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Abstract. Chemistry-climate models have developed significantly over the decades, yet they still exhibit sub-
stantial systematic biases in simulating atmospheric composition due to gaps in our understanding of underlying
processes. Building on deep learning’s success in different domains, we explore its application to correct sur-
face ozone biases in the state-of-the-art chemistry-climate model UKESMI. Six statistical models have been
developed, and the model Transformer outperforms others due to its advanced architecture. A simple weighted
ensemble approach is further proved to enhance performance by 14 % over the best single model Transformer,
reducing RMSE to 0.69 ppb. Applied to future scenarios (SSP3-7.0 and SSP3-7.0-lowNTCF), the UKESM1
shows a larger overestimation of ozone changes by up to 25 ppb compared to present-day conditions. Despite
biases, UKESM1 captures the non-linear ozone sensitivity to precursors, with temperature-sensitive processes
identified as a dominant contributor to biases. We highlight that simulations of future surface ozone are likely to
become less accurate under a warmer climate. Therefore, the bias correction approaches introduced here have
substantial potential to improve the accuracy of ozone impact assessments. These methods are also applicable to

other chemistry-climate models, which is critical for informing air quality and climate policy decisions.

1 Introduction

Global chemistry-climate models are vital for simulating at-
mospheric composition and its changes by representing the
relevant physical and chemical processes in the atmosphere.
However, these models face challenges in accurately repro-
ducing observed concentrations of short-lived species, such
as ozone (03). Global models typically have coarse spatial
resolution, and this limitation hampers the representation of
small-scale processes, leading to systematic biases in simu-
lations (Stock et al., 2014; Fenech et al., 2018). There are

currently no simple methods to address these issues effec-
tively without increasing model resolution. However, higher
resolution significantly increases computational demands.
Besides, increasing model resolution does not consistently
improve accuracy, sometimes even introducing new biases
(Wild and Prather, 2006; Iles et al., 2020). Moreover, evaluat-
ing model performance is challenging due to uncertainties in
comparing grid-scale outputs with localized, site-based mea-
surements (Schultz et al., 2017).
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Considering these issues, surface ozone simulations in cur-
rent global chemistry-climate models exhibit notable biases,
particularly at regional scales (Turnock et al., 2020). Al-
though large-scale ozone distributions are generally well-
captured (Fleming et al., 2018; Griffiths et al., 2021), re-
gional ozone concentrations remain challenging to repro-
duce, especially at the surface where precursor emissions and
surface deposition exert strong influences. The assessment of
the Tropospheric Ozone Assessment Report (TOAR) also re-
ported that global models exhibit systematic biases in their
surface ozone simulations across all seasons, with a multi-
model mean bias of 7.7 ppb (approximately a 20 % overes-
timation) in the Northern Hemisphere (Young et al., 2018).
These biases may stem from inadequate representation of
dynamics (e.g., meteorology and deposition), and oversim-
plified ozone chemistry (Archibald et al., 2020a). However,
efforts to improve individual modules, such as chemistry
schemes, can even result in greater biases in ozone simula-
tion (Archer-Nicholls et al., 2021). Progress in addressing
these issues has been limited over recent decades (Revell
et al., 2018; Wild et al., 2020).

Deep learning, a transformative approach in fields like
computer vision and natural language processing (LeCun
et al., 2015), is increasingly applied in physical science (Re-
ichstein et al., 2019). Recent studies have demonstrated its
growing use in atmospheric science. It has shown promise
in weather modeling and data generation. Specific appli-
cations include mimicking atmospheric photochemical pro-
cesses (Xing et al., 2022), and directly predicting future
weather (Bi et al., 2023; Lam et al., 2023), often outper-
forming traditional numerical methods in speed and accu-
racy. The uncertain parameterizations e.g., moist physics and
radiation processes in climate models can also be replaced
by deep learning models (Wang et al., 2022). Another key
advantage of deep learning is its ability to fuse multi-source
data, enabling the creation of global datasets, such as sur-
face ozone concentrations (Betancourt et al., 2022). How-
ever, its application to air pollution modeling, particularly for
ozone, is challenging due to the localized nature of pollution
and limited observational data for key variables. To address
this, we adopt a hybrid approach, integrating process-based
chemistry-climate models with deep learning to improve the
accuracy of ozone simulations.

Bias correction, as a way to further improve model accu-
racy, has been developed for different goals. For instance,
Vaittinada Ayar et al. (2021) aim to distinguish the impacts
of different uncertainties (e.g., emissions, scenario, model
designs, etc.) on model biases. Vrac and Friederichs (2015)
and Nivron et al. (2024) focus on preserving temporal prop-
erties in bias correction, such as the frequency of heatwaves
over long periods. Machine learning has also been applied
to surface ozone bias correction (e.g., Ivatt and Evans, 2020;
Miyazaki et al., 2025), achieving substantial error reduction.
However, most studies have not fully explored the perfor-
mance of different deep learning approaches, and their im-
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pacts on prediction remain uncertain. In our work, we there-
fore explore several deep learning models for ozone bias cor-
rection and propose a weighted ensemble to achieve more
robust results.

In this study we investigate the potential of deep learn-
ing to correct surface ozone biases in a global chemistry-
climate model. In Sect. 2, we describe the chemistry-climate
model and introduce six statistical models used for bias cor-
rection. Section 3 evaluates their performance and proposes
a weighting scheme to optimize results. Section 4 demon-
strates the advantages of this approach for projecting future
surface ozone changes. In Sect. 5, we analyze the sensitiv-
ity of ozone in both the original and bias-corrected models.
Finally, Sect. 6 presents our conclusions.

2 Approach

2.1 Chemistry—climate model and experiments

We use version 1 of the United Kingdom Earth System
Model (UKESM1; Sellar et al. (2019)) to simulate present-
day (2004-2014) and future (2045-2055) surface O3 mix-
ing ratios under different emission and climate scenarios.
UKESMI incorporates a physical climate model, the Hadley
Centre Global Environment Model version 3 (HadGEM?3),
configured with the Global Atmosphere 7.1 and Global Land
7.0 (GA7.1/GL7.0; Walters et al., 2019). Chemistry is sim-
ulated using the state-of-the-art United Kingdom Chemistry
and Aerosol module (UKCA; O’Connor et al., 2014), which
includes a unified stratosphere—troposphere gas-phase chem-
istry scheme (StratTrop; Archibald et al., 2020b). In this
study, an extended version of this chemistry scheme in-
corporating additional reactive volatile organic compounds
(VOCs) is employed to improve the representation of O3 pro-
duction (Liu et al., 2021). The model resolution is N96L.85 in
the atmosphere, with 1.875° in longitude by 1.25° in latitude,
85 terrain-following hybrid height layers, and a model top at
85 km. The model is nudged with ERA-Interim reanalyses
every 6 h for present-day simulations.

In our present-day simulations (2004-2014), we use an-
thropogenic (Hoesly et al., 2018) and biomass (van Marle
et al., 2017) emissions from the Coupled-Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016). Bio-
genic VOC emissions are calculated online in the Joint
UK Land Environmental Simulator (JULES) land-surface
scheme (Eyring et al., 2016). For future simulations (2045—
2055), we use the shared socio-economic pathways (SSP;
O’Neill et al., 2014), which represent various trajectories for
emission and climate policies, considering social, economic
and environmental development (Rao et al., 2017). We se-
lect the SSP3-7.0 and SSP3-7.0-lowNTCF pathways to illus-
trate the effects of weaker and stronger air pollutant emission
controls, respectively. Both pathways anticipate a warmer
and more humid climate, although SSP3-7.0-lowNTCF in-
cludes significant reductions in anthropogenic emissions of
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near-term climate forcers (NTCF), such as O3 precursors and
aerosols. Details of the present-day and future emissions un-
der SSP3-7.0 and SSP3-7.0-lowNTCF are provided in Liu
et al. (2022b). Other emissions, including sea salt, dust, and
lightning NO,, are the same as those used in UKESM1 sim-
ulations for CMIP6 (Turnock et al., 2020). The atmosphere-
only configuration of UKESM1 is applied with prescribed
sea surface temperatures and sea ice to examine the transient
impacts of emissions under present-day and future climates.

2.2 Six approaches for O3 bias correction

Surface ozone concentrations are typically underestimated in
winter and overestimated in summer when simulated with
UKESMI1 (Archibald et al., 2020b). The biases with con-
sistently high values across all seasons, are also observed
in other chemistry-climate models used in CMIP6 (Young
et al., 2018; Turnock et al., 2020). However, the underlying
reasons for these biases in each model remain unclear. Reli-
able model outputs can still be achieved by bias correction,
as long as the systematic biases are mitigated. Our goal is to
correct these biases directly through different statistical and
deep learning methods. We assume that these systematics er-
rors are specific to different process-based models but can
be learned from historical data using statistical approaches,
and further infer how large the biases will be in future sce-
narios. The model is nudged for historical runs, so the sys-
tematic errors would only represent those caused by parame-
terizations of internal processes, rather than by external data
sources such as meteorology.

As a reference dataset for correcting O3 simulated with
UKESMI1, we consider surface O3 reanalysis data from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Atmospheric Composition Reanalysis 4
(EAC4) under the Copernicus Atmosphere Monitoring Ser-
vice (CAMS; Inness et al., 2019). One advantage of the
CAMS reanalysis is its better agreement with TOAR O3 ob-
servations, exhibiting mean seasonal biases of about 3 ppb,
notably lower than the biases of up to 16 ppb in UKESM1 at
locations where TOAR observations are available (Turnock
et al.,, 2020). A comparison and evaluation of UKESMI,
CAMS, and TOAR has been conducted in Liu et al. (2022a).
However, we note that CAMS still has biases, especially in
regions with sparse observations (e.g., East Asia, Southeast
Asia; Huijnen et al., 2020). These limitations may propa-
gate to our corrections; however, CAMS data is still a suit-
able benchmark for demonstrating our methodology due to
its lower biases. In addition, the spatial scale of these data
closely aligns with the output of UKESMI1, thereby miti-
gating uncertainties related to the spatial representativeness
of sparse observations. We note that the large volume of
the dataset, providing global coverage, is crucial for training
deep learning models.Future applications of bias correction
could be replaced by a measurement-based surface O3 clima-
tology if this becomes available in future.
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Here we apply six approaches to calculate surface O3 bi-
ases. Figure 1 illustrates the increasing complexity of these
methods from left to right, starting with multiple linear re-
gression (MLR), random forest (RF), multilayer perceptron
(MLP), convolutional neural network (CNN), residual net-
work (ResNet) and Transformer. MLR is a linear method,
while RF transforms linear processes into nonlinear ones
through decision tree-based layers. MLP forms the basis of
deep learning, incorporating a feed-forward neural network
(FFN). CNN uses convolutional operators as encoders, which
are particularly effective for processing two-dimensional
data, such as images. ResNet is an architecture that enables
the training of deep learning models with multiple layers,
addressing challenges that were prevalent during the early
development of deep learning (He et al., 2016). The Trans-
former, a more recent architecture, demonstrates strong ca-
pabilities in processing long-sequence tasks, such as natural
language understanding, with its core functionality driven by
the Attention mechanism (Vaswani et al., 2017).

We assume that UKESM1 exhibits systematic biases that
are associated with other self-generated variables. The main
variables relevant to ozone production and transport are se-
lected as follows (Liu et al., 2022a). We use 20 physical,
meteorological, and chemical variables as features, including
location, season, temperature, humidity, wind speed, photol-
ysis and deposition rates, and concentrations of key precur-
sors. For MLR, RF, and MLP, the features and O3 biases cor-
responding to the same model grid cell are used to train the
different approaches. For the methods designed to process
2D data, input pairs consist of a 9 x 9 grid cell patch centered
around the grid cell where O3 biases are to be calculated. We
also calculate the ensemble mean of all models to optimize
predictions.

The feature data are obtained from UKESMI simula-
tions, and surface O3 biases are derived from the differences
between UKESM1 simulations and the CAMS reanalysis.
Monthly mean O3 mixing ratios from the lowest layer in
UKESMI are used. The dataset is split into 80 % for training,
10 % for validation, and 10 % for testing, with approximately
2.9 million data samples used for model training. We choose
mean absolute error as the loss function and AdamW as the
optimizer to minimize it. To increase model regularization, a
weight decay value of 0.001 is applied to constrain the size
of parameter weights. The initial learning rate is set to 0.01,
with a cosine annealing schedule for dynamic adjustment
of learning rates to improve training (Loshchilov and Hut-
ter, 2016). As the complexity of models increases, so does
the number of parameters; however, we limit the number of
trainable parameters in our most complex model, the Trans-
former, to 9 million to manage computational resources. The
Transformer requires approximately 8 h to converge on a sin-
gle GPU (RTX 3090 Ti).
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Figure 1. The architectures of MLR, RF, MLP, CNN, ResNet and Transformer applied in this study for calculating surface O3 biases. Each
diagram illustrates the workflow, beginning with the input of features to the prediction of O3 biases. MLR, RF, and MLP receive input
features from a single model grid cell (1 x 1), whereas the remaining models process features from a 9 x 9 block of grid cells.

Table 1. Overview of the 20 input features used for model training.

Category Specific Features Units

Location Latitude, Longitude Degrees

Time Month -

Geography Land, Elevation - m
Meteorology Temperature (at 2 m), Pressure, Relative humidity, Wind speed (#/v components) K, hPa, %, ms~!
Photolysis j(NO,), j(O'D) 5!

Deposition Dry deposition velocity of O3 ms~!

Chemistry NO, (NO+NO3), VOCs (sum of non-methane species), Isoprene, OH, PAN, HNO3  pg m—3
Boundary Layer Boundary layer height m

3 Statistical model evaluation and the weighting
scheme

The performance of all 6 statistical models is evaluated
using testing data to give an independent assessment, see
Fig. 2. All models generally simulate the surface ozone bi-
ases in UKESMI1 effectively, capturing both underestima-
tions and overestimations. However, the deep learning mod-
els (Fig. 2c—f) clearly outperform the simpler linear and ran-
dom forest models (Fig. 2a, b). A primary limitation of the
linear and random forest models is their inability to cap-
ture extreme bias values, with many predictions clustering
around Oppb. Overall, the systematic biases are smoothly
distributed with a mean near 0, indicating that underestima-
tions and overestimations occur with comparable frequency
in UKESM1.

Both the ResNet and Transformer approaches perform
best, with their predictions closely aligning with the 1 : 1 line
across the full range of biases. These models yield higher
correlation coefficients (up to 0.997) and lower root-mean-
square errors (RMSE). From MLP to Transformer, the error
is reduced by 64 % from 2.25 to 0.8 ppb, highlighting the im-
portance of architecture in this task. However, the improve-
ment from convolution-based models (CNN and ResNet)
to the Transformer is marginal. In the deep learning field,
the optimal architecture for processing 2D data, whether
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convolution-based or attention-based, remains a subject of
ongoing debate (Smith et al., 2023).

Given that we employ a variety of models, it is logical to
consider combining them to reduce the uncertainties inherent
in each. Previous studies have demonstrated that integrating
multiple models can effectively decrease both uncertainties
and prediction errors (Stevenson et al., 2006). However, as-
signing weights to each model based on their respective per-
formances can produce a more robust outcome compared to
simple averaging (Amos et al., 2020). Therefore, we adopt
a simple weighted ensemble mean scheme, following the ap-
proach outlined by Amos et al. (2020). The calculation of the
weights for each model i is presented as follows:

2
exp (—%) x 100
D?
Zi eXp <_ Ni(;2>

Here, Dl.2 represents the squared error between the predic-
tions of an individual model and the reference data, derived
from the testing data. N; denotes the number of testing data
points. The parameter o is adjustable and can be optimized
to determine the most effective weight values. As illustrated
in Fig. 3, the error of the weighted-mean model is lower than
that of any single model, including the best-performing sin-
gle model, Transformer, which exhibits an error of 0.80 ppb.
The optimal value of o =0.35 corresponds to the lowest

(1

w; =
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Figure 2. Evaluation of the models’ performance in simulating monthly mean surface O3 biases at each UKESM1 grid point, based on
testing data. (a) Surface O3 biases (UKESM1 minus CAMS) and biases predicted by the models. (b) Probability density function of surface
O3 biases (labelled as “Reference”) and the predicted O3 biases. Statistics are shown in the top-right corner of each panel.
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Figure 3. RMSE of the weighted-mean model in simulating sur-
face O3 biases as a function of the tuned parameter o. The best-
performing single model, Transformer, is indicated for comparison.
The weights assigned to each model corresponding to the optimal
value of o are provided in the text. The sigma values are binned
on a linear scale separately into the following ranges: 0.001-0.01,
0.01-0.1, 0.1-1, and 1-10.

error of the weighted-mean model (0.69 ppb), resulting in
a 14 % improvement over the Transformer model. We note
that the optimal value of o may differ across various model
ensembles. High-performing models, such as ResNet and
Transformer, are assigned large weights, approximately 40 %
each, while the CNN model has a weight of 17 %. Models
with low performance are excluded due to their limited con-
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tribution. This demonstrates that a simple weighting scheme
can effectively integrate the outputs of all models, and further
improve prediction accuracy. The optimal weighted-mean
predictions are used for subsequent analyses.

4 Improved assessment of future changes in

surface O3

Considering the expected biases in future simulations of sur-
face O3 using UKESMI1, we employ deep learning mod-
els to predict these biases based on input variables gener-
ated from UKESM1 future simulations. Subsequently, a bias-
corrected surface O3 concentration is derived by subtracting
the O3 bias from the simulated O3z values. Figure 4 illus-
trates seasonal variations in weighted-mean surface O3 con-
centrations under SSP3-7.0 and SSP3-7.0-lowNTCF scenar-
ios. Compared with bias-corrected results, UKESM1 simu-
lations demonstate much higher global mean O3 concentra-
tions in summer and similar levels in winter (Fig. 4a, d, g,
j)- This indicates that the UKESMI has a greater sensitiv-
ity of seasonal O3 changes, showing a 12 ppb increase com-
pared to the corrected 5 ppb. Higher emissions of O3 precur-
sors under SSP3-7.0 lead to higher surface O3 mixing ratios
compared to SSP3-7.0-lowNTCEF, with differences of 4 ppb
in summer and 1.5 ppb in winter (Fig. 4b, e, h, k). In addi-
tion, seasonal O3 variation (winter to summer) becomes more
pronounced under SSP3-7.0 (4.4 ppb increase; Fig. 4b, e)
than under SSP3-7.0-lowNTCF (2.0 ppb increase; Fig. 4g, h),
which is also observed in UKESM1 simulations. Decreased
O3 titration by NO in winter and lower photochemical O3
production in summer in the lower-emission scenario will
both contribute to a reduced seasonal variation.

Figure 4c, f, i, 1 shows the changes in surface O3 from the
present day to the future, as simulated by the bias-corrected
weighted-mean model. It reveals that distinct emission path-

Atmos. Chem. Phys., 25, 16969-16981, 2025
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Figure 4. Comparison of UKESM1 simulated surface O3 mixing ratios (a, d, g, j) with weighted-mean bias-corrected results (b, e, h, k),
and bias-corrected O3 changes (c, f, i, 1) from present day (PD; 2004—-2014) to future (2045-2055) under SSP3-7.0 and SSP3-7.0-lowNTCF
scenarios. Shown for June—July—August (JJA) and December—January—February (DJF), with hatched regions denoting where the sign of
bias-corrected O3 changes differs from those simulated with UKESM1. Global area-weighted mean mixing ratios are shown in the top-right

corner of each panel.

ways result in divergent O3 responses. Under SSP3-7.0, sur-
face O3 mixing ratios exhibit a consistent increase across
both seasons, whereas under SSP3-7.0-lowNTCEF, a decrease
is simulated. However, the magnitude of O3 responses is
greater under SSP3-7.0-lowNTCF compared to SSP3-7.0.
At regional scales, substantial reductions in surface O3 are
shown in North America during summer (Fig. 4c, i), at-
tributable to lower precursor emissions in both scenarios. In
contrast, in East Asia, surface Oz changes vary markedly
between scenarios and seasons, driven primarily by differ-
ing O3 chemical environments due to the current high local
emissions. These variations pose significant challenges for
addressing regional air pollution. Additionally, we compare
surface O3 changes with and without bias correction. While
the direction of surface O3 changes remains generally consis-
tent across most continental regions, opposing signs emerge
in certain oceanic areas. This discrepancy may stem from the

Atmos. Chem. Phys., 25, 16969-16981, 2025

limited availability of observational constraints in oceanic re-
gions, which hinders both the development of process-based
models and the reliable reference data for bias correction.
Overall, the influence of different emission pathways on fu-
ture O3 concentrations are certain at large scales, particularly
over land areas.

In Fig. 5, we further show regional surface O3 changes
from the present day to the future, and compare the predic-
tions of UKESM1 with those derived from the bias-corrected
weighted-mean model. Under both future scenarios, surface
O3 changes in most geographical regions fall in quadrants
where the signs of the changes are the same, indicating
that the effects of emission changes on future O3 are gen-
erally robust. However, in the wintertime, there are differ-
ences in sign, especially in high-emission regions such as
Asia (Fig. 5a and b) and North America (Fig. 5b). This sug-
gests that the response of O3 to its precursors, particularly in

https://doi.org/10.5194/acp-25-16969-2025
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high-NO, environments in winter is not well represented in
current models. In contrast, there is broad agreement in the
sign of O3 changes in the summertime.

While the sign of O3 changes is generally consistent be-
tween UKESM1 simulations and bias-corrected predictions,
the magnitudes of these changes differ substantially. Un-
der the SSP3-7.0 scenario (Fig. 5a), surface O3 increases
in most regions are greater in UKESM1 simulations than
in bias-corrected estimates, with notably larger overestima-
tions in regions such as North America and Europe during
winter, where UKESM1-simulated increases exceed bias-
corrected values by more than a factor of 2. This suggests that
UKESMI1 may overestimate surface O3 increases. Similarly,
under the SSP3-7.0-lowNTCF scenario (Fig. 5b), surface
O3 decreases in most regions are less pronounced in bias-
corrected predictions compared to UKESM1 simulations, in-
dicating an overestimation of O3 reductions by UKESMI.
These findings imply that the impacts of emission and cli-
mate policies on surface O3 concentrations under both sce-
narios may be smaller than projected by UKESM1 simula-
tions.

It is acknowledged that large uncertainties remain in these
comparisons at regional scales, as the CAMS dataset exhibits
substantial biases in certain regions when compared to the
TOAR dataset, particularly in East Asia and Southeast Asia
(Huijnen et al., 2020). In addition, we also find that there are
notable discrepancies between CAMS and UKESMI espe-
cially in regions where observations are unavailable, such as
the Middle East (shown as light markers in Fig. 5). There-
fore, in these regions exhibiting large biases in UKESM1
simulations, large differences in surface O3 predictions be-
tween UKESM1 and bias-corrected UKESMI1 also tend to be
observed. Bias correction in these regions may lack reliabil-
ity. Nevertheless, in North America and Europe, where the
CAMS data are more consistent with TOAR observations,
with biases of less than 10 % (Huijnen et al., 2020), the over-
estimation of surface O3 changes by UKESM1 appears more
substantiated.

At the global scale, it is evident that UKESM1 simulations
consistently overestimate surface O3 changes during sum-
mer (Fig. 6a). In summer, surface O3 biases peak at approxi-
mately 15-30 ppb for NO, mixing ratios of 10-15 ppb, typi-
cally corresponding to polluted urban areas with large popu-
lations (Kephart et al., 2023). The SSP3-7.0 scenario exhibits
the largest biases, followed by SSP3-7.0-lowNTCF. Both fu-
ture scenarios, characterized by high or low emissions, show
greater biases (up to 25 ppb) than the present-day scenario,
suggesting that emissions are not the primary driver of these
larger biases. In contrast, during winter (Fig. 6b), O3 biases
are generally lower. The SSP3-7.0 and SSP3-7.0-lowNTCF
biases appear to shift from negative values in the present day
to positive or near-zero values. These findings indicate that
the underlying biases in surface O3 simulations are likely to
increase under both emission pathways in the future, present-
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ing a challenge to accurately assessing the impacts of future
emissions, particularly during summer.

5 Sensitivity analysis of surface O3 and O3 biases

Given that the chemical environment affects both the mag-
nitude and sign of surface O3 changes, it is important for
models to accurately represent the non-linear responses of
surface O3 to its precursors. We integrate monthly mean data
from all surface grid cells in both scenarios to derive a re-
lationship between surface O3 mixing ratios and NO, / VOC
ratios as simulated by UKESM1, see Fig. 7. Additionally, we
show the O3 sensitivity to the NO, / VOC ratio using bias-
corrected O3 data for comparison. The NO, / VOC ratio is
a simple but effective indicator that distinguishes high- and
low-NO, environments, which reflect different O3 chemical
regimes (Liu et al., 2022b). We calculate NO, concentrations
by aggregating NO and NO; values, and VOC concentrations
are calculated by summing the concentrations of all primary
emitted non-methane VOC species.

We find that the NO, / VOC ratios corresponding to the
peaks of surface O3 concentrations are similar between cor-
rected and uncorrected UKESM1 across different seasons
(Fig. 7). The NO, / VOC ratio thresholds, which indicate
the transition from NO,-limited to VOC-limited O3 produc-
tion regimes, are higher in summer (1.0-2.0) than in win-
ter (about 0.1). This demonstrates that UKESM1 effectively
captures the seasonal variation in critical NO, / VOC ratios.
The chemical mechanism of UKESM1 accurately represents
this transition. In addition, we see that as the NO, / VOC
ratio increases, the differences between corrected and uncor-
rected surface O3z concentrations become more pronounced
in summer, but this is less apparent in winter. This suggests
that biases in O3 simulations are amplified under two spe-
cific conditions: (1) in regions with high NO, levels, such as
polluted environments, and (2) in warmer climates, such as
during summer. It is noteworthy that NO, / VOC thresholds
may vary across different chemistry-climate models; how-
ever, analyzing O3 sensitivity to these ratios provides valu-
able insights into model limitations.

We further investigate the sensitivity of surface O3 biases
to different input variables in the statistical models, usually
termed the “feature importance”, see Fig. 8. This is calcu-
lated as the response of the O3 bias to a minor perturbation
(10 %) in each variable, then normalized across all variables
and expressed as a percentage. Figure 8 shows the feature
importance of the eight most influential variables. It reveals
that temperature is the primary contributor to O3 biases, as-
sociated with the overestimation of O3 in summer, as demon-
strated in Fig. 7. While other variables also play a role, their
impacts are substantially less pronounced than that of tem-
perature. This suggests that temperature-sensitive processes
are likely the dominant source of O3 biases in the model.
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Other physical variables, including photolysis rates, hu-
midity, boundary layer height and dry deposition, are also
associated with surface O3 biases. Chemical species such
as hydroxyl radicals (OH) and peroxyacetyl nitrate (PAN),
which are linked to the oxidation of O3 precursors and re-
gional transport, play a notable role in influencing these bi-
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ases. While deep learning models highlight the importance of
these variables, simpler statistical models, such as MLR and
RF, show little sensitivity to them. This suggests that simpler
models tend to overemphasize the most dominant variables,
whereas complex models may overdistribute feature impor-
tance across a broader range of variables. Furthermore, we
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Figure 7. Relationship between surface O3 mixing ratios (mean
per bin) and the NO, / VOC ratio (in ppb ppb_l) in different sea-
sons, as simulated by UKESM1 and bias-corrected UKESM1. Data
are aggregated from monthly means across all global surface grid
cells and binned by NO, / VOC ratio. Vertical lines denote the
NO, / VOC ratios corresponding to the maximum surface O3 con-
centrations.

find that the positive or negative values of feature importance
are generally consistent with physical expectations. For ex-
ample, an increase in the NO; photolysis rate, j(NOy), en-
hances O3 production and tend to result in higher O3 biases,
which is hence reflected by the positive feature importance
of j(NO»). In contrast, an increase in the O('D) photolysis
rate, j(O1D), promotes O3 destruction and leads to lower O3
biases, which is reflected by its negative feature importance.
Although MLR and RF models fail to capture these nuanced
relationships, they remain useful for identifying the most in-
fluential variables. We highlight that the underlying causes
of O3 biases are complex; however, temperature consistently
emerges as the dominant factor, potentially exerting a signifi-
cant influence on the accuracy of O3 simulations under future
warmer climate conditions.

6 Conclusions

We have successfully applied a range of statistical ap-
proaches to correct surface O3 biases in UKESMI, a state-of-
the-art chemistry-climate model. This model typically over-
estimates surface O3z concentrations in summer and underes-
timates them in winter. While these model biases can be cor-
rected using any of the statistical approaches, deep learning
models significantly outperform traditional approaches such
as multiple linear regression (MLR) and random forest (RF).
Among the deep learning architectures, the residual network
(ResNet) and Transformer models yield consistent results,
with small differences between them. The convolutional neu-
ral network (CNN) also produces comparable predictions to
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biases in each statistical model.

ResNet and Transformer. We note that while complex models
generally achieve higher prediction accuracy, the full poten-
tial of the Transformer architecture may not be fully realized
in this task due to the specific nature of the task.

A simple weighted ensemble mean scheme is proposed,
demonstrating an additional 14 % improvement in perfor-
mance compared to the best individual approach, the Trans-
former model. To assess future changes in surface O3z, we
apply bias correction to simulations generated by UKESMI1.
The signs of surface O3 changes are generally consistent be-
tween corrected and uncorrected UKESM1. However, the
magnitudes of these changes differ. Surface O3 changes sim-
ulated by UKESM1 are typically overestimated in both sea-
sons compared to the bias-corrected changes. Under the
SSP3-7.0 scenario, the corrected global summer mean O3
mixing ratios are projected to increase by 1.2 ppb, whereas
under the SSP3-7.0-lowNTCF scenario, they are expected to
decrease by 2.8 ppb. In winter, the corrected surface O3 mix-
ing ratios are projected to increase by 0.5 ppb under SSP3-7.0
and to decrease by 1.1 ppb under SSP3-7.0-lowNTCF.

The sensitivities of surface Oz to its precursors are
also investigated for both UKESM1 and the bias-corrected
UKESMLI. It reveals that UKESMI1 effectively captures the
seasonal differences in O3 sensitivities, as represented by
NO, / VOC ratios in different seasons. However, under high
NO, / VOC conditions, UKESM1 notably overestimates O3
concentrations, particularly during summer. This suggests
that under warmer conditions in the future, UKESM1 tends
to overestimate O3z concentrations. This is further confirmed
by examining the feature importance for simulated O3 biases,
which identifies temperature as the most important variable
influencing these biases. Deep learning models also highlight
the importance of other variables; however, their importance
is considerably less substantial than that of temperature. This
suggests that processes sensitive to temperature variations
may have a pronounced influence on O3 concentrations sim-
ulated by UKESM1.
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Despite the demonstrated capabilities of deep learning
models in capturing surface O3 biases, we acknowledge that
uncertainties remain, particularly regarding the use of CAMS
data as a reference for model training. Nevertheless, this ex-
ploratory study tests the methodology’s feasibility and pro-
vides insights into mitigating uncertainties associated with
approach selection. It establishes a robust foundation for the
broader application of bias correction techniques, particu-
larly through the integration of deep learning with chemistry-
climate models. This integration presents a promising path-
way for addressing systematic errors in chemistry-climate
models, while also facilitating the diagnosis of the underly-
ing causes of model biases. Bias correction techniques stand
to gain from the increasing availability of high-quality ob-
servational data, with applications extending beyond O3 to
other atmospheric components. This will strengthen the ro-
bustness of assessments in regions where observations are
currently lacking, ultimately producing more reliable projec-
tions of O3 changes across different climate scenarios.
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