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Abstract. Persistent contrails and contrail-induced cirrus clouds are considered the most significant non-CO;
contributors to aviation’s climate impact. These clouds primarily form in ice-supersaturated regions (ISSRs),
defined by relative humidity over ice (RHjc) exceeding 100 %. Reliable prediction of RH;c in the upper
troposphere and lower stratosphere allows mitigating their formation by re-routing flights. We implemented
a two-moment cloud ice microphysics parameterization within a ten-member Ensemble Prediction System
(EPS) using the global ICON (ICOsahedral Nonhydrostatic) model. RHj¢. predictions were evaluated against
radiosonde and aircraft observations from the Northern Hemisphere during 2024-2025. Treating ISSR predic-
tion (RHjce > 100 %) as a binary classification problem, we find that the probability of detection (POD) of ISSRs
increases to 0.6 for the two-moment scheme (ICON 2-Mom), compared to 0.4 for the operational ICON with a
one-moment ice microphysics scheme, while maintaining a low false positive rate (FPR < 0.1). Further evalua-
tion of the ICON 2-Mom EPS using Receiver Operating Characteristic (ROC) analysis shows a POD of 0.8 for a
decision model that requires at least three ensemble members to predict ISSR, with an FPR of 0.13. Additionally,
we incorporate ensemble spread information to develop a meta-model that further reduces the FPR. Since June
2024, more than 100 flights have been rerouted based on ICON 2-Mom EPS predictions in a contrail avoidance
trial, demonstrating the practical value of improved ISSR forecasts for climate-conscious aviation. This study
highlights the significant potential of ensemble-based modeling for predicting ISSRs and RHj¢, supporting en-

vironmentally optimized flight planning and advancing applications in weather and climate science.

1 Introduction

The impact of aviation on climate change is a growing con-
cern, especially as the number of aircraft increases (Ya-
mashita et al., 2016; Grewe et al., 2021). Air traffic is es-
timated to contribute to global warming by approximately
3.5% (Lee et al., 2023) — with an uncertainty range of 2 %—
14 % (Lee, 2018) — caused by CO; and non-CO, effects.
While the uncertainty range for the climate impact of CO;
emissions is relatively small, there is significant variability
associated with non-CO; effects arising from emissions such
as NO,, H»O, and, notably, the formation of persistent con-
trails and contrail-induced cirrus clouds (Matthes et al., 2017;
Klower et al., 2021; Liihrs et al., 2021; Lee et al., 2023).

These aircraft-induced clouds present a complex challenge
for climate assessment (Teoh et al., 2024). While Kircher
(2018) estimates that they account for more than half of avi-
ation’s total radiative forcing, Bickel et al. (2025) contend
that their net warming effect might be less than that of CO,,
primarily because it may be partially offset by a decrease in
natural cirrus cloud coverage (Bickel et al., 2020).

Given the variety of findings and the potential trade-off be-
tween CO; and non-CO; impacts, effective strategies to mit-
igate the climate impact of aviation must address both types
of effects. One such strategy that has gained increasing atten-
tion in recent years is climate-optimized flight routing, which
aims to reduce aviation-induced warming by accounting for
a comprehensive range of atmospheric impacts (Schumann
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et al., 2011; Grewe et al., 2017a, b; Matthes et al., 2017;
Simorgh et al., 2022). This approach is built upon climate
response models such as the Contrail Cirrus Prediction (Co-
CiP) model (Schumann, 2012), its Python adaptation PyCon-
trails (Shapiro et al., 2025), or algorithmic Climate Change
Functions (aCCF) (Dietmiiller et al., 2023; Matthes et al.,
2023), which provide the necessary computational frame-
work.

Climate response models rely on four-dimensional mete-
orological fields — typically derived from numerical weather
prediction (NWP) models — in which relative humidity over
ice (RHjce) is a key parameter for evaluating contrail forma-
tion according to the Schmidt—Appleman criterion (Schmidt,
1941; Appleman, 1953; Schumann, 1996). To provide cli-
mate response models with physically consistent and repre-
sentative atmospheric inputs, it is crucial that NWP models
accurately capture RHjce, especially under ice-supersaturated
conditions (RHjce > 100 %), which are essential for persis-
tent contrail development.

Beyond contrail modeling, ice-supersaturated regions play
a critical role in the development and persistence of cirrus
clouds, which are key regulators of the water vapor budget
in the upper troposphere and lower stratosphere (Kircher et
al., 2023). Improving the representation of supersaturation
is therefore vital not only for contrail modeling but also for
capturing the broader impacts of cirrus cloud dynamics on
atmospheric moisture and radiative balance (Dekoutsidis et
al., 2023; Borella et al., 2025). Yet, despite its relevance for
climate-relevant processes, RHjce remains one of the most
uncertain variables in NWP models (Kunz et al., 2014; Dy-
roff et al., 2015; Kriiger et al., 2022).

RHj prediction is particularly challenging due to limited
upper tropospheric humidity data, large humidity variability,
and incomplete understanding of ice nucleation and cirrus
cloud formation. Improving cloud cover schemes and pa-
rameterizations of ice microphysics are therefore an active
area of research (Karcher et al., 2022; Seifert et al., 2022;
Spichtinger et al., 2023; Achatz et al., 2024; Grundner et al.,
2024; Liittmer et al., 2025). Additionally, predicting ice su-
persaturation is complicated by resolution limits: NWP mod-
els represent mean atmospheric values and often miss lo-
calized ice supersaturated regions (ISSRs), especially those
linked to unresolved mesoscale gravity waves (Wilhelm et
al., 2018).

One way to circumvent these limitations is to develop ma-
chine learning methods to derive RHjce forecast corrections.
The resulting correction model receives variables such as
temperature, RHjce, and others, and returns adjusted values of
RHjce. Wang et al. (2025) focused their research on reanal-
ysis data, deriving their post-processing model inputs from
ERAS5 (ECMWEF Reanalysis v5) data, and trained their model
using humidity measurements from the In-service Aircraft
for a Global Observing System (IAGOS), showing RHjce
mean absolute error improvements when validated against
test data. Previous studies have also examined corrections to
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ERAS reanalysis RHjce, particularly in the context of esti-
mating the climate effects of aviation contrails (e.g., Teoh et
al., 2022).

The use of high-resolution NWP models is another ap-
proach to dealing with uncertainties in predicting RHj¢.. In a
recent study by Thompson et al. (2024), several NWP mod-
els were validated with respect to RH;. using radiosonde and
TIAGOS data, in the context of contrail avoidance flight rout-
ing. RHj¢e predictions from IFS (Integrated Forecasting Sys-
tem), GFS (Global Forecast System), and S-WRF (a Weather
Research and Forecasting model configuration by SATAVIA)
were evaluated using standard classification metrics, includ-
ing the F; score and the Matthews Correlation Coefficient,
which reflect the models’ ability to correctly identify ice-
supersaturated conditions. Moderate scores were found, in-
dicating room for improvement in ISSR prediction skill.

The study highlights that a correct identification of non-
ISSR is also crucial, as false negatives (thus, incorrect ISSR
predictions) could potentially lead to unnecessary re-routing.
For the S-WRF model, they find a true positive rate for the
non-ISSR condition of 90.7 % and hence a false positive rate
of ISSR of 9.3 %. The low false positive rate of ISSR sug-
gests that there may be only few worst-case scenarios where
aircraft are diverted to an incorrectly predicted non-ISSR due
to an incorrectly predicted ISSR, resulting in both additional
CO; emissions and possible contrail formation.

These studies demonstrate the potential of machine learn-
ing models and state-of-the-art NWP systems to improve
RH;e prediction, but they also reveal persistent limitations.
In particular, the reliance on simplified cloud cover or mi-
crophysics schemes and deterministic forecasts restricts the
ability of current models to capture the full variability and
uncertainty associated with ice supersaturation.

A key challenge in realistically representing RHjc. in
NWP models lies in the treatment of subgrid-scale humid-
ity variability and cloud formation processes. The IFS model
addresses this through the Tompkins cloud cover scheme
(Tiedtke, 1993; Tompkins et al., 2007; ECMWF, 2024),
which employs a prognostic probability distribution function
(PDF) of total water content to estimate cloud fraction. This
statistical approach allows for a probabilistic representation
of cloud cover and ice supersaturation but does not explicitly
resolve the underlying ice microphysical processes.

In contrast, the ICON (ICOsahedral Nonhydrostatic) NWP
model (Zingl et al., 2014) uses a physically based micro-
physics scheme. Within this approach, a key factor in a realis-
tic representation of RHjc is the scheme’s ability to simulate
the phase relaxation time — the timescale over which water
vapor transitions to ice. In the operational one-moment cloud
ice microphysics parameterization, the specific ice mass is
treated as a prognostic variable, whereas ice particle number
density is estimated from temperature. This approach tends
to overestimate particle numbers at low temperatures, result-
ing in unrealistically short phase relaxation times and limit-
ing the ability of the model to represent ice supersaturated
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conditions. To address these limitations, a two-moment ice
microphysics scheme treats the ice particle number density as
an additional prognostic variable (Kohler and Seifert, 2015).
This allows ICON to better capture the phase relaxation time,
and thereby the degree of ice supersaturation and the persis-
tence of ice supersaturated regions.

Complementary to the model physics, ensemble forecast-
ing is a powerful tool for capturing atmospheric variabil-
ity and model uncertainty. This is particularly valuable for
phenomena like ISSR, which are rare, spatially heteroge-
neous, and sensitive to small-scale processes. While ensem-
ble means are commonly used to produce stable determinis-
tic forecasts, they may obscure signals critical for ISSR de-
tection. Instead, ensemble spread and extremes, such as the
highest RH;¢. values among members, may reveal localized
supersaturation events and offer a probabilistic measure of
forecast confidence.

In our study, we combine both approaches: we implement
and evaluate a two-moment cloud ice microphysics scheme
in the global ICON. Further, we explore its impact within
a ten-member ensemble prediction system (EPS), assessing
how the ensemble can enhance ISSR identification beyond
mean-state representation.

As part of this study, the ten-member ICON ensemble with
the new two-moment ice microphysics scheme has been es-
tablished as a dedicated forecasting system at the German
Meteorological Service (DWD). It provides continuous me-
teorological data to support research on contrail avoidance
flights. This setup was developed within the D-KULT project
(Demonstrator for Climate and Environmentally Friendly
Air Transport), which aims to demonstrate the feasibility
of climate-optimized flight trajectories with a focus on re-
ducing contrail formation in European airspace. The project
seeks to optimize flight paths using climate response mod-
els that account for both CO, and non-CO, effects, while
balancing emissions, noise, operating costs, and operational
constraints such as airspace regulations and airport capac-
ity. One key component is the integration of forecasts from
the ICON ensemble to identify potential persistent contrail
regions for contrail avoidance planning. In real-world trials,
more than 100 flights have already been rerouted using in-
formation from these forecasts, demonstrating the practical
applicability of climate-aware flight operations.

The structure of this work is as follows. In Sect. 2, we
introduce the new two-moment cloud ice microphysics pa-
rameterization, the ensemble generation, and the details of
the model setup. Section 3 provides an overview of the in-
situ observational data used for verification. The verifica-
tion methodology is described in Sect. 4, and the results are
presented in Sect. 5, where we evaluate the deterministic
ICON model with the new two-moment scheme, particularly
in comparison to the operational ICON model with the one-
moment scheme. Building on the deterministic model veri-
fication, we then assess the ten-member ensemble setup. We
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conclude with a discussion in Sect. 6 and final remarks in
Sect. 8.

2 Model

The ICON model, developed by the ICON partnership in-
cluding Deutsches Klimarechenzentrum, Max Planck Insti-
tute for Meteorology, Karlsruhe Institute of Technology, the
Center for Climate Systems Modeling, and the German Me-
teorological Service (DWD), is used operationally by DWD.
In its global operational configuration, cloud ice micro-
physics is represented by a one-moment scheme, where spe-
cific ice mass is prognostic and ice particle density is diag-
nosed from temperature (see Appendix A for details).

2.1 Two-Moment Cloud Ice Microphysics
Parameterization in ICON

The two-moment cloud ice scheme in ICON is an exten-
sion of the operational one-moment cloud ice scheme. It
adds a prognostic equation for cloud ice number density
and includes explicit ice nucleation processes. Examples
of similar hybrid schemes include those by Reisner et al.
(1998) and Thompson et al. (2004), though these originally
used purely temperature-dependent ice initiation. Kohler and
Seifert (2015, hereafter KS15) present a two-moment scheme
that accounts for deposition nucleation based on ice super-
saturation, and includes homogeneous freezing of sulfate
aerosol droplets at low temperatures. The version of the two-
moment scheme used in this study is a simplified and updated
version of KS15. The two-mode representation in KS15 is
omitted for computational efficiency, as are the timestep re-
finements for homogeneous nucleation. In a two-moment
scheme, sources and sinks of ice particles must be explic-
itly parameterized. The three primary sources of ice particles
are detrainment of ice from deep convective clouds, homo-
geneous nucleation, and heterogeneous nucleation.

2.1.1 Deep Moist Convection

ICON parameterizes moist convection using a bulk mass flux
convection scheme (Tiedtke, 1989; Bechtold et al., 2008).
For cloud ice detrainment from convection, a mean parti-
cle diameter of D; ¢ony =200 um is assumed, corresponding
to a mean mass of m; cony = 10~° kg. A smaller mean mass
would increase the number of detrained ice particles in the
upper troposphere, leading to shorter phase relaxation times
in convective anvils and reduced ice supersaturation. The as-
sumed size also affects the effective radius of anvil clouds
explicitly represented in the model.

2.1.2 Homogeneous Ice Nucleation

For homogeneous ice nucleation, the parameterization by
Kircher et al. (2006) is used. It accounts for the presence of
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pre-existing ice particles and is applied using grid-scale ver-
tical velocity and ice supersaturation. However, it neglects
subgrid-scale variability, which may lead to an underesti-
mation of nucleation events. The impact on cloud ice num-
ber concentration is less straightforward. While nucleation
events in nature occur on much smaller spatial scales, the
model assumes that nucleated particles are evenly distributed
across the grid box once the event is triggered.

2.1.3 Heterogeneous Ice Nucleation

Heterogeneous nucleation is represented using the INAS (Ice
Nucleating Active Sites) approach of Ullrich et al. (2017),
which includes parameterizations for deposition and im-
mersion freezing on mineral dust and soot. Since prog-
nostic aerosol fields are not available in ICON, but only
in ICON-ART, a constant dust number concentration of
Nausto =1 X 10° m™3 is assumed in the upper troposphere
above po=200hPa. Below that pressure height the profile
increases following

Naust(P) = Naust.0 max {min [exp (ydusti) ,200} , 1} (1)

with yqust = 1 X 1073, The dust surface area Sgu is calcu-
lated based on a lognormal particle size distribution with a
mean diameter of 1 um and a standard deviation of 2.5. The
number of nucleated ice particles is then diagnosed as:

N;* = Naust {1 —&Xp [_EdUStnS (T, Si)]} : )

Here, ng is the INAS density in m~2, parameterized accord-
ing to Eq. (7) for deposition and Eq. (5) for immersion freez-
ing in Ullrich et al. (2017).

In numerical models, newly formed ice particles are typi-
cally diagnosed each timestep using AN; = N} —N, ip " where
NP is the number of pre-existing ice particles. However,
this can overestimate heterogeneous nucleation since Nl.pre
is reduced by sedimentation or aggregation, while Ngyg re-
mains constant. This effectively creates an unlimited reser-
voir of ice-nucleating particles. To avoid this artifact, a bud-
get variable is introduced as described in KS15. A relaxation
timescale of 2 h is applied to simulate the recovery of nucle-
ating particle availability due to atmospheric mixing.

2.2 Ensemble Generation

The ensemble generation is based on the Local Ensemble
Transform Kalman Filter (LETKF) method (Ott et al., 2004;
Hunt et al., 2007), which perturbs the initial conditions of
all members simultaneously in a member-dimensional space.
The initial state of each ensemble member is computed by
combining its background state — a short-range forecast —
with a weighted correction derived from the differences be-
tween observations and model background. These weights
are computed via a gain matrix that incorporates both obser-
vation error and background error covariances, ensuring that
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each member assimilates observation information in a dis-
tinct but dynamically consistent way.

In addition to initial condition perturbations, the system
includes stochastic perturbations of selected physical param-
eterizations which are known to be sensitive. Thereby, differ-
ent components of the system are perturbed, including grav-
ity waves, convection, microphysics, the cloud scheme, tur-
bulence and land surface. For example for convection, well-
known parameters such as the entrainment rate or the excess
of moisture or temperature used in the ascent of a test parcel
are targeted. For the global ensemble system, these physical
parameters are randomly perturbed for each ensemble mem-
ber with time-dependent perturbations varying sinusoidally
within their range. The randomisation is accomplished by a
phase shift of the sinusoidal wave depending on the ensemble
member ID (for more details see Chap. 13.2 in Reinert et al.,
2025). This approach introduces variability among ensem-
ble members while preserving the consistency of individual
forecast trajectories. The combined perturbation strategy en-
sures a realistic representation of forecast uncertainty, which
is crucial for assessing the sensitivity of contrail formation
potential to meteorological variability.

As a third source of uncertainty, the sea-surface tempera-
tures over oceans are perturbed in the initial conditions.

2.3 Model Setup

The dedicated ICON forecasting system which is imple-
mented and evaluated in this study is based on ICON ver-
sion 2.6.6. The system runs on the ICON R3BO06 grid, which
has a horizontal spacing of about 26 km and a vertical spac-
ing of about 200-300 m at the most common commercial
flight altitudes of 8.5-12.5 geopotential kilometers. It starts
from the operational analysis, which is based on the one-
moment ice microphysics scheme, so that we require a spin-
up time of at least 6 h in our evaluations below to build up ice
supersaturation. The model is run four times a day, initialized
at 00:00, 06:00, 12:00, and 18:00 UTC with a forecast lead
time of 60h, producing hourly forecasts. The system con-
sists of ten ensemble members, whose generation is based
on the first ten members of the operational ensemble predic-
tion system. This is a reasonable approach as discussed in
Appendix B.

The model outlined forms the basis for the evaluations
performed in this study and will be referred to as ICON 2-
Mom EPS in the remainder of this study. Since the dedicated
ICON forecasting system does not consist of an additional
deterministic model run, we use individual members of the
ensemble as approximates to a deterministic model setup for
our evaluation, denoted by ICON 2-Mom in the following.
Similarly, the operational ICON with the one-moment ice
microphysics scheme is denoted by ICON 1-Mom.

Figure 1a illustrates the difference in model behavior be-
tween ICON 1-Mom and ICON 2-Mom, showing global pat-
terns of relative humidity over ice for both schemes. While
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Figure 1. Relative humidity over ice (RH;, ) of the operational ICON with one-moment ice microphysics scheme (top row) and of ICON with
two-moment ice microphysics scheme (bottom row): (a) global forecast-only data of RHj¢e near the tropopause (~ 10.2 km); (b) normalized
histograms of RH;¢e of Vaisala RS41 radiosonde data and ICON; (¢) 2D histograms of RHj¢ of spatio-temporally matched points between
Vaisala RS41 radiosonde data and ICON forecasts with a lead time of 12h; heights between 8500-12 500 gpm, corresponding to most

common commercial flight altitudes.

overall cloud structures remain comparable, the two-moment
cloud ice scheme produces a markedly higher degree of ice
supersaturation. The realism of this behavior is examined in
the remainder of this study through comparison with obser-
vational data.

3 Observation Data

This study emphasizes in situ measurements for verification,
with the primary analysis based on radiosonde data. Addi-
tionally, data from the In-Service Aircraft for a Global Ob-
serving System (IAGOS; see https://www.iagos.org/, last ac-
cess: 24 November 2025) were considered.

3.1 Vaisala RS41 Radiosonde Data

We restricted our radiosonde verification to Vaisala Ra-
diosonde RS41 data, as this type of radiosonde is best scored
for humidity measurements in the UTLS (Dirksen et al.,
2022; Borg et al., 2023; WMO, 2024). The temperature is
measured with an accuracy of £0.2 °C and the humidity with
an accuracy of +3 % RH. For more details on techniques
and precision compare Vaisala (2013). We limited our ver-
ification to the Northern Hemisphere, where 105 radiosonde
stations frequently yield Vaisala RS41 data. In Fig. 2a, the ra-
diosonde locations are shown. Radiosonde observations are
typically conducted twice daily, with balloon ascents around
00:00 and 12:00 UTC. The resulting data are stored in stan-
dardized binary files known as Binary Universal Form for the
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Representation of meteorological data (BUFR), a format de-
veloped by the World Meteorological Organization (WMO)
to encode and transmit various types of weather observations.
These files contain TEMP reports, which include a struc-
tured set of atmospheric measurements such as temperature,
pressure, humidity, and wind speed and direction at multiple
vertical levels. TEMP BUFR files serve as the standardized
source of radiosonde data used in this study.

The Vaisala RS41 radiosondes used in this study record
vertical profiles with a height resolution of approximately
1 geopotential meter (gpm) and a measurement accuracy of
+10 gpm. Within the standardized TEMP BUEFR files, dew
point temperature is provided, from which RHjc, is derived
following the method outlined in Appendix C. Figure 2b il-
lustrates example vertical profiles of temperature and RHjce
obtained from radiosonde measurements, shown alongside
the corresponding ICON 2-Mom EPS data.

3.2 |AGOS Near-Real-Time Data

In addition to radiosonde data, we use IAGOS data for
our verification. ITAGOS is a European research infrastruc-
ture that uses commercial aircraft to collect atmospheric
data. JAGOS-CORE contains several measurement instru-
ments, e.g., for ozone, carbon monoxide, humidity, and cloud
particles, and optionally for nitrogen oxides, greenhouse
gases, and more (https://iagos.aeris-data.fr/instrumentation/,
last access: 24 November 2025). The time resolution of
the temperature measurements is 4s with an accuracy of
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Figure 2. Radiosonde (left) and IAGOS (right) observation data. (a) Locations of 105 stations equipped with Vaisala RS41 radiosondes
in the Northern Hemisphere. (b) Example height profiles of temperature and RH;¢ce from Vaisala RS41 (TEMP) observations and ICON
2-Mom EPS forecasts with a lead time of 12 h. (¢) Rank histogram: for each spatio-temporal point (comprising ICON 2-Mom EPS values
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displayed in a histogram. The rank histogram includes only samples where the observed RHj.. exceeds 50 %. (d) IAGOS flight routes of
188 flights from December 2024, limited to the Northern Hemisphere. (e) Spatio-temporal comparison of flight data and ICON 2-Mom EPS:

time series of temperature and RHj. from one example flight. (f) Rank histogram for IAGOS flight data, analogous to (c).

£0.5 K, while the time resolution of the humidity measure-
ments ranges from 1s at 300K to 120s at 200K, with an
accuracy of 6 % (for more details, see https://www.iagos.
org/iagos-core-instruments/h20/, last access: 24 November
2025). There are several levels of data processing, from
which we have used near-real-time (NRT) data, where hu-
midity measurements are subject to automated quality con-
trol, usually within 72h (https://iagos.aeris-data.fr/levels/,
last access: 24 November 2025). Only data with validity flag
“good” were used (https://iagos.aeris-data.fr/data-quality/,
last access: 24 November 2025) for 625 flights between Au-
gust 2024 and January 2025. Figure 2d shows the flight
routes for December 2024. For an example highlighted flight
route, the temperature and RHjc. time series are shown
together with the corresponding ICON 2-Mom EPS data
(Fig. 2e). Similar to the radiosonde verification, the analysis
is confined to the Northern Hemisphere.

4 Verification Methods

4.1 Spatio-Temporal Matching of Model and
Observation Data

The ICON grid used in our model setup has a horizontal
resolution of approximately 26 km and a vertical resolution
of 200-300 m within the altitude range of 8500-12 500 gpm.
ICON simulations with hourly forecasts up to a lead time of
60 h were started in 6 h intervals.

Atmos. Chem. Phys., 25, 17253-17274, 2025

4.1.1 Radiosonde Data

Radiosonde data from a given station are mostly horizon-
tally fixed and provide dense vertical coverage. To gener-
ate matched ICON-radiosonde data pairs, the ICON grid cell
center closest to each radiosonde station was first identified.
Subsequently, radiosonde observations were linearly interpo-
lated to the ICON levels, as the model provides mean val-
ues across vertical layers with considerably lower resolution
than the radiosonde data. No horizontal interpolation was ap-
plied. However, the impact is expected to be minimal, as typ-
ical horizontal scales of ISSRs are on the order of 140 km
(Spichtinger and Leschner, 2016).

For temporal matching, the start time of the accent was
used as a reference, and we select the corresponding ICON
simulation whose initial time is closest to the observation
time minus the required lead time. Since the simulation
provides hourly forecasts, this approach ensures temporal
matching to the nearest hour. The exact lead time is explicitly
stated in all evaluations and never below the required spin-up
time of 6 h.

Over the 14-month verification period, this approach
yielded approximately 820000 spatio-temporal matching
points from more than 63 000 radiosonde profiles. Figure 2b
shows example radiosonde profiles of temperature and RHjc,
from one station, compared with ICON ensemble values.

4.1.2 IAGOS Data

IAGOS data represent aircraft-based observations and
thus capture horizontal trajectories spanning several hours.
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Figure 3. Overview of categorical verification methods used in this study. (a) Confusion matrix: provides a structured summary of how
model predictions align with actual observations in a binary classification setting. Each prediction is categorized as a true positive (TP),
false positive (FP), false negative (FN), or true negative (TN), depending on its agreement with the observed outcome. This matrix forms
the foundation for computing categorical performance metrics such as listed in (b). (b) Categorical metrics: Frequency bias index (FBI),
probability of detection (POD), false positive rate (FPR), precision, and the Matthews correlation coefficient (MCC) offer distinct insights
into model behavior as described in Sect. 4.2. (¢) Categorical evaluation of the ensemble prediction system: (i) the discrimination diagram
shows two distributions of forecast probabilities; one for the case where the event was observed in the measurements, and one where it
was not observed, highlighting the model’s ability to separate events by probability; (ii) the Receiver Operating Characteristic (ROC) curve
illustrates the trade-off between the POD and FPR across different classification models based on the ensemble’s probabilistic event forecast.

Matched ICON-TAGOS data pairs were generated by identi-
fying all ICON grid cell centers that were nearest to at least
one point along each flight path. Each selected ICON cell
was then paired with its closest flight data point, and the
model data were vertically interpolated to match the alti-
tude of that observation. For temporal matching, the mini-
mum lead time was fixed at 6 h to account for the required
ICON spin-up. Since flights span several hours, different
ICON simulations were used, each selected based on the ini-
tial time closest to the observation time minus the 6h lead
time. As ICON simulations are initialized in 6h intervals,
this approach may result in a maximum temporal mismatch
of £3h.

Over the 4-month verification period, this procedure
yielded approximately 200000 spatio-temporal matching
points from 625 flights. Figure 2e shows a sample time se-
ries of temperature and RHjce from an intercontinental flight,
together with the corresponding ICON ensemble values.

4.2 Categorical Metrics

Instead of analyzing the full continuous range of RHjc, the
values can be partitioned based on a specified threshold. This
results in a binary classification, distinguishing between two
complementary events:

RHj.e > threshold or RHj. < threshold.

In addition to the duration of ISSRs, pronounced ice su-
persaturation has been associated with the persistence of con-
trails (Teoh et al., 2022). While this link is relatively weak,
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relative humidity remains the dominant factor in contrail-
cirrus evolution, governing both the total ice mass and to-
tal extinction (Unterstrasser and Gierens, 2010). Given its
relevance, this study focuses on ice supersaturation events
(RHjce > 100 %) and on cases of pronounced supersatura-
tion (RHjce 3> 100 %). These are treated as the positive events
in our categorical verification framework, which we particu-
larly aim to distinguish from their complementary cases. The
spatio-temporal matching points between model output and
observational data can then be categorized with respect to the
positive event. Positive predictions and negative predictions
are classified with respect to the observed condition as true
positives (TP), false negatives (FN), false positives (FP), and
true negatives (TN). The results are indicated in a confusion
matrix (see Fig. 3a), which serves as the basis for computing
categorical metrics (see Fig. 3b). Below we provide all met-
rics which we later use to evaluate the performance of ICON
2-Mom (EPS).

The frequency bias index (FBI) is defined as the ratio of
the forecast frequency of an event to its observed frequency

It indicates whether the forecast system tends to overforecast
(FBI > 1) or underforecast (FBI < 1) a given event.

The probability of detection (POD, also known as sensitiv-
ity) evaluates the forecast system’s ability to correctly iden-
tify observed events. POD is defined as the ratio of correctly
predicted events to the total number of observed events, given
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by
TP
POD= — .
TP+ FN

The false positive rate (FPR, also defined as 1—specificity)
quantifies the proportion of non-events that were incorrectly
forecast as events. It is defined as

_ FP
~ FP+ TN’

POD and FPR are both computed relative to the ground
truth: the former with respect to the number of observed
events, and the latter with respect to the number of observed
non-events. To complement these metrics, precision provides
a forecast-centric perspective, highlighting the trustworthi-
ness of predicted events and if defined by

TP
TP+FP’

The Matthews correlation coefficient (MCC) is a com-
posite measure that accounts for all four components of the
confusion matrix simultaneously. MCC is particularly well-
suited for datasets with class imbalance (in our case we have
about 13 % ISSR events), as it reflects the quality of binary
classifications regardless of event prevalence. It is defined as

. TP-TN — FP-FN

N /(TP ¥FP)(TP+FN)(IN + FP) (TN +FN)

The MCC ranges from —1 to 41, where +1 indicates per-
fect discrimination between events and non-events, O reflects

random predictive skill, and —1 represents complete misclas-
sification.

FPR

Precision =

MCC

4.3 Categorical Verification of Probabilistic Model

Ensemble forecasts provide a distribution of values for any
forecast quantity of interest. For binary events such as ice su-
persaturation, the forecast probability is defined as the frac-
tion of ensemble members predicting the event.

4.3.1 Discrimination diagram

To assess the discriminative capability of the EPS, we em-
ploy the discrimination diagram, which visualizes two con-
ditional distributions of the forecast probabilities: one condi-
tioned on the event being observed in the measurement data,
and the other conditioned on the event not being observed.

These distributions are represented as normalized his-
tograms of the EPS forecast probabilities. A clear separa-
tion between the two distributions indicates strong discrim-
inability, reflecting the ensemble’s ability to assign higher
probabilities to observed events and lower probabilities to
observed non-events. This method provides a threshold-
independent diagnostic of classification performance in a
probabilistic forecasting framework. An example sketch of
a discrimination diagram is provided in Fig. 3c(i).
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4.3.2 Receiver Operating Characteristic (ROC) Curve

The ROC curve is a powerful threshold-dependent verifica-
tion tool to evaluate the performance of a binary classifica-
tion model. Such a model typically predicts not just a binary
label directly, but rather a scalar score (in our context, this
score is the predicted event probability). A score is turned
into an event prediction if it is above a certain threshold. The
threshold itself becomes part of the model; by varying the
threshold, we effectively obtain a multitude of models, each
with its own POD and FPR. The ROC shows the POD versus
the FPR for all of these models at once. The top-left corner
corresponds to a perfect classification model. An example
sketch of a ROC curve is provided in Fig. 3c(ii).

5 Verification Results

We evaluate the RHj.. predictions of ICON equipped with
the new two-moment ice microphysics scheme in two steps.
First, we verify the deterministic model, ICON 2-Mom,
which includes a comparison with ICON 1-Mom. Second,
we evaluate the ensemble prediction system, ICON 2-Mom
EPS.

Radiosonde data were used unless the use of [AGOS data
is indicated. Only data within the 8.5—12.5 km geopotential
height range were included to match commercial flight alti-
tudes.

5.1 Verification of Deterministic Model ICON 2-Mom
5.1.1 Relative Frequency Distribution of RHjce

Figure 1b displays the relative frequency distributions of the
observed RH;j¢. compared to the corresponding model-based
distributions from the operational ICON 1-Mom (top) and
the new ICON 2-Mom (bottom) configurations. Pronounced
differences emerge in the tail of the density distribution,
which reflects ice supersaturation. ICON 1-Mom exhibits a
sharp peak near 100 %, followed by a rapid decline, with
maximum RH;jc. values reaching only & 103 %. In contrast,
ICON 2-Mom more accurately captures the tail structure,
slightly overshooting at low supersaturation but successfully
reproducing the upper range, including RHj.. values up to
135 %. A few higher values were excluded from the plot due
to axis truncation, ensuring comparability without distortion
from rare outliers.

5.1.2 Continuous Spatio-Temporal Comparison

We examined the 2D histograms of RHj. of spatio-
temporally matched points between Vaisala RS41 radiosonde
data and ICON forecasts (Fig. 1¢). While ICON 2-Mom re-
produces the observed supersaturation range reasonably well
— unlike ICON 1-Mom — noticeable scatter remains around
the one-to-one line. However, perfect agreement between
modeled and observed RHjce values is not strictly required
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in our context. Crucially, the model must reliably distinguish
between ISSR events and non-events, as both have signifi-
cant operational implications for flight planning and routing.
To assess this capability, we proceed below with a verifica-
tion based on categorical performance metrics.

5.1.3 Categorical Verification
In the remainder of this study, we consider events of the type
RHjce > threshold,

with threshold € {100 %, 105 %, 110 %, 120 %}.

Figure 4a compares the FBI between ICON 1-Mom and
ICON 2-Mom for these events. For the ISSR event (blue
curves), the FBI is slightly above 1 for ICON 2-Mom, in-
dicating a modest overprediction, whereas ICON 1-Mom ex-
hibits lower values around 0.75, reflecting underprediction.
In both configurations, the FBI remains relatively constant
across the examined altitude range. At higher RHjce thresh-
olds, the FBI for ICON 2-Mom is slightly below 1 at lower
heights but rises to a maximum of approximately 1.5 near
12km for the event RHjce > 120 %. In contrast, ICON 1-
Mom yields an FBI of zero across the entire height range, in-
dicating a failure to detect high supersaturation events. These
results demonstrate that the two-moment scheme not only
predicts ice supersaturation more frequently than the one-
moment scheme — which consistently underestimates event
occurrence — but also tends to slightly overestimate observed
event frequency.

The POD for ISSR events (RH;ce > 100 %) increases from
approximately 0.4 for ICON 1-Mom to around 0.6 for ICON
2-Mom, remaining nearly constant across the altitude range
in both configurations. For events defined by higher RHjc
thresholds, ICON 2-Mom retains some detection capabil-
ity, with POD values gradually decreasing to about 0.15-0.2
for RHjce > 120 %. In contrast, consistent with the FBI re-
sults, ICON 1-Mom fails to detect RH;¢. values above 105 %,
yielding POD values near zero throughout the vertical do-
main.

The FPR remains relatively low across all cases, peak-
ing slightly above 0.1 for ICON 2-Mom at RHj¢e > 100 %
(Fig. 4(c)), indicating a limited tendency toward false alarms.

Both schemes yield similar precision values between 0.5
and 0.55 for ISSR events across the entire altitude range
(Fig. 4d). For higher RH;c, thresholds, the precision of ICON
2-Mom declines progressively, reaching values as low as 0.2
for RHjce > 120 %. In contrast, ICON 1-Mom produces very
few or no positive predictions in these regimes, rendering
precision largely undefined; accordingly, it is omitted for
these cases.

In the context of flight planning, accurate prediction of
non-ISSR conditions is equally critical, as false negatives
in this category can lead to unnecessary re-routing and,
consequently, avoidable increases in CO, emissions. When
treating the complementary events (RHjce < threshold) as
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“positive” events, the model exhibits high precision, with
average values exceeding 0.9 across all threshold levels.
Combined with the low false positive rate observed for
RH;ce > threshold events, this high precision underscores the
reliability of ICON 2-Mom in correctly identifying non-ISSR
conditions.

The MCC shown in Fig. 4e summarizes overall classifi-
cation performance. For ISSR/non-ISSR classification (blue
curves), ICON 2-Mom achieves an average MCC of 0.47,
indicating moderate predictive skill. In comparison, ICON 1-
Mom yields consistently lower values between 0.38 and 0.39.
At higher RH;j, thresholds, the MCC of ICON 2-Mom de-
clines progressively, reaching a minimum of approximately
0.16. In contrast, MCC values for ICON 1-Mom approach
zero or become undefined where the numerator vanishes, re-
flecting a lack of predictive capability in these regimes.

In summary, for ISSR events, ICON 2-Mom achieves a
moderate MCC of nearly 0.5 and a POD that is approxi-
mately 50 % higher than that of the operational ICON 1-
Mom, while maintaining a relatively low FPR below 0.1
across most altitudes. Despite this improvement, a POD of
0.6 indicates that a substantial fraction of events remains un-
detected. To address this, we continue to investigate potential
gains from the ensemble setup introduced in Sect. 2.2.

5.2 Verification of Ensemble Prediction System ICON
2-Mom EPS

We begin with a general evaluation of the ensemble’s ability
to represent RH;¢. variability, using the rank histogram as a
diagnostic tool. The rank histogram is constructed by rank-
ing the observed value relative to the ten sorted ensemble
forecasts and recording its position across all spatio-temporal
matching samples.

Figure 2c shows the resulting histogram for the subset of
samples where the observed RHjce is above 50 %. We con-
sider this restricted rank histogram because ICON tends to
underestimate very low humidity values, which are not the
subject of this study but would obscure the relevant behav-
ior (also reflected by the RHjc. histogram in Fig. 1b, bot-
tom). The histogram exhibits a U-shape, indicating under-
dispersion, i.e., the ensemble fails to capture the full vari-
ability present in the observations. This behavior is partly
due to spatial averaging over model grid cells, which tends to
smooth out extremes. However, counteracting this, so-called
upscaling effects of the model tend to display small-scale
physical behavior on the model scale. Thus, insufficient pa-
rameter perturbations may be another reason, together with
the lack of subgrid-scale gravity waves and the use of clima-
tologically prescribed aerosol fields, both of which constrain
variability in ice nucleation conditions.

Moreover, the rank histogram reveals a slight negative
bias, with observed RHj.e values more often exceeding the
ensemble forecast range than falling below it. This suggests a
systematic underestimation of RH;¢. by the model, at least in
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Figure 4. Categorical verification of ICON 1-Mom and ICON 2-Mom against Vaisala RS41 radiosonde measurements. The analysis covers
data from the Northern Hemisphere within the most frequently flown altitude range of 8.5-12.5 km geopotential height, over a verification
period of 11.5 months (15 June 2024-31 May 2025). Forecasts are initialized at 00:00 and 12:00 UTC with a lead time of 12 h. Observational
profiles are linearly interpolated to ICON model levels (~ 13 levels within the target altitude range), yielding approximately 680 000 samples,
with ice supersaturation present in ~ 13 % of cases. Panels show categorical scores for ice supersaturation events: (a) FBI; (b) POD; (c¢) FPR;
(d) precision; (e) MCC:; (f) Number of Vaisala RS41 radiosonde RHjc. event observations.

parts of the RHj¢e > 50 % regime. We found that this mainly
occurs at ice supersaturated conditions. However, the rank
histogram does not provide any information about magni-
tudes. Thus, we further analyze the ensemble’s ability to clas-
sify ISSR and non-ISSR conditions below.

5.2.1 ISSR/non-ISSR Discrimination Ability

To evaluate the ensemble’s ability to distinguish between
ISSR and non-ISSR conditions, we consider the discrim-
ination diagram introduced in Sect. 4.3. Figure 5a shows
the conditional distributions of forecast probabilities for
observed and non-observed events (events are defined as
RHjce > 100 %, and higher thresholds). For ISSR events, the
“not observed” distribution peaks sharply at zero and de-
clines rapidly, indicating strong agreement among ensemble
members when no supersaturation is present. In contrast, the
“observed” distribution is relatively uniform, suggesting that
the ensemble assigns a broad range of probabilities to ac-
tual events. As the threshold for supersaturation increases,
the “observed” distribution becomes more left-skewed and
increasingly overlaps with the “not observed” distribution,
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indicating a decline in discriminative skill for more extreme
events.

To conclude, for the ISSR event, the diagram shows little
overlap between the two conditional forecast probability dis-
tributions below and above ~0.3, suggesting that a threshold-
based conversion of forecast probabilities aimed at classify-
ing ISSR versus non-ISSR may be appropriate.

5.2.2 Threshold-Dependent Performance

As ICON 2-Mom EPS consists of ten ensemble members,
ISSR forecast probabilities can be 0, 0.1, 0.2, ..., 1. Thus,
these values represent the relevant potential thresholds to turn
the event forecast probability into an event prediction — yield-
ing classification models as introduced in Sect. 4.3. We re-
fer to these classification models as decision models, with
the k-out-of-10 decision model (or simply decision model k)
defining the threshold as k/10: if at least k of the 10 ensem-
ble members predict the event, the model outputs a positive
prediction:

; &
k-out-of-10 decision model : peony = { (1)’ gthl; r?vi;g’
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Figure 5. Ensemble verification metrics illustrating the discriminatory skill of the ICON 2-Mom EPS in distinguishing between events
and non-events (e.g., ISSR and non-ISSR, shown in blue). The verification period spans 14 months (April 2024-May 2025), yielding ap-
proximately 820000 samples. (a) Discrimination diagram: Conditional distributions of EPS forecast probabilities, given that the event was
observed and not observed in the measurement data. (b) Receiver Operating Characteristic (ROC) curve: POD versus FPR for ice supersat-
uration events, evaluated across a range of threshold-based decision models derived from the EPS. These pseudo-deterministic models are
constructed by applying varying probability thresholds to the ensemble output.

To evaluate the performance of these pseudo-deterministic
decision models, we use the ROC curve (Sect. 4.3). For the
ISSR event, the ROC curve (Fig. 5b) shows strong discrimi-
native skill for thresholds of 0.2 and 0.3 (decision models 2
and 3), with POD > 0.8 and FPR < 0.17. A comparison be-
tween the scores of the EPS-based decision models and the
deterministic ICON 2-Mom model (inset of Fig. 5b) shows
a substantial improvement in the POD for ISSR events, from
approximately 0.6 in the deterministic case to 0.8—-0.9 when
using ensemble-based decision models. This gain in POD is
accompanied by a moderate increase in the FPR, rising from
~ 0.1 to values between 0.13 and 0.23, depending on the cho-
sen threshold. These results highlight the added value of en-
semble forecasts in enhancing event detection or classifica-
tion.

While the ROC curve provides a comprehensive view of
classification performance across thresholds, it treats both
classes equally and may obscure performance nuances in the
presence of class imbalance. Therefore, we also evaluate the
precision—recall (PR) curve, which focuses specifically on
the model’s performance on the positive class. Similarly to
the construction of the ROC curve, the PR curve plots the re-
call (equivalent to POD) against precision. In Fig. 6a, each
EPS-based decision model is represented as a point on the
PR curve. The closer the points are to the top right corner,
the higher the recall and precision. Although recall remains
high even for intermediate thresholds, overall precision is
only moderate and deteriorates further for more extreme su-
persaturation events. This reflects the increasing difficulty of
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making accurate positive predictions as the event definition
becomes more stringent.

We also conduct a complementary analysis by treating the
complementary conditions (e.g., non-ISSR) as the positive
events, as this perspective is equally relevant for flight rout-
ing applications. The PR curve approaches the top right cor-
ner, reflecting both high POD and precision, and a zoomed-in
view providing details of this region is shown in Appendix D
Fig. Dla.

To conclude this subsection, we shift to a more holistic
model assessment using the MCC, as introduced in Sect. 4.2.
The MCC provides a balanced measure of classification skill
across both event and non-event categories, making it partic-
ularly valuable in the context of imbalanced datasets.

For the ISSR/non-ISSR classification, EPS-based decision
models 1-7 consistently outperform their deterministic coun-
terparts (i.e., individual ensemble members), with decision
models 3 and 4 achieving the highest MCC values of approxi-
mately 0.55. In contrast, the deterministic models yield MCC
scores around 0.47 (see Fig. 6¢). These results reinforce the
advantage of ensemble-based decision strategies in capturing
both sides of the classification task more effectively.

Table 1 summarizes the maximum MCC values achieved
for each ice supersaturation threshold, along with the indices
of the corresponding EPS-based decision models. For ref-
erence, MCC values of the deterministic (single-member)
models are shown in brackets. The final columns report the
associated POD and FPR values, enabling direct comparison
with ROC-based performance. In most cases, the decision
models with highest MCC also show favorable POD-FPR

Atmos. Chem. Phys., 25, 17253-17274, 2025
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Figure 6. Scores that take into account the unbalanced dataset with respect to the ISSR event or higher ice supersaturation events in two
different ways: The precision-recall (PR) curve by focusing on the performance of the model with respect to what is defined as the “positive”
event, and the MCC by providing a balanced evaluation measure with respect to all four categories of the confusion matrix. (a) PR curve for
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details of the top right corner is provided in the Appendix, Fig. D1. (b) MCC for the EPS decision models as well as for the single members
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Table 1. For each RHj¢ threshold event, the maximum MCC value
of the decision models based on the EPS is shown (rounded to the
second decimal place), together with the indices of the correspond-
ing decision model(s). The MCC of the deterministic model (single
members) is given in brackets. The last two columns show the ROC
values (POD versus FPR) of the decision model(s) with the maxi-
mum MCC.

RHjce max MCC EPS  decision POD FPR
threshold (Det) model

3 0.80 0.13
100 % 0.55 (0.47) 4 073 0.10

2 0.77 0.14
105 % 0.46 (0.37) 3 0638 011
110 % 0.37 (0.28) 2 0.64 0.11
120 % 0.25 (0.16) 2 0.62 0.11

combinations, underscoring their robustness across metrics.
For the remainder of this study, we focus on ROC-based eval-
uation using its associated scores, POD and FPR, as a rep-
resentative framework for assessing decision model perfor-
mance.

5.2.3 Comparison with IAGOS Data

The RHjce density of the IAGOS data, limited to the North-
ern Hemisphere for better comparison with our radiosonde
verification, confirms the characteristic bimodal shape of the
RHjce density (see inset of Fig. 7). Compared to the ICON
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data, the first peak in the TAGOS density appears shifted
to the right, suggesting fewer near-zero RHjc values in the
TAGOS dataset than in the ICON data. The peak around
RHjce & 100 % is shifted to the left and is less pronounced in
the IAGOS data. It also does not reach the same high RHjce
values as [CON.

Nevertheless, up to RHjce > 120 %, the shape of the ROC
curves (see Fig. 7) derived from the IAGOS data closely re-
sembles those derived from the radiosonde data (compare
Fig. 5b). These findings strengthen our verification insights
across different, independent observation systems.

5.2.4 Longer Forecast Lead Times

Although for many flights 12 h forecasts are sufficient, we
now consider lead time increments from 12h up to a maxi-
mum of 48 h, which is the standard time horizon of weather
forecasts for flight planning. Figure 8 shows that — as the lead
time increases — the ROC curves shift slightly to the right,
indicating higher FPR. In contrast, no downward shift of the
ROC curves is observed for high POD values of around 0.8
for the first 36 h and the POD only starts to decrease after
36 h. Overall, the degradation is not that severe, and at least
up to 36 h, potential scores remain roughly in the range of
POD > 0.8 and FPR < 0.2.

5.2.5 Incorporating the Ensemble Spread

We further incorporate ensemble spread information in order
to get more reliable scores in more specific situations. The
ensemble spread should be an indication of the confidence in

https://doi.org/10.5194/acp-25-17253-2025



M. Hanst et al.: Ice supersaturation in ICON

1.0
—#— RHcc > 100%
RHice > 105%
—#— RHie > 110%
0.8 1 —#— RHie > 120%
0.61 ICON 2-Mom EPS
a —— 1AGOS NRT
(@] i
(a1 1
> I
0.4 1 2 100 4 i
[} !
©
il
1
0.2 1 :
10-? : l
0 50 100 150
RHice (%)
0.0 ; : : :
0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure 7. ROC curve of ICON 2-Mom EPS and IAGOS data, the
inset figure shows the corresponding RH;¢e densities. Evaluation
performed with 625 flights from 4 months (August 2024, October
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Figure 8. ROC curves for increasing forecast lead times and in-
creasing RH;j¢e thresholds; time period 5 months: 1 January-31 May
2025; ICON initial times 00:00 and 12:00 UTC; Northern Hemi-
sphere.
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a forecast and is typically measured by the standard deviation
(SD). Therefore, in the context of ISSR forecasts, we further
differentiate the ROC curve based on the underlying SD at
each grid point, particularly to achieve a lower FPR.

The inset of Fig. 9a shows a histogram of the standard
deviation of RHjce /100 %; more than 50 % of the ensemble
forecasts have a SD below 0.1, with a peak near zero, and
only a small proportion have SD values greater than 0.2. The
colored bins in the histogram serve as a legend for the ROC
curves in the main Fig. 9a: the EPS forecasts are partitioned
with respect to their SD and the corresponding ROC curves
are shown in the same color. The trend is consistent with our
expectation; the lower the SD, the closer the corresponding
ROC curve is to the upper left corner, and vice verse, the
higher the SD, the closer the ROC curve is to the diagonal, in-
dicating that the model has low skill in these cases. In partic-
ular, a significantly improved ROC shape is obtained in more
than half of the cases — with POD of 0.9-1 and FPR <0.1
via decision models 1-2. In case the SD is greater than 0.1,
the ROC curves tend more and more to the diagonal and at
least five or six members should indicate ice supersaturation
to achieve an FPR of < 0.1. In these cases — depending on the
specific SD — only a lower POD of 0.3-0.8 can be obtained.

Given the significant variation in ROC curve shapes across
different SD regimes, we analyze the SD values of different
RH;ce regimes, particularly when RHj¢. is around or above
100 %. In Fig. 9b, summary statistics of SD are shown for
increasing 10 % bins of RHjc.. Following an increase in SD
values, they decrease before 100 % and reach another local
minimum in the RHjee regime of 100 %—-110 % with a me-
dian around 0.1. The relative mean squared error (RMSE)
shows a similar qualitative behavior up to RHjc. < 120 %.
For higher RHj regimes, the RMSE increases to its max-
imum over the whole range of values.

In Fig. 9c, the full RH;. histograms of the observations
and the ensemble forecasts are shown, as well as both con-
ditioned on SD <0.1; in the case of the observations this
is done by assigning the SD-value of the corresponding
spatio-temporally matched EPS point. For low SD-values
(SD <0.1), the corresponding conditional RHjce histograms
show a large peak for low humidity values in the same range
as the full unconditioned histograms. Another peak is ob-
served for RHje. values around 100 %, which is approxi-
mately one order of magnitude lower than that of the uncon-
ditioned histograms. This difference persists in the supersat-
uration regime of the histograms, where the maximum RHijce
values reached in the conditional case are around 130 %,
based on the 820000 verification points (where all counts
below 100 were cut in this plot). When comparing the con-
ditional histograms of the model and the observations, the
observation histogram exhibits a slightly lower peak around
100 %, similar to the difference observed in the full his-
tograms. In conclusion, even when the model exhibits high
confidence, as reflected by a low SD, the histogram still dis-
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Figure 9. Event RHj. > 100 %: inclusion of the ensemble spread of RH;.e, measured by the standard deviation (SD) of RHj¢e/100 %.
(a) ROC curves on sample subsets grouped and color-coded by their SD values. The inset shows the histogram of the SD of RHjc¢/100 %,
which also serves as a legend for the ROC curves corresponding to EPS subsets with associated SD. The black ROC represents the original
curve based on all samples. (b) Standard deviation and RMSE for 10 % bins of the predicted RH;¢e mean; the orange colored boxes represent
the interquartile range (IQR) (middle 50 % of the SD data) and the black horizontal line inside the boxes represents the median. The bottom
of the box is Q1 (25th percentile) and the top is Q3 (75th percentile). The vertical lines extending from the boxes represent the variability of
the data outside Q1 and Q3. They typically reach the minimum and maximum values within 1.5 x IQR. All data points outside 1.5 x IQR
from Q1 or Q3 are plotted individually as outliers. Blue crosses indicate the RMSE between the ensemble mean and the observed data
points. (c¢) Full histograms of observed and predicted RH;¢ values and histograms conditioned on SD <0.1; in the observation case, the
corresponding SD values were defined via the corresponding spatio-temporally matching EPS values. In the EPS model case, the counts
were divided by 10 to obtain a similar range of values to the observations.

plays intermediate supersaturation. This suggests that certain
ISSRs can be well predicted.

The increased predictability in the regime around
RHjce ®# 100 % can be explained by a more stable micro-
physical behavior in this near-thermodynamic equilibrium
state, which is captured by the model. In this regime, ma-
ture cirrus clouds are dominant compared to young or short-
lived cirrus clouds which often form in regions of high
ice supersaturation, driven by upward motion from grav-
ity waves or deep convection. These young clouds experi-
ence rapid crystal growth due to significant mesoscale tem-
perature fluctuations caused by gravity waves, which create
high spatio-temporal variability in supersaturation. The fluc-
tuating vertical motions and ice crystal concentrations make
forecasting cloud evolution difficult. As a result, young and
short-lived cirrus clouds introduce significant uncertainty in
predicting supersaturation, as the microphysical processes
are highly dynamic and rapidly changing. In contrast, ma-
ture cirrus clouds, approaching thermodynamic equilibrium
(RHjce & 100 %), display weak supersaturation conditions,
typically linked to slow, steady-state ascent. Under these con-
ditions, ice crystals grow and gradually deplete ambient wa-
ter vapor, creating a balanced system that enhances the pre-
dictability of ice crystal evolution and overall cloud dynam-
ics.

In clear-sky regions, where clouds and associated micro-
physical processes are absent, the predictability of RHjc. is
governed primarily by large-scale thermodynamic and dy-
namical processes. Supersaturation can persist in these re-
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gions due to the lack of ice nuclei. Observations show that
clear-sky supersaturation is often associated with weak ver-
tical motions and low temperatures in the upper troposphere,
particularly in mid- and high-latitude regions (Kahn et al.,
2009). However, mesoscale temperature fluctuations caused
by gravity waves can still occur, challenging predictability,
particularly for models that do not resolve mesoscale temper-
ature or humidity fluctuations. Overall, while the absence of
cloud feedbacks simplifies the microphysical environment,
potential variability in temperature, humidity, and vertical
motion still introduces uncertainty, i.e., the predictability of
RH;ce in clear skies depends on the given specific large- and
mesoscale thermodynamic and dynamical processes.

6 Discussion

6.1 Observed Standard Deviation of RHjce

The results shown in Fig. 9b and c share notable similarities
with the findings of Borella et al. (2024), who parameterized
the subgrid-scale distribution of water vapor in the UTLS us-
ing TAGOS data. They observed a predominantly quadratic
relationship between the standard deviation of RHje and
its mean, with a peak occurring between 70 % and approxi-
mately 110 %, depending on temperature. Beyond this range,
the standard deviation exhibited an upward trend at even
higher RHj¢. values. Their temperature-dependent analysis
further revealed that this peak decreases in magnitude and
shifts toward higher RH;¢. values as temperature decreases.
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While our approach to grouping ROC curves by ensemble
spread does not currently account for temperature, incorpo-
rating it may be a valuable direction for future work.

6.2 Comparing Microphysics-Based and Statistical
Approaches to Ice Supersaturation

The results of our study demonstrate that the two-moment
cloud ice microphysics scheme implemented in ICON pro-
vides a microphysically based alternative to prognostic cloud
cover schemes — such as the Tompkins scheme used in
the IFS model (Tompkins et al., 2007) — that infer ice su-
persaturation from subgrid-scale humidity distributions. The
Tompkins approach offers some advantages for operational
weather forecasting due to its computational efficiency and
its ability to represent subgrid-scale humidity variability.
This can be advantageous for realistic cloud fraction esti-
mates on coarse grids. However, this scheme does not explic-
itly prognose specific ice mass or ice particle number den-
sity, and phase relaxation time is effectively zero because the
scheme assumes instantaneous in-cloud equilibrium. Indeed,
the current cloud scheme of IFS assumes ice supersatura-
tion only in the cloud-free portion of the grid box (ECMWF,
2024), which can lead to an underestimation or smoothing
of ice supersaturation under certain conditions. In contrast,
ICON 2-Mom prognoses both specific ice mass and ice parti-
cle number density, allowing phase relaxation time to emerge
naturally from microphysical relationships. This enables a
more direct, microphysics-based simulation of the onset and
persistence of ice supersaturation, which is particularly rele-
vant for applications requiring detailed RH;c forecasts, such
as contrail avoidance. While this approach offers improved
physical realism and consistency, it comes with increased
computational cost and sensitivity to assumptions about nu-
cleation and particle size distributions. Consequently, careful
tuning and validation are necessary, especially in global ap-
plications.

6.3 Model Resolution and Neighborhood Consideration

Several leading high-resolution NWP models have been vali-
dated with respect to RHjce using radiosonde data in Thomp-
son et al. (2024). The radiosonde data used were from 2022,
covering ten months, and included data from radiosondes of
lower or unknown quality than the Vaisala RS41 radiosondes.
Model data were interpolated onto radiosonde data, which
differs from our approach of interpolating radiosonde data
onto model data. The most comparable results are the POD
and FPR for RHjce > 99.99 % events, where (POD, FPR) val-
ues of (0.46, 0.09) were obtained for the S-WRF model,
(0.19, 0.02) for the GFS, and (0.50, 0.10) for the IFS. In all
cases, the deterministic model was evaluated.

The study also introduced a 3D neighborhood verification,
where the number of ISSR events of horizontal and vertical
grid point neighbors affects the identification (definition) of
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true positives, false positives, false negatives and true nega-
tives. Although in this study neighborhood incorporation is
used for model comparison verification, it could also be used
to define another meta-model — in this case not based on an
EPS model, but on a deterministic NWP model. Of course, a
similar definition could also be introduced based on an EPS
model. However, although the concept of including neigh-
bors into a model to identify ISSRs is worth exploring, the
neighborhood verification presented in the study corresponds
to two different models, where the one to be used is individ-
ually selected for each radiosonde observation, depending on
whether ISSR was actually observed or not. This condition-
ing on the observation may improve the verification results,
as the knowledge of the observation determines the decision
of which model to use. For our purpose, which is to define a
model for future predictions, it is not appropriate to condition
this decision on the observation. But even when including
only model neighbor values into a meta-model, the grid res-
olution we currently use (about 26 km horizontally and about
200-300m vertically in the height range of interest) may be
too low to adequately account for horizontal neighbors. We
expect that using a finer grid for ICON predictions may en-
able such an approach, and most likely improve the overall
verification scores.

7 Outlook

Prediction Improvement via Machine Learning

While the k-out-of-10 decision models are based on intuitive
thresholds, they are ultimately heuristic in nature, compara-
ble to a binary classifier trained and validated on model and
radiosonde data. Due to the small amount of data (~ 820 000
samples), we chose to use the gradient boosting tree library
CatBoost in classification mode. The results are shown in
Appendix Fig. 10. The ROC curve of the CatBoost model
shows a slight improvement in the upper left region of in-
terest compared to the k-out-of-10 decision models. In addi-
tion, the ROC curve is almost continuous and at high RHj¢,
gives access to POD values that are unattainable even for the
1-out-of-10 model, giving a greater degree of control over
the desired balance between POD and FPR. Thus, the model
reduces the need to run an EPS with many members (but
more members slightly improve the predictions; see the 40-
member ICON 1-Mom EPS case in Fig. B1). Another ad-
vantage of the model is that more features than just RHjce it-
self can easily be added as model inputs. Even extending the
feature vector with physical quantities of neighboring cells
is equally feasible. The results are very promising and more
complex models are being investigated.

8 Conclusions

This study demonstrates the strong potential of EPS-based
classification models for ISSR, based on the ICON NWP
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Figure 10. Comparison of ROC curves of EPS-based CatBoost and
EPS-based decision models. CatBoost input features were the RH;¢e
values of all ten members. Solid purple ROC curves: training and
validation period from April to December 2024; test data from Jan-
uary to March 2025; ROC calculated for the test data period. Light
purple ROC curves: ROC for the EPS-based decision model, evalu-
ated over the test data period. Solid and light orange curves indicate
the same setting but with a different training and validation data
period (July 2024 to March 2025) and a different test data period
(April-June 2024). Except for a larger tree depth of 10, all Cat-
Boost settings were kept at default, and training took about 30 s per
RHj, threshold.

model enhanced with a two-moment ice microphysics
scheme. Compared to ICON 1-Mom, ICON 2-Mom more
accurately captures the physical conditions associated with
ice supersaturation, where it significantly improves the POD
while maintaining a moderate FPR. This improvement is also
reflected by the MCC, indicating better overall classification
skill.

The EPS model itself, ICON 2-Mom EPS, has served as
the foundation for further meta-model developments aimed
at constructing deterministic models of ISSR/non-ISSR clas-
sification and higher ice supersaturation. These models are
designed to provide flight planners with well-scored predic-
tive tools that support actionable decision-making.

Simple k-out-of-10 decision models spanned a wide range
of POD-FPR combinations, with many outperforming the
deterministic ICON 2-Mom model in terms of POD while
maintaining comparable FPRs. For RH;¢. > 100 %, ICON 2-
Mom achieves a POD of ~ 0.6 and an FPR of ~ (.1, whereas
ICON 2-Mom EPS allows for finer control: decision model 1
yields a POD > 0.9 at an FPR of 0.25, while decision model 9
offers near-zero FPR with reduced POD. This flexibility en-
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ables users to select decision models based on operational
cost trade-offs between false positives (e.g., unnecessary di-
versions) and false negatives (e.g., contrail formation).

Further refinement was achieved by incorporating ensem-
ble spread into the decision making. Grouping ROC curves
by the standard deviation of RHj revealed that low-spread
conditions correspond to high categorical skill, whereas
high-spread scenarios tend toward random performance. This
insight was used to define an adaptive meta-model that se-
lects k based on ensemble spread, keeping FPR below a tar-
get level. This approach relies solely on model data and can
be seamlessly integrated into more advanced models.

Building on this statistical framework, a gradient boost-
ing tree classifier was trained as a more sophisticated meta-
model. Despite minimal training time and default hyper-
parameters, it outperformed the k-out-of-10 models in the
POD-FPR region of interest. Additional advantages include
a nearly continuous ROC curve and the ability to incorporate
additional features with ease.

While these investigations were ongoing, a contrail avoid-
ance trial based on the ensemble mean of ICON 2-Mom EPS
rerouted over 100 flights, demonstrating the operational rele-
vance of this forecasting approach. The results presented here
show that EPS-based meta-models bring us closer to reliably
identifying conditions conducive to persistent contrail forma-
tion.

Finally, these findings may inform the European Union’s
Monitoring, Reporting and Verification (MRV) system,
which uses climate response models to quantify trade-offs
between contrails, CO; emissions, and other greenhouse
gases. RHjc is a critical input for contrail modeling, yet re-
mains poorly predicted by many operational NWP systems.
This study represents a step toward more accurate RH;, fore-
casting and improved support for climate-conscious aviation
strategies.

Appendix A: History and Details of the One-Moment
Cloud Ice Scheme

The original one-moment scheme is a legacy code developed
by Giinther Doms at DWD in the 1990s for the COSMO
model, which was then known as the Lokalmodell (LM), and
operated at a horizontal grid spacing of 7 km (Steppeler et al.,
2003). In the 2000s, the same one-moment scheme was used
in the operational global model GME, the predecessor of
ICON (Majewski et al., 2002). A detailed description of the
original one-moment cloud ice scheme is provided in Doms
etal. (2021). It shares many similarities with the one-moment
schemes by Lin et al. (1983) and Rutledge et al. (1986), both
originally developed for mesoscale models.

Over the past 25 years, the operational one-moment cloud
ice scheme has undergone many modifications, documented
in Sect. 5.8 of the COSMO 6.0 documentation. Notable up-
dates include warm-rain processes based on Seifert and Be-
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heng (2001), snow particle geometry following Wilson and
Ballard (1999), and snow size distributions derived from em-
pirical relationships by Field et al. (2005). Ice crystal con-
centration is parameterized using the empirical formula by
Cooper (1986).

Appendix B: Ensemble Verification of ICON 1-Mom
EPS

We also evaluated the ensemble data of the operational ICON
1-Mom EPS with respect to RHj... We wanted to compare
the improvement of results such as the POD due to the en-
semble setup when the microphysical scheme has not been
adapted to a two-moment scheme. Therefore, we considered
the ROC curve for the operational 40-member EPS as well
as for 10-member subsets, compare Appendix Fig. B1. By
similarly defining decision models for ISSR, the POD can
be increased to more than 0.8 with an FPR remaining below
0.2, which holds true for both the 40- and 10-member EPS.
The full EPS yields a more fine-grained curve with slightly
higher POD values in the top left corner than the 10-member
EPS. Overall, the potential of an ensemble is highlighted in
both cases, especially with respect to a possible increase in
POD. However, the operational 1-Mom EPS still fails to pre-
dict events with higher RHj¢. values (see inset in Fig. B1), as
it relies on an NWP model with insufficient physical param-
eterization for larger RHj¢. values. This finding aligns with
studies that emphasize the importance of model quality as
a key factor in the success of ensemble prediction systems
(Wang et al., 2018; Du et al., 2018).

Finally, we wanted to confirm that the specific selection of
ten members from the original 40 had little or no effect on the
scores due to the way the ensemble is generated. Therefore,
we performed a 10-out-of-40 bootstrap and considered the
mean and standard deviation of the corresponding points of
the ROC curves of each subset EPS. The resulting standard
deviation is negligibly small, encouraging us to transfer this
finding to our ICON 2-Mom EPS, using the first ten mem-
bers.

Appendix C: Calculation of RHjce

C1 Computation of RHjce for Radiosonde Data

In the TEMP BUEFR files, as disseminated through the Global
Telecommunication System (GTS), the dew point tempera-
ture (Ty) is provided, which allows us to compute the wa-
ter vapor partial pressure (e) using the formula from Hardy
(1998), ensuring consistency with the processing applied by
radiosonde manufacturers, such as Vaisala. We further cal-
culate the saturation vapor pressure over ice (e;) consistently
with the formula used in ICON which is given by

_, &P b (T —b3))

j = Cl1
€j 1 T — ba; (CD

https://doi.org/10.5194/acp-25-17253-2025

17269

1.0

— RHice>100%: 2-Mom 10-EPS
/7 —= RHic>100%: 1-Mom 40-EPS
. —— RHjce>100%: 1-Mom 10-EPS
0.8

Higher RHjce: 1-Mom 40-EPS
1.0

0.6 -
[a) 0.8 1
o
o
0.6
0.4
0.4 4 Z
—=— RHije > 102%
0.2J 024/ /" —=— RHi >104%
/ : —s— RHje > 106%
0.0 + T T . .
0.0 02 04 06 0.8 1.0
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure B1. ROC curves for the ICON 2-Mom EPS (orange), the
operational ICON 1-Mom EPS with 40 members (blue) and for
the corresponding ICON 1-Mom EPS subsets with 10 members
(green). For the latter, we randomly selected 1000 10-member EPS
subsets, calculated the ROC curve for each and plotted the mean and
standard deviation of the corresponding points on the curve. The in-
set figure shows ROC curves for the ICON 1-Mom 40-member EPS
for higher RH;. thresholds up to 106 %. Evaluation for 3 months
(August 2024, October 2024, January 2025); ICON initial times
00:00 and 12:00 UTC; ICON forecast lead time 12h; Northern
Hemisphere.

with coefficients
b1 =610.78, by; =21.87, bz =273.16, by; =7.66

and referred to as the Magnus—Tetens—Murray approxima-
tion (Magnus, 1844; Tetens, 1930; Murray, 1967). There-
with, we receive

RHice = — 100%. (€2)

€j

C2 Computation of RHice for ICON Data

First we calculate the water vapor partial pressure e by
e=ryTpqu,

where the temperature T (in K), the density of moist air p (in
kg m~3), and the specific water vapor content gv (in kgkg™!)
are output variables of ICON, and r, =461.51 is the gas
constant for water vapor. Finally, we calculate ¢; again with
Eq. (C1) and RH;¢. with Eq. (C2).

Note that recently, as of May 2025, the coefficients in the
formula (C1) for the saturation vapor pressure over ice in
the operational ICON model have been updated. We still use
the old version of the coefficients given in Eq. (C1) in our
dedicated system and therefore in our verification analysis.
However, at —37 °C, the error is only about 2 %.
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C3 Computation of RHjce for IAGOS Data

In the IAGOS NRT dataset, RHjce is already included and
has been calculated using the formula from Sonntag (1994),
which is very similar to the Hardy formula.

Appendix D: Details of Precision-Recall Curve for
non-ISSR

In Fig. D1 a zoom of the top right of Fig. 6 is provided, where
the details of the PR curve for the non-ISSR event and for the
events {RHjce < threshold} with threshold in {105 %, 110 %,
120 %} can be seen. Note that decision model k here refers to
the decision model which requires at least k ensemble mem-
bers with the event {RHj.e < threshold}.
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Figure D1. Precision-recall curve of events {RHj.e < threshold}
with threshold in {100 %, 105 %, 110 %, 120 %} (zoom of top right
of Fig. 6 with adapted markers on the lines). Markers on the lines
indicate the scores corresponding to the decision models based on
the EPS. Thin diamonds inidcate the scores of the single ensemble
members.

Appendix E: Binary Classification Models: CatBoost

CatBoost is a machine learning library based on gradient
boosting on decision trees, where input features are either
real values or categorical values. Prediction can happen ei-
ther as regression or classification. For the task at hand, Cat-
Boost was used in classification mode, with the cross-entropy
loss J used for training:

N

1
Ty == [yilog(p)+(1 = ylog(1 = pi],
i=1

where N is the total number of samples (spatio-temporal
matching points of model and observation), y; is 1 if an event
was observed, otherwise 0, and p; is the prediction prob-
ability of the model. The samples were divided into 75 %
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training and validation data and 25 % test data. The test data
were taken from different months than the training/valida-
tion data to minimize the effect of potential correlations in
the data. Figure 10 shows the performance of the model on
the test data, compared to the EPS-based decision models of
this study applied to the test data period.

Code and data availability. The verification
code and data are available under Zenodo at
https://doi.org/10.5281/zenodo.15881140 (Hanst et al., 2025).
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