Supplement of Atmos. Chem. Phys., 25, 17069–17090, 2025 https://doi.org/10.5194/acp-25-17069-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Diurnal asymmetry in nonlinear responses of canopy urban heat island to urban morphology in Beijing during heat wave periods

Tao Shi et al.

Correspondence to: Yuanjian Yang (yyj1985@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1: The calculation and definitions of urban morphology indicators involved in this paper.

Type	Indicators	Calculation	Definitions
2D	BCR	$BCR = \frac{\sum_{i} a_i}{A}$	Building coverage ratio (BCR):
		a _i : Area of individual building patches	The ratio of building base area to
		A: Total area.	buffer area.
	NEAR	$NEAR = min(\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2})$ (x,y): Coordinates of building centroids.	Average adjacent building
			distance (NEAR): A lower value
			indicates higher building density.
	NP	$NP = \sum BP$ BP: building patches.	Number of building patches (NP):
			Reflects the fragmentation degree
			of regional buildings.
	SPLIT	$SPLIT = \frac{A^2}{\sum a_i^2}$	Split index (SPLIT): A larger
			value indicates a higher degree of
			landscape fragmentation.
	AI	$AI = \left[\frac{g_{ij}}{max(g_{ij})}\right] \times 100$	Aggregation index (AI): A
		gii: Number of like adjacencies between	smaller value indicates weaker
		buildings.	connectivity of landscape patches.
	L/W	$L/W = \left[\frac{\text{Longest axis length}}{\text{Shortest axis length}}\right] \times 100$	Building length-width ratio
			(L/W): Characterizes the planar
			morphological characteristics of
			buildings.
	Н	$H = \frac{\sum_{i} h_{i}}{NP}$ hi: Height of individual buildings.	Average building height (H): The
			mean value of building heights
			within the buffer.
	H-max	$H\text{-}max = max(h_I, h2,, h_n)$	Maximum building height
			(H_max): The highest building
			height in the region.

H-std =
$$\sqrt{\frac{\sum_{i}(h_i - H)^2}{NP}}$$

 $FAR = \frac{\displaystyle\sum a_i * n}{A}$

CI

SVF

n: Number of floors in the building.

 $CI = \frac{V_{building}}{V_{total\ area}}$

 V_{building} : Building volume. $V_{\text{total area}}$:

Neighborhood volume.

 $SVF = I - \frac{\sum \gamma_i * \Delta\theta}{2\pi}$

γ_i: Obstruction elevation angle.

 $\Delta\theta$: Azimuth interval.

Building height standard deviation (H_std): Reflects the difference in building heights in the region.

Floor area ratio (FAR): The ratio of total building area to buffer area, where a higher value indicates greater development intensity per unit land.

Volume index (CI): The ratio of building volume to the total volume of the study area, where a larger value indicates a higher degree of space occupation.

Sky view factor (SVF): Ranges from 0 to 1, where a smaller value indicates more significant sky obstruction.

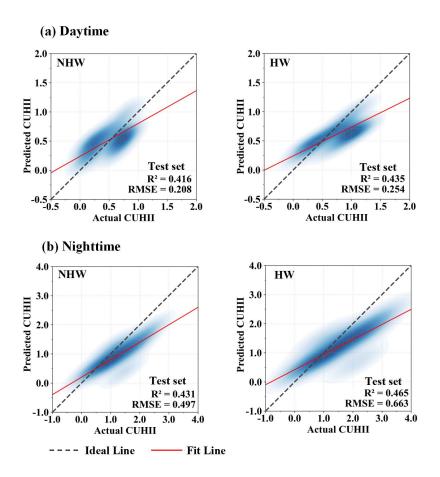


Figure. S1 The performance graph of the XGBoost model in predicting CUHII.