCs) and nitrogen
oxides (NOx =NO+NO2) (Atkinson, 2000). The emissions
of precursors effectively affect the change in O3 concentra-
tion (Tan et al., 2018). The sources of VOCs are complex
and widespread, making it challenging to control emissions
(Miller et al., 2002; Borbon et al., 2013). Meteorological con-
ditions can directly or indirectly affect O3 concentration (Liu
and Wang, 2020; Zhang et al., 2015; Gao et al., 2021; Han et
al., 2020). Wind and boundary layer height influence the dif-
fusion of the concentrations of O3 and its precursor. Poor dis-
persion can result in a decrease in atmospheric environmen-
tal capacity, making O3 pollution events more likely to occur
even with low precursor emissions. High ultraviolet radiation
and temperature promote photochemical reactions of O3 for-
mation (Yang et al., 2019). In addition, O3 can be transported
over long distances due to its the long atmospheric lifetime,
which can cause regional O3 problems (Han et al., 2019). In
short, the O3 concentration is nonlinearly affected by mete-
orological conditions, emissions of precursors, and chemical
reactions (Fu et al., 2019; Hu et al., 2021; Zhang et al., 2022,
2024).

Li et al. (2020) discovered that approximately one-third of
the growth of O3 concentration in summer in China was at-
tributed to meteorological conditions. This indicated that the
reduction of air pollutant concentrations due to the control
policies may be offset by the deterioration of meteorologi-
cal conditions. Therefore, decoupling meteorological factors
from temporal concentration series of atmospheric pollutants
is helpful to assess the impact of clean air actions. At present,
many mathematical statistical methods have been developed
to “remove” the influences of meteorological factors. The
technique for predicting air pollutant concentrations under
randomly selected meteorological parameters was first intro-
duced by Grange et al. (2018). Weng et al. (2022) found that
the temperature near the surface 2 m, the downward radiation
flux of the surface and the relative humidity were the most
important meteorological factors to affect O3 concentration
in China by applying two machine learning algorithms (ridge
regression and random forest regression). Mousavinezhad et
al. (2021) employed the Kolmogorov–Zurbenko (KZ) fil-
ter method and found that meteorological factors played the
dominant role in O3 formation in four typical urban agglom-
erations in China. Guo et al. (2022) used the random for-
est method to obtain the characteristics of air pollution in

12 megacities in China from 2013 to 2020 and carried out
a comprehensive assessment of the actual impact of the na-
tional clean air action. Compared to traditional statistical
methods, machine learning models perform better at remov-
ing meteorological effects from concentration data.

In response to severe O3 pollution, a series of emission re-
duction measures targeting O3 precursors were implemented
in urban areas. However, the effectiveness of controlling O3
pollution fell short of expectations. According to previous
studies, O3 formation in urban areas was more sensitive to
VOCs (Feng et al., 2019; Wang et al., 2023), with anthro-
pogenic emissions of VOCs playing a dominant role (Ah-
mad et al., 2017). Understanding the sensitivity of O3 for-
mation and the source characteristics of VOCs is helpful
to design effective strategies to control O3 pollution. The
observation-based model (OBM), positive matrix factoriza-
tion model (PMF), and air quality model are commonly used
to analyze the causes of O3 pollution and provide theoreti-
cal support for reducing O3 precursors. However, the results
of the OBM and PMF, which rely on observed data, may be
influenced by fluctuations in meteorological conditions, po-
tentially introducing bias. Wu et al. (2023) developed initial
concentration-dispersion normalized PMF (ICDN-PMF) to
reflect the changes in source emissions of VOCs in Qing-
dao. The results proved that the contribution of solvent use
was overestimated due to air dispersion during O3 pollution.
Additionally, the actual effectiveness of emission reduction
measures can also be obscured by unfavorable meteorolog-
ical conditions. In this study, we applied the random forest
(RF) method proposed by Grange et al. (2018) to remove
the dispersion and transport effects on O3 concentration, as
well as the dispersion effect on precursors in Hangzhou from
2019 to 2022. After meteorological normalization, the con-
centrations of VOCs were imported into the OBM and PMF
to obtain the sensitivity of O3 formation and the contributions
of emission sources, providing more accurate results. The in-
terplay of meteorological and local factors on O3 pollution
can be evaluated effectively and comprehensively using this
method. Our results emphasized the importance of decou-
pling the meteorological effects of transport and dispersion
for understanding the mechanisms of local O3 formation and
devising appropriate emission reduction measures.

2 Methods

2.1 Observation data

The online hourly observation data from 2019 to 2022 were
measured by the Zhejiang Ecological and Environmental
Monitoring Center (30.29° N, 120.13° E). This station was
located in the urban area of Hangzhou, Zhejiang Province,
surrounded by residential and commercial areas. The dataset
of air pollutants included O3; NO2; and 98 different kinds
of VOCs detected by the gas chromatography system, in-
cluding 29 alkanes, 11 alkenes, 1 alkyne, 16 aromatics,
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28 halohydrocarbons, 12 oxygenated VOCs (OVOCs), and
1 acetonitrile. The online gas chromatography system was
equipped with a mass spectrometer and flame ionization de-
tector (GC-MS/FID) (ZF-PKU-VOC1007, Beijing Pengyu
Changya Environmental Technology Co. Ltd., China), which
used a dual gas path separation method. VOCs with low
carbon numbers (C2–C5) were measured by a FID, while
VOCs with high carbon numbers (C5–C10) were detected
by a MS. NO2 and O3 were measured by a commercial
instrument (Model 42i/42iTL and Model 49i, Thermo Sci-
entific, USA). The meteorological parameters measured in-
cluded temperature (T ), relative humidity (RH), atmospheric
pressure (P ), wind speed (WS), and wind direction (WD),
which were measured by the WS500-UMB instrument man-
ufactured by Lufft Corporation. In addition, we used the me-
teorological data from the ERA5 reanalysis product (Hers-
bach et al., 2020), such as boundary layer height (BLH)
and ultraviolet radiation B (UVB). The EAR5 meteorological
data are spatial grid data with a resolution of 0.25°× 0.25°,
available at https://cds.climate.copernicus.eu/datasets (last
access: 31 January 2025). The back trajectories were cal-
culated backwards in time for 24 h and started 500 m above
ground level using the Hybrid Single Particle Lagrangian In-
tegrated Trajectory (HYSPLIT) model (Stein et al., 2015).
The meteorological data from the Global Data Assimilation
System (GDAS) with a horizontal resolution of 1° longi-
tude× 1° latitude were adopted in the trajectory model. The
back trajectories were then clustered into five clusters us-
ing the Euclidian distance. Clusters of backward trajectories
have been widely employed to represent the main directions
of air masses at monitoring sites (Song et al., 2021).

2.2 Meteorological normalization method

Random forest is a versatile classifier that comprises multiple
decision trees, applicable to classification, regression, and di-
mension reduction problems. When constructing each tree in
the RF model, a dataset of the same size is selected for train-
ing, potentially containing duplicates. This sampling method,
which involves putting instances back into the dataset, is re-
ferred to as bootstrap. At each node, the optimal segmenta-
tion is calculated by randomly selecting a subset of features
from the entire set. The RF model describes the relationship
between the time series of atmospheric pollutant concentra-
tions and their corresponding feature. We constructed the RF
model based on original datasets, which contained air pol-
lutant variables (O3, NO2, total non-methane hydrocarbon
compounds (NMHCs), and 98 VOC species), time variables
(trend, hour, weekday, month, and day of year), and mete-
orological variables (T , RH, P , WS, WD, UVB, BLH, and
cluster). In the RF model, the air pollutants were the response
variables, while the explanatory variables included time vari-
ables representing source emissions and meteorological vari-
ables representing physical and chemical processes. Time
variables such as day of year, month, weekday, and hour

are used to indicate the seasonal, weekly, and daily cycles
of emission intensity (Dai et al., 2023a, b; Vu et al., 2019).
The parameter “trend” can indicate the long-term changes in
air pollutant concentrations resulting from the implementa-
tion of policy measures (Vu et al., 2019). Environmental reg-
ulations and policies aimed at reducing pollutant emissions
were implemented during specific periods, and their effects
became apparent in the long-term trends. Therefore, the trend
not only reflected changes in emission sources closely related
to activity levels but also represented the long-term varia-
tions in air pollutants caused by the enforcement of policies
and regulations. The parameter trend was calculated using
Eq. (1):

trend= yeari +
tJD− 1

Ni

+
tH

24Ni

, (1)

where Ni is the number of days in the yeari (yeari is from
2019 to 2022), tH is hour time (0–23, referring to 00:00–
23:00), and tJD is the day of the year (1–365) (Carslaw and
Taylor, 2009).

Temperature was a key factor influencing the rate of chem-
ical reactions, with higher temperatures typically promoting
the photochemical reactions that generate O3. UVB served
as the driving force for the photochemical reactions, directly
impacting O3 formation. Additionally, humidity played an
important role in the chemical processes involved in O3 for-
mation. Therefore, T , RH, and UVB were identified as the
key features associated with atmospheric photochemical re-
actions. WS influences the dispersion of atmospheric pollu-
tants. At high wind speeds, air pollutants tended to be dis-
persed, while low wind speeds resulted in local pollutant ac-
cumulation, leading to increased concentrations. WD deter-
mined the dispersion path of atmospheric pollutants. BLH
was a critical factor affecting the vertical dispersion of pollu-
tants. A higher boundary layer allowed pollutants to disperse
more effectively into the upper atmosphere, reducing surface
concentrations, whereas a lower boundary layer resulted in
pollutant accumulation near the ground. Thus, WS, WD, and
BLH were regarded as the features of atmospheric physical
dispersion on a local scale. The cluster can serve as a feature
of transport from remote regions.

There are approximately 32 856 valid data with a time res-
olution of 1 h. The RF model was trained using a forest of
1000 trees. Training the datasets of the RF model was con-
ducted using 80 % of the original datasets, and the remaining
20 % were selected for testing. Correlation coefficients (r2),
root-mean-square error (RMSE), FAC2 (fraction of predic-
tions with a factor of 2), mean bias (MB), mean gross er-
ror (MGE), normalized mean bias (NMB), normalized mean
gross error (NMGE), coefficient of efficiency (COE), and in-
dex of agreement (IOA) were used to evaluate model per-
formance (Table S2 in the Supplement). Based on previous
related research, these statistical measures indicated that the
model performed well (Emery et al., 2017; Henneman et al.,
2017; Vu et al., 2019).
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The process of meteorological normalization involved re-
placing the original meteorological variables with those ran-
domly resampled from the observation dataset and using the
established RF model to predict atmospheric pollutant con-
centrations under different meteorological conditions. The
resampling of meteorological variables was conducted over
the 2-week period before and after the selected date, with
the resampled hours remaining constant. This approach ef-
fectively preserved the seasonal and diurnal variations in the
response variables (Vu et al., 2019). The resampling and pre-
diction process was repeated 1000 times to generate 1000
predicted pollutant concentrations. The average values were
taken as the final meteorologically normalized concentra-
tions. In the meteorologically normalization process of O3
concentration, meteorological variables such as WS, WD,
BLH, and the cluster, which signify dispersion and trans-
port, were randomly sampled. In the case of O3 precursors,
namely NO2 and NMHCs, resampling was exclusively ap-
plied to WS, WD, and BLH. NO2 and NMHCs have short
atmospheric lifetimes, making them less susceptible to the
influence of regional transport over large scales (Wang et al.,
2023). To take into consideration that some NMHCs have
relatively long lifetimes (such as acetylene), the cluster was
incorporated as an explanatory variable in the RF model. For
NMHCs with different lifetimes, the feature importance of
the cluster was relatively low (around 1 %). Therefore, it can
be approximated that NMHCs were primarily influenced by
dispersion effects within the uncertainty. Feature importance
was used to reflect the overall significance of explanatory
variables in the RF model (Yang et al., 2023). The impor-
tance was typically represented as an array, where each value
corresponded to the importance score of a specific feature.
These scores usually range from 0 to 1. The higher impor-
tance score indicated that the feature had a stronger pre-
dictive capability for the response variable. The RF model
was constructed using R “deweather” packages developed by
Carslaw (https://github.com/openair-project/deweather, last
access: 1 February 2025).

2.3 Observation-based model

An observation-based model is used in this study to simu-
late the formation of O3. The model is based on Regional
Atmospheric Chemical Mechanisms version 2 (RACM2) up-
dated with a detailed isoprene oxidation mechanism (Goliff
et al., 2013). As a 0-D model, this model incorporates di-
lution mixing within the boundary layer. However, vertical
or horizontal transport of the air mass is not considered in
this model. Detail of the observation-based box model can be
found in Tan et al. (2017). The photolysis frequencies (J val-
ues) were calculated using the Tropospheric Ultraviolet and
Visible (TUV) model (Wolfe et al., 2016). Model calcula-
tions were constrained to measured trace gases, including in-
organic species (NO2 and O3) and organic species (VOCs).
In addition, physical parameters like J values, tempera-

ture, pressure, and relative humidity were also constrained to
measured values. The empirical kinetic modeling approach
(EKMA) serves as a sensitivity test for the OBM. The EKMA
curve offers a means to quantify intricate nonlinear relation-
ships among O3, NOx , and VOCs, which can be used as a
theoretical basis for designing O3 pollution reduction strate-
gies (Tan et al., 2018). In this study, a total of 30 emis-
sion scenarios were established for both NOx and anthro-
pogenic VOCs. Subsequently, O3 concentrations resulting
from changes in these precursor emissions were simulated
across 900 scenarios. The EKMA curve was plotted accord-
ing to the O3 formation rate under different VOCs and NOx

conditions.

2.4 Positive matrix factorization

The positive matrix factorization model is based on a large
number of data to estimate the compositions and contribu-
tions of emission sources (Paatero and Tapper, 1994). The
PMF model is widely used for VOC source apportionment
(Song et al., 2021; Yuan et al., 2010). In the PMF model, it
is assumed that the pollutant concentrations measured at the
receptor point can be represented as a linear sum of com-
ponents emitted by different sources. Indeed, the temporal
variation in atmospheric pollutants is influenced not only
by emissions but also by dispersion (Dai et al., 2020). Di-
rect PMF analysis based on observed data may lead to the
loss of real information regarding emission sources. In this
study, the observed and meteorologically normalized VOC
concentrations were fed into US EPA PMF v5.0 to identify
and quantify major emission sources of VOCs. In contrast to
the PMF results based on observation, examining the alter-
ations in contributions of emission sources after meteorologi-
cal normalization can reveal the impact of dispersion on VOC
sources. The RF model for meteorological normalization was
a nonlinear machine learning algorithm. To satisfy the funda-
mental mathematical requirement of the PMF model, which
stated that the total concentration was a linear combination
of contributions from individual sources, the RF model was
applied for meteorological normalization of individual VOC
species and total VOCs in this study. This ensured that the
sum of the meteorologically normalized VOC species re-
mained linearly correlated with total VOCs (Fig. S4), indi-
cating that the nonlinear processing did not significantly alter
the overall structure of total VOC concentrations. With this
approach, the results obtained by inputting the meteorologi-
cally normalized data into the PMF model were reasonable.

3 Results and discussion

3.1 Temporal variations of O3 and its precursors

3.1.1 Long-term variations

Figure 1 displayed the time series of air pollutant concen-
trations based on observation and meteorological normaliza-
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tion from 2019 to 2022. After meteorological normalization,
the concentrations of O3 and its precursors were primarily
affected by local factors, including precursor emission and
chemical reactions. From a long-term perspective, the trends
of air pollutant concentrations after meteorological normal-
ization were consistent with those based on observation. Af-
ter meteorological normalization, MDA8 O3 significantly de-
creased in 2020, followed by a slight increase in 2021 and
2022. The observed annual variation in MDA8 O3 exhib-
ited a similar trend. The meteorologically normalized annual
mean MDA8 O3 in 2020 decreased by 10 % compared to
2019, which aligned with the observed change of −8.7 %.
Based on both meteorologically normalized and observed re-
sults, the concentrations of NO2 and NMHCs showed declin-
ing trends, with a significant decrease in 2022. Compared
to 2019, the meteorologically normalized concentrations of
NO2 and NMHCs in 2022 decreased by 46.1 % and 24 %,
respectively, while the observed concentrations of NO2 and
NMHCs decreased by 45.7 % and 16 %, respectively. This
indicated that the variation in O3 concentration in Hangzhou
was mainly driven by precursor emissions and chemical for-
mation in the long term.

From the diurnal variation in NO2 and NMHC concen-
trations, it is shown that the observed concentrations were
lower during the day and higher at night, which was contrary
to the daily trends of WS and BLH (Fig. S1). Stable WS
and low BLH at night were not conducive to the diffusion
of air pollutants, resulting in the accumulation of pollutant
concentrations, while the situation was opposite during the
day (Song et al., 2018). After the dispersion effect was re-
moved, the precursor concentrations decreased at night and
increased significantly during the day. The diurnal variation
in the MDA8 O3 concentration showed a typical single-peak
structure before and after meteorological normalization. Dif-
ferent from the change in the concentrations of precursors,
the MDA8 O3 concentration increased at night and decreased
during the day after meteorological normalization. At night,
the titration reaction of NOx and the horizontal transport re-
duced the O3 concentration (Li et al., 2022). The NOx con-
centration decreased after meteorological normalization, and
the weakening of titration resulted in the increase in O3 con-
centration at night. In addition, the decrease in horizontal
transport at night also resulted in the increase in O3 concen-
tration after normalization. During the day, the destruction
of the stable boundary layer strengthened the vertical mixing
effect of the atmosphere, so that the O3 in the upper atmo-
sphere mixed with the O3 generated near the surface, increas-
ing the O3 concentration (Lei et al., 2023). When the effect
of transport was removed, the daytime MDA8 O3 concen-
tration decreased. It can be seen from the diurnal variations
that meteorological factors directly affected the concentra-
tions of precursors through dispersion. Meteorological fac-
tors not only directly affected the O3 concentration through
horizontal and vertical transport but also indirectly changed

O3 concentration by influencing precursor concentration and
titration reaction.

Figure 2 showed the importance of the different fea-
tures in the RF model. The time variables can represent an-
thropogenic emissions to some extent. Time variables were
closely related to the periodic changes in human activities.
For example, weekdays versus weekends and peak versus
non-peak hours corresponded to different levels of anthro-
pogenic emissions. Anthropogenic emissions influenced the
seasonal variations of atmospheric pollutants, as seen in win-
ter heating effects. Previous studies also used time variables
to represent anthropogenic emissions (Dai et al., 2023a, b;
Song et al., 2023; Vu et al., 2019). The chemical reaction
of O3 formation was affected by meteorological factors such
as UVB, T , and RH. Local dispersion of O3 and its precur-
sors was mainly affected by WS, WD and BLH, and long-
distance transport of O3 was characterized by the cluster. The
importance of local chemical reactions to O3 was 83.9 %.
UVB, influencing photochemical reactions, emerged as the
most crucial factor for O3 concentration, with an importance
of 25.9 %. This is consistent with the findings by Weng et
al. (2022) in the same region. Additionally, the importance
of RH and T to O3 was also evident, with the importance
of 18.2 % and 11.3 % respectively. Higher relative humidity
was usually associated with a higher cloud cover, and relative
humidity was generally negatively correlated with O3 (Liu et
al., 2023).

High temperatures increased the rate of most chemical re-
actions in the atmosphere, especially photochemical reac-
tions that lead to O3 formation (Li et al., 2020). In addi-
tion, elevated temperature enhanced the emission of biogenic
VOCs (Lu et al., 2019). Hence, some O3 pollution events
were associated with high temperature (Dang et al., 2021).
Ding et al. (2023) found that temperature was the dominant
factor affecting O3 concentration in Tianjin. Wind and BLH
also played significant roles in O3 concentration (16.1 %),
mainly through vertical diffusion, vertical convection, and
horizontal convection (Li et al., 2012).

Different from O3, BLH exerted the most significant im-
pact on NO2 and NMHC variation, with importance values
of 26.1 % and 20 %, respectively. Turbulent mixing in the
active boundary layer facilitated the dispersion of air pol-
lutants, whereas the stable boundary layer attenuated ver-
tical diffusion, thereby intensifying the accumulation of air
pollutants near the ground (Huang et al., 2020). The impor-
tance of dispersion to NO2 and NMHCs was 34.2 % and
30.7, respectively. Consequently, unfavorable meteorologi-
cal dispersion conditions can result in the accumulation of
precursors, causing O3 pollution even in scenarios with low
emissions. Temporal variables representing emissions, such
as month and day of year, also occupied important positions.
The importance of month to NO2 and NMHCs exceeded
18 %, which represented the significant influences of sea-
sonal anthropogenic emissions on the concentrations of pre-
cursors. The importance of local emission, production, and

https://doi.org/10.5194/acp-25-1749-2025 Atmos. Chem. Phys., 25, 1749–1763, 2025



1754 Y. Qiu et al.: Insights into ozone pollution control in urban areas

Figure 1. Long-term trends of daily average concentrations of air pollutants (a, c, e) and mean diurnal variations of air pollutant concentra-
tions (b, d, f) based on observation and meteorological normalization from 2019 to 2022.

Figure 2. The importance of each feature to O3, NO2, and NMHCs in the RF model.

consumption to NO2 and NMHCs was 65.8 % and 69.3 %,
respectively (Fig. 2).

3.1.2 Comparison between pollution and non-pollution
periods

O3 pollution occurs frequently between May and September
each year. In order to evaluate the influences of meteorologi-
cal conditions on the concentrations of O3 and its precursors,
the relative change in air pollutant concentrations caused by
meteorological factors during O3 pollution and non-pollution

periods in the warm season (From May to September) from
2019 to 2022 was analyzed (Fig. 3). In the non-pollution
periods, the negative effect of dispersion on the concentra-
tions of NO2 and NMHCs was apparent, with average rela-
tive changes ranging from −9.3 % to −27.98 % for NO2 and
−10.5 % to −22.8 % for NMHCs. Dispersion and transport
have less influence on the MDA8 O3 concentrations, with
the average relative change ranging from −0.1 % to 8.1 %.
During the pollution periods, the positive effects of disper-
sion and transport on O3 became evident (from 12.9 % to
24.0 %). Simultaneously, the negative effect of dispersion on
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Figure 3. Relative change caused by meteorological factors during
O3 pollution (P) and non-pollution (Non-P) periods in the warm
season from 2019 to 2022. Relative change= the observed concen-
trations− the meteorologically normalized concentrations / the ob-
served concentrations.

the concentrations of precursors decreased and even trans-
formed into a positive effect. In 2021 in particular, dispersion
had a significant positive effect on NO2 and NMHCs, with an
average relative change of 7.8 % and 11.8 %, respectively. O3
concentration was affected by the long-distance transport as
well as the deterioration of diffusion conditions in the pollu-
tion periods. Therefore, the influence of meteorological fac-
tors on O3 was more obvious than that of its precursors dur-
ing pollution periods in the warm season.

3.1.3 Variations during short-term pollution events

In order to explore the effects of meteorological dispersion
and transport on O3 concentration in the short term, we
selected two typical pollution periods from 2019 to 2022
(Fig. 4). During Period 1 (31 August to 13 September in
2020), the average MDA8 O3 in Hangzhou was 193 µg m−3

in the pollution period, exceeding the national air quality
standard (> 160 µg m−3; GB 3095-2012, MEE, 2018). At the
same time, other cities in the YRD regions such as Shang-
hai, Nanjing, Wuxi, Changzhou, Suzhou, and Jiaxing also
experienced O3 pollution (Fig. S2). Period 1 represented a
large-scale regional pollution event. During the pre-pollution
period (31 August to 2 September in 2020), dispersion and
transport had negative effects on MDA8 O3. In the pollu-
tion period (3 to 10 September in 2020), the concentration of
locally generated O3 (depicted by the red line) remained be-
low the limit, with an average concentration of 157 µg m−3,
with only slight exceedances recorded on 6 and 9 Septem-

Figure 4. The MDA8 O3 concentration based on observation and
meteorological normalization and the contributions of dispersion
and transport to the MDA8 O3 during pre-pollution, pollution, and
post-pollution periods in Period 1 and Period 2 (red: positive con-
tribution, blue: negative contribution).

ber. Locally generated O3 was produced in the atmosphere
through photochemical reactions involving VOCs and nitro-
gen oxides (NOx ; Song et al., 2021). However, the actual
observed O3 concentration was much higher than the stan-
dard, and the O3 concentration was about 200 µg m−3 from 6
to 10 September. The positive contribution of dispersion and
transport was significant (depicted by the red area) in the pol-
lution periods, resulting in an 18.7 % increase in the MDA8
O3 concentration. During the post-pollution period, contribu-
tions of dispersion and transport decreased significantly.

In Period 2 (10 to 22 August in 2022), the average
MDA8 O3 concentration in Hangzhou was as high as
211 µg m−3 during the pollution period, while the concen-
tration of MDA8 O3 in most surrounding cities was less than
160 µg m−3. Thus the O3 pollution in Period 2 was influenced
by both local formation and transport. During the pollution
period (13 to 19 August in 2022), locally generated O3 basi-
cally exceeded the standard, and the MDA8 O3 concentration
was greater than 180 µg m−3 on most days, with an average
concentration of 185 µg m−3. On 16 August, the meteorolog-
ical negative contribution (−14.4 %) appeared, exerting dilu-
tion effects on the O3 concentration, but the MDA8 O3 on
that day still exceeded 160 µg m−3, indicating intense local
O3 production. The positive contributions of dispersion and
transport to O3 were significant during the pollution periods;
the contributions ranged from 8.5 % to 20.4 %. For precur-
sors, the concentration of NMHCs increased between 17 and
19 August (Fig. S3). The positive contribution of dispersion
to NO2 and NMHCs ranged from 4.4 % to 13.7 % and from
0.6 % to 8.5 % during pollution. During the post-pollution
period (20 to 22 August in 2022), the contributions of dis-
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persion and transport turned negative, indicating that meteo-
rological diffusion conditions favored the elimination of O3
pollution.

3.2 VOC–NOx–O3 sensitivity

Unfavorable meteorological conditions can cause the accu-
mulation of O3, making it essential to have a clear under-
standing of local O3 formation pathways for effective con-
trol of O3 pollution. The relationship between O3 and NO2
under long-term trends was analyzed based on the observed
(left) and meteorologically normalized (right) data (Fig. 5).
The dotted red line shows the turning point of the relation-
ship between O3 and NO2 concentrations. The blue triangle
represented the average value of the MDA8 O3 during the
warm season each year. On the left side of the dotted red line,
O3 concentration elevated with the increase in NO2 concen-
tration. At this point, controlling the emission of NO2 was
conducive to limiting the formation of O3, suggesting that
the sensitivity of O3 formation was limited by NOx . On the
right side of the dotted red line, O3 concentration decreased
with the increase in NO2 concentration. At this point, the in-
hibition effect of NOx emission reduction on O3 formation
was not significant, and it is necessary to control the emis-
sion of VOCs, indicating that the sensitivity of O3 formation
was limited by VOCs (Kong et al., 2024). After meteoro-
logical normalization, the NO2 concentration in the turning
point increased from 9 to 19 µg m−3, suggesting that when
NO2 concentration was at a higher level, O3 concentration
decreased with the increase in NO2 concentration. In other
words, a higher NO2 value at the turning point suggested a
greater likelihood that the actual NOx concentration was be-
low that value, indicating a higher probability of being in a
NOx-limited regime. In addition, based on average results in
warm season each year, the sensitivity of O3 formation be-
fore and after meteorological normalization was also shown
in Fig. 5. Whether based on observed or meteorologically
normalized data, the O3 formation from 2019 to 2021 was
located in the VOC-limited regime, while O3 production en-
tered the transition regime between VOC- and NOx-limited
regimes in 2022. The transition regime referred to the region
near the turning point, where O3 formation was sensitive to
changes in both VOCs and NOx .

The OBM was used to analyze the sensitivity of O3 for-
mation. The OBM is zero-dimensional, meaning it excludes
the processes of atmospheric transport and dispersion. There-
fore, it is reasonable to remove the influences of transport and
dispersion when using the OBM. The VOC–NOx–O3 sensi-
tivity and the net ozone production rate (P (O3)) exhibited
significant differences before and after meteorological nor-
malization in the short-term pollution events (Fig. 6). The
O3 concentration in Period 2 was affected by both transport
and local formation. The concentration of local precursors
increased after removing the effect of dispersion, resulting
in the change in the sensitivity of O3 formation. Based on

the observation results, the O3 formation in pollution was lo-
cated in the strict NOx-limited regime. After meteorological
normalization, O3 formation shifted towards the transition
regime between VOC- and NOx-limited regimes. The limi-
tation of O3 formation by NOx concentration was weakened.
After removing the influence of dispersion and transport on
O3 concentrations, the value of P (O3) increased, indicating
that the P (O3) calculated based on observation was likely
underestimated. Therefore, when the OBM was used to ana-
lyze the VOC–NOx–O3 sensitivity, removing the influences
of dispersion and transport was beneficial to accurately iden-
tify the limited regime of O3 formation.

3.3 VOC source apportionment

The PMF method was further used for VOC source analysis.
The optimal solution was selected by examining the inter-
pretability of factors and the distribution of scale residuals.
Based on observed and meteorologically normalized con-
centrations, seven possible emission sources of VOC from
May to September in 2022 were extracted using the US EPA
PMF v5.0. The possible emission sources of VOC included
combustion, industrial source, vehicle exhaust, fuel evapora-
tion, secondary and aging source, biogenic source, and sol-
vent use. The differences in the source profiles resolved from
the observed and normalized concentrations are illustrated in
Fig. S5.

The combustion source was characterized by high concen-
trations of ethane, propane, and acetylene. Low carbon alka-
nes and alkenes were likely to be the products of incomplete
combustion (Wang et al., 2015). Acetylene was a typical
tracer of combustion. Toluene and some halohydrocarbons,
such as chloromethane, were also released from combustion
(Liu et al., 2008). Additionally, the proportion of acetonitrile
was also high, which was an important product of biomass
combustion (de Gouw et al., 2003). Biomass combustion
emission was relatively intense in the YRD. The industrial
source was characterized by halohydrocarbons (Sun et al.,
2016), and 1,2-dichloroethane accounted for nearly 80 % of
this factor in both PMF results. Vehicle exhaust was fea-
tured by high concentrations of ethane, propane, isobutane,
n-butane, isopentane, ethylene, and toluene(Cai et al., 2010;
Liu et al., 2008). Fuel evaporation was characterized by
the high concentration and proportion of isopentane, isobu-
tane, n-butane, and n-pentane, while the concentration of
acetylene was minimal in this factor. The secondary and ag-
ing source was characterized by halohydrocarbons and oxy-
genated VOCs (OVOCs). Methacrolein (MACR) and methyl
vinyl ketone (MVK) were products of the oxidation of iso-
prene (Mo et al., 2018). OVOCs and halohydrocarbons have
long lifetimes in the atmosphere and can serve as important
tracers for aging sources (Yang et al., 2021b). The biogenic
source was featured by highest concentration of isoprene,
primarily emitted by plants (Gong et al., 2018). Additionally,
the oxidation products of isoprene (MACR and MVK) also
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Figure 5. The changes in O3 concentration and NO2 concentration from 2019 to 2022. The light-gray circles represent the hourly O3
concentration. The orange circles represent the average value of O3 concentration in each interval (2 µg m−3) of NO2. The blue triangle
represents the average value of the MDA8 O3 during the warm season each year.

Figure 6. The O3 isopleth diagram versus NOx and anthropogenic
VOCs using the EKMA. The circles represent the average concen-
trations of NOx and VOC during pre-pollution, pollution, and post-
pollution periods in Period 2.

contributed to this factor. The solvent source was character-
ized by high concentrations of aromatics. Toluene, ethylben-
zene, m-xylene, and o-xylene are commonly used as materi-
als in solvents (Song et al., 2021).

After smoothing out the effect of dispersion, the abso-
lute contribution of emission sources to VOCs changed. The
mean absolute contribution of vehicle exhaust to VOCs in-
creased most significantly, from 3.97 to 6.72 ppbv during the
non-pollution periods and from 6.84 to 9.76 ppbv during the
pollution periods. The mean absolute contribution of com-
bustion decreased by 1.55 and 2.09 to 2.86 and 5.85 ppbv
during the non-pollution and pollution periods, respectively.
Dispersion caused overestimation of the contribution of com-

bustion to VOCs, which indicates that the reduction in VOC
concentration by abatement measures can be offset by the ef-
fect of dispersion. Therefore, the impact of dispersion should
be taken into account when evaluating the effectiveness of
emission reduction measures on VOC emission sources. The
normalized contributions of solvent use and industrial source
in the pollution were comparable, with an average absolute
contribution of 2.78 and 2.57 ppbv. In comparison to the re-
sults based on the observations, the absolute contribution of
fuel evaporation decreased from 1.94 to 1.33 ppbv after mete-
orological normalization during the pollution periods. After
meteorological normalization, the contributions of biogenic
source and secondary and aging source to VOCs during the
pollution period were relatively low, with absolute contribu-
tions of 0.54 ppbv.

Figure 8 showed the proportion of VOC sources be-
fore and after meteorological normalization during the non-
pollution periods and pollution periods. The pie charts for
normalized source contributions illustrate the relative con-
tribution of each source to the total VOC concentration af-
ter removing the effects of dispersion. According to the re-
sults of the observations, combustion and vehicle exhaust
were the largest contributors to VOCs, accounting for 27.1 %
and 24.3 % in the non-pollution periods. And the propor-
tion of combustion and vehicle exhaust increased to 33.7 %
and 29 % in the pollution periods. During the pollution peri-
ods, the proportion of solvent use and fuel evaporation also
increased, accounting for 15.9 % and 8.2 %, respectively.
After the normalization of dispersion, vehicle exhaust be-
came the predominant emission source of VOCs (37 % in
the non-pollution periods and 41.8 % in the pollution pe-
riods), much higher than the proportion of other emission
sources. According to the motor vehicle data released by the
Zhejiang Public Security Department in 2022, the number
of motor vehicles reached 23.29 million. During the non-
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Figure 7. The absolute contributions of emission sources to VOCs
based on observation and meteorological normalization during the
non-pollution periods and pollution periods in the warm season in
2022.

pollution periods, the contributions of solvent use, industrial
source, and combustion were comparable, accounting for the
proportions ranging from 15.6 % to 16.2 %. Compared to
the non-pollution periods, the influence of combustion on
VOCs increased (25.1 %), while the proportions of industrial
source and solvent use decreased during the pollution periods
(11 % and 11.9 %). Straw burning occurs frequently in Zhe-
jiang Province. According to the remote sensing monitoring
of straw burning announced by the Ecological Environment
Monitoring Center of Zhejiang Province, a total of 135 straw-
burning points in the province were monitored by satellite
remote sensing from January to October 2022. The propor-
tion of industrial emission and solvent use decreased during
the pollution periods, and the VOC concentrations from these
two sources also declined (Fig. 7), indicating that the imple-
mentation of shutdown or off-peak production measures at
the time of pollution warning was effective.

The O3 formation potential (OFP) is used to assess VOC
photochemical activity (Carter, 2010), and it can be calcu-
lated using Eq. (2):

OFPi =MIRi ×[VOCi], (2)

where MIRi represents the maximum incremental reactiv-
ity for VOC species i, and [VOC]i represents the concen-
tration of VOC species i (µg m−3). MIR values for each
VOC species were taken from the updated Carter research re-
sults (https://intra.engr.ucr.edu/~carter/SAPRC/, last access:
1 February 2025). The contributions of emission sources
to OFP were further analyzed and are shown in Fig. 9.
Based on the results of the observations, the emission

Figure 8. Comparison of VOC source proportions before and after
meteorological normalization during the non-pollution periods and
pollution periods in the warm season in 2022.

sources that contribute the most to OFP were solvent use
(67.79 µg m−3), vehicle exhaust (33.16 µg m−3), and com-
bustion (29.16 µg m−3) during the pollution periods in the
warm season in 2022. After removing the effect of disper-
sion, the contribution of vehicle exhaust to OPF increased
to 47.25 µg m−3, while the contribution of solvent use and
combustion to OFP decreased to 54.77 and 22.58 µg m−3, re-
spectively. The actual contributions of combustion and sol-
vent use to O3 formation were larger under the dispersion
effect. Thus, it was necessary to consider the cumulative
effect of dispersion and enhance emission reduction mea-
sures for specific emission sources. For Period 2 mentioned
in Sect. 3.1.3, we also found that the contributions of VOC
emission sources changed after meteorological normaliza-
tion (Figs. S6 and S7). After removing the dispersion effect,
the contributions of solvent use and vehicle exhaust to OFP
increased during the pollution periods, while the contribution
of combustion and secondary and aging source decreased.
From 17 to 19 August, the normalized contribution of sol-
vent source to OFP was significant, with an average OFP of
105.81 µg m−3, indicating that the emission of solvent source
was enhanced on these days. The dispersion effect of mete-
orological conditions on precursors can conceal the real in-
formation of emission sources and misjudge the formation
process of O3.

4 Conclusion

In this paper, a RF model was established based on the hourly
data of 4 years of continuous observation, and some me-
teorological effects on the concentration time series of air
pollutants were “removed”. Transport and dispersion effects
were removed for O3, and the dispersion effect was removed
for its precursors. In the process of building the RF model,
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Figure 9. The contributions of emission sources to OFP based on
observation and meteorological normalization during the pollution
periods in the warm season in 2022.

UVB, RH, and T were found to be the most important factors
affecting O3 concentration, with the importance of 25.9 %,
18.2 %, and 11.3 %, respectively. Local influences, includ-
ing precursor emissions and secondary photochemical reac-
tions, occupied 83.9 % of the importance to O3 concentra-
tion. To understand the mechanisms of local O3 formation,
the meteorological effects were analyzed in long-term trends,
pollution and non-pollution periods in the warm season, as
well as short-term pollution events. After decoupling mete-
orological effects, the concentration trends of O3 were con-
sistent with those observed in the long term, indicating that
O3 concentration was mainly driven by precursor emissions
and local chemical reactions. During the pollution periods
in the warm season from 2019 to 2022, the positive contri-
butions of dispersion and transport to the MDA8 O3 ranged
from 12.9 % to 24.0 %. The effects of dispersion and trans-
port were further analyzed for different types of O3 pollu-
tion events. For transmission-type O3 pollution (Period 1),
dispersion and transport contributed 18.7 % to the MDA8
O3 concentration, increasing the mean MDA8 O3 concen-
tration from 157 to 193 µg m−3. For local and transmission-
type O3 pollution (Period 2), the average locally generated
MDA8 O3 concentration was 185 µg m−3. Under the influ-
ences of dispersion and transport, the average MDA8 O3
concentration increased to 211 µg m−3, and the positive con-
tributions of dispersion and transport ranged from 8.5 % to
20.4 %. BLH, as a parameter of dispersion, was of the high-
est importance for NO2 and NMHCs, accounting for 34.2 %
to NO2 and 30.7 % to NMHCs. Therefore, precursor concen-
trations were accumulated even in the case of low emissions
when the dispersion condition was poor, promoting the pho-
tochemical production of O3. This also corresponds to the
fact that even with the implementation of precursor emission
reduction policies, O3 concentrations in urban areas remain
persistently high.

By decoupling the influences of meteorological condi-
tions, it was observed that the sensitivity of local O3 for-
mation and the apportionment of VOC emission sources
have changed. From the EKMA of short-term pollution

events, the sensitivity of O3 formation in Period 2 shifted to-
wards the transition regime between VOC- and NOx-limited
regimes after meteorological normalization. Based on the
PMF model, the changes in VOC emission sources after
removing the dispersion effect during the warm season in
2022 were further analyzed. After removing the effect of
dispersion, the absolute contribution of vehicle exhaust to
VOCs during the pollution was 9.76 ppbv, accounting for
41.8 %, and the contribution of vehicle exhaust to OFP was
47.25 µg m−3. The contribution of vehicle exhaust to VOCs
was underestimated due the dispersion effect. After meteo-
rological normalization, combustion remained an important
source of VOCs, contributing 25.1 % during the pollution
period, which was overestimated by 8.6 %. The normalized
contribution of solvent use to VOCs decreased to 11.9 %, but
it is undeniable that solvent use was still a crucial contributor
to OFP, contributing 54.77 µg m−3. Neglecting the influences
of meteorology can lead to a deviation in emission reduction
priorities, and the effectiveness of emission reduction may be
masked by unfavorable meteorological conditions. The con-
clusion of this research suggested that meteorological fluctu-
ations can interfere with the results of the OBM and PMF.
Decoupling meteorological effects before using traditional
models was beneficial for deepening the understanding of lo-
cal O3 formation and improving the rationality of precursor
emission reduction measures.

Data availability. The data used in this study are available upon
request from Yuqing Qiu (yuqing.qiu@stu.pku.edu.cn) and Xin Li
(li_xin@pku.edu.cn).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-25-1749-2025-supplement.

Author contributions. XL, WC, and YZ conceived and designed
this study and revised the article critically. YQ and XL analyzed and
interpreted data, drafted the article, and revised the article critically.
YL and MS contributed to the modeling of the data. XT, QZ, WL,
WZ, and JL acquired the field observation data.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

https://doi.org/10.5194/acp-25-1749-2025 Atmos. Chem. Phys., 25, 1749–1763, 2025

https://doi.org/10.5194/acp-25-1749-2025-supplement


1760 Y. Qiu et al.: Insights into ozone pollution control in urban areas

Acknowledgements. The authors are grateful to the Zhejiang
Ecological and Environmental Monitoring Center and Jinhua Eco-
logical and Environmental Monitoring Center for observations in
this study. This work was supported by the Beijing Municipal Natu-
ral Science Fund (JQ21030) and by the National Key Research and
Development Program of China (2022YFC3700302).

Financial support. This research has been supported by the Natu-
ral Science Foundation of Beijing Municipality (grant no. JQ21030)
and the National Key Research and Development Program of China
(grant no. 2022YFC3700302).

Review statement. This paper was edited by Guangjie Zheng and
reviewed by two anonymous referees.

References

Ahmad, W., Coeur, C., Tomas, A., Fagniez, T., Brubach, J.-B., and
Cuisset, A.: Infrared spectroscopy of secondary organic aerosol
precursors and investigation of the hygroscopicity of SOA
formed from the OH reaction with guaiacol and syringol, Appl.
Opt., 56, E116–E122, https://doi.org/10.1364/ao.56.00e116,
2017.

Atkinson, R.: Atmospheric chemistry of VOCs and NOx , At-
mos. Environ., 34, 2063–2101, https://doi.org/10.1016/s1352-
2310(99)00460-4, 2000.

Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S.,
Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve,
R., Holloway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann,
M., Warneke, C., Parrish, D. D., and de Gouw, J. A.: Emission
ratios of anthropogenic volatile organic compounds in northern
mid-latitude megacities: Observations versus emission invento-
ries in Los Angeles and Paris, J. Geophys. Res.-Atmos., 118,
2041–2057, https://doi.org/10.1002/jgrd.50059, 2013.

Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.: Charac-
teristics and source apportionment of VOCs measured
in Shanghai, China, Atmos. Environ., 44, 5005–5014,
https://doi.org/10.1016/j.atmosenv.2010.07.059, 2010.

Carslaw, D. C. and Taylor, P. J.: Analysis of air pol-
lution data at a mixed source location using boosted
regression trees, Atmos. Environ., 43, 3563–3570,
https://doi.org/10.1016/j.atmosenv.2009.04.001, 2009.

Carter, W. P. L.: Development of the SAPRC-07 chem-
ical mechanism, Atmos. Environ., 44, 5324–5335,
https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.

Chinese State Council: Action Plan on Air Pollution Prevention and
Control, Chinese State Council, https://www.gov.cn/gongbao/
content/2013/content_2496394.htm (last access: 28 March
2024), 2013 (in Chinese).

Chinese State Council: Three-Year Action Plan on Defend-
ing the Blue Sky, Chinese State Council, http://www.gov.cn/
zhengce/content/2018-07/03/content_5303158.htm (last access:
28 March 2024), 2018 (in Chinese).

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J.,
Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dan-
dona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan,

H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III, C. A.,
Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R.,
van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M.
H.: Estimates and 25-year trends of the global burden of disease
attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918,
https://doi.org/10.1016/s0140-6736(17)30505-6, 2017.

Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., and
Hopke, P. K.: Dispersion Normalized PMF Provides Insights into
the Significant Changes in Source Contributions to PM2.5 after
the COVID-19 Outbreak, Environ. Sci. Technol., 54, 9917–9927,
https://doi.org/10.1021/acs.est.0c02776, 2020.

Dai, Q., Dai, T., Hou, L., Li, L., Bi, X., Zhang, Y., and Feng,
Y.: Quantifying the impacts of emissions and meteorology on
the interannual variations of air pollutants in major Chinese
cities from 2015 to 2021, Sci. China Earth Sci., 66, 1725–1737,
https://doi.org/10.1007/s11430-022-1128-1, 2023a.

Dai, T., Dai, Q., Ding, J., Liu, B., Bi, X., Wu, J., Zhang, Y., and
Feng, Y.: Measuring the Emission Changes and Meteorological
Dependence of Source-Specific BC Aerosol Using Factor Anal-
ysis Coupled With Machine Learning, J. Geophys. Res.-Atmos.,
128, e2023JD038696, https://doi.org/10.1029/2023jd038696,
2023b.

Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic
and meteorological influences on summertime surface ozone
in China over 2012–2017, Sci. Total Environ., 754, 142394,
https://doi.org/10.1016/j.scitotenv.2020.142394, 2021.

de Gouw, J. A., Warneke, C., Parrish, D. D., Holloway, J. S., Trainer,
M., and Fehsenfeld, F. C.: Emission sources and ocean uptake
of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res.-
Atmos., 108, D114329, https://doi.org/10.1029/2002jd002897,
2003.

Ding, J., Dai, Q., Fan, W., Lu, M., Zhang, Y., Han, S., and Feng, Y.:
Impacts of meteorology and precursor emission change on O3
variation in Tianjin, China from 2015 to 2021, J. Environ. Sci.,
126, 506–516, https://doi.org/10.1016/j.jes.2022.03.010, 2023.

Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood,
G., and Kumar, N.: Recommendations on statistics
and benchmarks to assess photochemical model per-
formance, J. Air Waste Manag. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.

Feng, R., Zheng, H.-J., Zhang, A.-R., Huang, C., Gao, H., and
Ma, Y.-C.: Unveiling tropospheric ozone by the traditional at-
mospheric model and machine learning, and their comparison: A
case study in hangzhou, China, Environ. Pollut., 252, 366–378,
https://doi.org/10.1016/j.envpol.2019.05.101, 2019.

Fu, Y., Liao, H., and Yang, Y.: Interannual and Decadal Changes
in Tropospheric Ozone in China and the Associated Chemistry-
Climate Interactions: A Review, Adv. Atmos. Sci., 36, 975–993,
https://doi.org/10.1007/s00376-019-8216-9, 2019.

Gao, D., Xie, M., Liu, J., Wang, T., Ma, C., Bai, H., Chen, X., Li,
M., Zhuang, B., and Li, S.: Ozone variability induced by synoptic
weather patterns in warm seasons of 2014–2018 over the Yangtze
River Delta region, China, Atmos. Chem. Phys., 21, 5847–5864,
https://doi.org/10.5194/acp-21-5847-2021, 2021.

Goliff, W. S., Stockwell, W. R., and Lawson, C. V.: The regional
atmospheric chemistry mechanism, version 2, Atmos. Environ.,
68, 174–185, https://doi.org/10.1016/j.atmosenv.2012.11.038,
2013.

Atmos. Chem. Phys., 25, 1749–1763, 2025 https://doi.org/10.5194/acp-25-1749-2025

https://doi.org/10.1364/ao.56.00e116
https://doi.org/10.1016/s1352-2310(99)00460-4
https://doi.org/10.1016/s1352-2310(99)00460-4
https://doi.org/10.1002/jgrd.50059
https://doi.org/10.1016/j.atmosenv.2010.07.059
https://doi.org/10.1016/j.atmosenv.2009.04.001
https://doi.org/10.1016/j.atmosenv.2010.01.026
https://www.gov.cn/gongbao/content/2013/content_2496394.htm
https://www.gov.cn/gongbao/content/2013/content_2496394.htm
http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm
http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm
https://doi.org/10.1016/s0140-6736(17)30505-6
https://doi.org/10.1021/acs.est.0c02776
https://doi.org/10.1007/s11430-022-1128-1
https://doi.org/10.1029/2023jd038696
https://doi.org/10.1016/j.scitotenv.2020.142394
https://doi.org/10.1029/2002jd002897
https://doi.org/10.1016/j.jes.2022.03.010
https://doi.org/10.1080/10962247.2016.1265027
https://doi.org/10.1016/j.envpol.2019.05.101
https://doi.org/10.1007/s00376-019-8216-9
https://doi.org/10.5194/acp-21-5847-2021
https://doi.org/10.1016/j.atmosenv.2012.11.038


Y. Qiu et al.: Insights into ozone pollution control in urban areas 1761

Gong, D., Wang, H., Zhang, S., Wang, Y., Liu, S. C., Guo, H., Shao,
M., He, C., Chen, D., He, L., Zhou, L., Morawska, L., Zhang,
Y., and Wang, B.: Low-level summertime isoprene observed at
a forested mountaintop site in southern China: implications for
strong regional atmospheric oxidative capacity, Atmos. Chem.
Phys., 18, 14417–14432, https://doi.org/10.5194/acp-18-14417-
2018, 2018.

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and
Hueglin, C.: Random forest meteorological normalisation mod-
els for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18,
6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.

Guo, Y., Li, K., Zhao, B., Shen, J., Bloss, W. J., Azzi, M., and
Zhang, Y.: Evaluating the real changes of air quality due to clean
air actions using a machine learning technique: Results from
12 Chinese mega-cities during 2013–2020, Chemosphere, 300,
134608, https://doi.org/10.1016/j.chemosphere.2022.134608,
2022.

Han, H., Liu, J., Yuan, H., Wang, T., Zhuang, B., and Zhang, X.:
Foreign influences on tropospheric ozone over East Asia through
global atmospheric transport, Atmos. Chem. Phys., 19, 12495–
12514, https://doi.org/10.5194/acp-19-12495-2019, 2019.

Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synop-
tic meteorological influences on daily variability in summertime
surface ozone in eastern China, Atmos. Chem. Phys., 20, 203–
222, https://doi.org/10.5194/acp-20-203-2020, 2020.

Henneman, L. R. F., Liu, C., Hu, Y., Mulholland, J. A., and Rus-
sell, A. G.: Air quality modeling for accountability research: Op-
erational, dynamic, and diagnostic evaluation, Atmos. Environ.,
166, 551–565, https://doi.org/10.1016/j.atmosenv.2017.07.049,
2017.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hu, C., Kang, P., Jaffe, D. A., Li, C., Zhang, X., Wu, K.,
and Zhou, M.: Understanding the impact of meteorology on
ozone in 334 cities of China, Atmos. Environ., 248, 118211,
https://doi.org/10.1016/j.atmosenv.2021.118221, 2021.

Huang, X., Huang, J., Ren, C., Wang, J., Wang, H., Wang,
J., Yu, H., Chen, J., Gao, J., and Ding, A.: Chemi-
cal Boundary Layer and Its Impact on Air Pollution in
Northern China, Environ. Sci. Technol. Lett., 7, 826–832,
https://doi.org/10.1021/acs.estlett.0c00755, 2020.

Kong, L., Song, M., Li, X., Liu, Y., Lu, S., Zeng, L., and Zhang, Y.:
Analysis of China’s PM2.5 and ozone coordinated control strat-
egy based on the observation data from 2015 to 2020, J. Environ.
Sci., 138, 385–394, https://doi.org/10.1016/j.jes.2023.03.030,
2024.

Lei, Y., Wu, K., Zhang, X., Kang, P., Du, Y., Yang, F.,
Fan, J., and Hou, J.: Role of meteorology-driven re-
gional transport on O3 pollution over the Chengdu

Plain, southwestern China, Atmos. Res., 285, 106619,
https://doi.org/10.1016/j.atmosres.2023.106619, 2023.

Li, C., Zhu, Q., Jin, X., and Cohen, R. C.: Elucidating Contributions
of Anthropogenic Volatile Organic Compounds and Particulate
Matter to Ozone Trends over China, Environ. Sci. Technol., 56,
12906–12916, https://doi.org/10.1021/acs.est.2c03315, 2022.

Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao,
H.: Increases in surface ozone pollution in China from 2013
to 2019: anthropogenic and meteorological influences, Atmos.
Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-
11423-2020, 2020.

Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang,
Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen,
M. H., Chen, Y. R., Streets, D. G., Fu, J. S., and Jang, C. J.:
Process analysis of regional ozone formation over the Yangtze
River Delta, China using the Community Multi-scale Air Qual-
ity modeling system, Atmos. Chem. Phys., 12, 10971–10987,
https://doi.org/10.5194/acp-12-10971-2012, 2012.

Liu, Y. and Wang, T.: Worsening urban ozone pollution in
China from 2013 to 2017 – Part 1: The complex and vary-
ing roles of meteorology, Atmos. Chem. Phys., 20, 6305–6321,
https://doi.org/10.5194/acp-20-6305-2020, 2020.

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.:
Source profiles of volatile organic compounds (VOCs) mea-
sured in China: Part I, Atmos. Environ., 42, 6247–6260,
https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.

Liu, Y., Geng, G., Cheng, J., Liu, Y., Xiao, Q., Liu, L., Shi,
Q., Tong, D., He, K., and Zhang, Q.: Drivers of Increas-
ing Ozone during the Two Phases of Clean Air Actions
in China 2013–2020, Environ. Sci. Technol., 57, 8954–8964,
https://doi.org/10.1021/acs.est.3c00054, 2023.

Lu, X., Zhang, L., and Shen, L.: Meteorology and Climate Influ-
ences on Tropospheric Ozone: a Review of Natural Sources,
Chemistry, and Transport Patterns, Curr. Pollut. Rep., 5, 238–
260, https://doi.org/10.1007/s40726-019-00118-3, 2019.

Miller, S. L., Anderson, M. J., Daly, E. P., and Milford, J. B.: Source
apportionment of exposures to volatile organic compounds.
I. Evaluation of receptor models using simulated exposure data,
Atmos. Environ., 36, 3629–3641, https://doi.org/10.1016/s1352-
2310(02)00279-0, 2002.

Ministry of Ecology and Environment (MEE): Revision of the Am-
bien air quality standards (GB 3095-2012), Ministry of Ecol-
ogy and Environment, https://www.mee.gov.cn/xxgk2018/xxgk/
xxgk01/201808/t20180815_629602.html (last access: 28 March
2022), 2018 (in Chinese).

Mo, Z., Shao, M., Wang, W., Liu, Y., Wang, M., and Lu,
S.: Evaluation of biogenic isoprene emissions and their con-
tribution to ozone formation by ground-based measurements
in Beijing, China, Sci. Total Environ., 627, 1485–1494,
https://doi.org/10.1016/j.scitotenv.2018.01.336, 2018.

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M.,
Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E.,
Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser,
E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric
ozone and its precursors from the urban to the global scale from
air quality to short-lived climate forcer, Atmos. Chem. Phys., 15,
8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.

Mousavinezhad, S., Choi, Y., Pouyaei, A., Ghahremanloo, M., and
Nelson, D. L.: A comprehensive investigation of surface ozone

https://doi.org/10.5194/acp-25-1749-2025 Atmos. Chem. Phys., 25, 1749–1763, 2025

https://doi.org/10.5194/acp-18-14417-2018
https://doi.org/10.5194/acp-18-14417-2018
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1016/j.chemosphere.2022.134608
https://doi.org/10.5194/acp-19-12495-2019
https://doi.org/10.5194/acp-20-203-2020
https://doi.org/10.1016/j.atmosenv.2017.07.049
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.atmosenv.2021.118221
https://doi.org/10.1021/acs.estlett.0c00755
https://doi.org/10.1016/j.jes.2023.03.030
https://doi.org/10.1016/j.atmosres.2023.106619
https://doi.org/10.1021/acs.est.2c03315
https://doi.org/10.5194/acp-20-11423-2020
https://doi.org/10.5194/acp-20-11423-2020
https://doi.org/10.5194/acp-12-10971-2012
https://doi.org/10.5194/acp-20-6305-2020
https://doi.org/10.1016/j.atmosenv.2008.01.070
https://doi.org/10.1021/acs.est.3c00054
https://doi.org/10.1007/s40726-019-00118-3
https://doi.org/10.1016/s1352-2310(02)00279-0
https://doi.org/10.1016/s1352-2310(02)00279-0
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201808/t20180815_629602.html
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201808/t20180815_629602.html
https://doi.org/10.1016/j.scitotenv.2018.01.336
https://doi.org/10.5194/acp-15-8889-2015


1762 Y. Qiu et al.: Insights into ozone pollution control in urban areas

pollution in China, 2015-2019: Separating the contributions from
meteorology and precursor emissions, Atmos. Res., 257, 105599,
https://doi.org/10.1016/j.atmosres.2021.105599, 2021.

Paatero, P. and Tapper, U.: Positive matrix factorization: A
non-negative factor model with optimal utilization of er-
ror estimates of data values, Environmetrics, 5, 111–126,
https://doi.org/10.1002/env.3170050203, 1994.

Song, C., Liu, B., Cheng, K., Cole, M. A., Dai, Q., Elliott, R. J.
R., and Shi, Z.: Attribution of Air Quality Benefits to Clean
Winter Heating Policies in China: Combining Machine Learning
with Causal Inference, Environ. Sci. Technol., 57, 17707–17717,
https://doi.org/10.1021/acs.est.2c06800, 2023.

Song, M., Tan, Q., Feng, M., Qu, Y., Liu, X., An, J., and
Zhang, Y.: Source Apportionment and Secondary Transforma-
tion of Atmospheric Nonmethane Hydrocarbons in Chengdu,
Southwest China, J. Geophys. Res.-Atmos., 123, 9741–9763,
https://doi.org/10.1029/2018jd028479, 2018.

Song, M., Li, X., Yang, S., Yu, X., Zhou, S., Yang, Y., Chen,
S., Dong, H., Liao, K., Chen, Q., Lu, K., Zhang, N., Cao,
J., Zeng, L., and Zhang, Y.: Spatiotemporal variation, sources,
and secondary transformation potential of volatile organic com-
pounds in Xi’an, China, Atmos. Chem. Phys., 21, 4939–4958,
https://doi.org/10.5194/acp-21-4939-2021, 2021.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen,
M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport
and Dispersion Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2015.

Sun, J., Wu, F., Hu, B., Tang, G., Zhang, J., and Wang, Y.:
VOC characteristics, emissions and contributions to SOA for-
mation during hazy episodes, Atmos. Environ., 141, 560–570,
https://doi.org/10.1016/j.atmosenv.2016.06.060, 2016.

Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S.,
Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu,
Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y.,
Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chem-
istry at a rural site (Wangdu) in the North China Plain: obser-
vation and model calculations of OH, HO2 and RO2 radicals,
Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-
17-663-2017, 2017.

Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S.,
Tan, Q., and Zhang, Y.: Exploring ozone pollution in Chengdu,
southwestern China: A case study from radical chemistry to
O3-VOC-NOx sensitivity, Sci. Total Environ., 636, 775–786,
https://doi.org/10.1016/j.scitotenv.2018.04.286, 2018.

Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Har-
rison, R. M.: Assessing the impact of clean air action on air qual-
ity trends in Beijing using a machine learning technique, Atmos.
Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-
11303-2019, 2019.

Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q.,
Zhang, Q., Chang, C.-C., Wang, B., Zeng, L., Hu, M., Yang, Y.,
and Li, Y.: Trends of non-methane hydrocarbons (NMHC) emis-
sions in Beijing during 2002–2013, Atmos. Chem. Phys., 15,
1489–1502, https://doi.org/10.5194/acp-15-1489-2015, 2015.

Wang, Y., Jiang, S., Huang, L., Lu, G., Kasemsan, M., Yaluk,
E. A., Liu, H., Liao, J., Bian, J., Zhang, K., Chen, H.,
and Li, L.: Differences between VOCs and NOx transport
contributions, their impacts on O3, and implications for O3
pollution mitigation based on CMAQ simulation over the

Yangtze River Delta, China, Sci. Total Environ., 872, 162118,
https://doi.org/10.1016/j.scitotenv.2023.162118, 2023.

Weng, X., Forster, G. L., and Nowack, P.: A machine learning ap-
proach to quantify meteorological drivers of ozone pollution in
China from 2015 to 2019, Atmos. Chem. Phys., 22, 8385–8402,
https://doi.org/10.5194/acp-22-8385-2022, 2022.

Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de
Gouw, J. A., Gilman, J. B., Graus, M., Hatch, C. D., Hol-
loway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-
Hilifiker, F., Mao, J., Marvin, M. R., Peischl, J., Pollack, I. B.,
Roberts, J. M., Ryerson, T. B., Thornton, J. A., Veres, P. R.,
and Warneke, C.: Formaldehyde production from isoprene oxida-
tion across NOx regimes, Atmos. Chem. Phys., 16, 2597–2610,
https://doi.org/10.5194/acp-16-2597-2016, 2016.

Wu, Y., Liu, B., Meng, H., Dai, Q., Shi, L., Song, S., Feng,
Y., and Hopke, P. K.: Changes in source apportioned VOCs
during high O3 periods using initial VOC-concentration-
dispersion normalized PMF, Sci. Total Environ., 896, 165182,
https://doi.org/10.1016/j.scitotenv.2023.165182, 2023.

Yang, C., Dong, H., Chen, Y., Wang, Y., Fan, X., Tham, Y. J.,
Chen, G., Xu, L., Lin, Z., Li, M., Hong, Y., and Chen, J.: Ma-
chine Learning Reveals the Parameters Affecting the Gaseous
Sulfuric Acid Distribution in a Coastal City: Model Construction
and Interpretation, Environ. Sci. Technol. Lett., 10, 1045–1051,
https://doi.org/10.1021/acs.estlett.3c00170, 2023.

Yang, J., Wen, Y., Wang, Y., Zhang, S., Pinto, J. P., Pennington, E.
A., Wang, Z., Wu, Y., Sander, S. P., Jiang, J. H., Hao, J., Yung,
Y. L., and Seinfeld, J. H.: From COVID-19 to future electrifi-
cation: Assessing traffic impacts on air quality by a machine-
learning model, P. Natl. Acad. Sci. USA, 118, e2102705118,
https://doi.org/10.1073/pnas.2102705118, 2021a.

Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X.,
Louie, P. K. K., Chen, D., and Bian, Y.: Quantitative impacts
of meteorology and precursor emission changes on the long-
term trend of ambient ozone over the Pearl River Delta, China,
and implications for ozone control strategy, Atmos. Chem.
Phys., 19, 12901–12916, https://doi.org/10.5194/acp-19-12901-
2019, 2019.

Yang, S., Li, X., Song, M., Liu, Y., Yu, X., Chen, S., Lu,
S., Wang, W., Yang, Y., Zeng, L., and Zhang, Y.: Char-
acteristics and sources of volatile organic compounds dur-
ing pollution episodes and clean periods in the Beijing-
Tianjin-Hebei region, Sci. Total Environ., 799, 149491,
https://doi.org/10.1016/j.scitotenv.2021.149491, 2021b.

Yuan, B., Shao, M., Lu, S., and Wang, B.: Source pro-
files of volatile organic compounds associated with solvent
use in Beijing, China, Atmos. Environ., 44, 1919–1926,
https://doi.org/10.1016/j.atmosenv.2010.02.014, 2010.

Zhang, H., Wang, Y., Hu, J., Ying, Q., and Hu, X.-M.: Relation-
ships between meteorological parameters and criteria air pollu-
tants in three megacities in China, Environ. Res., 140, 242–254,
https://doi.org/10.1016/j.envres.2015.04.004, 2015.

Zhang, K., Liu, Z., Zhang, X., Li, Q., Jensen, A., Tan, W.,
Huang, L., Wang, Y., de Gouw, J., and Li, L.: Insights into
the significant increase in ozone during COVID-19 in a typi-
cal urban city of China, Atmos. Chem. Phys., 22, 4853–4866,
https://doi.org/10.5194/acp-22-4853-2022, 2022.

Zhang, L., Wang, L., Ji, D., Xia, Z., Nan, P., Zhang, J.,
Li, K., Qi, B., Du, R., Sun, Y., Wang, Y., and Hu, B.:

Atmos. Chem. Phys., 25, 1749–1763, 2025 https://doi.org/10.5194/acp-25-1749-2025

https://doi.org/10.1016/j.atmosres.2021.105599
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1021/acs.est.2c06800
https://doi.org/10.1029/2018jd028479
https://doi.org/10.5194/acp-21-4939-2021
https://doi.org/10.1175/bams-d-14-00110.1
https://doi.org/10.1016/j.atmosenv.2016.06.060
https://doi.org/10.5194/acp-17-663-2017
https://doi.org/10.5194/acp-17-663-2017
https://doi.org/10.1016/j.scitotenv.2018.04.286
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.5194/acp-15-1489-2015
https://doi.org/10.1016/j.scitotenv.2023.162118
https://doi.org/10.5194/acp-22-8385-2022
https://doi.org/10.5194/acp-16-2597-2016
https://doi.org/10.1016/j.scitotenv.2023.165182
https://doi.org/10.1021/acs.estlett.3c00170
https://doi.org/10.1073/pnas.2102705118
https://doi.org/10.5194/acp-19-12901-2019
https://doi.org/10.5194/acp-19-12901-2019
https://doi.org/10.1016/j.scitotenv.2021.149491
https://doi.org/10.1016/j.atmosenv.2010.02.014
https://doi.org/10.1016/j.envres.2015.04.004
https://doi.org/10.5194/acp-22-4853-2022


Y. Qiu et al.: Insights into ozone pollution control in urban areas 1763

Explainable ensemble machine learning revealing the effect
of meteorology and sources on ozone formation in megac-
ity Hangzhou, China, Sci. Total Environ., 922, 171295,
https://doi.org/10.1016/j.scitotenv.2024.171295, 2024.

Zhang, Q., He, K., and Huo, H.: Cleaning China’s air, Nature, 484,
161–162, https://doi.org/10.1038/484161a, 2012.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li,
X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He,
K., and Zhang, Q.: Trends in China’s anthropogenic emissions
since 2010 as the consequence of clean air actions, Atmos. Chem.
Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-
2018, 2018.

https://doi.org/10.5194/acp-25-1749-2025 Atmos. Chem. Phys., 25, 1749–1763, 2025

https://doi.org/10.1016/j.scitotenv.2024.171295
https://doi.org/10.1038/484161a
https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.5194/acp-18-14095-2018

	Abstract
	Introduction
	Methods
	Observation data
	Meteorological normalization method
	Observation-based model
	Positive matrix factorization

	Results and discussion
	Temporal variations of O3 and its precursors
	Long-term variations
	Comparison between pollution and non-pollution periods
	Variations during short-term pollution events

	VOC–NOx–O3 sensitivity
	VOC source apportionment

	Conclusion
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

