Supplement of Atmos. Chem. Phys., 25, 1749–1763, 2025 https://doi.org/10.5194/acp-25-1749-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Insights into ozone pollution control in urban areas by decoupling meteorological factors based on machine learning

Yuqing Qiu et al.

Correspondence to: Xin Li (li_xin@pku.edu.cn) and Wenxuan Chai (chaiwx@cnemc.cn)

The copyright of individual parts of the supplement might differ from the article licence.

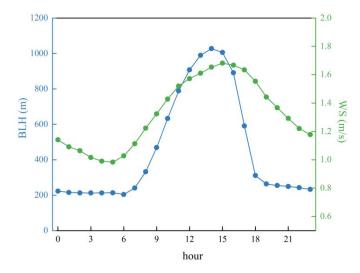


Figure S1: Mean diurnal variations of WS and BLH.

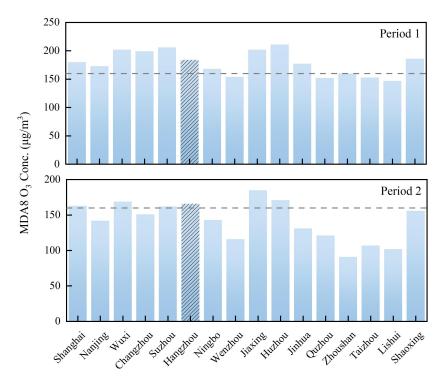


Figure S2: The MDA8 O₃ concentration in Hangzhou and surrounding cities in the Period 1 and Period 2.

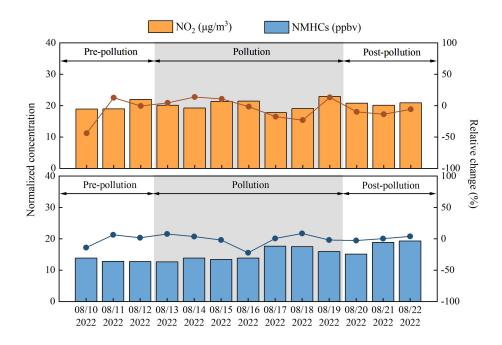
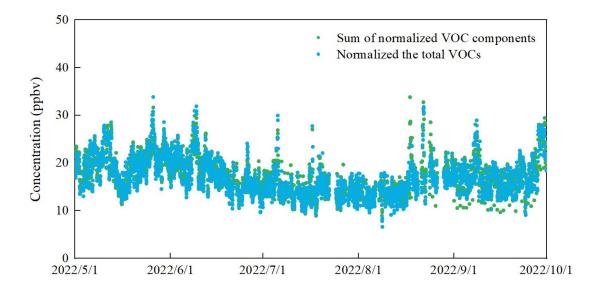



Figure S3: Variation of the normalized concentrations of precursors and relative contribution of dispersion in the Period 2. The histogram represented the NO_2 and NMHCs concentrations after meteorological normalization, and the dot plot represented the relative change caused by dispersion.

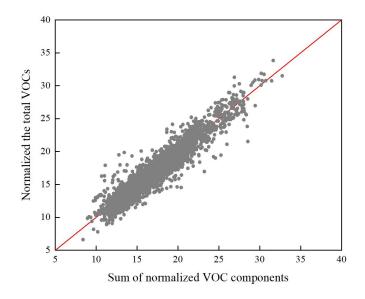


Figure S4: Time series and correlation of the sum of normalized VOC species and normalized total VOCs.

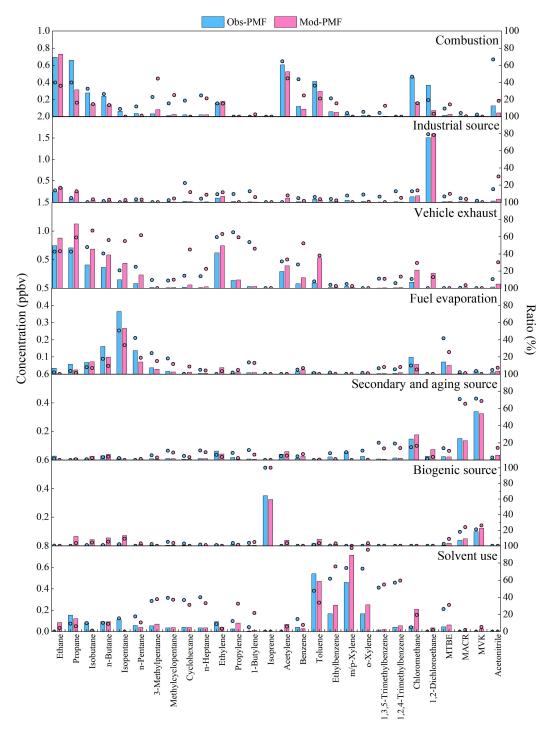


Figure S5: Source profiles and contributions of VOCs based on observed and normalized concentrations from May to September in 2022. Bars represented the concentration of each species apportioned to the factor, dots represented the percent of each species apportioned to the factor.

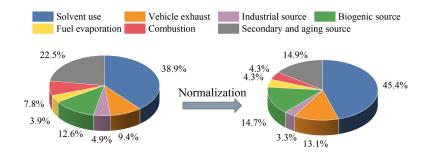


Figure S6: Contribution of emission sources to OFP before and after meteorological normalization during the pollution periods in the Period 2.

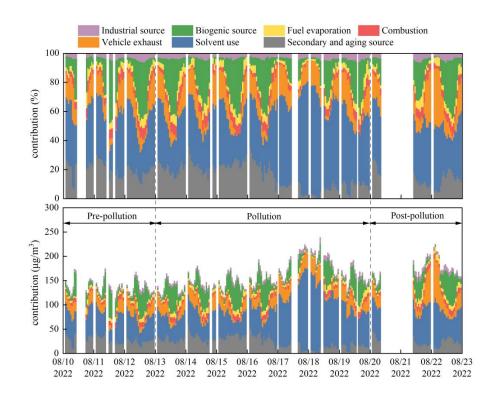


Figure S7: Temporal variation of emission sources contributions to OFP after meteorological normalization in the Period 2.

Table S1. The list of VOC species in this study.

Species name	Species name	Species name		
Alkanes	cis-2-Butene	Dichloromethane		
Ethane	1,3-Butadiene 1,1-Dichloroethan			
Propane	1-Pentene	cis-1,2-Dichloroethylene		
Isobutane	trans-2-Pentene	Chloroform		
n-Butane	cis-2-Pentene	1,1,1-Trichloroethane		
Isopentane	1-Hexene	Tetrachloromethane		
n-Pentane	Isoprene	1,2-Dichloroethane		
cyclopentane	Alkyne	Trichloroethylene		
2,2-Dimethylbutane	Acetylene	1,2-Dichloropropane		

2,3-Dimethylbutane	Aromatics	Bromodichloromethane		
2-Methylpentane	Benzene	trans-1,3-Dichloropropene		
3-Methylpentane	Toluene	cis-1,3-Dichloropropene		
n-Hexane	Ethylbenzene	1,1,2-Trichloroethane		
Cyclohexane	m,p-Xylene	Tetrachloroethylene		
Methylcyclopentane	o-Xylene	1,2-Dibromoethane		
2,3-Dimethylpentane	Styrene	Chlorobenzene		
2,4-Dimethylpentane	Isopropylbenzene	1,3-Dichlorobenzene		
2-Methylhexane	n-Propylbenzene	1,4-Dichlorobenzene		
3-Methylhexane	2-Ethyltoluene	Benzylchloride		
n-Heptane	3-Ethyltoluene	1,2-Dichlorobenzene		
Methylcyclohexane	4-Ethyltoluene	OVOCs		
2,2,4-Trimethylpentane	1,3,5-Trimethylbenzene	Acrolein		
2,3,4-Trimethylpentane	1,2,4-Trimethylbenzene	Acetone		
2-Methylheptane	1,2,3-Trimethylbenzene	Propanal		
3-Methylheptane	1,3-Diethylbenzene	Methacrolein		
Octane	1,4-Diethylbenzene	Methylethylketone		
n-Nonane	Halohydrocarbons	n-Butanal		
n-Decane	Freon114	n-Pentanal		
Undecane	Chloromethane	n-Hexanal		
Dodecane	VinylChloride	MTBE		
Alkenes	Bromomethane	Methylvinylketone		
Ethylene	Chloroethane	2-Pentanone		
Propene	Freon11	3-Pentanone		
1-Butene	1,1-Dichloroethylene	Others		
trans-2-Butene	Freon113	Acetonitrile		

Table S2. RF model performance for testing data set .

Pollutants	r ²	RMSE	FAC2	MB	MGE	NMB	NMGE	COE	IOA
O ₃	0.88	17.33	0.80	-0.34	12.70	-0.01	0.22	0.68	0.84
NO_2	0.83	9.43	0.97	0.11	6.85	0.00	0.18	0.62	0.81
NMHCs	0.76	6.41	0.99	-0.11	4.60	0.00	0.20	0.54	0.77