
Atmos. Chem. Phys., 25, 17159–17185, 2025
https://doi.org/10.5194/acp-25-17159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

German methane fluxes estimated top-down
using ICON–ART – Part 1: Ensemble-enhanced

scaling inversion

Valentin Bruch, Thomas Rösch, Diego Jiménez de la Cuesta Otero, Beatrice Ellerhoff,
Buhalqem Mamtimin, Niklas Becker, Anne-Marlene Blechschmidt, Jochen Förstner, and

Andrea K. Kaiser-Weiss
Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany

Correspondence: Valentin Bruch (valentin.bruch@dwd.de) and Andrea K. Kaiser-Weiss
(andrea.kaiser-weiss@dwd.de)

Received: 27 March 2025 – Discussion started: 15 May 2025
Revised: 24 October 2025 – Accepted: 5 November 2025 – Published: 1 December 2025

Abstract. This two-part study explores the quantification of greenhouse gas emissions using atmospheric ob-
servations in order to validate national emission inventories. Inverse methods can support emission quantification
at the national scale based on observations and atmospheric transport simulations, yet, they are often limited by
the observation coverage, transport model uncertainties, and inversion methodologies. Here, we introduce a sys-
tem for regional estimation of methane fluxes and apply this to Central Europe with a focus on Germany, where
we distinguish emissions from different anthropogenic sectors. We evaluate the robustness of the method using
sensitivity tests with in-situ observations from the Integrated Carbon Observation System (ICOS). Using syn-
thetic observation experiments, we estimate the impact of transport errors on the flux estimates. The atmospheric
transport is calculated employing the numerical weather prediction model ICON with its module ART at 6.5 km
resolution, sampling the meteorological uncertainty with a 12-member transport ensemble. The same transport
ensemble is used to generate pseudo-observations with a simulated transport uncertainty. Posterior fluxes are
estimated with a synthesis inversion method for three different approximations of the model–observation error
covariance matrix. We find that using ensemble-estimated transport uncertainties can significantly reduce the
random error of emission estimates. Our results highlight the importance of analyzing biases in flux inversions
for reliable, observation-based emission estimates.

1 Introduction

Quantifying greenhouse gas (GHG) emissions is essential
for effective mitigation of anthropogenic climate change. At-
mospheric GHG inversions provide such quantification by
connecting the observed atmospheric composition to surface
fluxes using transport models. This so-called “top-down” ap-
proach is complementary to “bottom-up” emission estimates,
which are based on activity data and emission factors (IPCC
et al., 2019). Top-down emission estimates can be used to
validate national bottom-up GHG inventories reported to the
United Nations Framework Convention on Climate Change
(UNFCCC) (Manning et al., 2003, 2011; Henne et al., 2016).

Such national-scale estimates are typically limited by the ob-
servation coverage (Petrescu et al., 2023) and uncertainties
in atmospheric transport modeling (Gerbig et al., 2008). This
motivates estimating methane emissions in the comparably
well-observed Central Europe using a high-resolution trans-
port model and applying methods from numerical weather
prediction (NWP) to estimate the transport uncertainty.

Regional top-down estimates of long-lived GHG can be
based on different types of transport models. Lagrangian
models calculate trajectories from selected locations by mov-
ing with air parcels transported by the wind. They have been
widely used for inversions of trace gases like halocarbons, ni-
trous oxide and methane (CH4) in European regions, see e.g.,
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Stohl et al. (2009), Ganesan et al. (2015), Henne et al. (2016).
In contrast, Eulerian models – such as ICON–ART – con-
tinuously transport trace gas concentrations through three-
dimensional grid boxes. Although they are computationally
more expensive for cases where a relatively small number
of trajectories would suffice, they become superior when the
amount of data grows and, as Engelen et al. (2002) pointed
out, open the road for data assimilation methods as used in
NWP. Among the Eulerian models, also NWP models have
been used for regional flux inversions of CO2 (Lauvaux et al.,
2013) and CH4 (Steiner et al., 2024b). Regardless whether
Lagrangian or Eulerian or even combined approaches (Rigby
et al., 2011) are applied, the top-down estimation requires
solving an inverse problem (Enting, 2002). Eulerian trans-
port model based inversions may employ emission ensem-
bles, as in Steiner et al. (2024b) with a localized Kalman fil-
ter, and other data assimilation methods (see, e.g., Meirink
et al., 2008). Alternatively, the method of synthesis inversion
scales a set of a priori emission categories (Kaminski et al.,
2001).

In this work, we introduce a system for national-scale top-
down estimation of CH4 emissions based on modeling ex-
perience from NWP. We analyze the benefit of constraining
the transport uncertainty using a meteorological ensemble as
proposed by Ghosh et al. (2021) and Steiner et al. (2024a).
A synthesis inversion method is used to estimate emissions
with a focus on Germany based on high-resolution a priori
emissions from national reporting and in situ observations of
atmospheric CH4 concentrations.

In the present Part 1 of this two-part study, we describe
our new inversion system and evaluate its performance. Sec-
tion 2 introduces the method with a detailed description of
the uncertainty estimation. The description of the inversion
system is completed by the input data described in Sect. 3. In
Sect. 4, we analyze the performance using synthetic observa-
tion experiments and test the sensitivity to tuning parameters
with real observations. We conclude in Sect. 5 and refer to
Part 2 (Bruch et al., 2025a) for a discussion of the emission
estimates obtained using real observations.

2 Method

We use a synthesis inversion method (Kaminski et al., 2001)
that scales the CH4 fluxes to optimize the agreement of
model predictions and observations. In this method, the
fluxes are initially grouped into a manageable set of flux cate-
gories. Here, these are 46 categories that subdivide the fluxes
by region and emission sector. With the Eulerian transport
model, the concentration from each flux category is calcu-
lated separately at all grid cells and time points. At the lo-
cation and time of the observations, the model writes out
the predicted concentrations from the flux category contri-
butions and their sum is compared to the observed concen-
tration. The inversion then minimizes the mismatch between

model prediction and observations by scaling each of the flux
categories by one number – the scaling factor – making use
of the linear relation between fluxes and concentrations in
the atmosphere. Thus, the inversion result consists of one
scaling factor for each flux category. By multiplying the a
priori fluxes with the scaling factors we obtain the a poste-
riori fluxes. This scaling method cannot provide a correction
where a priori fluxes are zero (Kountouris et al., 2018). How-
ever, this is less of a problem for CH4, as inventories can
collect where methane-emitting activities are normally lo-
cated, but emission factors which translate the activities into
bottom-up emissions are uncertain (Dammers et al., 2024).

The described method relies on high quality model pre-
dictions as well as accurate concentration observations. To
match these requirements, we have carefully chosen the
configuration of the transport model (Sect. 2.1) and con-
sider the specific difficulties in modeling strong plumes
(Sect. 2.2). Selected observational data are employed to rem-
edy model boundary effects and therefore improve the over-
all model predictions (Sect. 2.3). In Sect. 2.4, we introduce
the Bayesian inversion framework. To assess whether de-
viations between model and observations contain informa-
tion on the fluxes, we estimate the model uncertainty and
error correlations. We compare three different methods for
estimating these uncertainties and correlations (Sects. 2.5
and 2.6). Furthermore, we define the time window and a
priori uncertainties of the inversion (Sect. 2.7 and 2.8). A
summary of the method and data streams will be provided in
Sect. 3.5.

2.1 Transport simulation

2.1.1 Transport model

The atmospheric transport is simulated using the NWP model
ICON (Zängl et al., 2015) in a configuration close to opera-
tional NWP at Germany’s Meteorological Service (DWD),
extended with the module for Aerosol and Reactive Trace
gases (ART) (Rieger et al., 2015; Schröter et al., 2018). The
model is run in limited area mode for a domain covering large
parts of the European continent (latitudes 34 to 70° N, longi-
tudes 21° W to 59° E, see Fig. 1) with a horizontal resolu-
tion of 6.5 km (ICON grid R3B8) and 74 vertical levels up to
a maximal height of 22.77 km. The ICON model simulates
the meteorology and the tracer transport. Re-initialization of
the meteorological fields every 24 h with operationally pro-
duced analysis fields ensures that the meteorology stays close
to reality. The surface CH4 fluxes are provided to the trans-
port model using the online emission module (Jähn et al.,
2020; Steiner et al., 2024b). We do not simulate any chem-
ical reactions, because the typical lifetime of CH4 in the at-
mosphere is much longer than the time that an air parcel typ-
ically spends in our modeling domain.

For long living tracers like methane, the correct treat-
ment of the lateral boundary concentrations is of importance.
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Figure 1. Model domain, colored to distinguish 35 patches defining regional flux categories. Observation sites (dots) are colored by the choice
of model equivalent height (see Table C1). Dark blue at the domain boundary indicates regions for which emissions are not categorized and
therefore not modified in the inversion. Other colors only distinguish neighboring patches. In white hatched regions, natural fluxes are also
categorized and scaled. A white ellipse marks the Upper Silesian Coal Basin, in which fugitive emissions define their own flux category. In
Germany, the map shows the six regions used for the agricultural sector. For other sectors in Germany, we use four regions: south (yellow
and light green), west (dark blue), north (light green), and east (dark green and yellow).

Therefore, we extended the model by implementing lateral
boundary nudging for ART tracers in order to obtain smooth
fields and avoid strong spatial gradients. The nudging is lim-
ited to a boundary zone of width< 250 km. Further, so-called
meteogram output has been implemented for ART tracers,
providing model output in the vicinity of observation loca-
tions with high temporal resolution.

2.1.2 Meteorological ensemble

For improved uncertainty estimates, we run a meteorologi-
cal ensemble of 12 members. Each ensemble member uses
different meteorological initial and lateral boundary condi-
tions from the operational ensemble data assimilation used
for global NWP at DWD (Schraff et al., 2016; Reinert et al.,
2025). Since our meteorological input fields and the trans-
port model setup are taken from operational NWP at DWD,
the ensemble provides a reasonable estimate for the meteo-
rological uncertainty in our model, including uncertainties in
the simulated wind field and atmospheric stability.

In the following, we distinguish a so-called deterministic
model run providing the best estimate of the modeled CH4
concentration, and the ensemble runs providing 12 different
CH4 concentrations to estimate the uncertainty. The ensem-
ble will only be used to estimate model uncertainties and
error covariances (see Sect. 2.5), and to generate pseudo-
observations (Sect. 3.4).

2.1.3 Definition of flux categories

Estimating CH4 fluxes in> 105 grid cells based on 50 obser-
vation sites seems impossible without reducing the number
of degrees of freedom of the fluxes. Here, we reduce the de-
grees of freedom drastically by parametrizing the fluxes us-

ing only 46 basis vectors. A basis vector in this parametriza-
tion is a flux category that contains all fluxes from one re-
gion, possibly limited to specific emission sectors. For ex-
ample, we define all anthropogenic emissions from Denmark
as one flux category. We thereby assume that the distribution
of anthropogenic emissions within Denmark is correct in the
a priori and only allow the inversion to adjust the total emis-
sions from Denmark.

We define the flux categories with the primary aim of pro-
viding an accurate estimate of emissions from Germany, re-
solving federated states where possible, to address the re-
quirements of potential stakeholders. When distinguishing
emission sectors, we stay close to the national reporting
by using definitions from the gridded aggregated nomen-
clature for reporting (GNFR, Veldeman et al., 2013). For
the agricultural sector (GNFR sectors K+L), which con-
tributes roughly two thirds of all German CH4 emissions,
we distinguish six regions within Germany as depicted in
Fig. 1. For the sum of all other sectors – excluding natu-
ral and LULUCF fluxes – we distinguish four regions, i.e.,
the federated states south: Baden-Wuerttemberg and Bavaria,
west: North Rhine-Westphalia, Hesse, Rhineland-Palatinate
and Saarland, north: Lower Saxony, Bremen, Hamburg and
Schleswig-Holstein, as well as east: Mecklenburg-Western
Pomerania, Brandenburg, Berlin, Saxony, Saxony-Anhalt
and Thuringia. Natural plus LULUCF fluxes in Germany are
treated as a single flux category.

Outside Germany, we do not distinguish sectoral emis-
sions, with one exception. Agriculture emissions in the
Netherlands form their own category, as we found that
they strongly influence the CH4 concentrations in Germany,
caused by the proximity and high emission rates in the
Netherlands. We define further categories by area for anthro-
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pogenic emissions excluding LULUCF such that a compa-
rably high resolution is obtained in regions near Germany
with high observation coverage. These area-defined flux cate-
gories follow borders as feasible for the inversion. Areas with
small expected influence on inversion results for Germany
are combined in large categories, such as Spain plus Portu-
gal, Türkiye plus Greece, and large areas east of Poland. All
area-defined categories are shown in Fig. 1 and an overview
of the sector resolution is given in Table 1.

We treat natural plus LULUCF fluxes separately and cat-
egorize them only in Germany, Scandinavia, and the north-
eastern part of our domain (hatched regions in Fig. 1). This
is motivated by strong CH4 emissions from wetlands in sum-
mer in Scandinavia and northern Russia in our prior (Segers
and Houweling, 2020). Uncategorized fluxes – whether nat-
ural or anthropogenic – are not scaled in the inversion, but
still included in the transport simulation such that no fluxes
are discarded. To avoid strong spatial gradients in the concen-
tration fields, the boundaries between different area-defined
categories are smoothened as visualized in Fig. 1.

We furthermore define a separate flux category for the
strongest CH4 plume in Central Europe to mitigate the plume
localization problem described below (Sect. 2.2). These are
fugitive emissions from the Upper Silesian Coal Basin with
yearly emissions of 567 kt in our prior (white ellipse in
Fig. 1).

2.1.4 Tracer assignment in the transport model

In the transport simulation, we consider not only the cat-
egorized fluxes, but also the CH4 from lateral boundaries
and from uncategorized emissions. Overall, we simulate the
transport of 50 tracer fields in the deterministic model run:1

(i) Sum of all anthropogenic emissions excluding LULUCF.
This constitutes a single, common tracer.

(ii) Sum of all natural plus LULUCF fluxes. This constitutes
another single, common tracer, which summed with (i)
covers all a priori emissions in the domain.

(iii) Far field. The far field contains the CH4 from initial and
lateral boundary conditions.

The sum of (i)–(iii) is the total a priori CH4 concentration.
The a posteriori concentration is not computed directly. In-
stead, we treat the deviation of the posterior concentration
from the prior as a perturbation. To compute this perturba-
tion, we simulate the transport of each flux category:

(iv) Flux categories. For each of the 46 flux categories an
own tracer field is defined. To avoid the accumulation

1Technically, the simulation includes 58 tracers in an attempt to
split up the sector “other” in Germany in three sectors. Since we do
not use these additional data here, we describe the setup for the 50
tracers we actually used.

of categorized CH4 beyond the time scale on which we
consider the modeled transport reliable, we set an ar-
tificial decay rate of these concentrations. After emis-
sion, the concentration in these tracer fields decays ex-
ponentially with a mean lifetime of 5 d. This technical
feature constitutes a localization in time similar to the
commonly used localization in space (e.g., Steiner et al.,
2024b) and allows a waning of sectoral and regional at-
tribution over a few days. This regulates that any attri-
bution of a CH4 anomaly to a certain region or sector is
only attempted if the emission was fresh or a few days
ago. Furthermore, this allows us to save computing time
by limiting the transport of these flux category tracer
fields to altitudes below 8 km. The artificial decay rate
affects the posterior concentration and the sensitivity of
the inversion to changes in the emissions. However, as-
suming that the typical time between emission and ob-
servation is short compared to the artificial lifetime and
in the presence of transport model errors, we expect that
this feature of our inversion system leads to more robust
results.

(v) Auxiliary field for plume detection. For the purpose of
investigating the model uncertainty due to the plume
from the Upper Silesian Coal Basin, an auxiliary tracer
is added (see Sect. 2.6.1). This tracer is never added to
the total CH4 concentration but only serves as an indi-
cator for the plume location.

2.2 Plume localization problem

In our transport simulation and inversion, we address the spe-
cific challenge posed by plumes from high emissions in small
areas. The inversion may be biased for such plumes due to the
so-called double penalty issue (Vanderbecken et al., 2023). In
cases where our model falsely predicts that the plume reaches
an observation site, the inversion will reduce the emissions to
improve the agreement with the observation. In the opposite
case, when the model fails to predict that a plume reaches the
observation, the inversion will not change the plume emis-
sion amount but will wrongly increase emissions in other
areas instead. This can cause a systematic underestimation
of fluxes from localized plumes. To avoid biases in the in-
version results, we suggest to treat strong plumes separately,
with their own flux categories. This allows us to quantify the
problem (see Sect. 4.2) and to limit the plume penalty influ-
ence on other flux categories.

2.3 Far-field correction

For cases where the model predicts almost no influence from
our categorized emissions (i.e., clean air cases), deviations
between model and observations point to the need for cor-
recting the CH4 advected across the lateral boundaries – here
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Table 1. Overview of sectors distinguished in the inversion and number of flux categories. We distinguish the focus region, well-observed
regions near the focus region, and regions in large distance from the focus region (“remote”). The latter are split in very large flux categories
with low a priori uncertainty. Natural plus LULUCF fluxes are separated from other anthropogenic emissions only in regions where the
natural fluxes are strong and in Germany. One extra category in the well-observed regions is the Upper Silesian Coal Basin (marked * in the
last column). See Fig. 1 for the definition of flux categories on the map.

Classification Countries and regions Sectors # of areas # of flux categories

focus region Germany agriculture, LULUCF + natural, other 6 agr., 4 other,
1 LULUCF

11

focus region the Netherlands agriculture, other 1 2

well observed Sweden, Norway LULUCF + natural, anthropogenic 2 4

well observed DK, PL, CZ, AU, SK, HU, SV,
HR, BA, CH, FR, BE, LU, UK,
IE, northern IT, North Sea

anthropogenic (excl. LULUCF) 16 17*

remote Finland, north-western Russia LULUCF + natural, anthropogenic 2 4

remote other anthropogenic (excl. LULUCF) 8 8

referred to as “far field”.2 For our regional inversion prob-
lem, it is essential to separate the CH4 emitted within the
domain from the far field, in order to avoid model biases
which would confound the aspired flux scaling (see, e.g.,
Chen et al., 2019, for CO2). To minimize potential biases
arising from imperfect boundary conditions, we construct a
correction field which is added to the modeled far-field con-
centration in the whole domain after the transport simulation.
We require this correction field to be smooth on spatial and
temporal scales 320 km (horizontal), 1 km (vertical), and 16 h
(time). We construct this far-field correction using a Kalman
smoother as described in detail in Appendix A. This con-
struction uses only clean-air observations with a cumulated
signal of all flux categories of ≤ 20 ppb and a total signal
from emissions within our domain of ≤ 50 ppb.

Figure 2 shows a statistical overview of the far-field
correction when using real observations (red line) or
pseudo-observations (shaded area). The considered pseudo-
observations are generated from the ensemble members of
the transport simulation and represent the case where sim-
ulated emissions and boundary conditions are perfect, i.e.,
equal to the truth. The far-field correction range is usually
limited to ±10 ppb when using real observation data and
±5 ppb in the synthetic observation experiments (Fig. 2a)
with variations of a few ppb per day (Fig. 2b). The broad
distribution of the root mean square (RMS) for different ob-
servation sites and months in Fig. 2c indicates significant dif-
ferences among the stations when using real observations.

Figure 2d shows that the correction has a small bias to-
wards positive corrections even when using synthetic obser-
vations with unbiased fluxes and boundary conditions. This

2Technically, the far field also includes the initial CH4 concen-
tration. But this is hardly relevant due to our generous spin-up pe-
riod of 17 d.

is partially due to the pseudo-observations, which are biased
by +0.5 ppb compared to the simulated concentrations due
to details of the transport model configuration. The other part
of the bias hints to a more general problem. We construct the
far-field correction using observations for which the model
predicts clean air, i.e., a low signal from the emissions. Since
the transport model is not perfect, this introduces a sampling
bias: We select more observations for which the model un-
derestimates the concentrations and thereby increase the bias
to 1.2 ppb. In response to this bias, the far-field correction
increases the simulated concentrations by 1.0 ppb.

The sampling bias will likely also occur when working
with real observations. But the estimated correction bias
of 0.6 ppb due to the sampling is small compared to the
accuracy of the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) inversion-optimized data product used for our
boundary conditions (Segers et al., 2023) (see Sect. 3.1). We
therefore do not expect a significant impact on the emission
estimates.

2.4 General approach of the inversion framework

We use a Bayesian inversion to optimize the agreement of
model and observations. We define a vector of scaling factors
– in our application s ∈ R46 – consisting of one prefactor for
each flux category. This low-dimensional parametrization of
the fluxes leads to the optimization problem

spost
= arg min

s

{
1
2

(y−Hs− xff)>R−1(y−Hs− xff)

+
1
2

(s− sprior)>B−1(s− sprior)
}

(1)

for the posterior scaling factors spost. Here, the first term pe-
nalizes the deviation from the observed concentrations, and
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Figure 2. Statistical evaluation of the far-field correction at the observation coordinates when using synthetic observations (light blue area)
or real observations (dark red line). Considering all data points used in the inversion, histograms of the far-field correction show (a) the range
of the correction and (b) its temporal variation. For each station, month, and realization of pseudo-observations, we compute the root mean
square (RMS) and the mean (or bias). Histograms combining these values for all stations and months are shown in (c) and (d).

the second term penalizes the deviation from the prior fluxes.
In the first term, the vector y of observed concentrations is
compared to the model prediction, which consists of the con-
tribution Hs of fluxes within the model domain and the mod-
eled far field xff including the far-field correction. All model
predictions (xff and Hs) are already projected to the observa-
tion space. The contribution of fluxes Hs depends linearly on
the vector s. The difference between modeled and observed
values is weighted by the error covariance matrix R describ-
ing the combined uncertainty of the transport model and the
observations. With the second term we constrain the devi-
ation of s from a priori scaling factors sprior (sprior

k = 1 for
all k) with an error covariance matrix B characterizing the a
priori uncertainty (see Sect. 2.8).

In Eq. (1), the model observation operator H connects the
space of scaling factors (vectors sprior, spost) to the observa-
tion space (vectors y, xff). Computing H requires the trans-
port model which distinguishes the flux categories. The setup
is designed for optimizing a low-dimensional vector spost

of scaling factors (∼ 102 degrees of freedom) using a large
number of observations (∼ 104), but an extension to more
degrees of freedom and/or more observations is possible.

2.5 Approximations for the error covariance matrix R′

The definition of the error covariance matrix R in Eq. (1)
is crucial for the inversion. R describes the combined un-
certainties and correlations of observations and model pre-
dictions. In our case, the observation uncertainty (usually
. 1 ppb, ICOS RI, 2020) is small compared to the ensemble-
estimated transport uncertainty (typically 5 to 10 ppb). We
therefore focus on the model uncertainty.

Many works have used diagonal R matrices (e.g. Bergam-
aschi et al., 2010; Petrescu et al., 2023; Steiner et al., 2024b)
and others found non-diagonal approximations for R (Ghosh
et al., 2021; Steiner et al., 2024a). Here, we use the diago-
nal R for comparison to two different ways of constructing

a non-diagonal R matrix from our transport ensemble. We
therefore compare three ways of constructing R:

Diagonal R: This baseline scenario considers a diagonal R
matrix and discards all information from the transport
ensemble.

Prior R: In a standard ensemble approach, we construct R
using the transport ensemble with a priori fluxes.

Posterior R: We extend the standard approach by estimat-
ing R using the posterior fluxes in the transport ensem-
ble.

The construction of the different R matrices consists of
two steps that are described below. First, we construct a ma-
trix R′ that estimates the dominant uncertainties and corre-
lations using one of the three methods. Second, we obtain R
from R′ by inflating and adding additional uncertainties to
mitigating some known issues of the inversion (Sect. 2.6).

2.5.1 Diagonal R

In the baseline scenario of a diagonal R matrix, all observa-
tion and model uncertainties are assumed to be uncorrelated.
However, it is known that model predictions for observations
separated by only 1 h usually have correlated errors. To avoid
underestimating the overall uncertainty without introducing
correlations in R, we assume high uncertainties of each ob-
servation. Following Steiner et al. (2024b), we assume that
the signal from CH4 emissions within our domain will gener-
ally increase the model uncertainty in the predicted CH4 con-
centration. This motivates defining R′ii = σ

2
const+(βHsprior)2

i

where σconst = 10 ppb and β = 0.5 are scalar tuning factors.
Index i labels observation data points that are typically dis-
tinguished by location, time, and sampling height. The diago-
nal R scenario uses crude approximations because the selec-
tion of observations is designed for an inversion that can han-
dle correlations. However, we will obtain qualitative insights
from the comparison to the other approximations for R.
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2.5.2 Prior R

This approximation of R is based on an ensemble ofM = 12
different transport realizations. The potential of using a small
transport ensemble for estimating model uncertainties was
demonstrated by Steiner et al. (2024a). We can use the co-
variance of the ensemble members to estimate the transport
uncertainty. We define

R′ij = Cij
1

M − 1

M∑
m=1

(
xmi − xi

)(
xmj − xj

)
+ δijσ

2
const, (2)

where xmi is the prediction of ensemble member m for ob-
servation yi assuming a priori fluxes, xi = 1

M

∑
mx

m
i is the

ensemble mean, and σconst = 10 ppb is a constant uncertainty
added to each observation. With this uncorrelated uncertainty
σconst, we account for additional uncertainties, such as repre-
sentativity errors inherent to a simulation at finite resolution.
Indices i,j label observation data points. By Cij we denote a
localization in space and time such that Cii = 1 and Cij = 0
for any observations i and j that we expect to be uncorrelated
because of their temporal or spatial separation. In the applica-
tion to Germany, we choose Cij to be a Gaussian localization
matrix with standard deviations 6 h (time), 319 km (horizon-
tal), and 400 m (vertical). We use the notation δij = 1 if i = j
and δij = 0 if i 6= j .

2.5.3 Posterior R

The posterior R approximation is a variation of the prior R
approximation. In Eq. (2), we use model predictions for the
concentrations xmi . Instead of using the prior concentrations
as in the prior R construction, we can define xmi as the pos-
terior concentrations and thereby allow xmi to change as the
inversion changes the fluxes. This leads to a self-consistent
estimate of R′ in the inversion. Consequently, Eq. (2) remains
valid but xmi , R′, and R become functions of the scaling fac-
tors s. Since R is estimated using posterior scaling factors,
we call this method the posterior R inversion as opposed to
the prior R estimate. To compute the posterior concentration
xmi (s) for each ensemble member without prohibitive com-
putational effort, we use an approximation described in Ap-
pendix B.

As opposed to the diagonal R and prior R inversion with
fixed R, the posterior R inversion does not allow for a closed
form solution of Eq. (1). To solve the minimization problem
in Eq. (1) numerically, we used SciPy’s “trust-exact” imple-
mentation of a trust-region method (Virtanen et al., 2020;
Moré and Sorensen, 1983; Conn et al., 2000). Within each
iteration, the incomplete LU decomposition (Li et al., 1999;
Li and Shao, 2011) of the sparse matrix R(s) is the most com-
putationally expensive task when the number of observations
is large.

2.6 Additional uncertainties and final error covariance
matrix R

The previously derived approximations for the error covari-
ance matrices R′ describe our knowledge of the transport un-
certainty and the observation uncertainty. In the next four
steps, we increase uncertainties and include other possible
sources of uncertainty to obtain approximations for R that
are suitable for the inversion.

2.6.1 Mitigating the plume localization problem

To reduce the bias which we predicted for strong plumes in
Sect. 2.2, we increase the uncertainty for all observations that
are likely affected by a plume. The transport ensemble will
already lead to an increased uncertainty when the model can-
not predict reliably whether a plume hits an observation site.
But with an ensemble of only 12 members, this will not cover
all cases where model and observations deviate. We therefore
introduce an auxiliary tracer that contains emissions from the
Upper Silesian Coal Basin, spatially smoothened on a length
scale of 0.4° (one standard deviation of a Gaussian filter).
Denoting the concentration of this tracer at observation i by
ρi , we increase the uncertainties to Rstep 1

= R′ij+0.25ρ2
i δij .

2.6.2 Dynamic uncertainty inflation

To avoid potential biases through site-specific small-scale
features not captured in the model, we aim to base our inver-
sion on many observations. To this end, we limit the influence
of individual data points on the inversion result by inflating
the uncertainty further in the case of a very large disagree-
ment between model and observation. This is achieved by an
uncertainty inflation of individual observations until the devi-
ationµ= y−Hsprior

−xff between model and observations is
at most three standard deviations of the resulting error covari-
ance matrix Rstep 2

ij = gigjRstep 1
ij , i.e., gi =max{1, |µi |

3
√

Rstep 1
ii

}.

This is justified because large deviations between model and

observations, |µi |> 3
√

Rstep 1
ii , are likely caused by local

pollution or modeling problems that are not captured appro-
priately in our uncertainty estimate. This correction makes
sure that inversion results will be based on many observations
and no single measurement can have an extreme impact. At
the same time, this method it is less sensitive to tuning pa-
rameters than discarding outliers completely.

2.6.3 Static uncertainty inflation

The transport ensemble in the prior R and posterior R con-
struction may not necessarily include the full uncertainty of
the transport model, and the localization Cij further reduces
the simulated uncertainty by suppressing correlations. This
motivates another inflation of the uncertainty to avoid over-
confidence in the model prediction. We inflate the uncer-
tainty by a factor fi > 1 depending on the observation site
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Table 2. Median of χ2/Ndof for different configurations. χ2/Ndof
for the prior R inversion also serves as an approximation for the
posterior R inversion. Synthetic observations are generated using
the ensemble simulation, assuming that the a priori fluxes and the
CH4 concentration on lateral boundaries are known exactly.

Observations Far-field χ2/Ndof, χ2/Ndof,
correction diagonal R prior R

real yes 0.18 0.16
real no 0.21 0.18
synthetic yes 0.05 0.03
synthetic no 0.06 0.03

of observation i, leading to Rstep 3
ij = fifjRstep 2

ij . We choose
fi = 2 except for some stations with known difficulties, for
which fi = 3 (see Table C1). To keep the methods for con-
structing R comparable, we apply this inflation also to the
diagonal R matrix.

2.6.4 Far-field uncertainty

We furthermore account for the uncertainty in the far-field
correction, although the effect of this additional uncertainty
is small. We define Rij = Rstep 4

ij = Rstep 3
ij + 0.5|cicj |C̃ij

where ci denotes the smooth correction field introduced in
Sect. 2.3 at observation i and C̃ij is the Gaussian localiza-
tion matrix constructed by the length and time scales of the
far-field correction (see Appendix A).

2.6.5 χ2 analysis

To assess whether the estimated uncertainties are reasonable,
one can compute the χ2/Ndof value (Pearson, 1900). This
value compares the a priori model–observation mismatch to
the uncertainty assumed for this mismatch (see Appendix D
for details). A value of χ2/Ndof > 1 indicates that uncer-
tainties are underestimated, whereas values smaller than one
indicate the opposite. When comparing the observations to
the far-field-corrected model, we find χ2/Ndof ≈ 0.16 for
the prior R inversion when using real observations (see Ta-
ble 2). In an idealized setup, this indicates that the uncertain-
ties of the model-data mismatch are overestimated by a fac-
tor 2.5. This implies that our uncertainty inflation by a factor
fi = 2 for most observations seems unnecessary in the ideal-
ized setup. However, our data can contain unknown biases in
transport and boundary conditions, and simplifying assump-
tions about the representativity of the low-dimensional state
space of the inversion. We contain these potential issues of
unknown error components by inflating the uncertainties.

In the synthetic experiments, the idealized transport un-
certainty and perfect a priori emissions lead to even lower
χ2, which is expected because not all uncertainties are con-
tained in the pseudo-observations of these synthetic experi-
ments. Computing χ2/Ndof for the posterior R inversion is

more difficult, but the result is expected to be similar to the
prior R inversion. The tuning parameters of the diagonal R
matrix were chosen such that the posterior uncertainties are
similar to the prior R inversion, which also leads to similar
χ2/Ndof (see Table 2).

2.7 Inversion time window and temporal aggregation

We simulate the transport for the whole year 2021 without
any interruption. The inversion is then applied to each month
separately by selecting only observations within 1 month.
The scaling factors of the months are treated as indepen-
dent, each month starting with the same a priori scaling fac-
tors (sprior

k = 1 for all k) and the same a priori scaling uncer-
tainties (B matrix). The continuous transport simulation over
the whole year implies that the initial CH4 concentration is
hardly relevant after the spin-up. At the beginning of each
month, the modeled CH4 concentration already consists of
the far field – the contribution of the lateral boundaries – and
the contribution of the fluxes, which will be adjusted by the
inversion.

In summary, we correct the contribution of the lateral
boundaries on the time scale of 16 h by the far-field correc-
tion, and the fluxes on the time scale of 1 month defined by
the inversion time window. The inversion results consist of
one vector spost

∈ R46 of scaling factors and the correspond-
ing error covariance matrix for each month. When aggregat-
ing results for the whole year, we treat the uncertainties of the
prior or posterior fluxes of different months as correlated be-
cause these likely include systematic uncertainties and biases
which we cannot fully separate from the statistical uncer-
tainty. We therefore aggregate by adding up absolute emis-
sions and their uncertainties linearly.

2.8 Prior uncertainties

In each inversion time window, we consider a priori scaling
factors with a two standard deviation (2σ ) uncertainty of 0.8
for most flux categories, corresponding to a 95% confidence
interval of ±0.8. Throughout this paper, uncertainties will
denote two standard deviations or 95% confidence intervals.
Categories resolving emission sectors have a higher prior 2σ
uncertainty of 1.0, and within Germany categories describing
the same sector have an a priori uncertainty correlation of 0.5
(e.g., uncertainties of agriculture emissions in the German
states of Bavaria and Baden-Wuerttemberg are assumed to be
correlated). All other categories are treated as uncorrelated
in the a priori. For the Upper Silesian Coal Basin as well as
regions with low observation density outside of our primary
focus in Central Europe (marked “remote” in Table 1), the
2σ uncertainty is set to 0.5.
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3 Input data and processing

We apply the method to estimate CH4 fluxes in the year 2021
in Germany and in the surrounding European domain, re-
lying on input data for the transport simulation, CH4 con-
centration on the lateral boundary (Sect. 3.1), a priori fluxes
(Sect. 3.2), and observations (Sect. 3.3).

3.1 Initial and lateral boundary conditions

The meteorological initial and lateral boundary conditions
used to drive our transport model are taken from the archive
of DWD’s operational NWP, which also employs the ICON
model. As we do not assimilate meteorological data in our
application, we re-initialize the meteorological fields every
night at 00:00 UTC, using the analysis fields from the oper-
ational NWP data assimilation. Lateral boundary conditions
for the meteorological fields are taken from the NWP short
term forecasts with hourly resolution.

For the CH4 concentrations, we use initial and lateral
boundary concentrations from the CAMS global inversion-
optimized dataset (Segers and Houweling, 2020), version
v22r2, in the variant based on surface air-sample data for the
inversion. The CAMS data have a resolution of 1°× 1° and
are interpolated onto our model grid. In contrast to the meteo-
rological fields, the CH4 concentrations are only transported
and never re-initialized. Each transport ensemble member
uses slightly different initial and lateral boundary conditions
for meteorological fields (see Sect. 2.1.2), but equal CH4
concentrations on the lateral boundaries.

3.2 A priori CH4 fluxes

For the inversion, we employ a priori CH4 fluxes that were
compiled from six datasets of anthropogenic and natural
fluxes, as detailed in Table 3. We ensured mass conservation
when interpolating to our model grid. We generally distin-
guish between anthropogenic emissions excluding LULUCF,
and natural fluxes plus LULUCF. Since the input datasets
for anthropogenic emissions are based on reporting to the
UNFCCC, these distinguish between GNFR sectors follow-
ing the reporting conventions (Veldeman et al., 2013). For
the inversion, we combine these sectors and only distinguish
between agriculture and the sum of all other sectors as de-
scribed in Sect. 2.1.3. Natural plus LULUCF fluxes of CH4
are mostly dominated by wetland emissions, for which we do
not distinguish between natural and anthropogenic origin.

For Germany, we obtained a priori fluxes directly from the
national inventory agencies. The a priori LULUCF fluxes ob-
tained from the Thünen Institute cover the emissions from
mineral and organic soils. Notably, this excludes emissions
from artificial water bodies in Germany – such as ponds –
amounting to 160 kt or 8.5% of the total German emissions
in the national reporting, though these numbers are associ-
ated with large uncertainties (UBA, 2024, Table 399). These

emissions are missing in our a priori estimate, leading to a
low bias in the a priori.

3.3 Observations and pre-processing

We compare our model predictions to the high quality
ground-based in situ observations of CH4 concentrations col-
lected in the European Obspack (ICOS RI et al., 2024),
which includes the ICOS stations among others. These ob-
servations are assumed to be representative for a larger area
(Storm et al., 2023). Table C1 lists all 53 available stations
and Fig. 1 shows 50 stations that were used for the inversion.
For tower observations, we use up to three sampling heights
per station, preferring the highest three sampling heights and
discarding observations below 50 m above ground level to
reduce the influence of very local emissions. Due to signifi-
cant model–observation mismatch, we exclude the IPR, FKL
and LMP stations. For LUT, BIR and HUN we only consider
some seasons, specified in Table C1.

The model data are interpolated horizontally and vertically
to the station sampling locations. The vertical sampling lo-
cations in model coordinates are derived from the station
sampling heights and the modeled station elevations, depend-
ing on the station characteristics (column “mountain” in Ta-
ble C1). For high mountain stations, the modeled station el-
evation is given by the real station elevation above mean sea
level. For stations on smaller mountains, we consider the
arithmetic mean between real station elevation and model to-
pography as proposed by Brunner et al. (2012) and Henne
et al. (2016), and for all other stations the modeled station
elevation is set to the model topography.

To make use of observations which are likely well rep-
resented by the model, we filter the observations based on
the local time of day, wind speed, and model–data mismatch.
Table 4 lists how the root mean square error (RMSE) of the
model output changes during these pre-processing steps. We
start by smoothing both observations and modeled concen-
trations in a time window of approximately ±1.5 h around
each observation time as depicted in Fig. 3. This allows for
some uncertainty in the timing of modeled tracer transport.
The resulting correlation of neighboring time steps is auto-
matically considered in the ensemble-based uncertainty esti-
mate.

In the next steps, we filter the data by time in order to keep
only observations expected to be representative for large re-
gions. Observations within the planetary boundary layer are
most representative in the afternoon hours whereas measure-
ments at high mountains are less influenced by very local
fluxes at night time. Inversions therefore commonly use af-
ternoon observations for flat land stations and night times
at mountain sites (Bergamaschi et al., 2015; Steiner et al.,
2024b). We use the time windows 23:00 to 05:00 LMT (lo-
cal mean time) for stations on high mountains and 11:00 to
17:00 LMT for all other stations.
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Table 3. Input data for a priori CH4 fluxes. The second column lists where these fluxes were considered. Here, “Germany” refers to all model
grid cells that lie fully within the German borders. The national reporting distinguishes emissions by GNFR sectors of which A–M include
all anthropogenic emissions excluding land use, land use change and forestry (LULUCF).

Data provider Domain Fluxes Original
grid

Time
profile

Remarks

Umweltbundesamt
(UBA)

Germany GNFR
sectors A–M

native
(ICON)

constant Based on reporting to the UNFCCC
(UBA, 2023), spatially distributed using
the Gridding Emission Tool for ArcGIS
(GRETA 1.2.01) (S. Feigenspan,
T. Wernicke, and C. Mielke, personal
communication, 2024)

Thünen Institute Germany organic and
mineral soils
(part of
LULUCF)

100m×
100 m

constant Emissions from organic and mineral
soils, including wetlands but excluding
artificial ponds (approx. 160 ktCH4 yr−1)
(R. Fuß and J. Akubia, personal
communication, 2024)

CAMS-REG-ANT,
v7.0

model domain
excl. Germany

GNFR
sectors A–M

0.05°× 0.1° constant Based on data reported to the UNFCCC
for countries in Western and Central
Europe (incl. Finland and the Baltic
states) (Kuenen et al., 2021, 2022)

CAMS inversion
optimized, v22r2

model domain
excl. Germany,
excl. oceans

wetlands 1°× 1° monthly
averages

Variant using surface air-sample data for
the inversion (Segers and Houweling,
2020); Fluxes in model grid cells located
over the ocean are set to zero.

Rocher-Ros et al.
(2023), version 1.1

full model domain rivers and
streams

0.25°× 0.25° monthly
averages

Weber et al. (2019) oceans (full model
domain)

oceans 0.25°× 0.25° constant

Table 4. Average root mean square error (RMSE in ppb), mean absolute bias of the model prediction minus observation (in ppb), and number
of available data points after each processing step (1–6) for synthetic (left) and real observations (right). Each row adds a processing step
to all previous steps and improves the RMSE. Three numbers for steps 7 and 8 distinguish diagonal R, prior R, and posterior R inversion.
Step 7 (uncertainty weighting) is not a processing step in the inversion since it uses only the diagonal of the uncertainty matrix R, but
it underscores the importance of accurate uncertainty estimation. Step 8 refers to the result of the inversion. RMSE and absolute bias are
computed separately for each station, sampling height and month. The obtained values are weighted by the number of data points and
averaged. By taking the mean of multiple RMSEs for different stations, sampling heights and months, we obtain lower numbers than for
the RMSE of the combined dataset, which would average squared values and thereby would give higher weight to large deviations between
model and observations.

Step Synthetic observations (ppb) Real observations (ppb)

RMSE Absolute bias Data points RMSE Absolute bias Data points

1 horizontal and vertical interpolation – – – 27.6 9.6 6.02× 105

2 time average (3 h) 11.1 0.9 6.02× 105 25.8 9.6 6.02× 105

3 time window 11:00–17:00/23:00–05:00 LMT 10.2 1.1 1.48× 105 23.5 9.8 1.48× 105

4 minimal wind speed 2 ms−1 9.6 1.0 1.30× 105 22.4 9.7 1.30× 105

5 exclude extreme deviations 9.6 1.0 1.30× 105 21.5 9.4 1.29× 105

6 far-field correction 9.0 0.9 1.30× 105 19.4 7.2 1.29× 105

7 weight by inverse uncertainty 7.1, 6.9, 6.9 0.7, 0.8, 0.8 1.30× 105 14.4, 16.6, 16.6 5.7, 6.6, 6.6 1.29× 105

8 inversion (posterior) 6.9, 6.8, 6.8 0.6, 0.8, 0.6 1.30× 105 12.4, 14.2, 14.0 2.5, 3.4, 3.0 1.29× 105
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Figure 3. Weighting function for time interpolation of model
and observations. For example, an interpolated model point at
16:30 UTC averages over all model output between 15:30 and
17:30 UTC with full weight and another 1 h with linearly decreas-
ing relative weight. The model yields instantaneous values every
15 min, whereas observations are provided as hourly averages, three
of which contribute to the observational time average. Reference
times are those times for which observations are available.

We furthermore exclude times with no wind to avoid a
strong influence of local emissions that are not resolved in the
model, motivated by Ganesan et al. (2015). All data points
for which the model predicts a wind speed of < 2 ms−1 are
excluded, which improves the overall agreement of model
and observations as shown in Table 4 (step 4). Figure 4 shows
that the RMSE indeed increases significantly at low wind
speeds. This increase is partially captured by an increase of
the ensemble spread, supporting the idea of an uncertainty
estimate depending on wind speed as proposed by Bergam-
aschi et al. (2022).

In the last filtering step – step 5 in Table 4 – we exclude
data points with extreme mismatch between far-field cor-
rected a priori and observations, where |yi − (Hs)i − xff

i |>

200 ppb. Data points where yi − x
ff
i <−20 ppb are also dis-

carded. Since no strong sinks of CH4 are expected, the con-
tribution of CH4 from the lateral boundaries should not ex-
ceed the observations. Thus, an observation below the model-
predicted far field indicates an error in this far field. Steps 6–
8 in Table 4 complete our processing chain by applying the
far-field correction (Sect. 2.3), indicating the relevance of the
model uncertainty (Sect. 2.5 and 2.6), and finally using the
inversion results.

3.4 Synthetic observation experiments

To test our setup and analyze biases, we use synthetic ex-
periments in which observation data are replaced by model-
generated pseudo-observations. These synthetic experiments
use exactly the same setup and the same observation coordi-
nates. Only the observation values are replaced by the sim-
ulation result of one of our 12 ensemble members. We thus
obtain 12 separate datasets of pseudo-observations, in which
a transport error is simulated by using the transport ensemble
members. The true fluxes assumed for these synthetic exper-
iments are identical to the prior fluxes. This allows us to es-
timate a bias and a random error in the posterior scaling fac-
tor. We will repeat this procedure with modified true fluxes

Figure 4. Dependency of RMSE and proxies for the model uncer-
tainty on wind speed (left axis). All data points from step 3 in Ta-
ble 4 were ordered by the model-predicted wind speed and split into
100 bins, each containing approximately 1500 data points. The blue
line indicates the cumulative fraction of observations (right axis).
The figure shows the RMSE difference of model and observation
(black line), the mean ensemble spread multiplied by factor 4 (red
line), and the mean a priori concentration due to categorized emis-
sions (green line) for each of these bins. The ensemble spread is
the standard deviation of the model prediction in the 12 ensemble
members. It is a main contribution to our uncertainty estimate for
the model–data mismatch in the prior R and posterior R inversion.
The signal of categorized emissions is used to estimate the uncer-
tainty for the diagonal R matrix. Much of the larger RMSE at low
wind speed is well captured by the ensemble spread inflated by fac-
tor 4 and by the mean a priori emission signal. In the inversion, we
discard data points with wind speeds below 2 ms−1 (gray vertical
line).

in Sect. 4.3. An analysis of the sensitivity to random changes
in the true fluxes is included in Part 2 (Bruch et al., 2025a).

3.5 Summary and overview

We can now summarize the inversion method following the
required data streams in Fig. 5. After collecting the input
data for the transport simulation (Sect. 3.1 and 3.2, top of
Fig. 5), we prepare the inversion by categorizing the fluxes
(Sect. 2.1.3). The transport is simulated separately for the
deterministic and ensemble run (Sect. 2.1.1, white ellipses in
Fig. 5). Using observation data from the ICOS carbon por-
tal and the simulation output, we compute model equivalents
and filter these to ensure a high quality of the model predic-
tions (Sect. 3.3). The data from the deterministic run are used
to construct a far-field correction to mitigate uncertainties in
the boundary conditions (Sect. 2.3). The ensemble data are
used to construct the uncertainty matrix R(s) as required for
the prior R and posterior R inversion (Sect. 2.5.2). The far-
field corrected data and the R matrix serve as input for the
Bayesian inversion (Sect. 2.4). By combining the resulting
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Figure 5. Overview of the inversion system including input data sources. Arrows indicate data streams. Dashed lines indicate data streams
with small or negligible impact on the inversion results. Colored areas group the input data (top), the deterministic model run and data
processing (left), and the ensemble model run including processing of the resulting data (right). Colored text boxes distinguish gridded fluxes
(green), data in observation space (blue, matrices in purple), and data in the space of scaling factors (red). Observation data are included
when working in observation space (not explicitly marked). At the end of the processing chain (bottom), the three methods for estimating R
lead to different scaling factors from which we can compute national emission estimates.

posterior scaling factors with the categorized fluxes, we ob-
tain posterior flux estimates.

4 Results and discussion

In this section, we examine the presented inversion system
using synthetic experiments and sensitivity tests. We start by
considering synthetic observation experiments in which the
synthetic truth is equal to the a priori fluxes. Figure 6 shows a
statistical evaluation of inversion results for this case, which
we analyze for multiple aspects.

4.1 Random error

In Fig. 6, we see the bias (panels a and c) and random er-
ror (b and d) of the inversion results for selected countries
or emission sources relative to the a priori emissions, distin-

guishing the three methods for constructing R. The random
error is estimated by the standard deviation obtained from
144 inversions and indicates the precision or reliability of
these results for a single month. The comparison of the three
methods shows that the prior R and posterior R method lead
to a very similar random error, which is considerably lower
than for the diagonal R in all considered regions. This leads
to the conclusion that using a transport ensemble to estimate
uncertainties and their correlations can significantly reduce
the random error in emission estimates, independent of the
far-field correction.

Since the diagonal R construction uses different tuning pa-
rameters than the prior R and posterior R inversion, we need
to make sure that the chosen configurations are comparable.
This is achieved by aiming for a similar posterior uncertainty
in all methods for constructing R. Thin lines in Fig. 6b and d
show the posterior 1σ uncertainties to validate the similarity.

Atmos. Chem. Phys., 25, 17159–17185, 2025 https://doi.org/10.5194/acp-25-17159-2025



V. Bruch et al.: German methane fluxes estimated top-down using ICON–ART – Part 1 17171

Figure 6. Mean (a, c) and standard deviation (b, d) of monthly flux estimates relative to the prior in synthetic experiments for diagonal
R (blue), prior R (orange), and posterior R inversion (green). Each bar represents the posterior fluxes for 144 inversions, obtained from
12 datasets of pseudo-observations, each covering 12 monthly time windows. Black horizontal lines indicate the 2σ statistical uncertainty
estimate. Panels (a), (c) show the bias as the relative deviation of the mean posterior from the prior, which is equal to the synthetic truth. The
standard deviation (b, d) among the 144 emission estimates indicates the random error expected in each monthly inversion. Colored lines
in (b), (d) show the mean posterior 1σ uncertainty, which is similar for all three methods.

By comparing emission estimates without (panels a and b)
and with the far-field correction (c and d), one can identify
that the far-field correction changes the bias and slightly re-
duces the random error. Both effects are very similar for all
three choices of R. Since the far-field correction pulls the
simulated prior concentrations towards the observations, we
can expect that it brings the emission estimates closer to the
prior. But we can see in Fig. 6b and d that the resulting re-
duction in random error is only weak.

4.2 Inversion bias

The bias shown in Fig. 6a and c clearly depends on the far-
field correction. The pseudo-observations without far-field
correction have a bias of +0.5 ppb. The far-field correction
reverts this to a negative bias of −0.5 ppb due to a sampling
bias as explained in Sect. 2.3. Ideally, we would therefore
expect a small positive bias in Fig. 6a and an equally strong
negative bias in panel (c). But the bias differs depending on
how R is constructed.

For the diagonal R inversion, we see overall a positive bias
for most regions. This approximation for R assumes a large
uncertainty if the model predicts a strong signal from emis-
sions. For an imperfect transport model, this implies that the
model will tend to have a higher uncertainty when it over-
estimates the concentration and a lower uncertainty when it
underestimates the real emission signal. As the model is more
confident when observations are higher than the model pre-
diction, it will tend to overestimate the emissions.

For the prior R approximation, we find a negative bias in
the emission estimates in many regions. This may be due do
the plume bias problem introduced in Sect. 2.2. For the Up-
per Silesian Coal Basin as a very strong and localized source,

all methods show the expected negative bias. Notably, a con-
siderable negative bias is also found for the Netherlands as a
small country with high emission rates.

In the posterior R approximation, the negative bias for
plumes is reduced, but also all other emission estimates are
higher compared to the prior R inversion. To understand this,
we recall that a transport error in our model only leads to an
error in the predicted CH4 concentration if the concentration
field contains spatial gradients. Such gradients are caused by
emissions. Stronger emissions directly cause higher uncer-
tainty estimates in the meteorological ensemble. In the pos-
terior R inversion, the inversion can adjust the emissions of
the transport ensemble and thereby change the uncertainties.
As we optimize the agreement of model and observations rel-
ative to the uncertainties, the system will prefer larger uncer-
tainties. Thus, the inversion will tend to overestimate emis-
sions to reach higher uncertainties. This counteracts the neg-
ative plume bias, but it may also lead to a positive bias.

By combining bias and random error, we obtain the
RMSE. For Germany, the monthly results with far-field cor-
rection show an RMSE between 2.4% (posterior R) and
4.3% (diagonal R). For yearly totals, this reduces to 1.2%
for posterior R and 1.8% for diagonal R, while the prior
R inversion is dominated by the bias and has an RMSE of
2.9%. This indicates that the simulated transport error in our
synthetic experiments leads to an error of approximately 2%
on the German yearly total emission estimate. Overall, the
posterior R inversion shows the best performance as it has a
lower random error and only a small bias.
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4.3 Sensitivity to increased true emissions

To test the sensitivity of the inversion to true fluxes, we repeat
the synthetic experiments with an identical setup but different
pseudo-observations. For these new pseudo-observations, we
increase all anthropogenic emissions by 20%. The a priori
emissions remain unchanged and are thus lower than the syn-
thetic truth. The inversion results are summarized in Fig. 7,
which is analogous to Fig. 6.

Figure 7a and c show the mean posterior (bars) compared
to the synthetic truth (black vertical line). Without the far-
field correction, the inversion is too sensitive in many re-
gions, as it increases the emissions beyond the synthetic
truth. This leads to an overestimation, which is likely due
to the artificial lifetime of the flux category tracers (see
Sect. 2.1.4). With the far-field correction (panel c), the devia-
tion of the posterior from the prior is damped and we obtain a
low bias compared to the truth, as expected when the a priori
emissions are underestimated. The random error (b and d) re-
mains similar to the case with perfect prior emissions, albeit
a small increase can be seen (compare Fig. 6). Like for the
perfect prior emissions, the best performance with the lowest
RMSE is found for the posterior R inversion.

4.4 Sensitivity to bias and noise in observations

We now turn from the focus on the transport error to uncer-
tainties in the observations. To this end, we consider different
pseudo-observations without any transport error that follow
scenarios defined in Fig. 8. To avoid the transport error, we
generate these pseudo-observations based on the determinis-
tic model run. For simplicity, we only consider the average
of prior R and posterior R inversion.

In the first scenarios, we shift all pseudo-observations by
−5 ppb (case 01 in Fig. 8) and +5 ppb (case 02). This bias is
mostly compensated by the far-field correction with monthly
averages of ±2.75 to ±3.8 ppb, the sign depends on the sce-
nario. Because of this correction, the effect on the estimated
German total emissions remains well within the posterior
uncertainty. This is in stark contrast to the same scenarios
without the far-field correction (cases 03 and 04) and demon-
strates the benefits of the far-field correction.

We furthermore test the effect of correlated and uncorre-
lated Gaussian noise added to the observations (cases 10–
12), finding that the effect on the posterior emissions is small
compared to the posterior uncertainties. The correlated Gaus-
sian noise is a three-dimensional Gaussian random field in
flat (longitude, latitude, time) coordinates with a lower cut-
off for fluctuations on scales . 2.5° (horizontal) and . 12 d
(time) such that it acts as a slowly varying random bias. The
RMS of the noise is normalized to 5 ppb. For the last three
test cases (20–22), we scale either the natural and LULUCF
fluxes or all other emissions in the synthetic truth while leav-
ing the a priori emissions unchanged. Overall, the emission

estimates follow the change in the synthetic truth well as al-
ready found in Sect. 4.3.

4.5 Sensitivity to inversion parameters

Our inversion method has various tuning parameters. Above
we have described the inversion and synthetic experiments
for one choice of these parameters. We analyze the sensitiv-
ity to these parameters by repeating the inversion 50 times
with real observations and modified parameters. Table E1
lists these test cases with their ID, parameters, and influence
on the inversion results. An overview of the national emission
estimates for each test case is provided in Fig. E1. Here, we
summarize the main results and refer to Table E1 for details.
We use the average of the prior R and posterior R inversion
results and focus on the influence of the parameters on the
emission estimates, leaving the discussion of the inversion
results for Part 2 (Bruch et al., 2025a).

4.5.1 Comparison to observations

Before comparing model and observations, we apply multi-
ple filtering steps that influence the inversion results consid-
erably. Most prominently, selecting nighttime observations
for high mountain stations and afternoon hours for other sta-
tions strongly affects the inversion and improves the model
representativeness (case 201 in Table E1). This is one of only
five sensitivity tests with posterior fluxes deviating from the
reference case by & 30% of the posterior uncertainty, which
we call a strong change in inversion results. Other filtering
parameters such as the number of sampling heights used per
station (case 202) and the minimal wind speed (cases 203–
205) affect the inversion results noticeably, although changes
are small compared to the uncertainties. Limiting the influ-
ence of outliers with model–observation mismatch |µi |>

3
√

R′ii by increasing their uncertainty (see Sect. 2.6.2) has
a considerable impact (cases 208, 209). Completely neglect-
ing extreme outliers – defined by |yi−(Hs)i−xff

i |> 200 ppb
or yi − x

ff
i <−20 ppb – has only a small effect (cases 206,

207).
The choice of observation sites is analyzed in cases 601

and 602, which select subsets of stations with good observa-
tion coverage over the full year. When using only 27 stations
(case 602), the results change strongly compared to the ref-
erence case with 50 stations, also because some regions are
hardly observed in case 602. Varying the elevation of high
mountain stations has only little impact on the inversion re-
sults (case 100). The effect of time-averaging over 3 h (as
chosen in step 2 of Sect. 3.3) is noticeable in the results, but
small compared to the uncertainties (case 101).
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Figure 7. Mean (a, c) and standard deviation (b, d) of monthly flux estimates relative to the prior in synthetic experiments with 20%
increased anthropogenic emissions in the synthetic truth for diagonal R (blue), prior R (orange), and posterior R inversion (green). In (a, c),
the a priori has value 1.0 and a black vertical line shows the synthetic truth. Bars connect the prior to the posterior. Like in Fig. 6, each bar
represents the posterior fluxes for 144 inversions, combining 12 months with 12 datasets of pseudo-observations. Horizontal lines show 2σ
statistical uncertainties and colored lines in (b), (d) indicate the posterior 1σ uncertainty.

Figure 8. Total posterior emissions in 2021 of selected countries and German sectors for synthetic experiments with perfect transport.
Markers show the average of the emission estimates obtained from the prior R and posterior R inversion. Thin horizontal lines indicate the
synthetic truth. Vertical lines show uncertainties (95% confidence intervals).

4.5.2 Uncertainty

The diagonal R inversion deviates from the reference case
by one third of the posterior uncertainty (case 311). Also
the construction of the error covariance matrix R follow-
ing Sects. 2.5 and 2.6 contains numerous tuning parameters.
Key parameters are the overall uncertainty inflation factors fi
(Sect. 2.6.3, cases 302 and 303 in Table E1) and the uncorre-
lated additive uncertainty σconst (see Eq. 2) of each data point
(cases 309, 310). Variations of these parameters change the
inversion results considerably. The tuning parameter σconst
illustrates the importance of hidden patterns in the consid-
ered data. Increasing to σconst = 20 ppb effectively reduces

the weight of observations with a small ensemble-estimated
transport uncertainty. As observations with strong emission
signals and high transport uncertainty become more relevant,
the emission estimate for Germany is increased by 5% (case
310 in Fig. E1).

Other important parameters are the correlation scales in
the localization matrix C for the ensemble-based uncertainty
estimate (see Sect. 2.5.2). The overall effect of these scales
on the posterior scaling factors is small (cases 304–308),
but these parameters also influence the posterior uncertain-
ties. The sensitivity tests indicate that 12 ensemble members
are sufficient to estimate the uncertainties and correlations
even without a strong localization. In general, we expect that
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a larger transport ensemble will yield better statistical esti-
mates for uncertainties and their correlations. This reduces
the need for a localization which suppresses spurious cor-
relations. The considered additional plume localization un-
certainty (see Sect. 2.6.1, cases 300 and 301) arising from
the Upper Silesian Coal Basin seems negligible when con-
sidering the full domain. However, the additional plume lo-
calization uncertainty reduces the negative bias for the plume
emissions that was discussed in Sect. 2.2.

4.5.3 Far-field correction

The synthetic experiments already showed that the far-field
correction introduced in Sect. 2.3 influences the results con-
siderably (see Figs. 6 and 7). When using real observations,
removing the correction field leads to strong changes in the
inversion results (case 400), albeit the results remain within
the posterior uncertainty bounds. Without the correction, the
scaling factors for some natural fluxes in Scandinavia even
become negative for some months – a clearly unrealistic re-
sult that underlines the importance of the far-field correction.
However, changing various tuning parameters of the far-field
correction within a reasonable range has much smaller ef-
fects. The selection of data points used for the far-field cor-
rection (cases 409, 410) and the overall correction strength
(cases 401, 402) have modest influence, whereas correlation
scales in the correction play a minor role (cases 403–408).
The additional uncertainty added to R due to the far-field cor-
rection (see Sect. 2.6.4) has little influence on the inversion
results (cases 412–414).

4.5.4 A priori error covariance matrix

Modifying the a priori uncertainty or correlations of the scal-
ing factors (B in Eq. 1) changes the results quantitatively, but
not qualitatively (cases 500–502). A coarser spatial resolu-
tion in Germany (case 504) and different choices of sectors
(cases 503, 506) yield aggregated German sector emissions
that agree well with the reference case.

4.5.5 Inversion time windows

In the reference case, we considered each month indepen-
dently. Increasing the inversion time windows to 3 months
has a considerable influence on the results (case 702). As the
inversion time window increases, the overall weight of the
observations in the inversion also increases. Thus, posterior
uncertainties are reduced and the deviations between poste-
rior and prior are amplified.

5 Conclusions

This study introduced a new flux inversion system that ex-
plores the potential of a transport ensemble from NWP

for observation-based regional estimation of methane emis-
sions. In experiments with pseudo-observations and simu-
lated transport error, we found that using a transport ensem-
ble can substantially reduce the random error of the flux
estimates compared to a simple baseline scenario (“diago-
nal R”). This is in line with findings by Ghosh et al. (2021)
and by Steiner et al. (2024a), who estimated CH4 emissions
in Europe using an ensemble Kalman smoother. But in con-
trast to Ghosh et al. (2021), who studied CO2 at urban scale
using an ensemble transform Kalman filter, we identified no
significant improvement in the bias of the emission estimates.
Instead, our results indicate systematic biases depending on
the emissions characteristics. Most notably, localized sources
causing strong plumes can be underestimation by 10% by
our synthesis inversion. To benefit from the transport ensem-
ble and to reduce such biases, we proposed to use the pos-
terior concentrations in the ensemble when constructing R.
This posterior R inversion showed the best performance in
the synthetic experiments. Overall, we expect an error of 2%
for the total German CH4 emissions in 2021 in our inversion
system due to random transport errors.

When applying our regional inversion system to real ob-
servations, we face the challenge of uncertain CH4 concen-
trations at the lateral boundaries. Different approaches ex-
ist to correct biased boundary conditions. In some cases, se-
lected measurements can provide a baseline (Lauvaux et al.,
2013). At national or continental scale, a coarse discretiza-
tion of the boundaries allows optimization along with the
emissions (Ganesan et al., 2015; Steiner et al., 2024b). Here,
we followed a different path by adding a smooth correction
field for the simulated concentrations. This allowed us to use
different time scales for the inversion and the far-field correc-
tion. The far-field correction causes a small bias towards the
prior fluxes, but without the correction we expect errors from
wrongly projecting any boundary bias onto the fluxes. We
demonstrated the potential of the far-field correction using
biased pseudo-observations and analyzed its importance in
sensitivity tests, for which we repeated the inversion with dif-
ferent tuning parameters. These tests with real observations
show that switch on the far-field correction changes the re-
sults considerably within the uncertainty ranges, but the spe-
cific choices made in constructing the correction field have
only minor or moderate effects. Also other tested changes in
tuning parameters only lead to variations of the full-year flux
estimates well within the uncertainty ranges, indicating that
we found robust settings for our application. This establishes
a basis for applying our system to validate the German emis-
sion inventory in Part 2 (Bruch et al., 2025a).

The presented novel inversion system leverages the poten-
tial of the ICON–ART model and the ensemble modeling ca-
pabilities from operational NWP for national scale estima-
tion of CH4 fluxes. It is tailored to the validation of national
inventories by using high-resolution a priori emission esti-
mates from national reporting and allowing for distinguish-
ing emission sectors, as will be discussed in detail in Part 2.
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With synthetic experiments and sensitivity tests we demon-
strated the suitability for estimating national CH4 emissions.

Appendix A: Formal definition of far-field correction

This appendix provides details for the far-field correction in-
troduced in Sect. 2.3. We correct the computed far field by
a smooth field that is determined using all data points where
the cumulated signal of all flux categories is at most 20 ppb,
the total concentration due to all fluxes in the domain – in-
cluding natural and uncategorized fluxes – is at most 50 ppb,
and natural plus LULUCF fluxes contribute at most 20 ppb.
These criteria aim to select only measurements of sufficiently
clean air for the far-field correction.

The far-field correction is realized as a Kalman smoother
on the selected data points. For simplicity, we only provide
the definition of the correction at the observation coordi-
nates. Consider the vector of all model predictions x, which
is aligned with the observation vector y. By P we denote the
projector selecting those data points that shall be used to de-
termine the far-field correction. We aim to find a correction
vector c aligned with x and y that minimizes

arg min
c

{1
2

(x+ c− y)>P>
(
PR̃P>

)−1P(x+ c− y)

+
1
2
c>P>

(
PC̃P>

)−1Pc
}
, (A1)

where R̃= 16I is a diagonal matrix and C̃ a Gaussian local-
ization matrix with standard deviations 16 h (time), 319 km
(horizontal) and 1 km (vertical), normalize to C̃ii = 1 for all
i. The matrix C̃ ensures that the correction field c is smooth
on these scales. For the under-determined Eq. (A1) we use
the solution

c = C̃P>
[
P(C̃+ R̃)P>

]−1P(y− x). (A2)

This only defines c at the observations, but we can generalize
Eq. (A2) to arbitrary locations and times by including these
coordinates in C̃. Formally, this then defines a smooth field.

To prove that Eq. (A2) is one possible – albeit not unique
– solution of Eq. (A1), we use that Eq. (A1) is a quadratic
form and compute its gradient with respect to c:

0 !=P>
(
PR̃P>

)−1P(x+ c− y)

+P>
(
PC̃P>

)−1Pc. (A3)

Since PP> has full rank, this implies that

0 !=
[(

PR̃P>
)−1
+
(
PC̃P>

)−1]Pc
+
(
PR̃P>

)−1P(x− y) (A4)

H⇒ Pc =
[
1+PR̃P>

(
PC̃P>

)−1]−1P(y− x) (A5)

=PC̃P>
[
P(C̃+ R̃)P>

]−1P(y− x). (A6)

It follows that Eq. (A2) is a solution of Eq. (A1) that is
independent of the non-selected data points. One can fur-

thermore show that Eq. (A2) is optimal in the sense that it
minimizes c>C̃−1c under constraint that c is a solution of
Eq. (A1). Thus, this solution is as close as possible to zero
under the constraint of smoothness (quantified by C̃). By
defining ξ = [P(C̃+ R̃)P>]−1P(y− x) and introducing La-
grange multipliers λ, we obtain

f (c,λ)= c>C̃−1c+λ>(Pc−PC̃P>ξ ),
∂f

∂ci
= 0,

∂f

∂λj
= 0, (A7)

c =−C̃P>λ from ∂cif (c,λ)= 0, (A8)

Pc = PC̃P>ξ from ∂λj f (c,λ)= 0. (A9)

Since PC̃P> has full rank, combining Eqs. (A8) and (A9)
implies that λ=−ξ and thereby c = C̃P>ξ is the unique so-
lution of the optimization problem arg mincf (c,0) under the
constraint that Pc = PC̃P>ξ .

Appendix B: Posterior R with reduced ensemble

When using a priori scaling factors to estimate the model un-
certainty in R, we need only the total concentration xmi (sprior)
for each ensemble member m and each observation i, where
sprior is known. Thus, only a single tracer field is required in
the ensemble transport simulation. To compute xmi (s) for ar-
bitrary s ∈ R46, the flux categories need to be distinguished
for each ensemble member, resulting in > 40 tracer fields
in the ensemble simulation. To avoid wasting numerical re-
sources, we chose to approximate xmi (s) by only a few tracer
fields, using additional information from the deterministic
model run which distinguishes all tracer fields.

From the deterministic model run, we know the operator
H mapping scaling factors s to a model prediction Hs+ xff

for the concentrations. For ensemble member m, we would
ideally know Hm and xff,m to compute a model prediction
Hms+ xff,m. In lack of computational resources to compute
Hm for every ensemble member, we combine information
from the deterministic run (H) and selected tracers for the
ensemble run to approximate Hm. We group the flux cat-
egories into groups {g} and denote by Pg the projector of
scaling vectors s on the subspace spanned by the flux cate-
gories in group g. In the ensemble members, we compute the
total concentration from group g, xmg

i =HmPgsprior. We dis-
tribute the 46 flux categories to only three groups and thereby
reduce the computational effort considerably. To estimate the
full dependence on the scaling factors in the ensemble, we
approximate:

xmi (s)≈
∑
g

(HPgs)i(
HPgsprior

)
i

x
mg
i + x

ff,m
i . (B1)

Thus, we compute the transport ensemble for a few tracer
groups and estimate xm(s) for arbitrary s by using the ratios
of tracer fields within the tracer groups from the deterministic
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run. Using the approximation in Eq. (B1), we estimate the
posterior model uncertainties with only five tracer fields in
an ensemble of 12 transport simulations:

1. far field (initial and lateral boundary conditions)

2. total anthropogenic fluxes

3. total natural fluxes

4. total anthropogenic fluxes from Germany with lifetime
5 d

5. total anthropogenic fluxes from outside Germany with
lifetime 5 d
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Appendix C: Observation sites

Table C1. Observation stations from the European Obspack (ICOS RI et al., 2024). Column 6 (“mountain”) characterizes the stations as
high mountains, small mountains, and other stations. This serves as a reference for computing the station height in the model and for the
daily time window. We indicate the sampling heights used in the inversion (column 7) and mark those sampling heights with an asterisk that
have good observation coverage in each month (used in sensitivity test 602). Column 8 indicates times in which the station was excluded due
to modeling problems. Column 9 (“inflation”) defines the factor fi of the static uncertainty inflation (see Sect. 2.6.3).

Code Name Country ICOS Elevation Mountain Sampling heights Limitations Inflation
class (m) (m)

BIK Białystok PL – 183 no 90, 180, 300 2
BIR Birkenes NO 2 219 no 75 excl. Apr–Aug 3
BIS Biscarrosse FR – 73 small 47∗ 2
BRM Beromunster CH – 797 no 72, 132, 212 2
BSD Bilsdale UK – 382 no 108, 248 2
CBW Cabauw NL 1 0 no 67, 127∗, 207∗ 2
CMN Monte Cimone IT 2 2165 high 8 2
CRA Centre de Recherches

Atmosphériques
FR – 600 no 60∗ 2

CRP Carnsore Point IE – 9 no 14 2
ERS Ersa FR – 533 small 40 3
FKL Finokalia GR – 250 small – excluded –
GAT Gartow DE 1 70 no 132∗, 216∗, 341∗ 2
HEI Heidelberg DE – 113 no 30∗ 3
HEL Helgoland DE 2 43 no 110∗ 2
HPB Hohenpeissenberg DE 1 934 small 50, 93∗, 131∗ 2
HTM Hyltemossa SE 1 115 no 70, 150 2
HUN Hegyhátsál HU 2 248 no 82, 115 incl. Mar–Oct 3
IPR Ispra IT 2 210 no – excluded –
JFJ Jungfraujoch CH 1 3571.8 high 13.9 2
JUE Jülich DE 2 98 no 120∗ 3
KAS Kasprowy Wierch PL – 1987 high 7∗ 2
KIT Karlsruhe DE 1 110 no 60∗, 100∗, 200∗ 2
KRE Křešín u Pacova CZ 1 534 no 50, 125, 250 2
LHW Laegern-Hochwacht CH – 840 small 32 3
LIN Lindenberg DE 1 73 no 98 2
LMP Lampedusa IT 2 45 no – excluded –
LMU La Muela ES – 571 no 79 2
LUT Lutjewad NL 2 1 no 60 excl. Nov–Dec 2
MHD Mace Head IE – 5 no 24∗ 2
MLH Malin Head IE – 22 no 47 2
NOR Norunda SE 1 46 no 58∗, 100∗ 2
OHP Observatoire de Haute

Provence
FR – 650 no 50, 100 2

OPE Observatoire pérenne de
l’environnement

FR 1 390 no 50∗, 120∗ 2

OXK Ochsenkopf DE 1 1022 small 90, 163 2
PAL Pallas FI 1 565 no 12∗ 2
PDM Pic du Midi FR – 2877 high 28 2
PRS Plateau Rosa IT 2 3480 high 10 2
PUI Puijo FI 2 232 small 84∗ 2
PUY Puy de Dôme FR 2 1465 small 10∗ 2
RGL Ridge Hill UK 2 207 no 90∗ 2
ROC Roc’h Trédudon FR – 362 no 25, 80, 140 2
SAC Saclay FR 1 160 no 60∗, 100∗ 2
SMR Hyytiälä FI 1 181 no 67.2∗, 125∗ 2
SSL Schauinsland DE 2 1205 small 12, 35 2
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Table C1. Continued.

Code Name Country ICOS Elevation Mountain Sampling heights Limitations Inflation
class (m) (m)

STE Steinkimmen DE 1 29 no 127∗, 187∗, 252∗ 2
SVB Svartberget SE 1 269 no 85∗, 150∗ 2
TAC Tacolneston UK – 64 no 54∗, 100∗, 185∗ 2
TOH Torfhaus DE 2 801 small 76∗, 110∗, 147∗ 2
TRN Trainou FR 2 131 no 50∗, 100∗, 180∗ 2
UTO Utö – Baltic sea FI 2 8 no 57∗ 2
WAO Weybourne UK 2 17 no 10∗ 2
WES Westerland DE 2 12 no 14 2
ZSF Zugspitze DE 2 2666 high 3∗ 2

Appendix D: χ2 analysis

In this appendix, we provide the mathematical details for the
χ2/Ndof analysis (see, e.g., Greenwood and Nikulin, 1996)
used in Sect. 2.6.5. The aim of this analysis is to quantify
whether the data used in the inversion agree with the assumed
uncertainties. We restrict this analysis to the prior R and di-
agonal R inversion, for which the matrix R is constant. These
inversions formally rely on the assumption of Gaussian prob-
ability distributions of the a priori scaling factors (error co-
variance matrix B) and the model–observation mismatch (R).

We start from the probability density of observations y un-
der the assumption that s describes the true emissions:

P (y|s)∝ exp
[
−

1
2

(y−Hs−xff)>R−1(y−Hs−xff)
]
. (D1)

Like in the inversion, R describes uncertainties in
the transport, in the corrected far-field contribu-
tion xff, and in the observations y. By a change of
variables we obtain the probability for the a priori
model–observation mismatch µprior

= y−Hsprior
− xff:

P (µprior
|s)dµ= P (y|s)|y=Hsprior+xff+µpriordy.

To estimate whether a given µprior is realistic, we need to
integrate out the scaling factors s to obtain P (µprior). We de-
note the integral over the vector space of scaling factors s
with probability measure dPs by

∫
s • dPs =

∫
sP (s)•dns for

s ∈ Rn. Using the above definitions in Eq. (D1), we obtain3

(Berchet et al., 2015)

3In Eq. (D5), we first solve the Gaussian inte-
gral to obtain exp

{
−

1
2µ

prior>
[R−1

−R−1H(B−1
+

H>R−1H)−1H>R−1
]µprior} and then use that (R+

HBH>)[R−1
−R−1H(B−1

+H>R−1H)−1H>R−1
] = I.

P (µprior)

=

∫
s

P (µprior
|s)dPs (D2)

∝

∫
s

exp
[
−

1
2

(y−Hs− xff)>R−1(y−Hs− xff)

−
1
2

(s− sprior)>B−1(s− sprior)
]
y=Hsprior+xff+µprior d

ns (D3)

τ=s−sprior
=

∫
τ

exp
[
−

1
2

(µprior
−Hτ )>R−1(µprior

−Hτ )

−
1
2
τ>B−1τ

]
dnτ (D4)

∝ exp
[
−

1
2
µprior>(R+HBH>

)−1
µprior] (D5)

=: exp
(
−

1
2
µprior>Qµprior). (D6)

This result is a high-dimensional Gaussian probability distri-
bution, µprior

∼N (0,Q−1). When drawing a random vector
µ from a probability distribution P (µ) as in Eq. (D6), it is
very likely to find µ such that χ2

≡ µ>Qµ≈Ndof where
Ndof denotes the number of degrees of freedom, which is the
dimension of vector µ. In our case,Ndof ∼ 104 is the number
of observation data points used per 1 month time window. In
the limit of large Ndof, one can approximate the probability
distribution for χ2 by χ2

∼N (Ndof,2Ndof) (Gaussian dis-
tribution with mean Ndof and variance 2Ndof) (Abramowitz
and Stegun, 1964, Sect. 26.4). Thus, in an idealized setup
we expect that χ2/Ndof = 1± 0.03 (95% confidence inter-
val). Values & 1.05 hint at underestimated uncertainties and
χ2/Ndof . 0.95 indicates that uncertainties were too high.
However, in reality we may have biases and not fully de-
scribed errors such that the assumption of a Gaussian uncer-
tainty in the model–observation mismatch becomes invalid
and χ2/Ndof < 1 does not necessarily imply that uncertain-
ties can simply be reduced.
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Appendix E: Sensitivity tests

Table E1 provides an overview of the sensitivity tests. For
this table, we quantify the impact of a parameter variation on
the inversion results by the following, heuristic metric: Con-
sider a fixed region, sector and inversion time window with
posterior fluxes F , defined as the average of the prior R and
posterior R inversion result. The normalized deviation from
the reference inversion is defined as 1= 2|F−F ref.

|

F ref. upper−F ref. lower ,
where F ref. upper and F ref. lower denote the bounds of the pos-
terior uncertainty range. The overall impact is computed as
the arithmetic mean of 1 over the (usually monthly) time
windows and a selection of regions and sectors. In the re-
gions UK+Ireland, France, Italy, Poland, Austria+Czechia,
the Netherlands, Belgium+Luxembourg, Switzerland, and
Denmark we consider only total fluxes without distinguish-
ing sectors. In Germany we include 1 for the total fluxes in
four different regions (north, east, south, west) and addition-
ally for national total fluxes distinguishing the three sectors
agriculture, natural plus LULUCF, and other sectors. Effec-
tively, this counts all fluxes in Germany twice and gives them
more weight in the impact metric for Table E1.

Table E1. Sensitivity tests for estimating the robustness of the inversion results with respect to tuning parameters. Modified numbers are
marked in bold font. The impact column quantifies the deviation of the inversion results relative to the uncertainties and shall qualitatively
indicate the relevance of the modified parameters (see explanation in the text). An impact of 100% means that the average deviation from the
reference case is as large as the posterior uncertainty. Overall, we see that most tests have an impact of . 15%, implying that the effect on
the inversion results is small compared to the uncertainty in the reference case. See also Fig. E1 for the posterior emissions in the sensitivity
tests.

ID Test case Explanation Impact

0 reference reference case as explained in Sects. 2 and 3 and discussed in Part 2 (Bruch
et al., 2025a), uses 129117 observations in 2021

Model equivalent calculation (see Sect. 3.3)

100 station elevation for mountain
stations

treat all mountain stations like small mountains when computing model
heights, as proposed by Brunner et al. (2012), Henne et al. (2016),
Bergamaschi et al. (2022), uses 127087 observations

5.3 %

101 no additional time averaging average over 1 h like in the observations, instead of averaging 3 h 13 %

Filtering observations (see Sect. 3.3)

200 fewer hours of day use time window 12:00–16:00 LMT (00:00–04:00 for high mountains),
85 674 observations 11:00–17:00/23:00–05:00 LMT)

11 %

201 all hours of day no filtering by time of day, increase uncertainty inflation (factors fi in
Sect. 2.6.3) by factor 1.5, uses 508594 observations

38 %

202 one sampling height per station use only highest sampling height of each station instead of up to 3 highest
levels, 80132 observations

16 %

203 no filtering based on wind include data points with low wind speed, 147019 observations 12 %
204 low min. wind speed minimum wind speed: 1.11 ms−1 (reference: 2 ms−1), 140650 obs. 9.4 %
205 high min. wind speed minimum wind speed: 3.0 ms−1 (reference: 2 ms−1), 112275 obs. 11 %
206 low max. model-obs. mismatch discard when |yi − (Hs)i − xff

i
|> 120 ppb or yi − x

ff
i
<−12 ppb,

127055 obs. (reference case: 200 ppb /−20 ppb)
3.5 %

207 high max. model-obs. mismatch discard when |yi − (Hs)i − xff
i
|> 300 ppb or yi − x

ff
i
<−30 ppb,

129706 obs.
1.3 %

208 low max. data point influence increase uncertainty if |µi |> 2.5
√

Rstep 1
ii

in Sect. 2.6.2 (reference value: 3) 11 %

209 high max. data point influence increase uncertainty if |µi |> 4
√

Rstep 1
ii

in Sect. 2.6.2 (reference value: 3) 15 %
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Table E1. Continued.

ID Test case Explanation Impact

Uncertainty/error covariance matrix R (see Sects. 2.5 and 2.6)

300 no plume uncertainty no extra uncertainty due to localized emissions (Sect. 2.6.1) 0.27 %
301 high plume uncertainty extra uncertainty: Rstep 1

ij
= R′

ij
+ 0.5ρ2

i
δij in Sect. 2.6.1 (reference: 0.25) 0.56 %

302 low uncertainty inflation uncertainty inflation by fi = 1.5 or 2.25 instead of 2 or 3 in Sect. 2.6.3 8.6 %
303 high uncertainty inflation uncertainty inflation by fi = 3 or 4.5 instead of 2 or 3 in Sect. 2.6.3 13 %
304 small horizontal error correlation

scale
scale 191 km instead of 319 km in localization matrix Cij (Sect. 2.5.2) 6.0 %

305 large horizontal error correlation
scale

scale 510 km instead of 319 km in localization matrix Cij (Sect. 2.5.2) 8.3 %

306 small vertical error correlation scale scale 400 m instead of 1 km in localization matrix Cij (Sect. 2.5.2) 2.3 %
307 short error correlation time scale scale 4 h instead of 6 h in localization matrix Cij (Sect. 2.5.2) 2.5 %
308 long error correlation time scale scale 10 h instead of 6 h in localization matrix Cij (Sect. 2.5.2) 2.8 %
309 low uncorrelated uncertainty σconst = 5 ppb instead of 10 ppb in Eq. (2) 21 %
310 high uncorrelated uncertainty σconst = 20 ppb instead of 10 ppb in Eq. (2) 22 %
311 diagonal R without ensemble see Sect. 2.5.1 33 %

Far-field correction (see Sect. 2.3 and Appendix A)

400 no far-field correction 35 %
401 weak far-field correction R̃= 100I instead of 16I in Eq. (A1) 16 %
402 strong far-field correction R̃= 2.78I instead of 16I in Eq. (A1) 9.2 %
403 small horiz. far-field correction

scale
scale 191 km instead of 319 km in localization matrix C̃ij in Appendix A 6.8 %

404 large horiz. far-field correction scale scale 510 km instead of 319 km in localization matrix C̃ij in Appendix A 4.5 %
405 short far-field correction time scale time scale 10 h instead of 16 h in localization matrix C̃ij in Appendix A 3.7 %
406 long far-field correction time scale time scale 28 h instead of 16 h in localization matrix C̃ij in Appendix A 3.8 %
407 extra-long far-field correction time time scale 48 h instead of 16 h in localization matrix C̃ij in Appendix A 7.1 %
408 low vertical far-field correction

scale
scale 400 m instead of 1 km in localization matrix C̃ij in Appendix A 0.92 %

409 strict far-field observation selection construct far-field correction based on observations with cumulated signal
from categorized fluxes ≤ 10 ppb (reference: 20 ppb) and from natural fluxes
≤ 10 ppb (reference: 20 ppb)

20 %

410 loose far-field observation selection far-field correction uses observations with cumulated signal from categorized
fluxes ≤ 30 ppb (ref.: ≤ 20 ppb), from natural fluxes ≤ 30 ppb (ref.: 20 ppb),
and from all emissions within the domain ≤ 80 ppb (ref.: 50 ppb)

14 %

411 unrestricted iterative far-field
correction

far-field correction uses all observations with cumulated signal from
categorized fluxes ≤ 50 ppb; C̃ij uses localization scales 10 h, 191 km;
far-field correction and inversion are iterated 3 times, the correction always
uses the posterior concentrations from the previous iteration. This
aggressively suppresses large scale signals (biases) in the observations.

30 %

412 low correction uncertainty use Rstep 4
ij

= Rstep 3
ij
+ 0.25|cicj |C̃ij in Sect. 2.6.4 (reference value: 0.5) 2.5 %

413 high correction uncertainty use Rstep 4
ij

= Rstep 3
ij
+ 1.0|cicj |C̃ij in Sect. 2.6.4 (reference value: 0.5) 4.2 %

414 uncorrelated correction uncertainty use Rstep 4
ij

= Rstep 3
ij
+ 2c2

i
δij in Sect. 2.6.4 3.6 %

A priori scaling factor error covariance matrix B (see Sect. 2.8)

500 low prior uncertainty 1σ prior uncertainty set to 0.25 (ref.: 0.4) for well-observed areas, 0.2 (ref.:
0.25) for remote and plume categories, 0.33 (ref.: 0.5) for sector-resolving
categories

14 %

501 high prior uncertainty in Germany prior uncertainty such that national total sector emissions in Germany have
1σ uncertainty 60% for each distinguished sector (reference: approx. 40%)

8.6 %

502 uncorrelated prior, B is diagonal 1σ prior uncertainty in sector categories in Germany: 0.75; uncertainty on
national total: 35% for agriculture, 39% for other anthropogenic

5.6 %

503 no sector distinction in prior four regions in Germany with uncorrelated 1σ prior uncertainty of 0.4 7.7 %
504 low spatial resolution in Germany two initially uncorrelated regions in Germany (south-west and north-east),

each distinguishing sectors like in the reference case
15 %

506 distinguish 5 sectors in Germany split “non-agr.” into sectors waste, public power, and other emissions 2.1 %
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Table E1. Continued.

ID Test case Explanation Impact

Station selection

601 require full-year coverage require ≥ 10 days coverage each month: 35 of 50 stations, 105701 obs. 13 %
602 require good full-year coverage require ≥ 20 days coverage each month: 27 of 50 stations, 82912

observations (discussed in Fig. A2 of Part 2)
33 %

Inversion time windows (see Sect. 2.7)

701 2 month inversion window uncertainties are not adjusted to the longer window 12 %
702 3 month inversion window uncertainties are not adjusted to the longer window 18 %

Figure E1. Posterior emissions and uncertainties of selected countries and German sectors for all sensitivity tests. Thin horizontal lines
indicate the posterior of the reference case 0. Markers show the average of prior R and posterior R inversion. Vertical lines show uncertainties
(95 % confidence intervals) and cover the uncertainty range of prior R and posterior R inversion. The individual tests are listed in Table E1.
For all test cases, the emission estimates for the shown countries remain within the uncertainty range of the reference case.
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