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I. Detailed mathematical calculation of the effect of merging
on chord length distributions

Definitions

Let us consider a population of updrafts of density D0, with an exponential size distribution
of characteristic size L0. The effective updrafts have a characteristic size βL0 and we assume
that they have an exponential size distribution:

S0(x) =
1

βL0
e
− x

βL0 (S1)

We will denote P(x) the probability density function such that P(x)dxdy is the probabil-
ity to find an effective updraft of size x±dx in a space interval of width dy. If the updrafts
are placed randomly in space, which we will assume in all the following, this probability is
related to the effective updraft size distribution and the updraft density. In particular, we
will note Peff

0 the associated probability function for the exponential population of effective
updrafts before merging:

Peff
0 (x) = D0S0(x) (S2)

Some of the effective updrafts will overlap, which means that some of the updrafts will
merge. We want to compute two size distributions: the size distribution of the updrafts
that will not merge, and the size distribution of the updrafts that are the product of this
merging process.

S1 Control of coverage fraction by the cloud or updraft life-
time

Before proceeding, it is useful to compute the coverage fraction of the updrafts as a function
of the updraft density D0 before merging and the updraft size L0. To that end, we consider
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a population of updrafts that we separate into N sub-populations of equal number. We
assume that N ≫ 1 so that each part corresponds to an updraft coverage fraction of
D0L0/N ≪ 1. Therefore, it is highly unlikely that two updrafts merge within a given
sub-population.

Then, in a thought experiment, we populate the space successively with the N sub-
populations of updrafts. After adding the first population the coverage fraction of effective
updrafts is given by:

feff
1 =

βD0L0

N
(S3)

Now we want to compute the coverage fraction of effective updrafts after introducing
n sub-populations by recurrence. Let us assume that the space is populated by n sub-
populations, that yield a total coverage fraction of effective updrafts feff

n . We add one
more sub-population of updrafts that has a coverage fraction βD0L0/N . Because the new
population is randomly placed, the overlap fraction between the already placed effective
updrafts and the newly added effective updrafts is simply the product of the two fractions:

foverlap
n,n+1 = feff

n × βD0L0

N
(S4)

so that the new total effective updraft fraction is:

feff
n+1 = feff

n +
βD0L0

N
− foverlap

n,n+1 (S5)

This can be rewritten:

1− feff
n+1 =

(
1− βD0L0

N

)
(1− feff

n ) (S6)

The solution to this recurrence relation is straightforward:

feff
n = 1−

(
1− βD0L0

N

)n

(S7)

All the updrafts have been placed when n = N . Moreover, because our model is valid when
N ≫ 1 we can approximate the total coverage fraction of effective updrafts after merging
by:

feff
th = lim

N→∞
feff
N (S8)

Now, recalling that: (
1− βD0L0

N

)N

= exp

(
N ln

(
1− βD0L0

N

))
(S9)
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the limit can be computed and provides the effective updraft coverage fraction after merging
as a function of the initial updraft size and density:

feff
th = 1− e−βD0L0 (S10)

By definition, the size of effective updrafts is larger than their actual size by a factor of β.
The actual coverage fraction is thus obtained by dividing the coverage fraction of effective
updrafts by β:

fth =
1

β
(1− e−βD0L0) (S11)

For large updraft density, the coverage fraction converges towards the constant value:

fmax
th =

1

β
(S12)

It is interesting to note that this maximal coverage fraction is not equal to 1, but depends
on β, i.e. on the ratio between the lifetime and the transit time in the updraft.

S2 Merging effects on the size distribution

We now aim at computing the size distribution of the updrafts after merging. To that end,
we will only focus on effective updrafts. We will compute separately the size distributions
of the effective updrafts that merge, and the size distribution of the effective updrafts that
do not merge.

S2.1 The size distribution of non merged updrafts

z

Updraft 1

0 x

Updraft 2

z z + y

1

Figure S1: Schematic defining the mathematical variables discussed in the main text. For
merging not to occur, z should not be between −y and 0. See the text for details.

Let Pmerging(x, y)dy be the probability that a given effective updraft of size x merges
with an effective updraft of size y ± dy. For convenience, we will denote z the horizontal
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coordinate, and assume that the initial effective updraft has its leftmost edge at z = 0, as
shown on figure S1. Merging with an effective updraft of size y, then, occurs if and only
if the left edge of the second effective updraft is located between z = −y and z = x. As
a result, the effective updraft will not merge if, and only if, there is no effective updraft
of size y ± dy with its left edge located in this interval. Using the definition of P0, this
translates into:

1− Pmerging(x, y)dy =
x∏

z=−y

(1− Peff
0 (y)dydz) (S13)

Now, we compose this equation by the logarithm function. We use the fact that dy and dz
are infinitely small, as well as the properties of the logarithm function, to transform the
left member as follows:

ln(1− Pmerging(x, y)dy) = −Pmerging(x, y)dy (S14)

and the right member as follows :

ln

(
x∏

z=−y

(1− Peff
0 (y)dydz)

)
=

∑
all dy dz

ln(1− Peff
0 (y)dydz) = −

∫ x

z=−y
Peff
0 (y)dydz (S15)

We therefore obtain the following equation:

Pmerging(x, y)dy =

∫ x

z=−y
Peff
0 (y)dydz = (x+ y)Peff

0 (y)dy (S16)

The probability that a given effective updraft of size x does not merge at all can then
be computed by noting that this is equivalent with the effective updraft not merging with
any effective updraft of size y for all y:

Pisolated(x) =

∞∏
y=0

(1− Pmerging(x, y)dy) (S17)

Taking the logarithm of this probability, replacing Pmerging(x, y) by its expression and
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using the fact that Peff
0 (y)dy is infinitesimal we find:

ln(Pisolated(x)) =

∫ ∞

0
ln(1− Pmerging(x, y)dy) (S18)

=

∫ ∞

0
−Pmerging(x, y)dy (S19)

= −
∫ ∞

0
(x+ y)Peff

0 (y)dy (S20)

= −βD0L0

∫ ∞

0
e
− y

βL0
x+ y

βL0

dx

βL0
(S21)

= −βD0L0e
x

βL0

∫ ∞

x
βL0

ue−udu (S22)

= −D0(βL0 + x) (S23)

where the last equality is obtained through an integration by parts.
We can finally obtain the probability density of non-merged effective updrafts, by mul-

tiplying the probability density of all effective updrafts and the probability for an effective
updraft to be isolated:

Peff
1 (x) = Peff

0 (x)Pisolated(x) (S24)

=
βD0

L0
e
− x

βL0 e−D0(βL0+x) (S25)

=
βD0

L0
e−βD0L0e

−
(
D0+

1
βL0

)
x

(S26)

In other words the probability density of non merged effective updrafts Peff
1 (defined as

explained at the very beginning of this supplement) is an exponential function. We define
D1 and L1 such that :

Peff
1 (x) = D1Seff1 (x) (S27)

with:

Seff1 (x) =
1

βL1
e
− x

βL1 (S28)

Seff1 can be interpreted as the size distribution of non merged effective updrafts. Because
the effective updrafts have their size multiplied by β compared to actual updrafts, the size
distribution of the real updrafts is related to the size distribution of effective updrafts by
homothety :

Seff1 (βx)d(βx) = S1(x)dx (S29)

We therefore obtain directly the size distribution of real updrafts:

S1(x) =
1

L1
e
− x

L1 (S30)

5



The characteristic size of this exponential distribution, L1, is obtained by comparing with
the expression of Peff

1 :

L1 =
L0

1 + βD0L0
(S31)

It decreases with the parameter βD0L0, which indicates that the efficiency of the merging
process increases with the updraft lifetime, the updraft initial density, and the updraft size.
We can also note that L1 ≤ L0, which indicates that the smaller updrafts are more likely
to remain unaffected by the merging process.

By comparing with the expression of Peff
1 we also obtain the density of non merged

updrafts:

D1 = D0 ·
e−βD0L0

1 + βD0L0
(S32)

The density of non merged updrafts increases with the initial density of updrafts and with
their lifetime. It reaches a maximum beyond which merging is so efficient that only very
few small updrafts do not merge, leading to a decrease in the total number of updrafts
that do not merge.

If we solve for the equation
∂D1

∂(βD0L0)
= 0 (S33)

we find that there is an optimal initial updraft density that maximizes the total number
of non merged updrafts at a critical initial effective updraft fraction f = βD0L0 such that:

fcrit =
1

φ
≈ 0.618 (S34)

where φ = 1+
√
5

2 is the golden number. Above that critical number, the actual density of
non-merged updrafts is anticorrelated with the density of updrafts before merging.

S2.2 Size distribution of merged updrafts

Now, we focus on the distribution of merged updrafts. Again, for convenience, we will
reason in terms of effective updrafts. The probability density of merged effective updrafts
is the sum of all the different ways to form a merged effective updraft. To avoid double
counting, we will number the effective updrafts that merge as follows. In a merged effective
updraft, the initial effective updraft is considered to be the leftmost effective updraft in
the merged effective updraft (effective updraft number 1). Then, the additional effective
updrafts on the right that overlap with the initial effective updraft can be sorted by the
position of their right edge, and numbered accordingly.
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Updrafts merged only once

Let us start by computing the size distribution of effective updrafts that are the product
of a single merging between two (and only two) initial effective updrafts. The situation is
depicted on figure S2.

z

Updraft 1

0 x1

Updraft 2

x− x2 x

Merged updraft

Updraft 1bis

2

Figure S2: Schematic defining the mathematical variables discussed in the main text. See
the text for details. The hypothetical updraft 1bis is discussed later in the text.

We will denote by z the horizontal axis. Let us consider one of those merged effective
updrafts: it is composed of the effective updraft 1 on the left, of size x1, and the effective
updraft 2 on the right, of size x2.

We want to compute the probability to have a merged effective updraft of size x from
those two effective updrafts. Since the problem is invariant by horizontal translation, we
can assume that the merged effective updraft has its left edge at position z = 0 and its
right edge at position z = x. For the two effective updrafts of size x1 and x2 to merge into
the effective updraft of size x, three conditions need to be satisfied:

� The left effective updraft needs to have a width 0 ≤ x1 ≤ x

� At fixed x1, the right effective updraft needs to have a width x− x1 ≤ x2 ≤ x

� The right effective updraft needs to have its right edge located at position z = x

In probabilistic terms, we translate the two last conditions as follows: at fixed x1, the
probability to find the right edge of the second effective updraft of size x2±dx2 at position
x± dx is P0(x2)dx2dx.

Moreover, the probability that the left effective updraft is of size x1±dx1 is S0(x1)dx1.
Finally, the left effective updraft needs to have its leftmost edge free of any other

effective updraft, which has a probability 1− fth.
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As a result the probability density to find a merged effective updraft of size x±dx that
has its left edge free can be written as the sum of all the possible combinations leading to
that effective updraft:

M1(x)dx ≈
∫ x

0

∫ x

x−x2

(1− fth)Pnooverlap(x1, x)Peff
0 (x1)Peff

0 (x2)dx2dx1 (S35)

Note that we introduced in this formula the probability Pno overlap(x1, x) in order to filter
out some configurations that are actually the merging of more than two effective updrafts.
Indeed, an effective updraft 1bis could have its right edge located between effective updrafts
1 and 2 (see figure S2). In such a case, the effective updraft 2 should not be considered,
because it yields the probability to form an updraft that merges two times. Therefore, we
need to account for the probability that this event does not happen, noted Pno overlap(x1, x)
which is the probability that not any effective updraft has its leftmost edge at 0 < z < x1
and its rightmost edge at x1 < z < x.

This probability can be written as another continuous product:

Pno overlap(x1, x) =

x1∏
z=0

(
1−

∫ x−z

x1−z
Peff
0 (y)dydz

)
(S36)

We can again compose by the logarithm to find that:

ln(Pno overlap(x1, x)) = −
∫ x1

0

∫ x−z

x1−z
Peff
0 (y)dydz (S37)

= −D0

∫ x1

0
(e

z−x1
βL0 − e

z−x
βL0 )dz (S38)

= −βD0L0(e
x1
βL0 − 1)(e

− x1
βL0 − e

− x
βL0 ) (S39)

= −βD0L0(1− e
− x1

βL0 )(1− e
−x−x1

βL0 ) (S40)

So that:

Pnooverlap(x1, x) = exp

(
−βD0L0(1− e

− x1
βL0 )(1− e

−x−x1
βL0 )

)
(S41)

Reinjecting this expression in equation S35 leads to a complex integral that involves
some superexponential functions. We therefore choose a simplified approach, and note that
Pnooverlap(x1, x) is bounded by two constant numbers:

e−βD0L0 ≤ Pnooverlap(x1, x) ≤ 1 (S42)

In the following we will denote Pnooverlap(x1, x) = α and for simplicity, because α is
bounded between two finite non-zero values, we will assume that α is more or less constant.
We then have:
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M1(x) = αe−βD0L0

∫ x

0

∫ x

x−x1

Peff
0 (x1)Peff

0 (x2)dx2dx1 (S43)

= αe−βD0L0
D2

0

(βL0)2

∫ x

0

∫ x

x−x1

e
− x1

βL0 e
− x2

βL0 dx2dx1 (S44)

= αe−βD0L0
D2

0

βL0

∫ x

0
e
− x

βL0 (1− e
− x1

βL0 )dx1 (S45)

= αe−βD0L0
D2

0

βL0
e
− x

βL0

(
x+ βL0(e

− x
βL0 − 1)

)
(S46)

= αe−βD0L0D2
0e

− x
βL0

(
x

βL0
− 1

)
(S47)

where in the last line we have considered that we only study large merged effective updrafts,
and therefore we consider effective updrafts for which x ≫ βL0.

Updrafts merged multiple times

Now, it is possible to compute the distribution of merged effective updrafts made of three
initial effective updrafts. Those updrafts are nothing else than one of the effective updrafts
merged out of two effective updrafts, merged with one additional effective updraft. To
avoid multiple counting, we continue to follow our counting convention, namely that the
effective updraft number 3 is on the right. The size distribution of wide effective updrafts
made of three initial effective updrafts can be written as:

M2(x) =

∫ x

0

∫ x

x−x1

Pnooverlap(x1, x)M1(x1)Peff
0 (x2)dx2dx1 (S48)

= α2e−βD0L0D3
0

∫ x

0
e
− x

βL0

(
x1
βL0

− 1

)
(1− e

− x1
βL0 )dx1 (S49)

≈ α2e−βD0L0D3
0βL0e

− x
βL0

1

2

((
x

βL0

)2

− 2
x

βL0

)
(S50)

where the last equality is obtained through an integration by parts, and neglecting the

high order terms in e
− x

βL0 . In a similar way, we can compute the probability densities of
effective updrafts merged three and four times. The computations are not detailed here,
but they yield:

M3(x) = α3e−βD0L0D4
0(βL0)

2e
− x

βL0 × 1

6

((
x

βL0

)3

− 3

(
x

βL0

)2
)

(S51)

M4(x) = α4e−βD0L0D5
0(βL0)

3e
− x

βL0 × 1

24

((
x

βL0

)4

− 4

(
x

βL0

)3
)

(S52)
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This naturally lets us formulate the following hypothesis:

Mn(x) =
D0

βL0
e−βD0L0e

− x
βL0

(βD0L0α)
n

n!

((
x

βL0

)n

− n

(
x

βL0

)n−1
)

(S53)

This relationship is obviously true for n = 1 and n = 2 as shown by the previous results.
It can be proved for all n through a recurrence relation:

Mn+1(x) =

∫ x

0

∫ x

x−x1

Pnooverlap(x1, x)Mn(x1)Peff
0 (x2)dx2dx1 (S54)

= αD0
D0

βL0
e−βD0L0

(βD0L0α)
n

n!

×
∫ x

0
e
− x

βL0

((
x1
βL0

)n

− n

(
x1
βL0

)n−1
)
(1− e

− x1
βL0 )dx1

(S55)

=
D0

βL0
e−βD0L0

(βD0L0α)
n+1

n!
e
− x

βL0 × Jn(x) (S56)

with

Jn(x) =

∫ x
βL0

0
(tn − ntn−1)(1− e−t)dt (S57)

=

[(
tn+1

n+ 1
− tn

)
(1− e−t)

] x
βL0

0

−
∫ x

βL0

0

(
tn+1

n+ 1
− tn

)
e−tdt (S58)

≈
[(

tn+1

n+ 1
− tn

)
(1− e−t)

] x
βL0

0

−
∫ +∞

0

(
tn+1

n+ 1
− tn

)
e−tdt (S59)

≈ 1

n+ 1

((
x1
βL0

)n+1

− (n+ 1)

(
x1
βL0

)n
)
(1− e

− x
βL0 )−

(
(n+ 1)!

n+ 1
− n!

)
(S60)

≈ 1

n+ 1

((
x1
βL0

)n+1

− (n+ 1)

(
x1
βL0

)n
)

(S61)

where we have again kept only the dominant order in e−x/βL0 (we focus on the tail of the
updraft size distribution). We can reinject this expression to find:

Mn+1(x) ≈
D0

βL0
e−βD0L0e

− x
βL0

(βD0L0α)
n+1

(n+ 1)!

((
x

βL0

)n+1

− (n+ 1)

(
x

βL0

)n
)

(S62)

The hypothesis of the mathematical form of Mn(x) is therefore proved by recurrence.
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Putting all merged updrafts together

Now what is the size distribution of all the merged updrafts? This can be computed
by noting that the probability density of the merged effective updrafts is the sum of the
probability densities of the effective updrafts resulting from the merging of one, two, three,
etc... effective updrafts.

Not that we have to ensure that each of those effective updrafts does not merge with
another additional effective updraft on the right. The probability of this event is given by:

Pnooverlap(x,+∞) = exp
(
−βD0L0(1− e

− x
βL0 )

)
≈ e−βD0L0 (S63)

where the approximation stems from the fact that we only focus on the tail of the distri-
bution.

Then, at large updrafts sizes the distribution of merged effective updrafts asymptotes
to the following distribution:

Peff
2 (x) =

∞∑
n=1

Mn(x)Pnooverlap(x,+∞) (S64)

=
D0

βL0
e−2βD0L0e

− x
βL0

∞∑
n=1

(βD0L0α)
n

n!

((
x

βL0

)n

− n

(
x

βL0

)n−1
)

(S65)

=
D0

βL0
e−2βD0L0e

− x
βL0

(
eαD0x − 1− αD0βL0e

αD0x
)

(S66)

≈ D0

βL0
e−2βD0L0(1− αβD0L0)e

− x
βL0 eαD0x (S67)

≈ D0

βL2
e−2βD0L0e

− x
βL2 (S68)

where we have again used the fact that we focus on the tail of the distribution for which
eαD0x ≫ 1, and L2 will be defined a few lines later.

We can again rewrite this probability distribution in terms of a density of merged
effective updrafts, and a size distribution:

Peff
2 (x) = D2Seff2 (x) (S69)

where the size distribution of the non-merged effective updrafts asymptotes to an expo-
nential for large updraft sizes:

∀x ≫ βL0, Seff2 (x) ∝ e
− x

βL2 (S70)

Again, this can be converted into the size distribution of actual updrafts by homothethy
and we are left with:

∀x ≫ L0, S2(x) ∝ e
− x

L2 (S71)
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In other words, we have shown that if the initial size distribution of the updrafts without
merging is exponential, then the distribution of the merged updrafts is asymptotically
exponential for large updraft sizes, with a characteristic size:

L2 =
L0

1− αβD0L0
(S72)

Note that L2 is not the average size of the merged updrafts, because here we have only
performed an asymptotic approximation for the largest updrafts.

Now, using again the bounds of α (equation S42), we obtain the following bounds for
L2:

L0

1− βD0L0e−βD0L0
≤ L2 ≤

L0

1− βD0L0
(S73)

This equality is a strong constraint for small values of βD0L0 because performing a Taylor
expansion of order 2 it yields:

L0

(
1 + βD0L0 +O

(
(βD0L0)

3
))

≤ L2 ≤ L0

(
1 + βD0L0 + (βD0L0)

2 +O
(
(βD0L0)

3
))
(S74)

but at large βD0L0 both the left and right members of equation S73 are unphysical: the
right member explodes as βD0L0 → 1 while the left member decreases with βD0L0 for
large βD0L0 which is also unphysical. We expect that L2 not only satisfies equation S73,
but also increases monotonically with βD0L0 and goes to infinity as βD0L0 → ∞. These
constrains are satisfied by the following expression:

L2 = L0e
βD0L0 (S75)

Note that we have not proved this expression, and equation S75 is a conjecture. Indeed,
the exponential function is only one of the many functions that satisfy all these constraints,
but it is probably the simplest one.

Moreover, this expression has been validated against numerical experiments (section 5.2
of the main manuscript) and equation S75 matches well the simulations. Proving mathe-
matically equation S75, by relaxing the hypothesis of a constant α, remains a perspective
for future work.

Density of merged updrafts

Note that this new size distribution is only valid for large updraft sizes L0x ≫ 1. This
expression, therefore, is only valid for a small proportion of the merged updrafts, and it
cannot be used to deduce the total number of merged updrafts. However, we can use the
conservation of the total effective updraft coverage fraction during the process to deduce
D2. This fraction, indeed, is conserved during the merging process. By definition, the two
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populations of merged and unmerged effective updrafts do not overlap, so this conservation
writes:

feff
th ≈ D1βL1 +D2L

eff
merged (S76)

where Leff
merged is the average size of merged effective updrafts. Because Peff

2 is only an

asymptotic approximation of the real density probability of merged updrafts Peff
merged, the

average size of merged updrafts indeed differs from βL2. We expect that the probability
distribution of merged updrafts is equal to Peff

2 for updrafts much larger than βL0, but
is virtually zero for very small updrafts. We therefore can assume, under a very crude
assumption:

Pmerged(x) ≈ Peff
2 (x)ΘH(x− βL0) (S77)

where ΘH is the Heaviside function. This directly provides the average length of merged
updrafts:

Leff
merged =

∫ ∞

0
xPeff

merged(x)dx∫ ∞

0
Peff
merged(x)dx

= β(L0 + L2) (S78)

Reinjecting the equations for feff
th (S11), L1 (S31), D1 (S32) and L2 (S75) one finds

the following expression:

D2 =

1− e−βD0L0

(
1 +

βD0L0

(1 + βD0L0)2

)
βL0(1 + eβD0L0)

(S79)

The density of merged updrafts is usually low compared to the density of unmerged
updrafts, and maximizes for βD0L0 = 1.08 at a value of βD2L0 = 0.146. Beyond that value,
adding updrafts reduces the total number of merged updrafts because it makes merging
very efficient and produces fewer but larger updrafts.

S3 The updraft distribution after merging

A double exponential distribution

After merging, the size distribution of updrafts can be written as:

S(x) =
p1
L1

e−x/L1 +
p2
L2

e−x/L2 (S80)

Indeed, for x/L0 ≪ 1 the unmerged updrafts dominate. Therefore, even though our
expression for the size distribution of merged updrafts is not valid there (equation S71), its
contribution is small enough to be neglected in the final size distribution. For x/L0 ≫ 1
equation S71 is valid. Finally, for x/L0 ≈ 1 the formula should be less accurate and
probably slightly overestimates the actual size distribution of updrafts.
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The relative magnitude of the two exponentials

In equation S80, p1 and p2 can be determined by the prefactors of P1 and P2. One finds:

p1 =
1

1 + (1 + βD0L0)e
−βD0L0

(S81)

and

p2 =
(1 + βD0L0)e

−βD0L0

1 + (1 + βD0L0)e
−βD0L0

(S82)

Note that p1 and p2 do not represent the total population of unmerged and merged
updrafts, respectively, that are rather described by D1 and D2. For example, if βD0L0 → 0,
then D2 → 0 , but p2 → 1

2 . This apparent contradiction is solved by noticing that only
the tail of the size distribution of merged updrafts is exponential. Therefore, p2 and is not
necessarily related to the total density of merged updrafts D2.

It is interesting to note that as merging becomes more and more prominent, i.e. as
βD0L0 increases, the characteristic size of the merged updrafts increases, but the relative
weight of the second exponential decreases.

Densities of merged and non merged updrafts

The total density of updrafts is the sum of the density of non-merged and merged updrafts:
Dth = D1 +D2, which yields:

Dth ≈ D0 ·
e−βD0L0

1 + βD0L0
+

1− e−βD0L0

(
1 +

βD0L0

(1 + βD0L0)2

)
βL0(1 + eβD0L0)

(S83)

For βD0L0 = 0.83, Dth reaches a theoretical maximal value:

Dcrit ≈
0.34

βL0
(S84)

It is interesting to note that the maximum density after merging decreases with β and
therefore with the lifetime of the thermals or the clouds.
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II. Additional figures

Cloud chord length distributions measured during EUREC4 when considering
only non-drizzling clouds.

Relationship between the thermal length scales and the cloud length scale
before merging.

Relationship between the thermal densities of all thermals vs saturated ther-
mals around cloud base.

Interpretation of mass flux variations at cloud base.
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Figure S3: Non-drizzling clouds from each EUREC4A flight: Probability distri-
bution functions of the cloud chord lengths (in meters) derived for each ATR flight from
horizontal radar-lidar measurements around the cloud base level when considering only the
non-drizzling clouds. Each panel shows the histogram, its fit by a sum of two exponentials
(solid line) and the associated Q-Q plot and R2 (inset) to assess the goodness of fit. When
Lcld
1 = Lcld

2 , the distribution is well fitted by a single exponential.
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Figure S6: The mesoscale mass flux Mb inferred from ATR measurements at cloud base
(section 7.1, Figure 11a) increases with the thermal density DTH . This co-variation can
be interpreted by noting that Mb ≈ wTH

sat .DTH
sat .L

TH
sat , where DTH

sat , L
TH
sat and wTH

sat are the
mean density, length and vertical velocity of cloudy thermals (or cloud shoots) inferred
from turbulence measurements during each flight. This approximation provides mass flux
estimates that explain well the flight-to-flight variations of Mb (R2 = 0.97). Consistently,
it correlates with DTH almost as strongly as Mb does (R

2 = 0.68 vs 0.74). The correlation
with DTH of each term of the approximated mass flux estimate (DTH

sat , L
TH
sat and wTH

sat )
shows that the increase in mass flux with DTH is primarily due to the increase in cloud
shoots density DTH

sat and, to a lesser extent, to the increase in vertical velocity wTH
sat .
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