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I. Detailed mathematical calculation of the effect of merging
on chord length distributions

Definitions

Let us consider a population of updrafts of density Dy, with an exponential size distribution
of characteristic size Lg. The effective updrafts have a characteristic size 5Ly and we assume
that they have an exponential size distribution:

So(z) = BlLOe‘ﬂLo (S1)

We will denote P(x) the probability density function such that P(z)dxdy is the probabil-
ity to find an effective updraft of size x = dx in a space interval of width dy. If the updrafts
are placed randomly in space, which we will assume in all the following, this probability is
related to the effective updraft size distribution and the updraft density. In particular, we
will note ]P’Sf ! the associated probability function for the exponential population of effective
updrafts before merging:

P§' (x) = DoSo(x) (S2)

Some of the effective updrafts will overlap, which means that some of the updrafts will
merge. We want to compute two size distributions: the size distribution of the updrafts
that will not merge, and the size distribution of the updrafts that are the product of this
merging process.

S1 Control of coverage fraction by the cloud or updraft life-
time

Before proceeding, it is useful to compute the coverage fraction of the updrafts as a function
of the updraft density Dy before merging and the updraft size Ly. To that end, we consider



a population of updrafts that we separate into N sub-populations of equal number. We
assume that N > 1 so that each part corresponds to an updraft coverage fraction of
DoLo/N < 1. Therefore, it is highly unlikely that two updrafts merge within a given
sub-population.

Then, in a thought experiment, we populate the space successively with the N sub-
populations of updrafts. After adding the first population the coverage fraction of effective
updrafts is given by:

eff _ BDoLo
N

Now we want to compute the coverage fraction of effective updrafts after introducing
n sub-populations by recurrence. Let us assume that the space is populated by n sub-
populations, that yield a total coverage fraction of effective updrafts fﬁf 7. We add one
more sub-population of updrafts that has a coverage fraction fDyLy/N. Because the new
population is randomly placed, the overlap fraction between the already placed effective
updrafts and the newly added effective updrafts is simply the product of the two fractions:

(S3)

BDyLo
e (54)
so that the new total effective updraft fraction is:
BDoLo I
R R (55)
This can be rewritten:
BDyLo
1= gt = (1= ) - ) (56)
The solution to this recurrence relation is straightforward:
eff BDoLo\"
fir =1 (1- 220 (7)

All the updrafts have been placed when n = N. Moreover, because our model is valid when
N > 1 we can approximate the total coverage fraction of effective updrafts after merging
by:
eff = i eff S8
Jit Narot I (S8)

(1— BD]3L°>N—exp (Nln (1— /BD]S[LOD (S9)

Now, recalling that:




the limit can be computed and provides the effective updraft coverage fraction after merging
as a function of the initial updraft size and density:

fill =1 e PPolo (S10)

By definition, the size of effective updrafts is larger than their actual size by a factor of 3.
The actual coverage fraction is thus obtained by dividing the coverage fraction of effective
updrafts by g:

1
fin = =(1 — e FPolo) (S11)
B
For large updraft density, the coverage fraction converges towards the constant value:
max 1
Jin® = 3 (512)

It is interesting to note that this maximal coverage fraction is not equal to 1, but depends
on (3, i.e. on the ratio between the lifetime and the transit time in the updraft.

S2 Merging effects on the size distribution

We now aim at computing the size distribution of the updrafts after merging. To that end,
we will only focus on effective updrafts. We will compute separately the size distributions
of the effective updrafts that merge, and the size distribution of the effective updrafts that
do not merge.

S2.1 The size distribution of non merged updrafts
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Figure S1: Schematic defining the mathematical variables discussed in the main text. For
merging not to occur, z should not be between —y and 0. See the text for details.

Let Pperging(2, y)dy be the probability that a given effective updraft of size x merges
with an effective updraft of size y + dy. For convenience, we will denote z the horizontal



coordinate, and assume that the initial effective updraft has its leftmost edge at z = 0, as
shown on figure S1. Merging with an effective updraft of size y, then, occurs if and only
if the left edge of the second effective updraft is located between z = —y and z = z. As
a result, the effective updraft will not merge if, and only if, there is no effective updraft
of size y £+ dy with its left edge located in this interval. Using the definition of Py, this

translates into: .

1= Prerging(z,y)dy = [ (1 =P (y)dydz) (S13)

==y

Now, we compose this equation by the logarithm function. We use the fact that dy and dz
are infinitely small, as well as the properties of the logarithm function, to transform the
left member as follows:

ln(l - ]P)merging (.%', y)dy) = _]P)merging (.%', y)dy (814)

and the right member as follows :

In ( H (1-— ]P’gff(y)dydz)> = Z In(1 — ngf(y)dydz) =— /x ]P’gff(y)dydz (S15)

z=—y alldy dz ==Y

We therefore obtain the following equation:

Prnerging (T, y)dy = / P (y)dydz = (z + y)PS (y)dy (S16)
z==y

The probability that a given effective updraft of size x does not merge at all can then
be computed by noting that this is equivalent with the effective updraft not merging with
any effective updraft of size y for all y:

[e.9]

Pisolated(x) = H(l - Pmerging(x7 y)dy) (817)
y=0

Taking the logarithm of this probability, replacing Pperging(2,y) by its expression and



using the fact that IP’Sf T (y)dy is infinitesimal we find:

ln(Pisolated(x)) = / hl(l - Pmerging(wa y)dy) (818)
0
= /0 _Pmerging(xyy)dy (819)
— [ (520)
® __ v x4y dr
= —3DyL BLg — 2 S21
BDy 0/0 e Lo BLq (S21)
= —BDoLoeﬂfO/ ue “du (S22)
Lo
— —Dy(BLo + ) (323)

where the last equality is obtained through an integration by parts.

We can finally obtain the probability density of non-merged effective updrafts, by mul-
tiplying the probability density of all effective updrafts and the probability for an effective
updraft to be isolated:

Piff(x) = ]P)gff(x)Pisolated(x) (824)
- @676%:06—170(5%—&-&:) (S25)

Lo

0

In other words the probability density of non merged effective updrafts ]P’if ! (defined as
explained at the very beginning of this supplement) is an exponential function. We define
D1 and Lq such that :

P () = Dy (x) (S27)
with: .
St () = ——e BL1 S28
1 ( ) BLI ( )
Sif I can be interpreted as the size distribution of non merged effective updrafts. Because

the effective updrafts have their size multiplied by 8 compared to actual updrafts, the size
distribution of the real updrafts is related to the size distribution of effective updrafts by
homothety :

s/ (Bw)d(Bx) = S (x)da (829)
We therefore obtain directly the size distribution of real updrafts:
1 _=
Si(z) =€ =1 (S30)
Ly



The characteristic size of this exponential distribution, L1, is obtained by comparing with
the expression of IP’Tf I,

Lo

Li=—7—
! 1+ BDyLg

(S31)

It decreases with the parameter 8DgLg, which indicates that the efficiency of the merging
process increases with the updraft lifetime, the updraft initial density, and the updraft size.
We can also note that Ly < Lo, which indicates that the smaller updrafts are more likely
to remain unaffected by the merging process.

By comparing with the expression of ]P’if 7 we also obtain the density of non merged
updrafts:

Dy =Dy 332

=P T DL, (532

The density of non merged updrafts increases with the initial density of updrafts and with
their lifetime. It reaches a maximum beyond which merging is so efficient that only very
few small updrafts do not merge, leading to a decrease in the total number of updrafts
that do not merge.

If we solve for the equation
oD,

9(BDoLo)
we find that there is an optimal initial updraft density that maximizes the total number
of non merged updrafts at a critical initial effective updraft fraction f = 8DgLg such that:

—0 (933)

Forit = — ~ 0.618 (S34)

1
¥
where ¢ = 1+—2‘/5 is the golden number. Above that critical number, the actual density of
non-merged updrafts is anticorrelated with the density of updrafts before merging.

S2.2 Size distribution of merged updrafts

Now, we focus on the distribution of merged updrafts. Again, for convenience, we will
reason in terms of effective updrafts. The probability density of merged effective updrafts
is the sum of all the different ways to form a merged effective updraft. To avoid double
counting, we will number the effective updrafts that merge as follows. In a merged effective
updraft, the initial effective updraft is considered to be the leftmost effective updraft in
the merged effective updraft (effective updraft number 1). Then, the additional effective
updrafts on the right that overlap with the initial effective updraft can be sorted by the
position of their right edge, and numbered accordingly.



Updrafts merged only once

Let us start by computing the size distribution of effective updrafts that are the product
of a single merging between two (and only two) initial effective updrafts. The situation is
depicted on figure S2.
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Merged updraft

Updraft 1bis

Figure S2: Schematic defining the mathematical variables discussed in the main text. See
the text for details. The hypothetical updraft 1bis is discussed later in the text.

We will denote by z the horizontal axis. Let us consider one of those merged effective
updrafts: it is composed of the effective updraft 1 on the left, of size x1, and the effective
updraft 2 on the right, of size x».

We want to compute the probability to have a merged effective updraft of size x from
those two effective updrafts. Since the problem is invariant by horizontal translation, we
can assume that the merged effective updraft has its left edge at position z = 0 and its
right edge at position z = x. For the two effective updrafts of size 1 and x5 to merge into
the effective updraft of size x, three conditions need to be satisfied:

e The left effective updraft needs to have a width 0 < z1 < z
e At fixed x1, the right effective updraft needs to have a width z — 1 < zy <z
e The right effective updraft needs to have its right edge located at position z = x

In probabilistic terms, we translate the two last conditions as follows: at fixed x1, the
probability to find the right edge of the second effective updraft of size o +dxo at position
x + dx is Po(z2)dzode.
Moreover, the probability that the left effective updraft is of size x; £dzy is So(x1)dx;.
Finally, the left effective updraft needs to have its leftmost edge free of any other
effective updraft, which has a probability 1 — f;5.



As a result the probability density to find a merged effective updraft of size x +dx that
has its left edge free can be written as the sum of all the possible combinations leading to
that effective updraft:

Ml(x)dx ~ / / (1 - fth)]P)nooverlap(xly x)P(e)ff(xl)PSff ($2)dx2dx1 (835)
0 r—x2

Note that we introduced in this formula the probability Py, operiap(21, ) in order to filter
out some configurations that are actually the merging of more than two effective updrafts.
Indeed, an effective updraft 1bis could have its right edge located between effective updrafts
1 and 2 (see figure S2). In such a case, the effective updraft 2 should not be considered,
because it yields the probability to form an updraft that merges two times. Therefore, we
need to account for the probability that this event does not happen, noted P, overiap(®1, )
which is the probability that not any effective updraft has its leftmost edge at 0 < z < a3
and its rightmost edge at 1 < z < .

This probability can be written as another continuous product:

z1

Proovertap(®1,7) = [ | <1 - / P/t (y)dydz) (S36)

z=0

We can again compose by the logarithm to find that:

i Bromerionara)) = = [ [ B ()t (s37)
= —-Dy /:1(625501 - eﬁ)dz (S38)
— —BDyLo(eFs — 1)(¢ Fo — ¢ PLo) (539)
= —BDoLo(l —¢ Plo)(1—¢ ) (540)
So that:
Prnerton(o1,) = exp ~8DoLall — ¢ ) (1 — e ) ) (s41)

Reinjecting this expression in equation S35 leads to a complex integral that involves
some superexponential functions. We therefore choose a simplified approach, and note that
Prooveriap(21, ) is bounded by two constant numbers:

e_/BDOLO < IFDnoover‘lap(:rb:D) <1 (842)

In the following we will denote Ppooveriap(®1,2) = a and for simplicity, because « is
bounded between two finite non-zero values, we will assume that « is more or less constant.
We then have:



M (2) = ae—FPoLo / / P ()P (29 dndlary (S43)

= ae~PDoLo 55 e Lo dud 44
ae BLO / / oe xodxy (S44)
D?
= e PPolo 0 / e Lo (1—e ~Blo )dxy (S45)
BLo
D? oz
_ —BDoLo _~0 ,3L BLy —
ae ,BLoe 0 (x + BLo(e Pro 1)) (546)
— o e—BDoLop2, " BLg x >
= ae Die BLo -1 S47
g 7% (7 (s17)

where in the last line we have considered that we only study large merged effective updrafts,
and therefore we consider effective updrafts for which x > BL.

Updrafts merged multiple times

Now, it is possible to compute the distribution of merged effective updrafts made of three
initial effective updrafts. Those updrafts are nothing else than one of the effective updrafts
merged out of two effective updrafts, merged with one additional effective updraft. To
avoid multiple counting, we continue to follow our counting convention, namely that the
effective updraft number 3 is on the right. The size distribution of wide effective updrafts
made of three initial effective updrafts can be written as:

/ / nooverlap 1‘1, )Ml(l‘l)PSff(l'Z)dedl‘l (848)
— o2e 5@0L0D3/ efﬁio <.T1 — 1) (1 — eiﬁLLlo)dxl (849)
0 BLo
1 z \? T
~ —BDoLoH3 T
a’e Dy BLoe PLo = —2— S50
49L, ((M) m) (550)

where the last equality is obtained through an integration by parts, and neglecting the
high order terms in e #Zo. In a similar way, we can compute the probability densities of

effective updrafts merged three and four times. The computations are not detailed here,
but they yield:

3 2
_ —BDoLo Blo 1 R .
My (z) = adePPoloDd (3 L)% 7 xﬁ((mo) 3(&0)) (s51)

- 4 3



This naturally lets us formulate the following hypothesis:
Dy _ __=_ (BDyLoo)" ( x >" < x )"—1
M, (z) = ——e PPolog " 5Lg —n|— S53
(@) BLo n! BLo BLo (853)

This relationship is obviously true for n = 1 and n = 2 as shown by the previous results.
It can be proved for all n through a recurrence relation:

Mn—&-l(x) _/ / Pnooverlap(xlax)Mn(wl)ngf(x2>dw2dxl (854)
0 r—x
Dy _ (BDoLoc)"
= aDp—2 ¢—BDoLo
« OﬁLoe n!
(S55)

0 BLg BLo

D DoLoa)"tt _ =
%G—BDOLoWS FLo X J () (S56)

Tn(z) = /O 7O =1y (1 — et (S57)

— [ ( :L":ll B tﬂ) (1- e—t)]OLO _ /0 FLo (;":11 — t”) e~tdt (S58)

[( ( - t”> e dt (S59)
() e () e (G )
~ n—lr I <(£)>”+1 ~ 1) <;Llo>n) (S61)

where we have again kept only the dominant order in e~*/8Lo (we focus on the tail of the
updraft size distribution). We can reinject this expression to find:

M1 (2) ~ Do DL, ~5%; (8DgLoa)" ! << T >n+1 C(n+1) <x>n> (S62)

BLo (n+1)! BLo BLo

The hypothesis of the mathematical form of M, (x) is therefore proved by recurrence.

10



Putting all merged updrafts together

Now what is the size distribution of all the merged updrafts? This can be computed
by noting that the probability density of the merged effective updrafts is the sum of the
probability densities of the effective updrafts resulting from the merging of one, two, three,
etc... effective updrafts.

Not that we have to ensure that each of those effective updrafts does not merge with
another additional effective updraft on the right. The probability of this event is given by:

Pnooverlap(wa +OO) = €xXp <_5D0L0(1 - e_BITO)> ~ eilBDOLO (863)

where the approximation stems from the fact that we only focus on the tail of the distri-
bution.

Then, at large updrafts sizes the distribution of merged effective updrafts asymptotes
to the following distribution:

o0

ngf(x) = ZMn(x)Pnooverlap(x7 +OO) (864)

n=1
Dy _oppory . — 5 >~ (BDoLoa)” < T )” ( x >”1

= —e e BLo — N\ —— 865
BLg nz::l n! B Lo B Lo (565)
D __z

= 9 ¢=26DoLog " BLg (eaDOx —1- aDoﬁLgeaDOx) (S66)
BLg
D __x

~ —L e 20Dolo(1 _ 08Dy Lg)e PLo e®Po* (S67)
B Lo
Dy N

~—e e PL2 S68
B Lo (568)

where we have again used the fact that we focus on the tail of the distribution for which
e®Po? > 1 and L will be defined a few lines later.

We can again rewrite this probability distribution in terms of a density of merged
effective updrafts, and a size distribution:

P/ (z) = DS () (S69)

where the size distribution of the non-merged effective updrafts asymptotes to an expo-
nential for large updraft sizes:

T

Va > (L, S;ff(a:) xe BLz (S70)

Again, this can be converted into the size distribution of actual updrafts by homothethy
and we are left with: )
Vo> Ly, So(z) xe L2 (S71)

11



In other words, we have shown that if the initial size distribution of the updrafts without
merging is exponential, then the distribution of the merged updrafts is asymptotically
exponential for large updraft sizes, with a characteristic size:

Lo

Ly=—"—
2 1-— OJBD()LO

(S72)
Note that Lo is not the average size of the merged updrafts, because here we have only
performed an asymptotic approximation for the largest updrafts.

Now, using again the bounds of « (equation S42), we obtain the following bounds for

Lo:
Lo <Ly < _ Lo
1-— 5D0L0€75D0L0 1 — B8DyLg

This equality is a strong constraint for small values of 5Dy Ly because performing a Taylor
expansion of order 2 it yields:

(S73)

Lo (1+ 8DoLo + O ((8DoLo)*)) < Ly < Lo (14 8DoLo + (8DoLo)* + O ((5DoLo)?))
(S74)
but at large 8DyLy both the left and right members of equation S73 are unphysical: the
right member explodes as 8DgLy — 1 while the left member decreases with 8DgLg for
large 8DyLg which is also unphysical. We expect that Lo not only satisfies equation S73,
but also increases monotonically with 5DyLg and goes to infinity as 5DgLy — oo. These
constrains are satisfied by the following expression:

Ly = LyePPolo (S75)

Note that we have not proved this expression, and equation S75 is a conjecture. Indeed,
the exponential function is only one of the many functions that satisfy all these constraints,
but it is probably the simplest one.

Moreover, this expression has been validated against numerical experiments (section 5.2
of the main manuscript) and equation S75 matches well the simulations. Proving mathe-
matically equation S75, by relaxing the hypothesis of a constant «, remains a perspective
for future work.

Density of merged updrafts

Note that this new size distribution is only valid for large updraft sizes Lgx > 1. This
expression, therefore, is only valid for a small proportion of the merged updrafts, and it
cannot be used to deduce the total number of merged updrafts. However, we can use the
conservation of the total effective updraft coverage fraction during the process to deduce
Ds. This fraction, indeed, is conserved during the merging process. By definition, the two

12



populations of merged and unmerged effective updrafts do not overlap, so this conservation
writes:

fte{f ~ DlBLl + DQLi{nged (876)
where Li{ej; ged is the average size of merged effective updrafts. Because ]P’;f 7 s only an

asymptotic approximation of the real density probability of merged updrafts IP’i{e]; ged’ the
average size of merged updrafts indeed differs from SLs. We expect that the probability
distribution of merged updrafts is equal to ]P’;f ! for updrafts much larger than SLg, but
is virtually zero for very small updrafts. We therefore can assume, under a very crude
assumption:

Prergea() ~ P5'Y ()0 (x — BLo) (S77)

where O is the Heaviside function. This directly provides the average length of merged
updrafts:

/ :L‘Pf,{iged(m)d:n
et = J0 = B(Lo + Ly) (S78)

merged S
/0 P;{g;ged(m)dx

Reinjecting the equations for fi// (S11), Ly (S31), Dy (S32) and Ly (S75) one finds

the following expression:
1 — ¢—BDolo <1 4 m)
2 BLo(1 + efPoLo)

The density of merged updrafts is usually low compared to the density of unmerged
updrafts, and maximizes for 8DgLy = 1.08 at a value of DyLy = 0.146. Beyond that value,
adding updrafts reduces the total number of merged updrafts because it makes merging
very efficient and produces fewer but larger updrafts.

S3 The updraft distribution after merging

A double exponential distribution

After merging, the size distribution of updrafts can be written as:

S(z) = %e—r/h + %Ze—w/b (S80)

Indeed, for z/Ly < 1 the unmerged updrafts dominate. Therefore, even though our
expression for the size distribution of merged updrafts is not valid there (equation S71), its
contribution is small enough to be neglected in the final size distribution. For x/Lg > 1
equation S71 is valid. Finally, for /Ly =~ 1 the formula should be less accurate and
probably slightly overestimates the actual size distribution of updrafts.

13



The relative magnitude of the two exponentials

In equation S80, p; and po can be determined by the prefactors of P; and Ps. One finds:

— ! (S81)
Pr= 1+ (1 + ﬁ'D()Lo)e_BD(]LO
and Dol
1 —BDo Lo

>~ 14 (1+ BDoLo)e PDoLo

Note that p; and p2 do not represent the total population of unmerged and merged
updrafts, respectively, that are rather described by Dy and Ds. For example, if DgLg — 0,
then Dy — 0, but ps — % This apparent contradiction is solved by noticing that only
the tail of the size distribution of merged updrafts is exponential. Therefore, po and is not
necessarily related to the total density of merged updrafts Ds.

It is interesting to note that as merging becomes more and more prominent, i.e. as
BDy Ly increases, the characteristic size of the merged updrafts increases, but the relative
weight of the second exponential decreases.

Densities of merged and non merged updrafts

The total density of updrafts is the sum of the density of non-merged and merged updrafts:
Dy, = D1 + D3, which yields:

BDoL 1 — e—BPolo ( + ﬁDOLOQ)
—PHoko 1 DoL
Dy ~ Dy - — + (1+ 5DoLo) (S83)
1+ 5DOL0 ﬂL()(l + 6'6D0L0)
For 8DyLg = 0.83, Dy, reaches a theoretical maximal value:
0.34
Dcrit ~ m (884)

It is interesting to note that the maximum density after merging decreases with 5 and
therefore with the lifetime of the thermals or the clouds.

14



II. Additional figures

Cloud chord length distributions measured during EUREC* when considering
only non-drizzling clouds.

Relationship between the thermal length scales and the cloud length scale
before merging.

Relationship between the thermal densities of all thermals vs saturated ther-
mals around cloud base.

Interpretation of mass flux variations at cloud base.

15
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Figure S3: Non-drizzling clouds from each EUREC*A flight: Probability distri-
bution functions of the cloud chord lengths (in meters derived for each ATR flight from
horizontal radar-lidar measurements around the cloud!Base level when considering only the
non-drizzling clouds. Each panel shows the histogram, its fit by a sum of two exponentials
(solid line) and the associated Q-Q plot and R? (inset) to assess the goodness of fit. When

Lcld

de the distribution is well fitted by a single exponential.
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Figure S4: Relationship between L§LP and LI or LI#: each flight (except RF08) is
associated with two thermal populations of lengths scales LT (pink) and L1 (purple);
Lg LD ig close to L{H in the presence of a single cloud population (pink squares) and to LQTH
in the presence of two cloud populations (purple circles). The solid grey line represents the
1:1 line.
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Figure S5: Relationship between the density of all thermals DT and the density of satu-
rated thermals DTH5% or updrafts DTHP around the cloud base level (saturated thermals
may be regarded as ’cloud shoots’). All quantities are inferred from high-frequency (25 Hz)
humidity and vertical velocity measurements on board the ATR.
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Figure S6: The mesoscale mass flux M, inferred from ATR measurements at cloud base
(section 7.1, Figure 11a) increases with the thermal density D7 . This co-variation can
be interpreted by noting that My, ~ wLll DI LTH  where DIH LTH and wlil are the
mean density, length and vertical velocity of cloudy thermals (or cloud shoots) inferred
from turbulence measurements during each flight. This approximation provides mass flux
estimates that explain well the flight-to-flight variations of M, (R? = 0.97). Consistently,
it correlates with DTH almost as strongly as My, does (R? = 0.68 vs 0.74). The correlation
with DTH of each term of the approximated mass flux estimate (DLH LIH and wllI)
shows that the increase in mass flux with DT is primarily due to the increase in cloud

shoots density DI and, to a lesser extent, to the increase in vertical velocity wl .
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