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Abstract. Currently, the diurnal asymmetric and nonlinear mechanisms by which urban morphology modulates
the canopy urban heat island (CUHI) during heat wave (HW) periods remain underexplored. This study aims
to fill this gap by focusing on the area within the Fifth Ring Road of Beijing, integrating three complementary
methods: XGBoost (to identify key morphological drivers), ENVI-met (to reveal nonlinear regulatory processes),
and wind environment analysis (to supplement dynamic modulation). The results show that: (1) HW periods sig-
nificantly enhance CUHI intensity (CUHII) compared to non-heat wave (NHW) periods, with a 91.3 % increase
in daytime and 52.7 % at night; (2) XGBoost identifies building coverage ratio (BCR) as the core daytime driver
of CUHII, while sky view factor (SVF) dominates at night, and both 2D and 3D morphological indicators ex-
ert stronger effects during HW periods; (3) ENVI-met simulations reveal nonlinear mechanisms of building
height/SVF: daytime thermal environments are co-driven by short-wave radiation shading and ventilation resis-
tance (as SVF decreases), while nighttime environments are dominated by long-wave radiation accumulation by
buildings; (4) Wind environment analysis further shows diurnal differences in wind’s role: nighttime ventilation
corridors mitigate CUHII by 33.91 %—42.09 %, while daytime prevailing winds may exacerbate downstream
CUHII via thermal advection. These findings clarify the diurnal asymmetric mechanisms of CUHI and provide
scientific support for urban morphological optimization under extreme heat.

the CUHII is amplified significantly during HW periods. In

The latest assessment report from the Intergovernmental
Panel on Climate Change (IPCC) indicates a significant in-
crease in the frequency, intensity, and duration of extreme
heat events (IPCC, 2021). The CUHI, the phenomenon of
abnormal air temperature from near-surface to roof height,
has become a research focus due to its direct impact on out-
door thermal comfort and building energy consumption (Bat-
tista et al., 2023; Shi et al., 2024). Notably, in particular,

megacities such as Beijing, Shanghai and Guangzhou, China,
the intensity of canopy heat island increases by 0.8 to 1.2 °C
during HW periods (Jiang et al., 2019; Yang et al., 2023),
with a marked expansion in diurnal amplitude (Ao et al.,
2019; Shi et al., 2024).

Against the backdrop of urban heat island mitigation, de-
ciphering the mechanism by which complex urban morphol-
ogy drives local thermal environments is of critical scientific
significance (Berger et al., 2017; Huang and Wang, 2019;
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Wau et al., 2022; Guo et al., 2023). Existing studies show that
two-dimensional urban morphological indicators (e.g., build-
ing area ratio, aggregation index) are key controlling fac-
tors for local thermal environments (Henits et al., 2017; Shi
et al., 2021). With the widespread use of three-dimensional
building data, research confirms that three-dimensional mor-
phological indicators such as building height, SVF exhibit
stronger explanatory power for local thermal environments
(Shao et al., 2023; Zhang et al., 2023; Ding et al., 2024).
Although there are conflicting conclusions regarding the cor-
relation between three-dimensional morphological elements
and thermal environments (e.g., SVF showing a positive,
negative, or no significant correlation with local temperature)
(Huang and Wang, 2019; Li and Hu, 2022), their inclusion in
models can significantly enhance the explanatory power of
urban heat island intensity (Wu et al., 2022). However, ex-
isting studies have not clarified the impacts of 2D/3D mor-
phology on daytime and nighttime CUHII and their driving
mechanisms, and systematic analysis during HW periods is
even more lacking.

Current research on the nonlinear relationship between ur-
ban morphology and local thermal environments focuses pri-
marily on surface thermal environments (Han et al., 2022;
Wu et al., 2022; Guo et al., 2023; Gu et al., 2024; Wang et
al., 2024; Liu et al., 2025). For example, Gu et al. (2024)
found that the enhancement effect of floor area ratio on
land surface temperature tends to saturate when floor area
ratio exceeds 0.6, and the impact of building height on
LST slows when building height exceeds 15 m. In particu-
lar, due to fundamental differences in physical mechanisms
between the air temperature of the urban canopy (based on
the thermodynamic processes of the canopy air) and the sur-
face temperature (based on the energy balance of surface
radiation), these conclusions cannot be applied directly to
CUHI research. Traditional statistical models such as Ordi-
nary Least Squares (Wang et al., 2020a), Spatial Autocorre-
lation Model (Fallah Ghalhari and Dadashi Roudbari, 2018),
and Geographically Weighted Regression (Gao et al., 2022)
have inherent limitations in handling nonlinear relationships
(Alonso and Renard, 2020), while machine learning meth-
ods — through feature importance analysis and SHAP value
interpretation (Lundberg and Lee, 2017) — offer a new techni-
cal approach. Furthermore, ENVI-met, a three-dimensional
non-hydrostatic model, enables microclimate simulation at
0.5-10m spatial resolution and 1-10s temporal resolution
by coupling short/long-wave radiation budget processes on
building surfaces (Chan and Chau, 2021), providing a pow-
erful tool for fine-scale analysis of regional microclimate
mechanisms (Meng et al., 2024; Luo et al., 2024).

Beijing, as a typical fast-developing megacity, exhibits sig-
nificant spatial heterogeneity in urban morphology due to
its polycentric ring development pattern (Jiang et al., 2024),
offering an ideal case for studying diurnal differences in
CUHII during HW periods. This study integrates ground ob-
servation data and high-precision urban morphology data,
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combining machine learning and numerical simulation meth-
ods to systematically explore the contributions of key three-
dimensional urban morphological indicators to CUHII dur-
ing HW periods and the diurnal variations in their nonlinear
modulation. The findings will not only provide quantifiable
morphological indicators for the management of urban ex-
treme heat risk, but will also provide scientific information
on the diurnal variations of CUHII and their potential causes.

2 Data and methodology

2.1 Study Area

Beijing megacity is located at the northern end of the North
China Plain, featuring a complex terrain: the Yan Mountain
and Taihang Mountain with altitudes exceeding 2000 m ad-
join theirnorth and west, the northeast is hilly, the south is
plain, and the southeast extends to the Bohai Bay to form a
land-sea transition zone. From 1978 to 2022, Beijing’s pop-
ulation increased from 8.71 million to 21.84 million, with
41.8 % of the permanent population concentrated within the
Fifth Ring Road, which accounts for only 4.07 % of the
city’s area, demonstrating significant population agglomer-
ation. This study focuses on the area within the fifth ring
road (Fig. 1). As central urbanization area of Beijing, the
spatial heterogeneity of population density, building distribu-
tion, and green space configuration in this region provides a
typical scenario for urban thermal environment research. Al-
though the urban green coverage rate increased from 22.3 %
in 1978 to 49.0 % in 2020, the intensity of the heat island still
increased at a rate of 0.24° yr~! (Ge et al., 2016). Based on
the air temperature data during the NHW and HW periods
in summer, this study focuses on analyzing the diurnal varia-
tions of CUHII and exploring its correlation mechanism with
urban morphology.

2.2 Data collection and processing

2.2.1 AWS observation data

The hourly observation data from automatic weather stations
(AWS) used in this study were obtained from the China Me-
teorological Data Service Center (http://data.cma.cn/en, last
access: 5 April 2025), including meteorological elements
such as near-surface air temperature, wind speed, wind di-
rection, humidity, and precipitation. To ensure data accuracy,
we performed quality control on the ground station obser-
vation data: referring to previous research methods (Yang et
al., 2011; Xu et al., 2013), we imputed missing values in the
observation sequences using the average of synchronous ob-
servation data from the five nearest stations around the site
and excluded station records with excessive errors. The final
AWS observation dataset from 2018-2022 was used to an-
alyze the spatio-temporal distribution characteristics of the
near-surface thermal field in the Beijing megacity.
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Figure 1. Overview of the study area. (a) Topography and land use in Beijing, with distribution of urban and reference observation stations
in the built-up area of the city. (b) Urban morphological characteristics of the study region.

2.2.2 Selection and calculation of urban morphology
indicators

From a spatial perspective, urban spatial morphology can be
divided into urban 2D/3D morphology. At the 2D level, aca-
demic circles have systematically explored the association
between urban morphology and local thermal environments
(Tysa et al., 2019; Yu et al., 2020). For instance, the propor-
tion of building area has a significant warming effect (Wang
et al., 2017; Liu et al., 2021), and studies have shown that
when the building area is fixed, there is a significant posi-
tive correlation between temperature and the building patch
index (Shi et al., 2015). In addition to 2D morphology, the
regulatory role of 3D urban morphology in thermal envi-
ronments has attracted much attention in recent years (Yin
et al., 2018; Tian et al., 2019; Zhou et al., 2022; Xu et al.,
2024; Bansal and Quan, 2024). Although 3D morphology is
based on 2D pattern parameters with the addition of height
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information, its characterization is not limited to height but
also includes other features derived from height. Taking the
sky view factor (SVF) as an example, this indicator refers to
the ratio of the visible sky range to the total visible range
at a fixed point on the ground. It is an important parame-
ter for characterizing the geometric characteristics, density,
and thermal balance of urban areas, and also a key factor af-
fecting the generation and intensity of the heat island effect
(Scarano and Mancini, 2017). Relevant studies have shown
that surface temperature in summer is significantly corre-
lated with building height (Cai and Xu, 2017); regulating
SVF may serve as a potential means to mitigate the urban
local thermal environment in high-density urban areas (Xu
et al., 2024). We obtained building data from Baidu Maps
(https://map.baidu.com, last access: 12 April 2025), includ-
ing building base projection boundaries and total floor infor-
mation. The building base projection boundaries can be used
to characterize the horizontal distribution of urban buildings.
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We calculate the height of the building by multiplying the
number of floors by 3 m. This method has been verified to
have an overall accuracy of 86.78 % (Liu et al., 2021), and
the conversion results are reliable based on the regular char-
acteristics of the floor heights of urban buildings (Alavipanah
et al., 2018). The specific definitions and calculations of the
2D/3D indicators are as follows in Table S1 in the Supple-
ment. Finally, we selected a 500 m buffer zone (Oke, 2004)
and used the six two-dimensional indicators and six three-
dimensional indicators to describe the morphological char-
acteristics of buildings.

2.3 Method implementation
2.3.1 NHW and HW periods classification

Global standards for defining HW events vary significantly
due to climatic backgrounds, geographical conditions, and
socioeconomic factors. The World Meteorological Organiza-
tion (WMO) defines a heat wave as three consecutive days
with maximum temperatures exceeding 32 °C; the National
Oceanic and Atmospheric Administration (NOAA) uses a
heat wave index that integrates temperature and humidity,
issuing alerts when the index exceeds 40.5 °C for at least
three hours per day for two consecutive days or forecasts
reach 46.5 °C; the Royal Netherlands Meteorological Insti-
tute requires five consecutive days with maximum temper-
atures over 25 °C, including at least three days exceeding
30 °C. This study adopts the China Meteorological Adminis-
tration (CMA) definition of heat waves as three consecutive
days with maximum temperatures > 35 °C. Considering that
maximum temperatures at urban stations may be influenced
by urbanization, we identify heat waves based on reference
station data in this study: In summer, a day is classified as a
HW day if more than two reference stations simultaneously
meet the CMA heat wave criteria; otherwise, it is a NHW
day. This method ensures HWs are recognized as regional
extremes rather than local anomalies. A single reference sta-
tion’s high temperatures may stem from microtopography
or temporary activities (Perkins et al., 2012), while > 2 sta-
tions confirm spatial consistency, reducing misclassification
and aligning with HWs’ large-scale pattern (Rajulapati et al.,
2022; Xue et al., 2023).

2.3.2 CUHII quantification

Academia typically defines CUHII as the temperature differ-
ence between urban and reference stations (Yang et al., 2023;
Shi et al., 2024). The selectionof reference stations is critical
for the calculation of CUHII, adhering to specific criteria: (1)
Significantly lower temperatures than urban stations; (2) Lo-
cation in rural forest-shrub areas more than 50 km from the
city center (Yang et al., 2023); (3) Uniform distribution in
different urban orientations. Finally, we selected 8 reference
stations (green markers in Fig. 1), with an average altitude
of 39.6, 8.8 m lower than the 45 urban stations (red markers
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in Fig. 1). We obtained summer CUHII values for urban sta-
tions by calculating temperature differences between urban
and reference stations.

2.3.3 Machine learning model

Compared to traditional machine learning methods, the XG-
Boost algorithm demonstrates significant advantages in ac-
curacy, flexibility, anti-overfit capability, and missing value
processing (Chen et al., 2016). Its superior performance
stems from loss function optimization based on second-
order Taylor expansion, multithread parallel computing sup-
port, and regularization constraint mechanisms (Chen and
Guestrin, 2016). Traditional linear regression models strug-
gle to capture the nonlinear local characteristics between
influencing factors and thermal environments, while XG-
Boost can effectively analyze the nonlinear mechanism be-
tween factor changes and local thermal environments (Lin
et al., 2024). In this study, we first performed iterative
calculations on 7 commonly used hyperparameters (eta,
gamma, max_depth, min_child_weight, subsample, colsam-
ple_bytree, and nrounds) within a preset hyperparameter tun-
ing space, and selected the optimal hyperparameter com-
bination that minimizes model error using a 5-fold cross-
validation method (Yang et al., 2020; Lin et al., 2024). Af-
ter completing hyperparameter optimization, we randomly
split the sample points in the Beijing at a 7:3 ratio to ob-
tain training samples (70 %) and validation samples (30 %),
which were used for training and validating the XGBoost
model, respectively. Meanwhile, the coefficient of determi-
nation (R2) and root mean square error (RMSE) were chosen
as evaluation metrics for simulation accuracy.

Additionally, we introduce the SHAP model in this study
to improve interpretability, which quantifies the impact of
each morphological parameter on the thermal environment
through global and local variable attribution (Hong et al.,
2025). SHAP (SHapley Additive exPlanations): This method
quantifies each feature’s contribution to individual predic-
tions based on Shapley values from game theory (Park et al.,
2023). For each sample, SHAP values decompose the predic-
tion into feature-specific contributions, with positive/nega-
tive values indicating promotion/inhibition of CUHII. Partial
dependency plots (PDP) are a common explainable machine
learning technique that reveals the marginal effect of a tar-
get feature (e.g., urban morphological indicators) on predic-
tion outcomes (CUHII) by holding other features at their av-
erage levels or marginalizing their effects (Friedman, 2001;
Bansal and Quan, 2024). Specifically, PDP illustrates the av-
erage trend of change in CUHII as a single indicator (or a
combination of two indicators) varies, while other indicators
remain stable — thereby isolating the independent impact of
the target indicator. By leveraging PDP to visualize the func-
tional relationship between feature variables and model out-
puts, we clarify the marginal effects of urban morphological
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indicators on CUHII, which supports the identification of key
driving factors and their threshold characteristics.

2.3.4 ENVI-met Model setup and initialization

ENVI-met has been widely applied in cooling effect assess-
ment (Di Giuseppe et al., 2021), temperature field prediction
(Forouzandeh, 2021), and thermal comfort research (Berardi
et al., 2020). The selection of ENVI-met simulation areas in
this study was based on two core principles: (1) Urban mor-
phological representativeness: Typical functional zones in
Beijing were selected, covering dominant urban forms such
as high-density high-rises and low-density low-rises, which
can reflect the representative spatial characteristics of Bei-
jing’s urban area; (2) Data support: These zones are equipped
with long-term AWS operated by the China Meteorological
Administration, which provide continuous air temperature
data at a height of 1.5m, serving as a reliable benchmark
for model validation.

The model integrates high-resolution Google Earth im-
agery and field survey data to accurately construct the three-
dimensional spatial configuration of buildings, vegetation,
and soil, with vegetation parameters derived from ENVI-
met’s 3D plant database. The horizontal extent of the model
was set to 1 x 1km (200 x 200 grids, 5 m resolution), with
65 grid layers in the vertical direction. The setting of ther-
mal property parameters for surface materials integrated field
sampling analysis and calibration results from existing litera-
ture (Meng et al., 2024): (1) Impervious surfaces: Dominated
by asphalt, with parameters set with reference to the heat
conduction and radiation characteristics of typical urban as-
phalt pavements; (2) Pervious surfaces: Mainly composed of
loam, with parameters determined based on the heat capac-
ity and thermal conductivity of soil samples from the study
area; (3) Vegetation parameters: Set in combination with the
leaf radiation characteristics and transpiration parameters of
common tree species in Beijing, which affect the surround-
ing thermal environment through transpiration and shading.
To reduce boundary effects, a 10-layer nested grid technique
was used (Kong et al., 2016), with surface materials set as a
mixture of loam and asphalt. The model’s boundary meteoro-
logical parameters (temperature, humidity, wind speed, wind
direction) were updated every 30 min using a complete forc-
ing method, with data obtained from meteorological station
measurements. For model validation, the R and RMSE were
adopted, with a focus on the simulation accuracy of air tem-
perature at a height of 1.5 m. Typical urban meteorological
stations in Beijing were selected, multi-scenario simulation
schemes were designed, and emphasis was placed on analyz-
ing the mechanisms by which morphological indicators act
on CUHII, canopy ventilation, and radiation exchange.

https://doi.org/10.5194/acp-25-17069-2025
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3 Results

3.1 Diurnal variations of CUHII during HW periods

Under climate warming, urban expansion has increased built
areas, with human activities generating additional anthro-
pogenic heat and pollutant emissions that intensify urban
warming. Using observational data from Beijing’s AWS, this
study examines the diurnal variations of CUHII during both
heatwave and non-heatwave periods.

In Fig. 2, the summer diurnal variations of CUHII in Bei-
jing megacity during HW periods exhibit a U-shaped fluc-
tuation. CUHII begins to decline gradually at 06:00 Beijing
Time (BJT), reaches the lowest value at 16:00 BJT, then grad-
ually rebounds, and remains at a high level from 22:00 BTJ
to 05:00 BJT. The diurnal variation trend of CUHII during
NHW periods is generally consistent with that during HW
periods. In particular, except for 19:00BJT 2018 (Fig. 2c¢),
the hourly CUHII values during HW periods in each year
are higher than those during NHW periods. From the an-
nual average (Fig. 2f), CUHII during the HW periods ranges
from 0.18 to 2.06 °C, significantly higher than 0.03 to 1.32 °C
during the NHW periods, indicating a significant intensifi-
cation of CUHII during the HW periods compared to the
NHW periods (Cheval et al., 2024; Shi et al., 2024). The
violin plots clearly show the diurnal distribution character-
istics of CUHII during the HW (red) and NHW (blue) peri-
ods: during the day, the mean CUHII during the HW peri-
ods is 0.54 °C, slightly higher than 0.23 °C during the NHW
periods; at night, the median CUHII during the HW peri-
ods reaches 1.71 °C, with a more significant increase than
1.12 °C during the NHW periods. It should be noted that dur-
ing both NHW and HW periods, nighttime CUHII is gener-
ally significantly higher than daytime CUHII. This can be
explained by the urban-rural differences in energy budgets:
during the daytime, cities are heated by solar radiation, with
surface heat transferred to the atmosphere through turbulence
and regulated by ventilation conditions; at nighttime, urban
buildings and impervious surfaces release stored heat, while
suburbs form radiative cooling due to vegetation cover, fur-
ther widening the urban-rural temperature difference (Zhou
et al., 2019; Shen et al., 2024). Furthermore, the diurnal vari-
ation characteristics of CUHII are not absolute, as their inten-
sity and timing distribution vary with the geographical envi-
ronment of cities. For example, the CUHII in Shanghai dur-
ing HW periods and its difference from that in non-heatwave
periods are strongest around noon (Ao et al., 2019; Tan et
al., 2010), and this pattern has also been verified in Athens,
Greece (Founda and Santamouris, 2017). Such differences
from Beijing (where nighttime CUHII is stronger) mainly
stem from variations in local circulation: coastal cities like
Shanghai and Athens are significantly affected by sea-land
breeze advective cooling, and the large heat capacity of sea-
water weakens the nighttime urban-rural temperature differ-
ence; in contrast, nighttime CUHII in Beijing, an inland city,
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Figure 2. Diurnal variations of the CUHII during the NHW and HW periods. (a—e) Year-specific patterns; (f) Multi-year average. Left
panels: CUHII diurnal cycles (solid lines) with shaded areas showing standard deviations. Right panels: Violin plots of CUHII distributions

during the day (08:00-19:00) and at night (00:00-07:00, 20:00-24:00).

is mainly dominated by surface radiation budgets (Ao et al.,
2019).

Beijing megacity has experienced rapid and large-scale
urbanization over the past few decades, with urban spaces
continually expanding to the suburbs, leading to a signifi-
cant CUHI effect (Zheng et al., 2018a, b). Spatial analysis
of daytime CUHII (Fig. 3a) reveals that the Second Ring
Road exhibits the highest CUHII values across all metrics:
0.27 °C during NHW periods, 0.65 °C during HW periods,
and a difference of 0.38 °C between the two. Analysis of
urban configuration structures (Fig. 4a) shows that the Sec-
ond Ring has the highest proportion of dense buildings, and
the compact layout leads to the accumulation of solar radi-
ation heat in dense building clusters during the day, which
is difficult to diffuse (Ge et al., 2016). This may be an im-
portant reason for the increase in daytime CUHII during the
HW periods. The nighttime CUHII differs (Fig. 3b), with
the Fourth Ring having the highest CUHII (1.80 °C during
NHW periods, 2.52 °C during HW periods, and a difference
of 0.72 °C between the two). The Fourth Ring exhibits the

Atmos. Chem. Phys., 25, 17069-17090, 2025

highest proportion of high-rise buildings (Fig. 4b). The con-
centrated emission of anthropogenic heat sources, such as air
conditioners, in these high-rise zones (Yin and Zhao, 2024)
could potentially contribute to the intensification of night-
time CUHII during heatwave events. Thus, urban morphol-
ogy may be an important factor for the formation of diurnal
patterns of CUHILI. In the following sections, this study will
conduct more reliable analyses using machine learning and
numerical simulation methods.

3.2 Non-linear responses of CUHII to urban morphology

The spatial heterogeneity of urban morphology leads to an
uneven distribution of near-surface air temperature by alter-
ing the surface energy balance and heat exchange processes.
This section focuses on exploring the influence of urban mor-
phological indicators on the diurnal spatial patterns of CUHII
in Beijing megacity during HW periods.

Before conducting machine learning modeling, we first
conducted a preliminary analysis of the linear relationship

https://doi.org/10.5194/acp-25-17069-2025
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Figure 5. Pearson correlation coefficients between urban morphology indicators and diurnal CUHIIL.

between urban morphological indicators and CUHII. Figure
5a shows that, during the day, regardless of NHW or HW pe-
riods, the BCR among 2D morphological indicators exhibits
the strongest correlation with CUHII, and the SVF shows
the most significant negative correlation with CUHII among
3D indicators. At night, among the 2D indicators, BCR still
shows the highest correlation, while among the 3D indica-
tors, H exhibits the strongest correlation. It is noteworthy
that the correlation between 2D indicators and CUHII sig-
nificantly intensifies: for example, the correlation coefficient
between BCR and CUHII increases from 0.37 during NHW
periods to 0.40 during HW periods. The influence of 3D mor-
phological indicators is also significantly enhanced (Fig. 5b).
The H, H_max, H_std, and FAR all show significant posi-
tive correlations with CUHII (r > 0.41 during NHW periods,
r > 0.47 during HW periods). The correlation coefficient be-
tween SVF and CUHII increases to —0.47 (NHW periods)
and —0.49 (HW periods). These results indicate that daytime
CUHII is primarily regulated by the horizontal heterogene-
ity of urban morphology, while nighttime CUHII is driven
mostly by vertical urban morphology. Furthermore, the cor-
relations between morphological indicators and CUHII dur-
ing the HW periods are generally higher than during the
NHW periods.

Figure S1 in the Supplement illustrates the predictive per-
formance of the XGBoost model for CUHII. For the test
dataset, all R? values exceed 0.40. Except for nighttime
CUHII during HW periods (where the relatively large RMSE

Atmos. Chem. Phys., 25, 17069-17090, 2025

is directly linked to the largest intrinsic magnitude of CUHII
in this period), the RMSEs in other scenarios are within
0.50 °C. These results indicate that the XGBoost model can
be regarded as a reliable tool for fitting the relationship be-
tween local thermal environment and urban morphology (He
et al., 2024; Lin et al., 2024). The analyses based on Figs.
6 and 7 indicate that: During daytime NHW periods, SHAP
values of the 2D indicator BCR concentrate in the positive in-
terval (left panel of Fig. 6a), ranking first in importance (left
panel of Fig. 7a). This is because increased in building den-
sity leads to compact layouts and weakens the ventilation po-
tential (Ng et al., 2011; Xu et al., 2019a, b), with NEAR and
FAR ranking second and third, respectively, and FAR show-
ing a wider range of values. During daytime HW periods, the
positive concentration trend of BCR becomes more signifi-
cant (right panel of Fig. 6a), maintaining its importance top-
(right panel of Fig. 7a). Al ranks second, while SVF shows
an obvious negative deviation, consistent with the weak neg-
ative correlation observed in Fig. 4 during the day. Further-
more, the mean SHAP values of the 2D indicators during the
day are higher than those of the 3D indicators. Compared
to NHW periods, the mean importance of 2D and 3D indi-
cators during HW periods increases by 35.4 % and 36.7 %,
respectively. At night during NHW periods, the dominance
of 3D indicators begins to emerge: the SHAP value range
of H_std expands significantly (left panel of Fig. 6b), rising
to the top in importance (left panel of Fig. 7b), followed by
SVF and FAR in the second and third positions, respectively.

https://doi.org/10.5194/acp-25-17069-2025
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The BCR drops to the 9th position but remains positive. Dur-
ing nighttime HW periods, the dominance of 3D indicators
is further enhanced: the SHAP value range of SVF expands
(right panel of Fig. 6b), stably ranking first in importance
(right panel of Fig. 7b). High-rise residences, accompanied
by high population density and air conditioning heat dissipa-
tion, exacerbate the heat island effect (Ryu and Baik, 2012).
Compared to NHW periods, the mean importance of 2D and
3D indicators during HW periods increases by 16.2 % and
31.3 %, respectively.

Figure 8 reveals the dependency characteristics of urban
morphology on CUHII: During the day, BCR shows nonlin-
ear positive driving (left subplot of Fig. 8a), with a signifi-
cant threshold effect in the low-coverage interval (< 0.12).
The positive contribution growth rate slows when the BCR
exceeds this value, and the threshold effect is more promi-
nent during HW periods (Guo et al., 2016; Yang et al., 2018).
SVF shows a negative effect in the interval of 0.725-0.735
and turns positive in the interval of 0.735-0.75 (middle sub-
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plot of Fig. 8a), which may be related to the dual role of the
height of the building in the thermal environment (Perini and
Magliocco, 2014). Two-factor analysis shows (right subplot
of Fig. 8a) that CUHII reaches its peak (yellow area) when
BCR >0.23 and SVF <0.72, indicating that high BCR and
low SVF synergistically exacerbate CUHIIL. At night, the in-
crease in CUHII with the rise of BCR is more gentle than dur-
ing the day (left subplot of Fig. 8b), without obvious abrupt
nodes, and the dominance of BCR weakens. SVF only shows
negative regulation, and its intensity is higher than during
the day (middle subplot of Fig. 8b). Two-factor analysis indi-
cates (right subplot of Fig. 8b) that CUHII is the highest (yel-
low area) when BCR > (.23 and SVF < 0.72, and the area of
this region expands during HW periods. When SVF > 0.75,
the increase in BCR has a limited impact on CUHII, suggest-
ing that high SVF can mitigate CUHII. In summary, the reg-
ulation of urban morphology in CUHII exhibits significant
diurnal asymmetry: 2D indicators dominate during the day-
time, while 3D indicators dominate at night. HW events can

Atmos. Chem. Phys., 25, 17069-17090, 2025
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improve the non-linear modulation of urban morphological
indicators. In summary, the regulation of urban morphology
on CUHII exhibits significant diurnal asymmetry: 2D indi-
cators predominate during the daytime, while 3D indicators
play a dominant role at night. Furthermore, urban morphol-
ogy exerts nonlinear modulation on CUHII, characterized by
threshold effects and dual roles (e.g., SVF showing both neg-
ative and positive impacts), with these nonlinear effects being
more pronounced during HW periods.

3.3 Simulation of microclimate effects of key urban
morphological indicators

This section draws on previous microclimate studies based
on building morphology (Hu et al., 2022; Nugroho et al.,
2022) and ensures scenario stability, using SVF as the 3D
morphological indicator to conduct multi-scenario simula-

Atmos. Chem. Phys., 25, 17069-17090, 2025

tions via ENVI-met. The analysis focuses on exploring the
influence mechanisms of SVF on the diurnal variations of
local urban local environments.

This section selected a 500 m radius area around Station
651061 on the North Fourth Ring Road as the simulation
region, where the BCR was 0.225 and the SVF was 0.76.
Three scenarios were set up by adjusting building heights
(with street width, building area kept unchanged to isolate the
independent effect of SVF): (1) Scenario I: Used the original
building heights in the study area, corresponding to the real
SVF (0.76, Fig. 9a); (2) Scenario II: Based on the PDP anal-
ysis results of the machine learning model, building heights
were adjusted to reduce SVF to 0.735 (the critical point of
positive/negative effects, Fig. 9b); (3) Scenario III: Build-
ing heights were further adjusted to reduce SVF to 0.685
(the rapid growth stage of negative effects, Fig. 9c). Notably,

https://doi.org/10.5194/acp-25-17069-2025
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Figure 8. Daytime and nighttime CUHII PDP on urban morphology: the left subplot shows the PDP for BCR, the middle subplot shows the

PDP for SVF, and the right subplot shows the two-way partial dependency plots for BCR and SVFE.

building height modifications were applied uniformly across
the entire simulation domain to ensure consistent spatial con-
ditions except for SVF differences. As indicated in Fig. 9d,
based on Scenario I, the ENVI-met model effectively sim-
ulated the diurnal variations of air temperature on days of
NHW days (17 June 2020) and days of HW (15 June 2020):
the R? and RMSE for observed versus simulated air tempera-
ture (AT) were 0.64 and 1.25 °C on NHW days, and 0.73 and
1.16 °C on HW days, respectively. Compared with the find-

https://doi.org/10.5194/acp-25-17069-2025

ings of Morakinyo et al. (2016) and Tan et al. (2017), the cor-
relation between simulated and observed values and the trend
of temporal changes showed consistency. Due to the simpli-
fied treatment of building material heat capacity and environ-
mental thermal radiation processes in the model (Ali-Toudert
and Mayer, 2006), the simulated air temperatures were gen-
erally lower than the measured values during the daytime.
The difference between simulation and observation gradu-
ally narrowed after sunset, and the simulation error exceeded

Atmos. Chem. Phys., 25, 17069-17090, 2025
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the measured value during 02:00-04:00. Overall, the trends
of simulated and measured air temperature variation showed
high consistency, indicating that the model could effectively
reflect the diurnal characteristics of local urban thermal envi-
ronments. Due to the simplified treatment of the heat capac-
ity of building materials and environmental thermal radiation
processes in the model (Ali-Toudert and Mayer, 2006), sim-
ulated air temperatures were generally lower than measured
values during the daytime. The difference between simulated
and observed air temperatures gradually narrowed after sun-
set, and simulation errors exceeded measured values between
02:00-04:00. Compared with the findings of Morakinyo et al.
(2016) and Tan et al. (2017), the simulated AT in this study
could effectively reflect the diurnal variations of the urban
local thermal environment.

The figure above shows the simulated AT spatial distri-
bution under different scenarios during daytime (Fig. 10a).
Spatial patterns reveal that during NHW periods, Scenario 11
shows a 0.2-0.7 °C temperature rise across the study region.
The central point confirms this trend, with AT increasing
from 30.68 °C in Scenario I to 31.09 °C in Scenario II. Mean-
while, Scenario III exhibits a 0.3—0.8 °C cooling in these ar-
eas, driven by building shadows, with the central point AT
in Scenario III decreasing to 30.33 °C. During HW periods,
these effects intensify. Scenario II sees a 0.5-1.1 °C warm-
ing across these zones, with the central point air temperature
in Scenario II increasing from 35.01 to 35.76 °C. Scenario
III shows a 0.6—1.4 °C cooling in study region, with the cen-
tral point AT in Scenario III dropping to 34.39 °C. As SVF

Atmos. Chem. Phys., 25, 17069-17090, 2025

decreased, the obstruction of building clusters to air flow in-
tensified, reducing the heat dissipation capacity. Meanwhile,
blocking of long wave radiation was exacerbated, promoting
heat accumulation and leading to temperature increases. It
should be noted that the temperature change patterns in Sce-
nario III, like the drop in central point AT, are related to ex-
cessively low SVF significantly increasing building shadow
areas, enhancing the shading effect on solar radiation, thus
reducing surface heat absorption and inhibiting temperature
rise (Perini and Magliocco, 2014). Figure 10b shows the spa-
tial distribution of the simulated AT indifferent scenarios at
night. During NHW periods, the central point AT in Scenario
I was 24.86 °C, increasing to 25.10 °C in Scenario II with a
relatively small variation, while that in Scenario III increased
significantly to 25.90 °C. During HW periods, the central
point AT in Scenario I was 26.25 °C, increasing to 26.83 °C
in Scenario II and increased significantly to 27.93 °C in Sce-
nario III. Notably, this pattern of temperature variation (mod-
erate rise in Scenario II, sharp increase in Scenario III) is
consistent across the entire simulation domain. The increase
in building height hinders the convective heat dissipation of
nighttime air, making heat dissipation difficult and thus pro-
moting a significant temperature rise (Mo et al., 2024). Fur-
thermore, the temperature differences between the scenarios
during the HW periods were more significant than during
the NHW periods, indicating that changes in building height
have a more pronounced impact on air temperature during the
HW periods, further amplifying the non-linear modulation of
the building SVF in AT.

https://doi.org/10.5194/acp-25-17069-2025
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Figure 10. Spatial distributions of simulated AT across scenarios during daytime (a) and nighttime (b). NHW-SI represents Scenario I during
NHW periods, HW-SI represents Scenario I during HW periods, and so forth. The intersection of the two gray crosshairs in each subplot

indicates the location of the meteorological station.

Combined with the spatial distribution of short-wave (SW)
radiation, the temperature phenomena under different SVF
daytime conditions can be further explained (Fig. 11a). Over-
all, SW radiation during HW periods is higher than during
NHW periods. Specifically, in Scenario II during the HW
periods, the average SW radiation slightly decreases from
636.16 to 602.27 Wm™2, the SW radiation at the central
point decreases from 970 to 930 Wm2, but AT shows an

https://doi.org/10.5194/acp-25-17069-2025

upward trend. This can be attributed to the obstruction of air
flow by buildings (Ge et al., 2025), where the heat accumu-
lation effect dominates in the competition between SW ra-
diation attenuation caused by increased building height and
air flow resistance. In Scenario III, the average SW radia-
tion drops to 537.88 Wm™2, the central point’s SW radia-
tion plummets to 860 W m~2, and significant shadow shad-
ing leads to a substantial reduction in SW radiation (Lin et

Atmos. Chem. Phys., 25, 17069-17090, 2025
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Figure 11. Spatial distribution of simulated short-wave (SW) radiation (a) and long-wave (LW) radiation (b) across scenarios during NHW

and HW periods.

al., 2024), thereby inhibiting the temperature rise. At night,
the heat dissipation of LW radiation exhibits stronger non-
linear threshold characteristics (Fig. 11b). In Scenario II dur-
ing the HW periods, the average LW radiation increases from
408.34 to 412.81 W m~2, and the LW radiation at the central
point climbs from 388 to 394 W m~2. At this time, the resis-
tance to escape of LW radiation is limited, so the air temper-
ature only increases slightly. In Scenario III, the lower SVF
significantly reduces the loss of LW radiation to the atmo-
sphere, with the average LW radiation rapidly increasing to

Atmos. Chem. Phys., 25, 17069-17090, 2025

424.31 Wm~2, and the central point’s LW radiation surges
to 410 W m~2, accompanied by a noticeable temperature in-
crease. This is because multiple reflections between building
facades retain radiation energy within urban canyons, thus
enhancing the capture of LW radiation (Mei et al., 2025). In
summary, buildings exert nonlinear modulation on urban di-
urnal thermal environments through the competitive effects
of SW radiation shading and ventilation resistance, as well
as the reflection and accumulation mechanisms of LW radia-
tion.

https://doi.org/10.5194/acp-25-17069-2025
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4 Discussions

Urban morphology influences the CUHI by altering surface
properties and spatial structures. As a dynamic meteorolog-
ical factor, the inherent relationship between the wind field
and CUHII should not be overlooked. This section analyzes
the modulation mechanisms of the wind field on the diurnal
CUHII during HW periods.

Figure 12a shows that during the daytime, the correlation
coefficients (r) between WS and CUHII were —0.14 dur-
ing NHW periods and —0.18 during HW periods, indicating
a weak negative correlation that was slightly stronger dur-
ing HW periods. Deng et al. (2025) simulated that a 10 %
increase in WS could reduce the CUHII by 0.16 °C during
summer days. Stronger solar radiation during HW periods
makes the heat dissipation effect of wind more significant
for CUHIL During the night (Fig. 12b), the r was —0.19
during NHW periods and —0.27 during HW periods, with
enhanced negative correlations compared to daytime, espe-
cially during HW periods. This may be related to the heat dis-
sipation characteristics of the underlying urban surface dur-
ing nighttime (Liu et al., 2022), where slower heat release
makes the modulation of WS in CUHII more pronounced.
Notably, compared with research findings from other cities
(Yang et al., 2023; Rajagopal et al., 2023; Deng et al., 2025),
the CUHII in Beijing exhibits a unique characteristic — it is
insensitive to WS variations both during the daytime and
nighttime. This phenomenon may be closely linked to ur-
ban morphology and local geographical environments. Ur-
ban morphology significantly modulates wind penetration
and heat exchange efficiency: compact built-up areas with
high BCR and low SVF (e.g., the Second Ring Road) form
dense building clusters that block airflow, reducing WS and
weakening wind-driven heat dissipation, thus making CUHII
less responsive to WS changes. In addition, existing studies
have confirmed that local circulations formed under different
geographical backgrounds can significantly reshape the spa-
tiotemporal distribution of urban extreme high temperatures
(Zhang et al., 2011; Zhou et al., 2020; Chen et al., 2022).
Specifically for Beijing, the mountainous terrain in its west-
ern and northern regions gives rise to a typical mountain-

https://doi.org/10.5194/acp-25-17069-2025
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valley wind circulation, which interacts with urban morphol-
ogy: dense buildings in central areas disrupt valley breeze
penetration, while sparse layouts in suburbs align with moun-
tain winds. This interplay between morphology and terrain-
induced winds weakens the modulation of WS variations
on CUHII. Observations show that wind directions in Bei-
jing’s urban area display a regular diurnal variation: northerly
winds (mountain breeze) dominate from 05:00 to 10:00 Bei-
jing Time; there is an obvious reversal around 11:00, shifting
to southerly winds (valley breeze) which persist until 04:00
the next day. Additionally, the average WS of the mountain
breeze is significantly lower than that of the valley breeze
(Zheng et al., 2018b). Such distinct periodic characteristics
make mountain-valley breeze a key local factor influencing
Beijing’s thermal environment (Dong et al., 2017). Based on
this, we speculate that the “insensitivity of CUHII to WS
variations” observed in this study may be the result of in-
teractions between the mountain-valley breeze cycle, urban
morphology, and the inherent diurnal cycle of CUHIL.
Urban ventilation corridors represent an energy-efficient
ecological approach to improving urban wind-thermal en-
vironments by taking advantage of natural meteorological
conditions (Masmoudi and Mazouz, 2004; Masson, 2000;
Palusci et al., 2022). In recent years, Beijing has proposed
to construct ventilation corridors to alleviate increasingly se-
vere urban environmental problems, with corridor designs
intentionally aligned with urban morphological features —
such as low BCR, high SVF, and wide street canyons — to
minimize aerodynamic resistance (Fig. 13a). This section
designates nine stations within first-level ventilation corri-
dors (VC-Stations) as those embedded in open built-up ar-
eas (sparse buildings, low-rise structures) and the remain-
ing 39 stations in compact built-up areas (NVC-Stations)
as Non-Ventilation Corridor Stations. Data show that WS
at NVC-Stations (Fig. 13b) is significantly lower than that
at VC-Stations (Fig. 13c), a difference primarily driven by
urban morphological controls: dense high-rises in NVC ar-
eas disrupt airflow, while VC areas’ open layouts allow un-
obstructed wind penetration. For example, at night during
HW periods, WS at NVC-Stations remains around 0.5 ms ™!
due to wind blockage by closely packed buildings, whereas
that at VC-Stations stays above 0.8 ms~!, facilitated by their
low-rise, sparse morphologies. CUHII in VC-Stations gener-
ally exhibits an inverse relationship with WS, with morpho-
logical traits amplifying this effect. At NVC-Stations, their
compact morphologies (high BCR, low SVF) limit heat dis-
sipation; when WS is 0.5ms™! in the early morning during
HW periods, CUHII reaches 1.9 °C due to trapped heat. In
contrast, when WS increases to 1.5ms™! in the afternoon
at VC-Stations — where open morphologies enhance turbu-
lent heat exchange — CUHII drops to only 0.3 °C. Notably,
the CUHII mitigation effect of ventilation corridors shows
significant diurnal differences influenced by urban morphol-
ogy. During the daytime, high baseline WS reduces the rela-
tive impact of ventilation corridor-induced WS gains, but VC
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Figure 13. Impacts of ventilation corridors on diurnal variations of WS and CUHII. (a) Urban ventilation corridor planning in Beijing.
Based on the Beijing Urban Master Plan, published by the Beijing Municipality Government. (b) Diurnal variations of WS and CUHII
during NHW and HW periods at Non-Ventilation Corridor Stations (NVC-Stations). (¢) Diurnal variations of WS and CUHII during NHW

and HW periods at Ventilation Corridor Stations (VC-Stations).

areas’ low-rise structures still promote more efficient heat
dispersion than NVC’s dense canyons. During nighttime,
with lower background WS, the WS enhancement from VC’s
open morphologies is more pronounced (Hsieh and Huang,
2016), and the thermal environment — sensitive to trapped
heat in NVC’s compact morphologies — is more responsive to
WS modulation (She et al., 2022), resulting in significantly
lower nighttime CUHII at VC-Stations (42.09 % lower dur-
ing NHW periods and 33.91 % lower during HW periods).
The bar charts in Fig. 14a show that during the daytime,
the differences in WS between the CN (city northern) and
CS (city southern) stations are minimal during both the NHW
and HW periods. However, CUHII at CN stations is 0.49 °C
during NHW and 0.61 °C during HW, significantly higher
than 0.28 and 0.42°C at CS stations, indicating that WS
might not be the primary cause spatial patterns of CUHIL.
Wind transports heat through thermal advection in urban ar-
eas (Wang et al., 2020b), potentially exacerbating the risks
of thermal exposure in specific regions (Heaviside et al.,
2015; Bassett et al., 2016). During the daytime, the predom-
inant southerly winds (approximately 0.75 ms~!) promotes
horizontal heat transport from the upstream to downstream
urban areas, increasing CUHII in northern urban regions.
At night (Fig. 14b), predominant northerly winds (approxi-
mately 0.75ms™!) prevail, and the CUHII shows little dif-
ference between CN and CS stations. This phenomenon can
be attributed to the WS threshold effect of horizontal heat
transport. Weak prevailing winds stabilize the atmospheric
stratification, thereby hindering urban heat dissipation, par-
ticularly during clear and light-wind nights (Kim and Baik,
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2005). Studies further indicate that the CUHI center drifts
downwind with increasing WS, with an average drift speed
threshold — when WS is below this threshold, spatial dif-
ferences in the urban thermal environment are primarily de-
termined by local underlying surface properties (e.g., green
space ratio, building density) (Xu et al., 2019a). In summary,
the impact of wind field on CUHII is jointly influenced by
WS, direction, and source, with diurnal differences in mod-
ulation mechanisms: nighttime wind significantly mitigates
CUHIL, especially in ventilation corridor areas, while day-
time prevailing winds may exacerbate thermal burdens in
downstream regions through thermal advection rather than
serving as simple cooling factors.

5 Conclusions

By integrating ground observations, XGBoost, and ENVI-
met simulations, this study systematically unravels the diur-
nal asymmetric and nonlinear response of canopy urban heat
island (CUHI) to urban morphology during heat wave (HW)
periods in Beijing. The results show that compared with non-
heat wave (NHW) periods, CUHI intensity (CUHII) dur-
ing HW periods is significantly enhanced, with a 91.3 % in-
crease in daytime and 52.7 % at night, and its diurnal vari-
ation presents a U-shaped fluctuation with distinct spatial
patterns (strongest within the Second Ring Road in daytime
and most prominent around the Fourth Ring Road at night).
Machine learning analysis indicates that building coverage
ratio (BCR) is the most critical driver of daytime CUHII,
while sky view factor (SVF) dominates at night; the mean
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Figure 14. Diurnal CUHII and wind rose diagrams for city northern (CN) stations and city southern (CS) stations: (a) daytime; (b) nighttime.
In the wind rose diagrams, bubble positions indicate wind direction, bubble sizes represent WS magnitudes, and bubble color intensity reflects

CUHII strength.

importance of 2D/3D morphological indicators increases by
16.2 %—36.7 % during HW periods, with significant interac-
tions between BCR and SVFE. ENVI-met simulations further
confirm the nonlinear modulation mechanism of urban mor-
phology: when SVF decreases from 0.735 to 0.685, daytime
temperature regulation is jointly affected by short-wave ra-
diation shading and ventilation resistance, showing a “first
warming then cooling” pattern, while nighttime temperature
changes are dominated by the reflection and accumulation
of long-wave radiation by buildings, exhibiting accelerated
warming characteristics. Additionally, the study identifies di-
urnal differences in the impact of wind fields on CUHII: ven-
tilation corridors can reduce nighttime CUHII by 33.91 %-
42.09 % to mitigate heat islands effectively, whereas day-
time prevailing winds may intensify CUHII in downstream

https://doi.org/10.5194/acp-25-17069-2025

regions through thermal advection rather than simply act-
ing as a cooling factor. These findings clarify the diurnal
asymmetric formation mechanism of CUHI during HW peri-
ods and provide quantitative references for optimizing urban
morphology and planning ventilation corridors, offering pre-
cise scientific guidance for mitigating urban thermal risks.

Data availability. The hourly AWS observation data are available
upon request from the China Meteorological Data Service Center
(http://data.cma.cn/en, last access: 5 April 2025). The land cover
data are available at https://doi.org/10.5281/zenodo.5816591 (Yang
and Huang, 2021).
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