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Abstract. A reliable quantification of greenhouse gas emissions is important for climate change mitigation
strategies. Inverse methods based on observations and atmospheric transport simulations can support emission
quantification at the national scale, yet, they are often limited by the observing systems, transport model uncer-
tainties, and inversion methodologies. This two-part study introduces a system for observation-based, regional
methane flux estimation. In the present Part 2, we apply this system to estimate German methane emissions in
2021. The numerical weather prediction model ICON with its ART module for trace gases is used to simulate
the atmospheric transport while estimating uncertainties using a transport ensemble. We use a priori fluxes from
national reporting to facilitate the validation of reported fluxes. Posterior fluxes are estimated with a modified
synthesis inversion method introduced in Part 1, relying on in-situ observations. Compared to the a priori, we find
a significant increase in methane emissions in Germany and in the Benelux. We estimate German methane emis-
sions (32 =+ 19) % higher than the anthropogenic emissions in the national inventory, and our inversion method
attributes this difference mainly to the agricultural sector, although separation from Land Use, Land Use Change
and Forestry (LULUCF) as well as natural fluxes requires further research. The combination of an ensemble-
enhanced numerical weather prediction model for atmospheric transport and good observation coverage paves

the way to sector-specific, observation-based national emission estimates.

1 Introduction

Reducing greenhouse gas (GHG) emissions is crucial for
mitigating current anthropogenic global warming. UNFCCC
(United Nations Framework Convention on Climate Change)
compliant national inventories and/or process models quan-
tify anthropogenic GHG emissions for the purpose of moni-
toring the effectiveness of mitigation as planned, e.g., in the
Paris Agreement. In addition to so-called “bottom-up”” meth-
ods, atmospheric GHG concentration observations are used
in “top-down” flux estimations. The latter are complemen-
tary, as they are sensitive to the total fluxes (i.e., anthro-
pogenic and natural) and provide options for independent
validation of a priori fluxes provided by inventories (IPCC
et al., 2019). The usefulness of top-down estimates has been

demonstrated, e.g., for the United Kingdom (Manning et al.,
2011), Switzerland (Henne et al., 2016), Europe (Petrescu
et al., 2023) and globally (Deng et al., 2022; Petrescu et al.,
2024).

Although research foundations for top-down methods
have been developed in recent decades (see Janssens-
Maenhout et al., 2020, and references therein), applications
remain limited due to sparse observation coverage and rep-
resentativeness, and most critically, due to transport model
uncertainties (Engelen et al., 2002; Gerbig et al., 2008). The
latter is a well-known issue not solved yet (Munassar et al.,
2023). Inversions using satellite observations (e.g. Estrada
et al., 2025) benefit from larger spatial observation cov-
erage, but the uncertainties of the observations are larger
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compared to in situ data and the influence on the inversion
results was found smaller where in situ coverage is good
(Thompson et al., 2025). The benefits of increased model
resolution (Agusti-Panareda et al., 2019; Bergamaschi et al.,
2022) can be reaped with regional high resolution modeling
and ensembles can cover parts of the meteorological uncer-
tainty (Steiner et al., 2024a). At short time scales, the re-
gional model uncertainties will constitute the main uncer-
tainty, while at longer time scales, the boundary conditions
become critical for tracer transport (Chen et al., 2019).

In this work, we present first results of a modular sys-
tem for regional top-down estimates of CHy fluxes designed
to validate national inventories, including the discrimina-
tion of economic sectors such as agriculture and industry.
We apply this method focusing on German inventories (pro-
vided by Umweltbundesamt and Thiinen Institute) for the
year 2021 using in situ observations collected by ICOS
(ICOS RI, 2024). Atmospheric transport is simulated using
the numerical weather prediction model ICON (Zingl et al.,
2015) extended with the module for Aerosol and Reactive
Trace gases (ART) (Rieger et al., 2015; Schréter et al., 2018)
with a spatial resolution of 6.5km. The model is combined
with a synthesis inversion approach (Kaminski et al., 2001)
which is developed further to make use of the ensemble-
estimated transport uncertainty. For minimizing transport er-
rors, we rely on the operational numerical weather predic-
tion at Germany’s Meteorological Service (DWD) for me-
teorological initial conditions, lateral boundaries and trans-
port ensemble calculations. Further, we use the Copernicus
Atmosphere Monitoring Service (CAMS) for boundary con-
ditions of methane, and compensate possible biases on the
boundaries by deriving a correction field. Benefiting from
the numerical weather prediction model and spatially highly
resolved a priori fluxes from the inventory agencies, we ex-
plore the basis for future operational top-down validation of
national emission reporting, with special emphasis on further
use in Germany.

In Sect. 2, we summarize the methodology which is intro-
duced in detail in Part 1 of this work (Bruch et al., 2025a).
Section 3 contains the results for 2021, together with valida-
tion tests and an analysis of the ability to distinguish emission
sectors. In Sect. 4 we discuss limitations and capabilities of
the method and compare to other studies, followed by a con-
clusion in Sect. 5.

2 Method

This section is a non-technical summary of the detailed
method description in Part 1 (Bruch et al., 2025a).
2.1 Parametrization of fluxes

We aim to validate the national reporting of German CHgy
emissions to the UNFCCC. A simple way to address this val-
idation problem is the following question: By which single
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number should we multiply all reported German CHy emis-
sions based on the information from observed CH4 concen-
trations? We can extend this question and estimate different
scaling factors for different regions and different emission
sectors. In this work, we estimate scaling factors for 46 cat-
egories of CHy fluxes for each month in 2021. The spatial
definition of these flux categories is shown in Fig. 1. In Ger-
many, we distinguish 11 flux categories, consisting of six re-
gions for the agriculture sector, one flux category for land
use, land use change and forestry (LULUCF) plus natural
fluxes, and four regions for the sum of all remaining emis-
sions. In summary, the state space of our inversion is defined
by the flux categories and consists of only 46 numbers.

2.2 A priori fluxes

For the a priori fluxes outside Germany, we combine
CAMS-REG (Kuenen et al., 2021, 2022) for anthropogenic
emissions with wetland emissions from the CAMS global
inversion-optimized dataset (Segers and Houweling, 2020),
version v22r2. For Germany, we use emissions obtained from
the inventory agencies, that is, the Umweltbundesamt (Ger-
man Environmental Agency, Stefan Feigenspan, Theo Wer-
nicke, and Christian Mielke, personal communication, 2024)
and the Thiinen Institute (Roland Fuf3 and John Akubia, per-
sonal communication, 2024). Moreover, we consider emis-
sions from rivers and streams (Rocher-Ros et al., 2023), as
well as oceans (Weber et al., 2019).

2.3 Transport simulation

To connect surface fluxes and observations, we need to sim-
ulate atmospheric transport. This simulation is done using
the numerical weather prediction model ICON (Zingl et al.,
2015) with the module for Aerosol and Reactive Trace gases
(ART) (Rieger et al., 2015; Schroter et al., 2018) at a hori-
zontal resolution of 6.5km. Initial and lateral boundary con-
ditions for the CH4 concentrations are taken from the CAMS
global inversion-optimized dataset (Segers and Houweling,
2020), version v22r2. To mitigate a possible bias in the lat-
eral boundary conditions, we construct a smooth correction
field that is added to all model predictions of the boundary
contributions. This far-field correction is constructed based
on observations for which the model predicts clean air with
small influence of emissions from within our domain. We es-
timate transport uncertainties and their correlations using an
ensemble of 12 members with slightly different meteorology,
derived from the operational numerical weather prediction at
DWD (Schraff et al., 2016).

2.4 Observations

We use CH4 concentration observations from the European
Obspack (ICOS RI et al., 2024) as provided on the Inte-
grated Carbon Observation System (ICOS) carbon portal.
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Figure 1. Overview of the model domain indicating flux categories (colored areas) and observation sites (white dots), modified from Part 1
(Bruch et al., 2025a). Each connected area of equal color defines one flux category for anthropogenic emissions, except in Germany and
the Netherlands, where the categories are split up further to distinguish agriculture emissions from other sectors. In white hatched regions,
natural fluxes form additional flux categories because large natural fluxes are expected. Close to the eastern and western domain boundary
(dark blue), emissions are not adjusted by the inversion. Fugitive emissions from the Upper Silesian Coal Basin (white ellipse) define their

own flux category.

The hourly observations are filtered by time of day and wind
speed to use only observations that can be predicted well by
the transport model. We use night time observations (23:00
to 05:00 local mean time) for high mountain stations and af-
ternoon hours (11:00 to 17:00 local mean time) for all other
sites, discarding observations at wind speeds below 2ms~!.

2.5 Bayesian Inversion

To estimate the scaling factors of the flux categories, we use
a Bayesian inversion. Denoting the scaling factors as a vec-
tor s € R*, the inversion is formulated as the optimization
problem

sPO' = argmin { %[y —H'($)]'R™ [y — H'(s)]
+%(s _ sprior)TBfl(s _ sprior)} . €))

Here, y denotes a vector of all observations and H'(s) is
the model prediction for these observations, which includes
the previously mentioned far-field correction. R is the error
covariance matrix of the model-observation mismatch and
B is the error covariance matrix of the a priori scaling fac-
tors sP°". Since § describes prefactors to the a priori emis-
sions, we initially set szmr =1 for all k. In B we assume an a
priori uncertainty of 20 = 0.8 (two standard deviations) for
the scaling factors of most regions. This gives the inversion
enough freedom to adjust the scaling factors. In large dis-
tance from Germany, the a priori uncertainty is reduced to
20 = 0.5 (see Fig. 2b), and for emission sectors in Germany
and the Netherlands we use 20 = 1.0.

The construction of R based on the transport ensemble is
discussed in detail in Part 1 (Bruch et al., 2025a). In Eq. (1),
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R can be estimated using either a priori or a posteriori fluxes.
This defines two slightly different methods that are intro-
duced in Sect. 2.5 of Part 1 as “prior R” and “posterior R”
inversion. Here, we only consider the average of the two re-
sults and the union of the two posterior uncertainty ranges.

2.6 Posterior uncertainties

To estimate the uncertainties of posterior fluxes conserva-
tively, we repeat the inversion 50 x 2 times with each of the 50
observation sites excluded once for each of the two approxi-
mations for R. The lower and upper bounds of the resulting
hundred 20 uncertainty ranges form our posterior 95 % con-
fidence interval. This ensures that a result that is only based
on a single observation site will not be considered significant.

2.7 Inversion time window

The scaling factors are estimated separately for each month
in 2021 by using only observations from the selected month.
The results for different months are thus independent. But
since the posterior uncertainty estimates include systematic
uncertainties, we assume that uncertainties from different
months are correlated.

3 Results

3.1 Resulting scaling factors

Figure 2 presents an overview of (a) the a priori CH4 fluxes
accumulated over the year 2021, (c) the resulting scaling
factors averaged over 2021, and the respective uncertainties
(b, d). The a posteriori scaling factors (Fig. 2c) show the cor-
rection to the a priori emissions obtained in the inversion. A
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Figure 2. Full-year averages of (a) a priori fluxes, (b) a priori uncertainty on scaling factors, (¢) a posteriori scaling factors, and (d) a
posteriori uncertainty on scaling factors. Multiplying the a priori emissions (a) with the scaling factors (c) yields the a posteriori emissions.
(b) and (d) show half of the 95 % confidence interval of the fluxes relative to the a priori fluxes, i.e., a 20 uncertainty of 0.5 on the a priori
appears as 0.5 on the color scale. The direct comparison indicates the uncertainty reduction. The smooth boundaries between two regions
with separate scaling factors appear as darker lines because these scaling factors are assumed to be initially uncorrelated.

considerable increase in emissions is found for Germany and
the Benelux. Lower emissions compared to the a priori are
predicted for Scandinavia (see discussion in Sect. 4.3). The
scaling factors should be considered jointly with their uncer-
tainties. The comparison of Fig. 2b and d shows a substantial
uncertainty reduction for Germany and most of the surround-
ing countries, for which we chose a high a priori uncertainty.

For a more detailed comparison of a priori and a poste-
riori emissions and uncertainties, we consider selected na-
tional emission estimates in Fig. 3. Reliable inversion results
are expected for countries or regions with sufficient observa-
tion coverage, strong emission signals, representation in the
respective flux categories, and only moderate issues due to
complex topography. These criteria are met for Germany, the
Netherlands and the United Kingdom plus Ireland as grouped
in Fig. 3. For Germany (first entry in Fig. 3), the total poste-
rior CH4 emissions (red bar) are (32 &+ 19) % higher than the
anthropogenic emissions including LULUCEF reported to the
UNFCCC in 2024 (light blue bar). The direct comparison to
the reporting neglects the unreported natural fluxes, but for
Germany these are expected to be small because all relevant
soil emissions are included in the LULUCEF sector. The in-
version significantly increases emission estimates from the
agriculture sector while the combined other sectors remain
nearly unchanged. Note, however, that the uncertainty in the
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sector attribution is large (horizontal lines, see further discus-
sion in Sects. 3.4.2 and 4.3).

For the Netherlands, we also find significantly higher
emissions than in the inventory. Compared to Germany, the
attribution to sectors has an even larger uncertainty, associ-
ated with fewer observations that could distinguish the sec-
tors. Nevertheless, the total emissions from the Netherlands
are comparably well constrained by the observations. For the
United Kingdom and Ireland — which we combine to obtain
more accurate results — the inversion yields a strong uncer-
tainty reduction while hardly changing the total emissions,
indicating a good agreement of observations and national in-
ventory.

In most countries, the observations do not cover the whole
country, or the inversion results rely on few observations. In
Fig. 3 (gray-shaded part) we provide emission estimates also
for countries or regions affected by this issue, though these
have a large posterior uncertainty. Another issue arises from
the definition of the flux categories, which do not necessarily
follow country borders (see Fig. 1). In France, Belgium, and
Switzerland, the inversion scales flux categories that overlap
multiple countries!. This implies that national emission es-
timates derived for these countries have an additional uncer-

1Technically, the issue also affects Italy because Corsica is com-
bined with parts of Italy in one flux category. But the a priori emis-
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CHy4 emissions in 2021 (kt)
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Figure 3. National CH4 emission estimates comparing reported (NIR), prior, and posterior fluxes for 2021 with horizontal lines indicating
95 % confidence intervals. Countries are grouped by the expected robustness of their inversion results. Some neighboring countries are
combined to obtain more accurate results. For Germany, the inversions can resolve the agricultural sector, though the separation against
natural and LULUCEF fluxes is difficult. All other anthropogenic sectors are combined in the category “other excl. LULUCF”. The inclusion
of two inversion methods (“prior R” and “posterior R”, markers) provides an estimate of the methodological uncertainty. Accumulated
emissions from national inventory reports (NIR) to the UNFCCC submitted 2024 (including LULUCF emissions) are shown for reference
(light blue bars, UNFCCC, 2024). For France (Citepa, 2024) and the United Kingdom (Department for Energy Security and Net Zero,
2024), the light blue bars show emission data from the respective inventory agencies excluding overseas territories and crown dependencies.
Posterior uncertainties that are asymmetric with respect to flux estimates such as in Switzerland indicate the strong influence of a single

observation site.

tainty and artificial correlations with neighboring countries.
However, this is of no concern for our application for Ger-
many. The national emission estimates are computed from
the gridded posterior fluxes and precisely follow the country
borders as shown in Fig. 2. The scaling factors and uncertain-
ties of all flux categories are listed in Fig. A1 for complete-
ness.

3.2 Seasonal cycle

Although the national emission estimates are given for the
full year, a closer examination of the seasonal cycle provides
additional insights. Figure 4 shows the monthly emission
rates for the countries considered in Fig. 3. While the sea-
sonal cycle is strikingly different depending on the region,
we find some recurrent features. For Germany, Poland, the
Netherlands, and Austria plus Czechia (panel a in Fig. 4), the
posterior emission rates have their minimum in May. A local
minimum between April and June is also found for northern
France and Belgium plus Luxembourg, see panel (b). In most
countries, this minimum is followed by a local maximum in
July or August, which is most prominent in the Netherlands
and Austria plus Czechia (panel a).

The differences between the regions become larger in
autumn and winter. In September, posterior emission rates
reach their maximum in Germany and Italy, and their min-

sions from Corsica are so low that the effect on the national emis-
sion estimate is negligible.
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imum in (northern) France. France and Belgium plus Lux-
embourg have their highest emission rates in winter, when
Switzerland and Spain plus Portugal have their minimum.
For some regions — most notably Italy and the United King-
dom plus Ireland — no clear pattern is found in the seasonal
cycle for 2021 (panel c in Fig. 4).

The seasonal cycle in the inversion results may be partially
influenced by the observation coverage because many sta-
tions lack data covering the whole year. To avoid this effect,
we repeated the inversion using only stations which provide
data for at least 20 days of each month. The seasonal cycle in
these results does not change significantly, see Fig. A2. We
further note that there is a seasonal cycle in the observations
(East et al., 2024), which is captured well by the far field in
the model though (see Fig. A3). This “far field” is defined as
CHy transported into our domain from the lateral boundaries.
A possible bias in the lateral boundary conditions could in-
fluence the seasonal cycle in the estimated fluxes. Moreover,
the different meteorology in summer and winter — especially
influencing the planetary boundary layer and vertical mix-
ing (Seidel et al., 2012) — can lead to a seasonal bias in our
transport model (Bessagnet et al., 2016; Canepa and Builtjes,
2017). This highlights the need for careful interpretation of
the seasonal cycle, as meteorological differences could intro-
duce biases that mask true emission patterns. Another poten-
tial contribution to the seasonal cycle could arise from ne-
glecting the OH sink of CHy in our limited domain (Logan
et al., 1981).

Atmos. Chem. Phys., 25, 17187—17204, 2025
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Figure 4. Monthly posterior emission rates for selected countries or regions. Colored areas show the posterior uncertainties, and dotted
lines with small markers indicate prior emission rates. In the prior, only the natural and LULUCF fluxes are time-dependent. The panels
show (a) countries with minimum in May, (b) countries with a maximum in winter, and (c¢) other countries and regions. For France and
Germany, selected regions are shown additionally (white markers). “DE, northwest” includes Rhineland-Palatinate, Saarland, Hesse, North
Rhine-Westphalia, Lower Saxony, Schleswig-Holstein, Bremen and Hamburg.

3.3 Validation

A straightforward validation of the inversion results is pos-
sible using independent validation stations. Having excluded
each station once in separate inversion runs, we can use ev-
ery station as an independent validation site in the respective
inversion run. Figure 5 shows histograms of the root mean
square error (RMSE) statistics obtained from the model-data
mismatch before and after the inversion. The validation sta-
tions agree on average significantly better with observations
when using a posteriori emissions compared to the a priori. A
comparison of the same histograms for the different methods
of estimating uncertainties introduced in Part 1 (Bruch et al.,
2025a) shows no significant differences (see Fig. A4).

3.4 Potential for detecting emissions

In this section, we complement the uncertainty estimates of
our inversion results by separate measures for the sensitivity
of the posterior to true emissions. The potential for detect-
ing emissions from different sources can be identified using
the posterior error covariance matrix Bpost. However, the real
error reduction is also influenced by the far-field correction
and the filtering of observations as detailed in Part 1 (Bruch
et al., 2025a). These aspects are not fully captured in Bpos.
We therefore use experiments with a “synthetic”, i.e., defined
truth and pseudo-observations to test the full inversion sys-
tem.

Atmos. Chem. Phys., 25, 17187-17204, 2025
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Figure 5. Statistics of the relative (a) and absolute (b) improve-
ment of the model-observation mismatch by the inversion at inde-
pendent validation stations. Each station and month is considered
separately in its own inversion, with the validation station excluded
from the inversion to remain independent. The histograms show
(a) 1 — yPOSt/PTIOT apd (b) rPHIOT _ ;POSt \where rPOSt and #PHIOT re-
fer to the RMSE of the model—-observation comparison in the case
of posterior scaling and prior scaling, respectively. Each time series
contributing to the histogram is weighted by the number of its data
points. We consider all data points within the daily time window
without filtering for wind speed or model-observation mismatch
and without the far-field correction introduced in Part 1 (Bruch
et al., 2025a) to keep the comparison as close as possible to the
original data. Positive values indicate an improvement in the model
prediction due to the inversion.

3.4.1 National emission estimates

We first aim to verify that the inversion yields meaningful
posterior emission estimates and uncertainties given a per-
fect transport model. To this end, we generate 100 random
vectors of scaling factors following the probability distribu-
tion assumed in the a priori uncertainty. Each vector of scal-
ing factors defines a synthetic truth, and the model predic-
tion for the observations obtained using these scaling fac-
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Figure 6. RMSE and mean uncertainty of CHy emission esti-
mates in synthetic experiments for selected countries, regions, and
German emission sectors. Each of the 100 synthetic experiments
uses random true emissions. The vertical axis shows the root mean
square (RMS) deviation of the posterior from these true emissions,
relative to the RMS deviation of the prior from the truth. Lower val-
ues indicate that the inversion improves the emission estimate. The
horizontal axis shows the posterior uncertainty relative to the prior
uncertainty. Therefore, the bottom left indicates best performance.
The disk size indicates the magnitude of the prior emissions.

tors defines our pseudo-observations. We further add uncor-
related Gaussian noise of standard deviation 2 ppb to these
pseudo-observations. Since the pseudo-observations are in-
ferred from the model data, there is no transport error in
these synthetic experiments. This construction of pseudo-
observations clearly underestimates the true error in the
model—observation comparison, but it allows us to test the
interplay of far-field correction and inversion in a controlled
setup. Synthetic experiments with a simulated transport un-
certainty are discussed in Part 1 (Bruch et al., 2025a).

The quality of the model prediction is shown in Fig. 6 for
selected countries and German sectors. By comparing to the
synthetic truth, we find the prior and posterior error. Their
ratio (vertical axis in Fig. 6) shows a significant improve-
ment by the inversion for all considered regions and German
sectors, with the exception of German natural and LULUCF
fluxes. The uncertainty reduction of the inversion (horizontal
axis) provides a realistic estimate of the real error reduction
(vertical axis) for the case of high quality observations, ideal
transport modeling, and perfect lateral boundary conditions.
In some cases (Netherlands, Switzerland, Belgium, and Lux-
embourg), the real error reduction is significantly better than
the uncertainty reduction suggests. This is no surprise be-

https://doi.org/10.5194/acp-25-17187-2025
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Figure 7. Averaging kernel matrices of German sector emis-
sions (a, ¢) and scaling factors (b, d). The kernel is estimated using
either the posterior covariance matrix (a, b) or 100 synthetic experi-
ments with random truth (¢, d). The small matrices on the bottom in-
dicate what we aim for (posterior equals truth). The value 0.96 in the
first row (“total”), second column (“agriculture”) of panel (a) means
that if in reality all German agriculture emissions were 1kt higher
than in our prior, then we would expect an increase in the poste-
rior total German emissions by 0.96kt. Similarly, the value 0.67
in the same cell of panel (b) means that increasing real agriculture
emissions by 10 % should increase our posterior total emissions by
6.7 %. All matrices are averaged over the whole year. Red lines sep-
arate the individual sectors from their sum (“total”). By “non-agr.”
we denote anthropogenic emissions excluding agriculture and LU-
LUCF.

cause in this synthetic setup the transport error as the main
source of uncertainty is switched off. Overall, the synthetic
experiments confirm the potential for a strong uncertainty re-
duction in Central Europe.

3.4.2 Distinguishing sectors in Germany

Within Germany, we distinguish agriculture from other emis-
sions. The discrimination of emission sectors works in the
same way as we distinguish emissions from different areas.
Each sector has a specific spatial distribution of emissions,
which we assume to be correct in the a priori. The predicted
CHy concentration at the observation sites will therefore de-
pend on how the individual sectors are scaled. In the inver-
sion, the sector emissions are scaled to find optimal agree-
ment of model prediction and observations.

The ability to distinguish sectors can be described by av-
eraging kernel matrices which estimate the dependence of
the posterior on the true emissions, Afr.nis = Be?OSt/ detruth

.. . as J
where e; denotes emissions from sector i. Since the true
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emissions ™™ are generally unknown, the averaging ker-

nels A°™S can only be estimated. Figure 7 shows such es-
timates for A°™is (panels a, ¢) and the averaging kernel for
scaling factors, A?]C.almg factors _ 8s? ost / Bstj“"h (panels b, d).
Assuming a perfect transport model and perfect far field,
the averaging kernel matrix can be estimated by A°™S ~ T —
Bpost. emisB;rilor emis (Rodgers, 2000) using the prior and pos-
terior covariance matrices of the emissions from the “prior
R” inversion (see Appendix B1). I denotes the identity ma-
trix. Figure 7a shows this averaging kernel estimate for Ger-
man sector emissions, extended by a row and column for the
total German emissions.

The first row of Fig. 7a indicates that the total German
posterior emissions follow changes in every sector with high
accuracy (88 % to 96 %). The diagonal of Fig. 7a signifies
that changes in the agriculture will be detected very well and
also the attribution to the sum of all other anthropogenic sec-
tors excluding LULUCF (“non-agr.”) will be mostly correct.
However, LULUCEF plus natural fluxes will in large parts be
falsely attributed to the agriculture (second row, last column).
Note that ideally, the first row and the diagonal elements
would be close to 100% (color-coded in the small matrix
bottom left). The averaging kernel Ascaling factors i Fig 7h
shows that the influence of LULUCF and natural emissions
on the posterior scaling factor for agriculture emissions re-
mains low (second row, last column). But if all emissions
are scaled by the same factor (first column), the changes will
be mostly attributed to the agriculture sector. This effect is
expected because the agriculture sector has the highest ab-
solute a priori uncertainty, which makes changes in agricul-
ture more likely than changes in any other sector. A formal
derivation of this argument is presented in Appendix C.

The averaging kernel matrices in Fig. 7a and b are es-
timated based on the “prior R” inversion while neglecting
the far-field correction. We complement these by a statis-
tical estimate of the averaging kernels using 100 synthetic
experiments with random truth (see Appendix B2), shown
in Fig. 7c and d. Here, the far-field correction is applied as
implemented in our processing chain. While these statistical
estimates reproduce all qualitative features in the averaging
kernels, the matrix entries estimated using synthetic experi-
ments are generally lower. This is likely due to the far-field
correction and indicates that deviations from the prior emis-
sions may be underestimated by our inversion. Importantly,
both presented strategies for estimating the averaging ker-
nels assume a perfect transport model. The real sensitivity of
the posterior to the true emissions is therefore expected to be
lower.

4 Discussion
Our inversion system combines precise in situ observa-

tions, accurate a priori fluxes from national reporting, the
ICON-ART transport model at 6.5km resolution, and an
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ensemble-estimated transport uncertainty. We further rely
on CAMS boundary conditions and high-resolution meteo-
rological fields from operational numerical weather predic-
tion. This yields in general a good agreement between the
model prediction and filtered observations, allowing us ro-
bust emission estimates for well-observed countries, such as
Germany. We compare top-down CHy emission estimates to
the reported German inventory and its agriculture sector with
enough accuracy to lay the technical foundations for a future
long-term observation-based national inventory verification.
This section discusses our main results (Sect. 4.1), includ-
ing a comparison with other studies (Sect. 4.2). We elaborate
the limitations of our approach (Sect. 4.3) and its potential
for the development of observation-based national inventory
verification to inform climate policy (Sect. 4.4).

4.1 Key findings

Firstly, we find that our top-down CH4 emission estimates
are significantly higher than reported for Germany. Secondly,
we identify the agriculture sector and possibly LULUCF and
natural fluxes as the likely main source of this discrepancy.
Thirdly, we recall from Part 1 (Bruch et al., 2025a) that
the transport error simulated in the meteorological ensem-
ble leads to an uncertainty of 2% on the total German CHy
emissions.

4.2 Comparison to other methods

Our Eulerian approach with sectoral segregation differs from
other studies on CHy inversions for single countries, e.g.,
Henne et al. (2016) for Switzerland and Ganesan et al. (2015)
for the United Kingdom that use Lagrangian transport mod-
els. The latter both qualitatively attribute deviations from the
inventory reporting to the agriculture sector by comparing
the spatial and/or temporal patterns in the posterior fluxes to
sectoral a priori fluxes. A similar strategy for sectoral seg-
regation based on a known spatial distribution of fluxes is
followed by Varon et al. (2022) and analyzed by Cusworth
et al. (2021). For deriving sector estimates, some inversions
assume a spatial correlation of gridded emissions within each
sector (Rodenbeck et al., 2003; Meirink et al., 2008b; Berga-
maschi et al., 2010). Based on the same assumption, Steiner
et al. (2024b) and Tenkanen et al. (2025) construct ensem-
bles of perturbed a priori fluxes to distinguish natural and
anthropogenic fluxes utilizing the CarbonTracker Data As-
similation Shell (van der Laan-Luijkx et al., 2017). Notably,
Tenkanen et al. (2025) avoid the lateral boundary problem
by simulating transport globally with nested zoom in Europe
to estimate Finnish CH4 emissions on a coarse resolution of
1° x 1°. In the present work, we take the next step by vali-
dating sectoral emissions reported to UNFCCC and analyz-
ing possible false attributions, making use of a significantly
higher model resolution.
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Our results are qualitatively in line with the discrepancy
of top-down estimates and UNFCCC reporting for Germany
and the Benelux found in different regional inversions for the
years 2018 and earlier (Petrescu et al., 2023; Bergamaschi
et al., 2022, 2018; Steiner et al., 2024b). Furthermore, it ap-
pears as a robust feature in our results that emissions from the
UK plus Ireland agree well with reported emissions, in line
with Bergamaschi et al. (2022) for the year 2018. For the
French emissions, our inversion shows a tendency towards
slightly higher emissions similar to Steiner et al. (2024b),
whereas other inversions suggest significantly higher emis-
sions (Petrescu et al., 2023; Bergamaschi et al., 2022).

4.3 Limitations

Although we simulate emissions and transport in a large do-
main, we can only provide reliable emission estimates for
selected countries (compare Fig. 3). Regions without notable
uncertainty reduction and regions with known modeling dif-
ficulties do not benefit from our model setup. In Scandinavia,
we find strong wetland emissions with insufficiently modeled
fine-scale spatial and temporal variability. Combined with
only small signals from non-LULUCF anthropogenic emis-
sions, this leads to a low signal-to-noise ratio, which prevents
conclusive results for Scandinavia. Furthermore, the synthe-
sis inversion may be prone to underestimating large localized
sources due to transport errors — an issue we address in Part 1
(Bruch et al., 2025a).

Another limitation comes from the challenges for the re-
gional flux inversion caused by biases in the lateral bound-
ary conditions. The uncertainty in lateral boundary concen-
trations motivates the far-field correction that is discussed
in Part 1 (Bruch et al., 2025a). We expect that the far-field
correction leads to more robust estimates for well-observed
emissions, but it may also cause a bias towards the prior and
towards lower emission estimates.

In our highly resolved transport simulation, every flux cat-
egory is numerically expensive. Aiming to validate reported
German emissions, we could reduce the state space of the
inversion to only 46 scaling factors with monthly time reso-
lution. This substantially limits the spatial and temporal vari-
ations that can be represented in the inversion. This approach
is justified if the a priori fluxes already provide a realistic
spatial distribution of all major CHy sources within each flux
category. While this may be the case in Germany and neigh-
boring countries, the constant scaling factors for large flux
categories in more distant regions may be oversimplified and
could lead to less accurate results in these regions. Moreover,
adjusting only a few degrees of freedom may not be suffi-
cient to obtain realistic flux estimates in regions with limited
or highly uncertain information on a priori fluxes, such as
Scandinavia.

When constructing the state space, we unevenly dis-
tributed the 46 degrees of freedom on our model domain
— using 11 degrees of freedom for Germany and only four
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for mainland France plus Belgium and Luxembourg. But the
choice of flux categories affects the results and can lead to bi-
ases depending on the location of the observations (Kaminski
etal., 2001). In our application, this effect is small because of
the good observation coverage in Germany. This is checked
in Part 1 (Bruch et al., 2025a) using sensitivity tests.

We exploit the sectoral discrimination of emission in
a well-observed region as a key feature of our inversion
method. This relies heavily on an accurate spatial distribution
and completeness of the a priori fluxes, which appears to be
sufficient for the major emitting sectors in Germany. Further-
more, the sector discrimination relies on resolving compara-
bly small spatial scales, which poses a challenge to the trans-
port modeling. A general problem in sector attribution is that
sectors with large absolute uncertainty — such as agriculture
— may be falsely blamed for any change in total emissions
when the observations do not clearly distinguish the sectors
(see Appendix C). By quantifying this effect in the averag-
ing kernels (see Fig. 7), we confirmed that in Germany agri-
culture can be distinguished from other anthropogenic emis-
sions excluding LULUCF. Small sectors like natural plus
LULUCEF fluxes could not be reliably distinguished from
large sectors such as agriculture, and we therefore combined
smaller sectors like waste and public power into the larger
category “non-agr.”.

4.4 Implications for future research

We chose the synthesis inversion for the first application of
our modular inversion system, but designed this framework
to be expandable to other inversion methods. For instance,
most of the steps in the inversion can be applied with only
minor adjustments when replacing the flux categories by an
ensemble of randomly perturbed surface fluxes, similar to
Steiner et al. (2024b), or by grid cell clusters as used by
Estrada et al. (2025). Such applications with a larger state
space are limited by the computational effort of the transport
simulation, which is much higher than the computational ef-
fort of the inversion itself. Similar to the inversion method,
the far-field correction can be replaced by a different strat-
egy for mitigating a boundary bias. For example, one could
construct the far field based on an ensemble of boundary con-
centrations.

Further possibilities of extension involve other observa-
tion types, including satellite data. Our Eulerian system al-
lows in principle the handling of large observation datasets
without prohibitive computational effort, albeit changes in
the construction and handling of R may be required when
reaching 2 10° observations per time window. This poten-
tial is leveraged by many inversion systems that use Eulerian
transport simulations (e.g., Varon et al., 2022; Meirink et al.,
2008a; Bergamaschi et al., 2013). The increasing availability
of satellite data is especially interesting for constraining con-
centrations and emissions in regions with few or no ground-
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based observations, such as near the boundaries of our do-
main, which is an aspect to be addressed in future studies.

We identified potentials and risks in separating sectors
based on the spatially highly resolved distribution of fluxes.
Extending this by temporal profiles for a priori fluxes offers
a yet untapped potential for future improvement of our sys-
tem. Moreover, our inversion could benefit from an a priori
emission ensemble reflecting the uncertainty in the spatial
and temporal distribution of the fluxes. It remains to be ex-
plored whether improvements in distinguishing sectors can
be achieved in our system using co-tracers such as ethane
for fossil CH4 emissions (Ramsden et al., 2022; Mead et al.,
2024) or by distinguishing carbon isotopes (Basu et al., 2022;
Thanwerdas et al., 2024; Chandra et al., 2024).

5 Conclusions

We presented first results from a novel system for regional
flux inversion designed to validate national CH4 emission
reporting. Applying this method to Central Europe in 2021
with a focus on Germany, we found significantly higher
emissions from Germany and the Benelux compared to the
reporting. Careful estimation of posterior uncertainties re-
vealed for the investigated year that the total German poste-
rior emissions are (32 = 19) % higher than the respective an-
thropogenic emissions reported to the UNFCCC (submission
2024). With our inversion method the difference is attributed
to emissions from the agriculture sector, possibly with con-
tributions from the LULUCEF sector and natural sources. Our
results were confirmed by validation with independent ob-
servation sites and by an exhaustive range of sensitivity tests
presented in Part 1 (Bruch et al., 2025a). Synthetic exper-
iments with known truth revealed the method’s ability to
distinguish the agricultural from the non-agricultural sectors
in Germany, whereas disentangling possible influences from
natural and LULUCEF sources requires further work and pos-
sibly more observations.
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A methodological comparison to other regional inversion
systems highlights the advantages of our method for the pur-
pose of distinguishing emission sectors and its suitability for
validating national emission estimates. The qualitative gap
between UNFCCC reporting and our estimates for Germany
and the Benelux is consistent with earlier works (Petrescu
et al., 2023; Bergamaschi et al., 2022, 2018; Steiner et al.,
2024b). We complement these studies by providing an emis-
sion estimate for the German agriculture sector that can be
directly compared to the national reporting, revealing a sig-
nificant mismatch.

In this study we presented the first application of an ex-
tensible, novel inversion system. Future developments may
include the integration of satellite data, the incorporation of
temporal profiles, a more comprehensive treatment of bound-
ary conditions and flux uncertainties using ensemble meth-
ods, and an extension of the state space. The close connec-
tions to operational numerical weather prediction — espe-
cially in the underlying transport simulation — and the mod-
ular design establish the potential for long-term operational
support of national emissions reporting.
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Appendix A: Supplementary figures
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Figure A1. Prior and posterior emissions (a) and scaling factors (b) for all flux categories, ordered by prior emissions. Horizontal lines
indicate 95 % confidence intervals. See Fig. 1 for the geographical definition of the flux categories and Fig. 2 for the resulting map of scaling
factors. (a) If no sector is explicitly specified, the flux categories contain all anthropogenic fluxes excluding LULUCF. For flux categories
marked with an asterisk, the inversion does not reduce the absolute uncertainty. Thus, reliable information is only gained by our inversion
for flux categories without asterisk (see Sect. 2.6). Red color of the category names indicates a statistically significant increase of emissions.
(b) Scaling factors are the raw results of our inversion, though here they are already combined for the whole year. The posterior scaling factor
is defined as the center of the methodological uncertainty range indicated by brown boxes.
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Figure A2. (a—c) Seasonal cycle when using only observations from stations that were active during the whole year. We select those stations
and sampling heights, for which we used at least two data points per day on at least 20 days of each month in 2021 in our main inversion.
This selects 27 stations shown in (d) with 8.3 x 10* data points for the inversion, compared to 50 stations with 1.29 x 10° data points in the
reference case (compare Fig. 4). Colored areas show the posterior uncertainties (95 % confidence intervals), which were computed without
excluding individual stations from the inversion and are therefore smaller than in Fig. 4. Prior emission rates are shown as dotted lines with
small markers.
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Figure A3. Seasonal cycle in observations at stations with elevation below 500m above sea level (a, b) and above 1000m (c, d), sup-
plementary to the discussion in Sect. 3.2. Thin blue lines represent the 10% quantile of each month, station, and sampling height for
(a, c) observations and (b, d) model predictions (prior). The 10 % quantile is chosen to minimize the effect of local pollution. Thick black
lines indicate the mean of all selected stations and sampling heights. Thick red lines in (b) and (d) show the 10 % quantile of the modeled
far-field concentration. The flatland stations show a pronounced seasonal cycle with minimum in summer for both model and observations.
This cycle is dominated by the contribution of the far field. The mountain stations have a weaker seasonal cycle.
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Figure A4. Statistics of the relative (a) and absolute (b) improvement of the model-observation mismatch at independent validation stations
for different choices of the error covariance matrix R discussed in Part 1 (Bruch et al., 2025a). The figure is analogous to Fig. 5, where
the visualization and the data selection is explained. Here, we distinguish three inversion methods that differ in how R is constructed, as
introduced in Sect. 2.5 of Part 1. No clear advantage of one method over the others can be seen. The diagonal R inversion has the lowest
posterior RMSE at validation sites, followed by the posterior R and prior R inversion, but the differences are not statistically significant.
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Appendix B: Averaging kernel matrices

As introduced in Sect. 3.4.2, the averaging kernel matrices
A°SMiS and Ascaling factors ogtimate the change in the posterior
when changing the truth, A®™S = 5P /3e™™ where e de-
notes the vector of emissions. Here, we summarize how these
matrices are estimated using either the error covariance ma-
trices B and By Or the statistics from inversion runs with
synthetic truth.

B1 Analytic estimate using error covariance matrices

We first estimate the sensitivity of the posterior scaling factor
to the true emissions under the assumption that the transport
model, far field, observations, and the a priori spatial distribu-
tion within each flux category are perfect. Under these ideal-
ized assumptions, the model—observation mismatch for given
scaling factors s is u(s) = y — Hs —x = H(s"™ — ) where
st denotes the true scaling factors and we parametrize the
model prediction by H'(s) = Hs + xT. Our “prior R” inver-
sion will now maximize

M1
P(S) o exp _E(s _ struth)THTR—lH(s _ stl'uth)
1 . .
_E(S _ sprlor)TBfl (S _ sprlor)] (Bl)
!
ocexp | — (s — PO TR (s — sPOS‘)] . (B2)

This yields sPOt = sPrior 4 A (stuth _ gpriory with the averaging
kernel A =1— BpostB*1 and the posterior error covariance
matrix B\, = H' R~TH+B~! (Rodgers, 2000). Knowing B
and Byost, we can compute the averaging kernel A to estimate
how the posterior scaling factors depend on the true scaling
factors.

B2 Statistical estimate using synthetic experiments

In the statistical approach, we estimate the sensitivity of pos-
terior scaling factors & := sP°! — §PT" to changes in the syn-
thetic truth ¢ := s™th—gPrior ysing 100 synthetic experiments
with random synthetic truth s™®. Given a sample of N re-
alizations {£"},, and {¢"},, we aim to find the scaling factor
averaging kernel matrix A that solves

N
A=argmin ) _ 6"~ A", (B3)
A n=1

2 2 . .. .
For |x|*=)_,x;, differentiation by A’ ; yields 0=
>N, ¢ (" —Ag"), forall i, j and thereby

N N
A=EZ' B =) &4 Zi=) &It (B4)
n=1 n=1

Equation (B4) was used to produce panels (c) and (d) of
Fig. 7.
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Appendix C: Relevance of absolute prior uncertainty
in sector attribution

When observations can detect a change in total emissions but
cannot distinguish between different emission sectors, the
sector-resolving inversion will change the sectoral distribu-
tion based on the prior uncertainties. To understand this prob-
lem qualitatively, we consider the worst case: We assume that
fluxes from all sectors are uncorrelated in the prior but 100 %
spatially correlated such that they cannot be distinguished in
the inversion. The a priori probability density for an emission
vector e of sector emissions e; is

P(e) X exp [—%Z(el — efrior)20i2:| , (Cl)

where o; denotes the a priori standard deviation of e;. The
inversion will estimate the total emissions efo(ft such that the
a posteriori probability density P(e|y) is maximized. But by
assumption, these observations do not distinguish between
sectors such that the a posteriori probability density fulfills
P(e|y) o P(e) as long as ) _;e; is fixed. We thus obtain the
posterior emissions of the sectors by maximizing Eq. (C1)
with the constraint ) ;e; = eFOCESt. By introducing a Lagrange
multiplier, one can show? that this implies

epost - eprior
o= tot ;()t . (C2)
20

This shows that sectors with larger absolute a priori uncer-
tainty are disproportionally stronger corrected. Applied to
our emission estimates for Germany, this implies that if the
observations were unsuitable for distinguishing sectors, the
inversion would attribute up to 95 % of the changes in to-
tal fluxes to the agriculture sector, which is responsible for
69 % of the total a priori emissions. Fortunately, this worst
case scenario is not realistic because the observations do con-
tain information on the different sectors as indicated e.g. by
Figs. 6 and 7. But a tendency remains to correct the agricul-
ture stronger than the other sectors.

rior
— M = qo?

i S YE

Appendix D: Attempt to distinguish five sectors in
Germany

Our setup for the transport simulation was designed to sep-
arate five sectors in Germany: agriculture, natural plus LU-
LUCEF, waste, public power, and the sum of all other sectors
(“other”). We try to distinguish these sectors in a separate
inversion run, in which each of these sectors is scaled sepa-
rately (sensitivity tests 506 in Part 1 (Bruch et al., 2025a)).
This inversion uses 19 separate scaling factors in Germany
instead of 11. We find no notable changes in the posterior

2We define L(e, 1) = —%Zi(e,- —e?rior)zai_z—l—}»(eﬂ?tm—Ziei)

: oL __ oL __
and require de = 0, %= 0.
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emissions compared to our reference setup, in which we
combined waste, public power, and other into one larger sec-
tor “non-agr.”” However, the uncertainties and the averaging
kernels change considerably. We assume an a priori 20 un-
certainty of £100 % for each sector-resolving flux category.
Thus, splitting the total fluxes in more uncorrelated flux cat-
egories reduces the a priori uncertainty of the total fluxes.

Figure D1 shows the averaging kernel matrices (intro-
duced in Sect. 3.4.2 and Appendix B) for the inversion when
separating five sectors. These matrices indicate that waste,
public power, and “other” cannot be distinguished: The cor-
responding columns Fig. D1a are approximately equal. Thus,
trying to distinguish these sectors does not provide any addi-
tional information. By comparing the row and column for
“non-agr.” to Fig. 7, we identify drawbacks of the attempt to
distinguish smaller sectors. When trying to distinguish five
sectors, the false attribution of emissions to the agriculture
sectors is more severe than when distinguishing only three
sectors (48 % compared to 28 %). Consequently, the expected
error reduction in the combined non-agriculture sectors (ex-
cluding natural plus LULUCEF) is better when considering
only three sectors. Qualitatively, this is what we expect from
Appendix C for cases where the observations are insufficient
to distinguish the considered sectors.

(a) Aemissions Ascaling factors (b)

total 40.95 0.93]0.96 0.94 0.91 0.95 0.87 total 0.22 7/0.09 0.08 0.05 0.06
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o]0 ) [el o o1 7T 0.02 0.07 0.00 0.06 0.05 0.09 0.02 [o]0] o] [ el e T 7T 0.37 0.29 0.05 0.12 0.08 0.09 0.02 0.2

[EIeeNSINEelaE 0.02 0.02 0.01 0.01 0.01 0.03 0.11 EIsEAnv[Ev[eiaE 0.25 0.06 0.08 0.02 0.01 0.02 0.11
0.0

© ©
= )
o ]
=l p=}

non-agr.
agriculture
other
waste
non-agr.
agriculture
other
waste

public power
nat.+LULUCF
public power
nat.+LULUCF

Figure D1. Averaging kernel matrices of German sector emissions (a) and the corresponding scaling factors (b) when trying to distinguish
sectors waste, public power and other, estimated using the posterior error covariance matrix. Small matrices at the bottom indicate the ideal
result. See Fig. 7 for an explanation of the representation. Panel (a), third row, shows that increasing true emissions in any sector is expected
to cause higher posterior agriculture emissions with a false attribution of 46 % to 70 %. The same row in panel (b) shows that when looking
at relative changes in the emissions, the influence of the false attribution on the agriculture sector is not very large.
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