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Abstract. This study presents a comprehensive evaluation of the Weather Research and Forecasting model
coupled with chemistry (WRF-Chem) in simulating meteorological parameters and concentrations of air pollu-
tants across the United Arab Emirates (UAE) for June and December 2022, representing the contrasting sum-
mer and winter climatic conditions. The assessment of WRF-Chem performance involves comparisons with
ground-based observations for meteorological parameters and satellite retrievals from the TROPOspheric Mon-
itoring Instrument (TROPOMI) for gaseous pollutants and the Moderate Resolution Imaging Spectroradiometer
(MODIS) for aerosols. The comparison with TROPOMI column concentrations demonstrates that WRF-Chem
performs well in simulating the spatio-temporal patterns of total column CO and tropospheric column NO2
and O3, despite certain deficiencies in modelling tropospheric NO2 column concentrations. In particular, WRF-
Chem shows a strong correlation with TROPOMI retrievals, with correlation coefficients ranging from 0.53 to
0.82 during summer and 0.40 to 0.69 during winter for these gaseous pollutants. The model tends to overestimate
NO2 levels, with a higher discrepancy observed in summer (0.50× 1015 molecules cm−2) compared to winter
(0.18× 1015 molecules cm−2). In comparison with TROPOMI-CO data, the discrepancies are more pronounced
in winter, with an underestimation of 0.12× 1018 molecules cm−2. Additionally, WRF-Chem consistently over-
estimates ozone levels in both seasons. WRF-Chem also exhibits a moderate correlation with both AERONET
and MODIS aerosol optical depth (AOD) measurements. The correlation at Mezaira is 0.60, while a correlation
of 0.65 is observed with MODIS AOD. However, the model tends to overestimate AOD, with a bias of 0.46 at
Mezaira and 0.35 compared to MODIS AOD.

Meteorological evaluations reveal that the model generally overestimated air temperature at 2 m above ground
(T2m) in summer (≤ 0.2 °C) and underestimated it in winter (∼ 3 °C), with correlation coefficients between 0.7
and 0.85. Temperature biases are linked to surface property representation and model physics. For wind speed at
10 m (WS10m), biases were within ± 0.5 m s−1, indicating good agreement, although overestimations suggest
deficiencies in surface drag parameterization. The dry bias observed was consistent with other studies due to
dry soil, inaccurate mesoscale circulation representation, and bias in forcing data. The model also overestimated
incoming shortwave radiation by∼ 30 W m−2 in December due to reduced cloud cover. Night-time cold and dry
biases were observed due to more substantial wind speeds and cooler air advection. Comparisons with ERA5
reanalysis showed regional T2m variations with high correlation coefficients (0.97 in summer, 0.92 in winter).
Both WRF-Chem and ERA5 displayed consistent seasonal patterns in the planetary boundary layer, correlating
with temperature changes and indicating good overall model performance.
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Key points.

– This is the first high-resolution WRF-Chem air quality mod-
elling study over the United Arab Emirates (UAE).

– WRF-Chem’s ability to simulate meteorological parameters
and pollutant levels over the UAE is assessed during summer
and winter in 2022.

– The model strongly correlated with TROPOMI satellite data,
achieving correlation coefficients of 0.53–0.82 in summer and
0.40–0.69 in winter for gaseous pollutants.

– There is lower model skill in simulating tropospheric NO2
columns, in contrast to the more accurate modelling of total
CO and tropospheric O3 columns, particularly in summer.

– WRF-Chem demonstrated a moderate correlation with
AERONET and MODIS for AOD during the summer, with cor-
relation coefficients of 0.60 and 0.65, respectively.

– Meteorological analysis revealed a tendency to overestimate
surface temperature by 0.2 °C in summer and underestimate it
by 3 °C in winter across land regions. Surface wind speed is
overestimated by 0.1–0.5 m s−1 in both seasons across various
regimes.

1 Introduction

The United Arab Emirates (UAE), a federation of seven emi-
rates, has undergone rapid urbanization and industrialization
over the last 5 decades, which has had a profound impact
on its air quality (Ramadan, 2015). The major factors af-
fecting air quality in the UAE include emissions from indus-
trial activities; vehicular traffic; construction projects (Teix-
ido et al., 2021); and occasionally, natural phenomena such
as dust storms, which are quite prevalent in the region due
to its desert climate (Environment Agency – Abu Dhabi,
2018; Francis et al., 2020, 2022b; Karagulian et al., 2019).
The rapid economic growth of the UAE, especially in cities
like Dubai and Abu Dhabi, has led to a surge in energy de-
mand and water, the latter obtained from desalination and
cloud seeding activities (Wehbe et al., 2023), largely met
through the burning of fossil fuels (Shahbaz et al., 2014).
This has resulted in increased emissions of pollutants like
oxides of nitrogen (NOx), sulfur dioxide (SO2), particulate
matter (PM), and volatile organic compounds (VOCs). More-
over, the heavy traffic in urban areas contributes to the ele-
vated levels of ground-level ozone and particulate pollution
(Abuelgasim and Farahat, 2020; Li et al., 2010). Understand-
ing the dynamics of air quality in the UAE involves consid-
ering both the environmental challenges posed by rapid de-
velopment and the steps being taken to mitigate these im-
pacts. The pursuit of balancing economic growth with envi-
ronmental sustainability is central to this discourse. This area
of study not only is vital for ensuring the health and well-
being of the population but also plays a crucial role in the
UAE’s vision for a sustainable future.

The swift urban expansion in the UAE, which is expected
to continue in the coming decades, could intensify air pol-

lution sources. With surface observations sparse in this re-
gion, satellite remote sensing becomes a crucial method for
air quality monitoring (Chudnovsky et al., 2014; Fonseca
and Francis, 2023; Francis et al., 2021). What is more, satel-
lite measurements themselves fall short in clarifying the dif-
ferent atmospheric processes responsible for peak pollution
levels. Consequently, integrating chemistry transport mod-
els with satellite-derived and ground-based observations can
significantly improve our understanding of pollutant emis-
sions, distribution, transport, and transformation in the tar-
geted regions (Eltahan et al., 2018; Li et al., 2018; Yarra-
gunta et al., 2020; Yin et al., 2021). Air quality (AQ) mod-
elling is dedicated to unravelling the complicated aspects of
atmospheric chemistry and transport across both global and
regional levels, as explored in numerous studies conducted
around the world (Emmons et al., 2010; Kumar et al., 2011,
2018; Tie et al., 2001; Yarragunta et al., 2019, 2020, 2021).
Despite facing limitations due to the often low spatial and
temporal resolution of observational data, AQ models effec-
tively generate detailed air quality information for remote re-
gions (e.g. Guo et al., 2024a). They predict the formation
and removal of air pollutants and facilitate a thorough ex-
amination of the transport and photochemical transforma-
tion of trace gases following their emission into the atmo-
sphere (Archer-Nicholls et al., 2015; Georgiou et al., 2018;
Nhu et al., 2021; Sicard et al., 2021). They are also em-
ployed globally for operational air quality forecasting (Jena
et al., 2021; Koo et al., 2012; Kumar et al., 2012, 2021;
Srinivas et al., 2016; Zhang et al., 2012). Air quality mod-
els are categorized into two types: “fully coupled” models,
which integrate interactions between chemistry and meteo-
rology, and “offline” models, where chemistry and meteo-
rology simulations are conducted independently (Gao and
Zhou, 2024). Some state-of-the-art AQ models include the
Weather Research and Forecasting (WRF) model coupled
with chemistry (WRF-Chem; Grell et al., 2005; Skamarock
et al., 2008), WRF-Chem-MADRID (Model of Aerosol Dy-
namics, Reaction, Ionization and Dissolution; Zhang et al.,
2010), CESM2 (Community Earth System Model version
2; Emmons et al., 2020), CHIMERE (Menut et al., 2021),
LOTOS-EUROS(v2.0) (Long Term Ozone Simulation Euro-
pean Operational Smog; Manders et al., 2017), and COS-
MO/MESSy (Consortium for Small-scale Modelling/Mod-
ular Earth Submodel System; Kerkweg and Jöckel, 2012).
However, before using these AQ models for operational or
research applications, it is crucial to conduct thorough eval-
uations to assess the quality of their predictions. The AQ
model chosen for the current study is WRF-Chem with its
foundational meteorological component, WRF. WRF-Chem
has been used for research studies in the Arabian Penin-
sula (Parajuli et al., 2019, 2023, 2022), with the meteoro-
logical component optimized for simulations over the region
(Chaouch et al., 2017; Nelli et al., 2020; Abida et al., 2022;
Fonseca et al. 2020, 2021, 2022a).
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The majority of studies conducted in the UAE and similar
arid regions have primarily focused on evaluation of mete-
orological parameter including temperature, humidity, wind,
and solar radiation (Parajuli et al., 2019; Nelli et al., 2020;
Fonseca et al., 2020, 2021), with a few others investigating
particulate matter (PM) dynamics, especially mineral dust.
For instance, Ukhov et al. (2021) noted inaccuracies in the
WRF-Chem model related to the commonly used bulk God-
dard Chemistry Aerosol Radiation and Transport (GOCART;
Chin et al., 2002) aerosol module, affecting PM2.5 and PM10
diagnostics. Karagulian et al. (2019) highlighted the effec-
tiveness of integrating WRF-Chem model simulations with
satellite and ground observations to understand and predict
the impact of severe dust storms on air quality. Karumuri
et al. (2022) reported significant air quality changes due to
COVID-19 lockdown measures, with reduced trace gas con-
centrations but increased particulate matter from dust activ-
ities, the latter stressed by Francis et al. (2022a), who at-
tributed it to changes in the atmospheric circulation. More-
over, Parajuli et al. (2022, 2023) utilized high-resolution
WRF-Chem simulations and advanced aerosol schemes to
analyse the dust and rainfall dynamics, providing insights
into the direct and indirect effects of dust on rainfall, which
aids in better regional water resource planning through accu-
rate rainfall predictions. In particular, while through indirect
effects dust promotes precipitation provided there is suffi-
cient moisture for both normal and extreme rainfall events,
the dust direct effects on precipitation shift from negative in
normal rainfall events (weaker sea breeze arising from sur-
face cooling) to positive in extreme events (smaller effects
on the sea breeze). Zhang et al. (2024) stressed the two-way
interaction between dust aerosols and the planetary bound-
ary layer (PBL) dynamics: aerosols directly impact the PBL
structure through direct and indirect effects, while the mod-
ified PBL characteristics and low-level circulation modulate
aerosol processes. All the aforementioned studies focus on
dust aerosols; there is no assessment to date of the model
performance for the simulation of gaseous pollutants over the
region. This is crucial, given the complex dynamics between
anthropogenic and natural factors in air quality management
and the necessity of tailored model configurations for accu-
rate environmental assessments in arid regions.

This study represents the first comprehensive evaluation of
the WRF-Chem model in the Arabian Peninsula, with a fo-
cus on the UAE, a country that is representative of the coun-
tries in the region, specifically examining concentrations of
air pollutants along with crucial meteorological parameters
relevant to air quality studies. The primary objective of this
study is twofold:

– Evaluate the WRF-Chem’s ability to replicate meteoro-
logical conditions. This involves comparing the model’s
simulation of temperature, wind speed, relative hu-
midity, downward shortwave radiation, and boundary
layer height against ground-based observations and data

from the European Centre for Medium-Range Weather
Forecasting (ECMWF) fifth reanalysis product, ERA5
(Hersbach et al., 2020).

– Assess the model’s performance in simulating concen-
trations of key gaseous pollutants, specifically NO2, O3,
and CO, which are prevalent in the region (Teixido et
al., 2021), against data from the TROPOspheric Mon-
itoring Instrument (TROPOMI; Veefkind et al., 2012)
on board the Sentinel-5 Precursor (S5P) satellite. Ad-
ditionally, aerosol optical depth (AOD) at 550 nm from
AERONET and MODIS satellite observations is used to
evaluate the model’s skill in simulating aerosol concen-
trations.

The structure of the paper is as follows. Section 2 describes
the configuration of the WRF-Chem considered in this work.
Section 3 elaborates on the methodology and datasets used in
this study. Section 4 provides a comprehensive assessment of
the model’s simulated data against observational datasets and
reanalysis and satellite-derived products. Section 5 concludes
by outlining the main findings.

2 WRF-Chem configuration

WRF-Chem version 4.3.1 is employed to simulate the atmo-
spheric conditions and transport of pollutants in the UAE.
WRF-Chem is a mesoscale regional chemistry transport
model, developed by the National Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory
(ESRL), with contributions from the global science commu-
nity. In WRF-Chem, the air quality and meteorological com-
ponents are predicted simultaneously using the same grid,
transport, time step, and sub-grid scale physics. A detailed
description of the model is found in Grell et al. (2005), Ska-
marock et al. (2008), and Powers et al. (2017). The physics
schemes employed in the simulations are the Rapid Radiative
Transfer Model for Global Circulation Models (RRTMG) for
radiation parameterization of both short- and longwave radi-
ation (Iacono et al., 2008), the cloud microphysics is repre-
sented by the Morrison two-moment scheme (Morrison et al.,
2009), and the Kain–Fritsch scheme is used for convective
parameterization (Kain, 2004), with the subgrid-scale cloud
feedback to radiation switched on (Alapaty et al., 2012). The
Unified Noah model is used to represent the land surface
model (Tewari et al., 2004), with an improved representation
of soil texture and land use–land cover (LULC) over the UAE
(Temimi et al., 2020b). The boundary layer dynamics are
represented by the Yonsei University (YSU) scheme (Hong,
2010). The chosen physics schemes are listed in Table 1. The
simulated mesoscale meteorology is kept in line with the
analysed meteorology through spectral nudging to the Na-
tional Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) analyses used to drive the model, in
an attempt to limit errors in the mesoscale transport. Dur-
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ing the simulations, horizontal and vertical wind, potential
temperature, and water vapour mixing ratio are nudged to
GFS analyses in all model layers above the planetary bound-
ary layer on a timescale of 6 h for scales above ∼ 1000 km.
Meteorological conditions were initialized by NCEP GFS 6-
hourly analyses at 0.25° resolution.

This study utilized the Model for Ozone and Related
Chemical Tracers, version 4 (MOZART-4) chemical mecha-
nism for calculating gas-phase chemistry, which includes 81
chemical species with 159 gas-phase reactions and 38 pho-
tolysis processes (Emmons et al., 2010). Aerosol chemistry
is represented by the GOCART (Chin et al., 2002) module,
along with the Tropospheric, Ultraviolet and Visible (TUV)
full photolysis scheme (Madronich, 1987; Tie, 2003), which
deploys climatological O3 and O2 columns. Dry deposition
is calculated using Wesely (1989). Anthropogenic emissions
are taken from the Emission Database for Global Atmo-
spheric Research (EDGAR) version 8.1 at a 0.1× 0.1° hor-
izontal resolution for 2022 (Crippa et al., 2020), consistent
with the simulation period. Emissions include SO2, NOx ,
CO, non-methane volatile organic compounds (NMVOCs),
NH3, black carbon (BC), and organic carbon (OC). Biogenic
emissions are calculated online by the Model of Emissions
of Gases and Aerosol from Nature (MEGAN; Guenther et
al., 2012). The chemistry boundary conditions (BCs) used in
domain D01 and the initial conditions (ICs) for all domains
in the WRF-Chem simulations are extracted from CAM-
Chem model forecasts (Emmons et al., 2020). In this work,
we run the WRF-Chem model on the three nested domains
with horizontal resolutions of 27, 9, and 3 km correspond-
ing to 283× 205, 271× 193, and 256× 178 grid points, re-
spectively. In the vertical, there are 45 layers, with the low-
est model level at about 27 m above the surface. The outer-
most domain covers most of the Middle East and the sur-
rounding region, while the innermost domain covers the en-
tire UAE (Fig. 1a). The analysis in this research article exclu-
sively utilizes results from the inner domain (D03). Figure 1b
shows the spatial distribution of UAE airport stations, the
WInd-Blown Sand Experiment (WISE)-UAE observational
site, and AERONET locations for AOD measurements.

The WRF-Chem simulation is driven by anthropogenic
emissions from the EDGAR database, version 8.1, at a hori-
zontal resolution of 0.1°× 0.1° for the year 2022 (Crippa et
al., 2020). The EDGAR emission inventory accounts for day-
to-day variability (e.g. weekday versus weekend) and hourly
fluctuations (diurnal cycle) of anthropogenic emissions, as
detailed by Crippa et al. (2020). For example, road trans-
port emissions are generally lower at night and higher during
daytime hours, while agricultural emissions tend to peak dur-
ing specific months. To achieve an hourly resolution for the
model, we scaled the coarsely resolved emission data using
predefined hourly, daily, and monthly scaling factors (tempo-
ral profiles). The initial temporal profiles are derived from the
work of Olivier et al. (2003) and have been refined to place
greater emphasis on the most relevant emission sectors for

Figure 1. Model configuration: (a) the WRF domain configura-
tion consists of three telescoping nests, with the outermost bound-
aries denoting the parent grid (D01). D02 and D03 are the nested
domains. Panel (b) is a zoomed-in view of the innermost do-
main (D03), showing the spatial distribution of the seven automatic
weather stations operated in airports (land stations (5) are denoted in
blue, and coastal stations (2) are represented by green) along with
the WInd-blown Sand Experiment (WISE)-United Arab Emirates
(UAE) site by the red star, and black dots represent two AERONET
stations (Mezaira and Dewa). The shading in (a) represents the
orography (m). Further details about the stations are given in Ta-
ble S1.

each pollutant within the study region. According to the En-
vironment Agency – Abu Dhabi (2018), the primary sectors
contributing to emissions include traffic, the power industry,
energy used in buildings, and the manufacturing industry. Us-
ing these optimized emission profiles, emissions for NO2 and
CO were dynamically adjusted during the model simulations
to better capture local emission patterns and their variability.
However, the results indicated that emissions for NO2 and
CO are underestimated by EDGAR. Although WRF-Chem
simulations incorporate temporal profiles of emissions, the
impact of these emission estimates on daily variations could
not be fully assessed in this study due to the lack of ground-
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based measurements and the limited temporal resolution of
satellite data. MODIS and TROPOMI satellites each pass
over the study area only once per day, restricting the ability to
capture daily variations comprehensively. Consequently, this
article is limited in its assessment of daily emission variabil-
ity. Moreover, WRF-Chem supports the vertical distribution
of trace gas emissions, which is particularly useful for cap-
turing emissions released at elevated altitudes, such as those
from combustion stacks. Accurately representing the verti-
cal distribution of emissions is important for simulating at-
mospheric processes. However, incorporating this complex-
ity would likely provide minimal improvements in model
accuracy for regions where surface emissions dominate and
where observational constraints are largely limited to coarse-
vertical-resolution or surface-level data. Therefore, in this
study, all emissions were injected into the lowest model layer
to align with the observational data characteristics and the
typical conditions in the study area.

3 Datasets and methodology

3.1 Meteorology observations

In this study, meteorological data from eight automatic
weather stations (AWSs) operated at UAE airports are uti-
lized to assess the WRF-Chem air temperature at 2 m above
ground (T2m), wind speed at 10 m (WS10m), and relative
humidity at 2 m above ground (RH2m) forecasts during June
and December 2022. The spatial distribution of the stations
across the UAE is illustrated in Fig. 1b (refer to Table S1
in the Supplement for more details). These locations are cat-
egorically divided into two regions – land stations (station
code OMAA, OMDW, OMAL, OMSJ, OMRK) and coastal
stations (station code: OMAD, OMDB) – following the cri-
teria outlined in Branch et al. (2021). Subsequent analyses
are based on these two primary categories, with the land re-
gion comprising five stations and the coastal region com-
prising 2 stations (Fig. 1b). In addition to the UAE airport
data, we utilized meteorological data from the WInd-Blown
Sand Experiment (WISE)-UAE measurements. The WISE-
UAE experiment started on 25 July 2022 at Madinat Zayed
(23.5761° N, 53.7242° E; elevation: 119 m; Fig. 1b), located
120 km southwest of Abu Dhabi, UAE. An overview of the
instrumentation and experiment site used during WISE-UAE
is provided in Nelli et al. (2024a, b). This study uses WS10m,
T2m, RH2m, and downward shortwave radiation flux (SW)
from these measurements to validate the WRF-Chem simula-
tions for December 2022. The specifications and accuracies
of the instruments used in WISE-UAE are outlined in detail,
along with the stringent quality control procedures applied,
as described in Nelli et al. (2024a, b, c).

3.2 AERONET

The Aerosol Robotic Network (AERONET) programme is
a global federation of ground-based sun photometers com-
prising more than 400 stations worldwide (Holben et al.,
1998). AERONET utilizes multiple bands ranging from UV
to near-IR wavelengths to measure spectral sun irradiance
and sky radiances, from which aerosol optical depth (AOD)
at 550 nm and other aerosol properties are derived. A detailed
description of the AERONET retrievals is provided in Hol-
ben et al. (1998). This study uses Level 2.0 AOD data at
550 nm from Mezaira for June and from Dewa for Decem-
ber 2022, with an hourly resolution. It is important to note
that AOD retrieved from AERONET is accurate to within
0.01 (Dubovik et al., 2000).

3.3 ERA-5 reanalysis data

The fifth-generation ECMWF reanalysis, known as ERA-
5 (Hersbach et al., 2020), represents a significant advance-
ment over its predecessor, ERA-Interim, introduced by Dee
et al. (2011). ERA-5 incorporates a sophisticated four-
dimensional variational (4D-Var) data assimilation method,
utilizing the 41r2 cycle of the Integrated Forecast System
(IFS). This system is enhanced by integrating a soil and
an ocean wave model, offering a comprehensive approach
to climate data analysis. We accessed ERA-5 data through
the Copernicus Climate Change Service Climate Data Store
(CDS) for this research. The dataset provides atmospheric
observations across 137 hybrid vertical levels, with raw
model data interpolated onto 37 distinct pressure levels.
These levels span 1000 hPa, close to the Earth’s surface, up
to 1 hPa, reaching altitudes of approximately 80 km. Fur-
ther details on the ERA-5 dataset are available in Dee et
al. (2011) and Hersbach et al. (2020). Our study utilizes ex-
plicitly hourly data for a selection of meteorological parame-
ters: T2m, WS10m, SW, and planetary boundary layer height
(PBL), for June and December 2022.

3.4 Satellite-borne observations: TROPOMI

Launched by the European Space Agency (ESA) on 13 Octo-
ber 2017, the TROPOMI instrument is aboard the S5P satel-
lite, operating in a near-polar sun-synchronous orbit. Posi-
tioned at an altitude of 817 km, the S5P satellite crosses
the Equator at a local solar time of 13:30, boasting a wide
swath of approximately 2600 km and providing daily global
coverage. TROPOMI features four distinct spectrometers
that measure the radiation in the ultraviolet (UV) and UV–
visible (UV–VIS) range (270 to 500 nm), near-infrared (NIR)
range (675 to 775 nm), and shortwave infrared (SWIR) range
(2305 to 2385 nm) spectral bands (Veefkind et al., 2012).
Notably, the last two spectral bands, NIR and SWIR, are
newly introduced in TROPOMI compared to its predeces-
sor OMI (Ozone Monitoring Instrument). TROPOMI’s data
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Table 1. WRF-Chem model setup.

Model setup Option

Model version 4.3.3
Domain Three domains
Horizontal resolution D01: 27 km, D02: 9 km, and D03: 3 km
Simulation period Monthly runs from June and December 2022
Model spin-up period 2 d in each month
Vertical resolution 45 eta levels up to 50 hPa
Domain size D01: 283× 205 grids, D02: 271× 193 grids, and D03: 256× 178 grids
Meteorological boundary NCEP FNL reanalysis (0.25°, 6-hourly)
Chemical boundary CAM-Chem (Emmons et al., 2020)
Physical process Parameterization scheme
Microphysics Morrison double-moment scheme (Morrison et al., 2009)
Cumulus parameterization Kain–Fritsch (Kain, 2004) with the subgrid-scale cloud–radiation feedbacks activated (Alapaty et al., 2012)
Shortwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 2008)
Longwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 2008)
Land surface Unified Noah land surface model (Tewari et al., 2004)
Planetary boundary layer Yonsei University scheme (Hong, 2010)
Chemistry option Scheme used
Gas-phase chemistry MOZART-4 (Emmons et al., 2010)
Aerosol chemistry GOCART (Chin et al., 2002)
Photolysis Madronich F-TUV (Madronich, 1987; Tie, 2003)
Biogenic emissions MEGAN (Guenther et al., 2012)
Dry deposition Wesely (Wesely, 1989)

products encompass daily observations of trace gases, in-
cluding CO, O3, NO2, CH4, HCHO, aerosols, and cloud
properties. This study utilized daily tropospheric NO2, to-
tal CO columns, and ozone profile level 2 products down-
loaded from the GES DISC website (https://disc.gsfc.nasa.
gov/, last access: 3 March 2022) for the period of June
and December 2022. The specific datasets employed for
the present study include S5P_OFFL_L2__O3__PR for O3
(ESA, 2021c), S5P_OFFL_L2__CO for CO (ESA, 2021b),
and S5P_OFFL_L2__NO2 for NO2 (ESA, 2021a), covering
the study region bounded by longitudes [51, 58°] and lati-
tudes [21, 27°]. Further details on each product, including the
retrieval algorithms and validation results, are summarized in
the following section.

TROPOMI retrieval of NO2 columns is derived using solar
radiation measurements backscattered by the UV–VIS spec-
trometer in the wavelength range of 405–465 nm and pro-
vides total and tropospheric NO2 vertical column density
with a near-nadir resolution of 7× 3.5 km. The total NO2
slant column density (SCD) is retrieved from the measured
solar irradiance spectra using the differential optical absorp-
tion spectroscopy (DOAS) method. Tropospheric and strato-
spheric slant column densities are separated from SCD by
a data assimilation system based on the chemistry transport
model V5 (TM5-MP). Afterwards, they are converted to ver-
tical column densities (VCDs) with the help of a lookup ta-
ble of altitude-dependent air mass factors (AMFs) and infor-
mation on the vertical distribution of NO2 from the TM5-
MP a priori profile with a horizontal resolution of 1°× 1°

and a time step of 30 min (Boersma et al., 2018; Van Gef-
fen et al., 2023). The TROPOMI NO2 product has been ex-
tensively evaluated using ground-based and aircraft observa-
tions and is found to have a high correlation and low bias of
less than 30 % with respect to in situ measurements (Griffin
et al., 2019; Ialongo et al., 2020). We used both reprocessed
(RPRO) and offline (OFFL) TROPOMI NO2 data files from
the most recent processor versions depending on availabil-
ity for a given day of observations. Additionally, there is an-
other NO2 product available in near-real time (NRTI). NRTI
data files are generated using TM5-MP forecast data rather
than analysis data, as with REPO and OFFL files (Van Gef-
fen et al., 2023). The differences between the OFFL/REPO
and NRTI NO2 products are generally very small (Ialongo et
al. (2020) and references therein).

The Shortwave Infrared Carbon Monoxide Retrieval
(SICOR) algorithm is used to retrieve CO total column densi-
ties from TROPOMI in the spectral range of 2305 to 2385 nm
(Landgraf et al., 2016). The SICOR algorithm accounts for a
profile-scaling approach that scales retrieved CO total col-
umn to the a priori reference profile. The a priori reference
profiles are taken from the global chemistry transport model
simulations of TM5-MP and vary based on the location,
month and year (Krol et al., 2005). The detailed outline of all
settings and other auxiliary datasets used for CO retrievals is
given in Landgraf et al. (2016). This study limits the analysis
to CO pixels corresponding to clear-sky conditions and mid-
level clouds by filtering the data using the quality flag vari-
able (qa_value). The scenes corresponding to qa_value > 0.5
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are used in this current analysis as suggested in the ATBD
(algorithm theoretical baseline document; Landgraf et al.,
2016). In this present work, TROPOMI CO measurements
for June and December 2022 have been analysed. Moreover,
we use either the reprocessed (RPRO) or offline (OFFL) data
files from the most recent processor versions depending on
availability for a given day of observations. Wizenberg et
al. (2021) compared global TROPOMI-retrieved CO total
columns with corresponding ACE-FTS (Atmospheric Chem-
istry Experiment- Fourier transform spectrometer) columns
for the period from November 2017 to May 2020 and found
a small relative bias of−0.83 % with a correlation coefficient
of 0.93 between two datasets. Similar results are also found
between TROPOMI CO with corresponding CO fields from
the ECMWF assimilation system: Borsdorff et al. (2018) re-
ported a small mean difference between the two datasets of
3.2 % with a correlation coefficient of 0.97.

TROPOMI also provides ozone profiles
(5P_OFFL_L2__O3__PR) at 33 pressure levels with a
horizontal resolution of 28× 28 km. It measures radiances
and irradiances in the ultraviolet wavelength of 270–330 nm
and provides the ozone profile information. The optimal
estimation (OE) algorithm is used to retrieve the ozone pro-
file data. Before this stage, various pre-processing steps are
applied to the measured spectra before the estimation of the
ozone profile. The main process of the algorithm is the OE
method, which combines the information from the measured
spectra with the a priori information. The latter is based
on climatology as described in Labow et al. (2015). The
description of the various pre-processing steps performed
to retrieve ozone profiles is presented in the Algorithm
Theoretical Basis Document (Veefkind et al., 2023). The
validation of TROPOMI-retrieved ozone profile data against
the ground-based measurements reported a median bias of
0.3 % for OFFL/REPO products and 0.8 % for NRTI ozone
products (Lambert et al., 2023). Our focus is specifically on
the tropospheric ozone column due to its direct relevance
to surface air quality. Total column ozone measurements
are primarily influenced by stratospheric ozone, which
accounts for approximately 90 % of the total column, while
tropospheric ozone comprises only around 10 %. Given this,
we have used ozone profile data from the surface to 100 hPa,
designated as tropospheric ozone columns for this study and
referred to as TROPOMI-O3, expressed in Dobson units
(DU), where 1 DU= 2.69× 1016 molecules cm−2.

3.5 Satellite-borne observations: MODIS

The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) sensor was launched into the polar sun-
synchronous orbit at an altitude of 705 km aboard NASA’s
two Earth Observing System (EOS) satellites, Terra (Febru-
ary 2000) and Aqua (June 2002) (Kaufman et al., 1997;
Remer et al., 2005). The Equator crossing times of two
satellites were 10:30 LST for Terra and 13:30 LST for Aqua.

The MODIS sensor has a swath of ∼ 2330 km and provides
near-global coverage with a temporal resolution of 1–2 d.
The sensor measures the reflected solar radiation from the
Earth’s atmosphere and the surface as well as emitted ther-
mal radiation at 36 spectral bands from 0.41 to 14 µm with
three spatial resolutions: 250, 500, and 1 km. Seven of these
bands operating in the spectral range of 0.415–2.155 µm can
effectively retrieve the AOD over land and ocean (Levy et
al., 2013; Hsu et al., 2013; Sayer et al., 2014a, b, 2015).
The MODIS retrieval algorithm is based on the lookup table
approach with a predefined set of aerosol types, loadings,
and geometries (Floutsi et al., 2016). A comprehensive
description of retrieval algorithms and details of MODIS
instrument is found elsewhere (Remer et al., 2008; Levy
et al., 2013; Hsu et al., 2013). MODIS AOD retrieval
algorithms have been substantially validated against in situ
and/or other remote sensing datasets from regional to global
scales and are updated periodically (Remer et al., 2008; Li et
al., 2009). The uncertainty of AOD retrievals is estimated to
be±0.05± 0.20×AOD over land and±0.03± 0.15×AOD
over ocean (Remer et al., 2005, 2008). The present study
utilized Level 2 MODIS aerosol products (Collection 6.1)
obtained from the Atmosphere Archive and Distribution
System (LAADS DAAC). These products consist of 5 min
satellite swaths with a spatial resolution of 10 km, covering
the period of June and December 2022 (Levy et al., 2015).

3.6 Satellite data processing

In order to quantitatively compare the WRF-Chem simula-
tions with satellite measurements, the model outputs must be
processed using the appropriate method as described in the
literature (Kumar et al., 2012). Direct comparison between
satellite retrievals and model outputs is not recommended, as
satellite measurements depend on column averaging kernels
(AKs) and a priori profiles. The AK vector represents the
vertical sensitivity of the retrieved column relative to the true
vertical profile of the target variable in the atmosphere. It in-
dicates how changes in the true atmospheric profile at differ-
ent vertical levels influence the retrieved column values, al-
lowing for a more accurate comparison between model simu-
lations and TROPOMI data by convolving the model outputs
with the AKs. The typical AK vectors are plotted over the
WISE-UAE location to know the sensitivity of AK at differ-
ent pressure levels (Fig. S7 in the Supplement)

The column density from the WRF-Chem model is re-
gridded to match the TROPOMI instrument’s grids and is
vertically interpolated to the TROPOMI pressure levels be-
fore it is multiplied by the AK. This treatment of the WRF-
Chem-simulated profile with the column averaging kernels
allows for a comparison that is independent of the chemical
transport model (CTM) a priori assumptions and the verti-
cal sensitivity of the retrieval process; therefore, it can be
directly compared with the TROPOMI-derived tropospheric
column of NO2. The TROPOMI-NO2 and TROPOMI-CO
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products also provide a column averaging kernel matrix. In
this case the column AK averaging kernel accounts for the
vertical distribution and sensitivity of the measurements, as
classically done by Borsdorff et al. (2014) as

Xret =Xapriori+AK× (Xtrue−Xapriori)+ ex, (1)

where Xtrue is the model simulation profile of trace gas, Xret
is the retrieved profile or smoothed model profile, ex repre-
sents the error on the retrieved trace gas profile, and Xapriori
is the a priori information provided in the TROPOMI dataset.
For TROPOMI-NO2 data, the contribution of the a priori
profile and error on the retrieved profile can be eliminated,
as explained in Borsdorff et al. (2014). In particular, Eq. (1)
simplifies to

Xret = AK× (Xtrue), (2)

where Xtrue represents the WRF-Chem simulation profile for
both NO2 and CO, AK represents the averaging kernel infor-
mation provided in the TROPOMI dataset for NO2 and CO,
and Xret represents the smoothed model profile for NO2 and
CO.

For validation of ozone, we have used the TROPOMI
ozone profile level 2 data product 5P_OFFL_L2__O3__PR
that provides the ozone concentrations at 33 pressure levels.
This data product also includes the a priori information and
column averaging kernel for each pressure level. In order to
compare our model profile with the one given by this dataset,
the model output is horizontally and vertically interpolated to
TROPOMI grids and vertical levels. The final model profile
was calculated by Eq. (3):

Xret =Xapriori+AK× (Xtrue−Xapriori), (3)

where Xtrue represents WRF-Chem simulation profile for O3,
AK represents the averaging kernel information provided in
the TROPOMI data, Xret represents smoothed model pro-
file for O3 and Xapriori is the a priori information provided
in the TROPOMI data. Since the highest vertical level in
WRF-Chem-simulated trace gas concentration is 50 hPa, the
remaining vertical layers of ozone and CO are made equal
to the a priori concentration of respective trace gases as de-
scribed by ATBD (Landgraf et al., 2016).

3.7 Evaluation methodology

Meteorological parameters from the WRF-Chem model are
extracted for the grid points closest to the surface observa-
tion sites of the AWS. As noted before, the meteorologi-
cal parameters are categorized and averaged for land and
marine regions separately for the regional analysis. To en-
able the comparison of atmospheric column data from the
TROPOMI satellite retrievals with WRF-Chem outputs, the
data must undergo smoothing through an appropriate method
described in Sect. 3.4, as direct comparison between satellite

retrievals and simulations is not feasible due to discrepancies
highlighted in previous literature. Additionally, and owing to
the spatial resolution differences between WRF-Chem and
ERA5 datasets, it is necessary to remap the model data to
the ERA5 grids for accurate comparison. A wide range of
statistical parameters is available for evaluating model simu-
lations. In this study, we employed statistical skill scores in-
cluding the Pearson correlation coefficient (r), the mean bias
(MB), the root mean square error (RMSE), and the mean ab-
solute error (MAE), which have been extensively discussed
and applied in similar contexts (Fonseca et al., 2021; Ivatt
and Evans, 2020; Temimi et al., 2020b).

The following equations (Eqs. 4 to 7) are used to calculate
these statistical matrixes in the present study:

r =

∑N
i=1[(Oi −Oi)(Mi −Mi)]∑N

i=1(Oi −Oi)2
∑N

i=1(Mi −Mi)2
(4)

RMSE=
(

1
N

∑N

i=1
(Mi −Oi)2

) 1
2

(5)

MB=
1
N

∑N

i=1
(Mi −Oi) (6)

MAE=
1
N

∑N

i=1
|Mi −Oi |, (7)

where Oi denotes the ith observation, Mi represents the cor-
responding WRF-Chem-model-simulated value, and N is the
number of model and observation pairs. Mi and Oi are the
model and observational means (i.e. average of 1–30 June
and 1–31 December), respectively. The correlation coeffi-
cient (r) is an indication of the phase agreement between the
modelled and observed time series. The RMSE measures the
average error in the model predictions, while the MAE deter-
mines the mean error between the model forecasts and obser-
vations regardless of whether it is an under- or overestimate.
The MB is a measure of the systematic error and gives infor-
mation as to whether the model is over- or underpredicting
the corresponding observed values.

4 Results and discussion

4.1 Model performance for key meteorological variables

The capability of the WRF-Chem model to reproduce re-
alistic spatio-temporal patterns of key meteorological vari-
ables has been assessed by comparing the model outputs to
observational reanalysis data for June and December 2022,
representing contrasting summer and winter conditions over
the UAE. Evaluating the accuracy of WRF-Chem’s meteoro-
logical forecasts in the study area is essential before apply-
ing the model forecasts to air quality assessments. Accord-
ingly, we compared the model predictions for T2m, RH2m,
WS10m, and SW against ground-based observations at seven
airport stations and in situ measurements from the WISE-
UAE field campaign (details in Table S1). Additionally, the
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boundary layer height is evaluated against ERA5 reanaly-
sis data, which offers a spatial resolution of approximately
28 km, higher than the other currently available reanalysis
datasets. Detailed results of this analysis are presented in the
Supplement, with key findings summarized here to support
the paper’s discussion. The aforementioned meteorological
parameters are selected, given their critical role in influenc-
ing air pollutant behaviour (Ritter et al., 2013).

4.1.1 Evaluation against in situ observations

The WRF-Chem model evaluation against observations
across the seven meteorological stations (Table S1) at the
UAE airports for T2m, RH2m, and WS10m during June and
December 2022 reveals a close agreement between the mod-
elled and observed values (Table S2). The cold bias reported
by several studies, including Branch et al. (2021), Temimi et
al. (2020a), and Abida et al. (2022), which occurs primarily
at night, is reduced in the WRF-Chem simulations presented
here. In fact, and for the June month, the air temperature bias
is positive,∼ 0.2 °C. This stresses the importance of properly
simulating the observed aerosol loading in this hyper arid re-
gion. Deficiencies in the land surface model and radiation
schemes and in the representation of the surface properties,
particularly the surface emissivity that may be overestimated
in the model (Parajuli et al., 2023), can also account for this
discrepancy. The WRF-Chem model also exhibits a notewor-
thy dry bias in this region, linked to an incorrect simula-
tion of the soil moisture and the mesoscale land–sea breeze
circulation, which is present in both seasons. The strength
of the near-surface wind speed tends to be overestimated in
WRF-Chem in the UAE by about 1–3 m s−1, which has been
attributed to an incorrect representation of its subgrid-scale
variability and deficiencies in the surface drag parameteriza-
tion scheme (Nelli et al., 2020; Fonseca et al., 2020; Temimi
et al., 2020b). Here, the biases are much smaller, within
0.5 m s−1. This, together with the improved representation
of the observed air temperature, reflects an overall improved
simulation of the boundary layer dynamics in the model.

The WRF-Chem model evaluation against WISE-UAE
measurements (detailed in Table S3 and Fig. S1) reveals a
comparable performance to that seen concerning the seven
airport stations. SW observations are also available for this
site. An evaluation against the WRF-Chem values reveals
that the model overestimates the incoming shortwave radi-
ation flux by about 30 W m−2 for December, which can be
attributed to reduced cloud cover, a known WRF deficiency
(Wehbe et al., 2019; Fonseca et al., 2020, 2022a). An inspec-
tion of the diurnal cycle revealed that the cold (typically by
2–3 °C) and dry (by about 20 %) biases occur mostly at night,
when the wind speed in the model is higher than that ob-
served, suggesting increased advection of cooler and drier
desert air into the site.

4.1.2 Evaluation against ERA5 reanalysis data

The WRF-Chem model predictions are also evaluated against
ERA5 reanalysis data for T2m, WS10m, SW, and PBL dur-
ing June and December 2022. The air temperature biases
are within 1 °C, with a cold bias present in both months,
more pronounced over inland areas, with a correlation co-
efficient of 0.9 (Fig. S2). It is important to note that ERA5
overestimates the temperature at night and underestimates
it during the day, typically by 1–2 °C in the whole country
for all seasons (Nelli et al., 2024a), meaning the cold bias
shown by WRF-Chem does not necessarily indicate a poorer
performance. The skill scores for WS10m and SW are also
similar to those estimated concerning the station observa-
tions and the WISE-UAE field measurements. For the PBL
height, the model reproduces its spatial and seasonal varia-
tions (Fig. S3), largely driven by the temperature seasonal
cycle (see Fig. S2; Basha et al., 2019). The PBL height, and
over land areas, ranges from 2400–2500 m in the summer
during the day to less than 500 m in winter at night. Over
the Arabian Gulf, the PBL is deeper in the winter months
in both ERA-5 and WRF-Chem (800 m vs. 200 m), owing to
stronger winds and enhanced turbulent mixing (Dai, 2024).

This comprehensive evaluation of the predicted meteo-
rological parameters against those observed at seven UAE
airport sites, the WISE-UAE experimental site, and ERA5
reanalysis data demonstrates that WRF-Chem reliably cap-
tures them, including their spatial and seasonal variations
across the UAE. As WRF-Chem integrates meteorologi-
cal and chemical processes, precise meteorological simula-
tions are essential to ensure accurate chemical computations
within the model domain.

4.2 Model performance for the gaseous pollutants

The study incorporates comparative assessments with satel-
lite data from the TROPOMI instrument, including eval-
uations of the tropospheric column of NO2 (denoted as
TROPOMI-NO2), total column CO (TROPOMI-CO), and
tropospheric column ozone (TROPOMI-O3) for the corre-
sponding periods within the UAE. The satellite overpass
takes place daily at 13:30 local time; therefore, model simu-
lations corresponding to this time are utilized here for com-
parison over the study area. After smoothing the model con-
centrations using the a priori and averaging kernel matrix, as
detailed in Sect. 3.4, the results are compared with the corre-
sponding TROPOMI products.

In the troposphere, nitrogen oxides (NOx =NO+NO2)
are vital for ozone production and depletion processes in sun-
light. Due to their relatively short lifespan, NOx concentra-
tions are closely linked to emission sources, making them
highly sensitive to inaccuracies in emission estimates com-
pared to other pollutants. In our model setup, we adopt the
recommendation of Emmons et al. (2010), assigning 10 %
of NOx emissions as NO2. As a result, the model tends to
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underestimate TROPOMI NO2 levels, particularly in regions
with high emission sources, such as urban centres. The Envi-
ronment Agency – Abu Dhabi (2018) reported that oil and
gas, road transport, and electricity generation are the pri-
mary sectors contributing to NOx total emissions, account-
ing for 42 %, 34 %, and 13 %, respectively, for the base year
of 2015 in the emirate of Abu Dhabi. Figure 2 presents
the average spatial distributions of absolute differences be-
tween the model-simulated and the TROPOMI-retrieved tro-
pospheric column NO2, scatter plots, and histograms of rel-
ative frequency. The satellite retrievals indicate elevated lev-
els of NO2 columns, exceeding 5× 1015 molecules cm2, in
densely populated industrial areas adjacent to the major
cities of Dubai and Abu Dhabi in both summer and win-
ter (Fig. S4). Conversely, lower NO2 values, less than 1.5×
1015 molecules cm−2, are observed over the less urbanized
areas. The higher columns are associated with significant
economic development driven by a high demand in power
generation and water desalination projects, which primarily
depends on the combustion of fossil fuels (Abuelgasim and
Farahat, 2020; Li et al., 2010). The model effectively repro-
duces the spatial distributions of NO2 during the summer and
winter of 2022 as depicted in Fig. 2. Even though the biases
are positive in rural areas, the observed column NO2 concen-
tration is underestimated by up to 2× 1015 molecules cm−2

in the heavily populated northeastern UAE, in particular
around Ras Al Khaimah and Dubai (Fig. 2a), the sixth-
largest city by population in the country and home to a
global ceramic manufacturing company. This discrepancy
suggests that anthropogenic and industrial emissions might
be improperly represented in the EDGAR emission inven-
tory, at least for the UAE. Challenges range from the in-
complete characterization of emissions in source regions to
the impact of model resolution on capturing sub-grid emis-
sion sources. Besides deficiencies in the emission sources,
other reasons may explain the model’s underperformance in
this region. Hoshyaripour et al. (2016) found that the PBL is
shallower and more stable at night when simulated with the
YSU boundary layer scheme used in the WRF-Chem runs,
resulting in a higher accumulation of NOx in the surface lay-
ers. As the evaluation conducted here against satellite ob-
servations is daily, an incorrect representation of the atmo-
spheric dynamics will be reflected in the WRF-Chem pre-
dictions. Additionally, the existing model configuration does
not include the formation of secondary aerosols, indicating
a potential area for improvement in future versions. The ab-
sence of a vertical distribution of anthropogenic emissions
in the model simulations also plays a pivotal role in these
model discrepancies. The satellite-retrieved TROPOMI-NO2
averaged for the d03 is 1.1× 1015 molecules cm−2 in sum-
mer and 1.03× 1015 molecules cm−2 in winter, with the
corresponding model-simulated column concentration of
1.6× 1015 and 1.2× 1015 molecules cm−2, respectively. The
model demonstrated a moderate correlation with satellite-
derived NO2 column measurements, achieving correlation

Figure 2. Evaluation of WRF-Chem against satellite-derived
NO2: the average difference between tropospheric column NO2
(×1015 molecules cm−2) from the TROPOMI satellite and simu-
lated by WRF-Chem, for (a) June and (d) December 2022. Panels
(b)–(e) and (c)–(f) are as (a) and (d) but show scatter plots and his-
tograms of the differences, respectively.

coefficients of 0.59 for summer and 0.58 for winter (re-
fer to Table 2). It tended to overestimate NO2 levels
more in summer, with a discrepancy of 0.5× 1015, com-
pared to 0.2× 1015 molecules cm−2 in winter. Moreover,
the evaluation shows RMSE values of 0.2× 1015 to 0.1×
1015 molecules cm−2 and MAE values of 0.7×1015 to 0.5×
1015 molecules cm−2 during the seasons. The frequency dis-
tributions in Fig. 2c and f illustrate the differences in
NO2 concentrations between the WRF-Chem model and
TROPOMI observations during summer and winter, respec-
tively. In panel (c), the distribution of differences is entirely
positive, indicating that the WRF-Chem model consistently
overestimates NO2 concentrations compared to TROPOMI
observations for the summer of 2022. In contrast, Fig. 2f
shows both positive and negative differences, indicating that
the WRF-Chem model exhibits a mix of overestimations
and underestimations of NO2 concentrations in winter, al-
though the majority of differences are still positive. This sug-
gests a more variable alignment between WRF-Chem and
TROPOMI-NO2 in winter, with a general tendency toward
overestimation but occasional instances of underestimation.

In Fig. 3, the assessment of the model-simulated total col-
umn CO and the corresponding TROPOMI-retrieved values
is presented. The statistical metrics comparing these datasets
are provided in Table 2. Figure S5 shows the comparison of
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total column CO concentrations over the domain as observed
by the TROPOMI satellite and simulated by the WRF-Chem
model. Figure S5a and c display TROPOMI-CO for sum-
mer and winter, showing spatial variations in CO concentra-
tion across the region. High concentrations are found par-
ticularly over the northern areas, while lower concentrations
are found the southern areas. Figure S5b and d illustrate cor-
responding WRF-Chem CO simulations for the same peri-
ods, providing a model-based estimate of CO distribution.
The WRF-Chem model appears to capture the general spatial
patterns observed by TROPOMI, though there may be some
discrepancies in the intensity and precise locations of high
CO concentrations. This comparison highlights areas where
the WRF-Chem model aligns well with satellite observations
and regions where further adjustments in model parameters
may be necessary to better replicate observed patterns. The
TROPOMI-retrieved CO columns display values of 1.92×
1018 and 1.79× 1018 molecules cm−2 for summer and win-
ter, respectively. In contrast, the simulated column values are
of 1.93× 1018 for summer and 1.91× 1018 molecules cm−2

for winter. Thus, comparing WRF-Chem and TROPOMI-CO
data reveals more pronounced discrepancies, with a minor
overestimation of 0.02×1018 molecules cm−2 in summer and
a significant underestimation of 0.12× 1018 molecules cm−2

in winter. Shami et al. (2022) found that the EDGAR emis-
sions inventory underestimates CO emissions when com-
pared to Lebanon’s national emission inventory, identifying
the road transport sector as the primary source of CO emis-
sions. Consequently, EDGAR’s estimates for CO emissions
are lower than those provided by Waked et al. (2012) for the
same region. The Environment Agency – Abu Dhabi (2018)
reported that the road transport sector is the primary source of
CO emissions in Abu Dhabi, accounting for 74 % of the total
CO emissions. Additionally, the industrial sector contributes
21 % to the total CO emissions. Kumar et al. (2021) ob-
served an underestimation of CO by the WRF-Chem model,
attributing it to an inaccurate representation of anthropogenic
emissions on the vertical scale, not represented in the cur-
rent WRF-Chem simulations as noted for NO2. This could
result in a more rapid deposition of CO molecules at the sur-
face, thereby leading to the observed underestimation. In the
summer months, the underprediction of the column CO over
coastal areas, in particular around the major urban centres,
and the overprediction over inland regions suggest deficien-
cies in the representation of the atmospheric flow (e.g. too
strong an onshore flow), coupled with the aforementioned
biases in the emission inventory. In contrast, in winter the bi-
ases are positive and probably more strongly linked to chem-
istry than to meteorological dynamics.

The model output correlates reasonably well with
TROPOMI-CO, with a correlation coefficient of 0.82
and 0.40 and an RMSE of 0.03× 1018 and 0.04×
1018 molecules cm−2 in summer and winter, respectively
(Table 2). The frequency distribution in Fig. 3c shows most
differences, with a slight positive skew, suggesting a ten-

Figure 3. Evaluation of WRF-Chem against satellite-derived
CO: same as Fig. 2 but for the total column of CO
(×1018 molecules cm−2).

dency for the WRF-Chem model to slightly overestimate
CO concentrations compared to TROPOMI observations for
summer. In contrast, Fig. 3f displays a broader distribution
with a more pronounced positive skew, indicating larger and
more variable overestimations by WRF-Chem in winter. In
winter seasons, the lower correlation coefficients and higher
biases for TROPOMI-CO as compared to TROPOMI-NO2
might be attributed to the complexities inherent in mod-
elling and observing CO distributions, which local emission
sources, atmospheric chemistry, and transport processes can
influence. These findings are consistent with research con-
ducted in India, where Dekker et al. (2019) reported a cor-
relation of 0.81 between TROPOMI and WRF-Chem CO
levels during a high pollution episode in November 2017.
Similarly, in East Asia, Zhang et al. (2016) documented
correlations between WRF-Chem-simulated and Measure-
ments of Pollution in the Troposphere (MOPITT)-retrieved
CO columns, with a r value of 0.59 and an RMSE of 4.6×
1017 molecules cm−2 for summer and 0.69 with an RMSE of
5.2× 1017 molecules cm−2 for winter, respectively.

Figure S6 presents the spatial distribution of tropo-
spheric ozone concentrations over the UAE as observed by
TROPOMI (TROPOMI-O3) and simulated by the WRF-
Chem model during the summer and winter of 2022. In
Fig. S5a and b, TROPOMI shows varying O3 concentrations
with higher values, particularly along the northern coastal re-
gions, where concentrations reach up to 20 DU. Similarly,
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WRF-Chem demonstrates a comparable spatial pattern, with
elevated O3 concentrations in the same regions, reaching up
to 40 DU, indicating that the model captures the general dis-
tribution observed by TROPOMI. In Fig. S5c, representing
winter, TROPOMI exhibits a different distribution pattern,
with overall lower O3 concentrations compared to summer.
The WRF-Chem simulation in winter also shows a broader
distribution of O3, with concentrations reaching up to 25 DU.
While the WRF-Chem model aligns reasonably well with
TROPOMI observations, discrepancies in concentration lev-
els highlight both the model’s ability to replicate seasonal
variations and areas where improvements may be needed,
especially in the winter months. The comparison of the
WRF-Chem-simulated tropospheric ozone columns with the
TROPOMI-retrieved columns (TROPOMI-O3) is illustrated
in Fig. 4, with the statistical comparisons detailed in Ta-
ble 2. The TROPOMI-O3 columns show higher in summer,
at 16.6 DU, and lower values in winter, at 13.4 DU, which
is attributed to increased photochemical activity during the
summer months (Reddy et al., 2012; Coates et al., 2016; Ba-
dia and Jorba, 2015; Abdallah et al., 2018; Baldasano et al.,
2011) The WRF-Chem simulations show these variations,
with values of 32.8 DU for summer and 24.8 DU for winter,
respectively. Therefore, model output is strongly correlated
to the TROPOMI-O3 column concentration, with a correla-
tion coefficient of 0.78 and 0.83 and an RMSE (MAE) of 1.4
and 1.0 DU (15.9 and 11.2 DU) during summer and winter,
respectively. The WRF-Chem model systematically overesti-
mates ozone levels by 15.9 and 11.2 DU in summer and win-
ter, respectively. The frequency distribution in Fig. 4c repre-
sents the differences between WRF-Chem and TROPOMI-
O3 concentrations during the summer, showing that they are
more pronounced with a positive skew. This indicates a con-
sistent tendency for the WRF-Chem model to overestimate
O3 concentrations compared to TROPOMI observations in
summer. Similarly, Fig. 4f displays a frequency distribution
for winter with a positive skew and narrower spread, high-
lighting that WRF-Chem also tends to overestimate O3 con-
centrations compared to TROPOMI during this season, al-
though with less variability in the overestimations. There-
fore, the WRF-Chem model systematically overestimates O3
concentrations throughout the year, with a slightly more con-
sistent bias observed in winter. Hu et al. (2021) highlighted
the substantial influence of meteorological factors on ozone
production, noting that temperature, relative humidity, and
sunshine duration play significant roles in descending order
of importance. Strong solar radiation and elevated tempera-
tures enhance photochemical reactions, increasing ozone for-
mation. In comparison with ERA-5 data (Fig. S1) and station
data (Table S2), the colder temperatures observed in WRF-
Chem, particularly in winter months when tropospheric col-
umn O3 biases are less positive (Table 2), may explain the
overestimation of O3 concentrations in the model. Zhang
et al. (2020) found that low wind speeds and high atmo-
spheric pressure can hinder pollutant dispersion, leading to

ozone accumulation, while Lu et al. (2019) observed that
high humidity conditions can deplete O3 through interac-
tions with water vapour and the production of OH radicals.
WRF-Chem’s negative RH2m bias against in situ measure-
ments in both summer and winter (Tables S2 and S3), com-
bined with temperature biases, may contribute to the model’s
overprediction of O3. Further exploration of these chemical
interactions would require additional sensitivity analyses be-
yond this study’s scope. Future work should focus on refining
model fidelity by improving the representation of chemical
processes and emissions to enhance air quality projections
and deepen our understanding of regional pollution patterns.

The disparities between WRF-Chem and TROPOMI data
highlight the intrinsic challenges in air quality monitoring
and prediction. WRF-Chem’s limitations may stem from its
dependency on emissions inventories, which, as noted above,
can have significant discrepancies compared to actual emis-
sions, uncertainty in the meteorological forcing data, and the
representation of atmospheric chemistry. TROPOMI, while
offering high-resolution satellite observations, is subject to
constraints related to retrieval algorithms and the influence
of atmospheric conditions on measurement accuracy. Liu et
al. (2022) identified that uncertainties in column observations
arise from the challenges in differentiating between strato-
spheric and tropospheric contributions and uncertainties in
the tropospheric air mass factor and its spectral fitting. Inte-
grating model predictions with satellite observations, along-
side ground-based measurements, is crucial for enhancing
our understanding of air quality dynamics and improving
predictive capabilities. This synergistic approach can help
mitigate biases, enhance accuracy, and provide a more com-
prehensive view of atmospheric pollutants’ distribution over
this region.

4.3 Model performance with respect to AOD

4.3.1 AERONET

The analysis of daily mean AOD at Mezaira for June 2022
(Fig. 5a) and DEWA for December 2022 (Fig. 5b) reveals
the model tends to overestimate the observed AOD values,
in particular in the summer months when it is the highest
(Nelli et al., 2020, 2022). In June at Mezaira, the AERONET
AOD shows a steady increase from around 0.5 to approxi-
mately 1.0 by the end of the month, which is in line with the
expected build-up of aerosols with the annual maxima typi-
cally occurring in July (Nelli et al., 2022). The WRF-Chem
model captures this upward variation but consistently over-
estimates the observed AOD, especially toward the end of
the month. This overestimation is highlighted by the MB of
0.46. The general overestimation of the observed wind speed
concerning ground-based measurements (Tables S2 and S3;
Fig. S1) can at least partially explain this bias, together
with an incorrect representation of the particle size distri-
bution and hence the sedimentation rates, leading to exces-
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Table 2. Statistical verification scores for evaluation against TROPOMI measurements: skill scores between TROPOMI columns
(molecules cm−2), tropospheric column NO2 (TROPOMI-NO2), total column carbon monoxide (TROPOMI-CO), tropospheric column
ozone (TROPOMI-O3), and MODIS AOD with corresponding WRF-Chem-simulated columns during June and December 2022 over UAE.
The first two columns show the model and satellite monthly-mean values, with the other four giving the MB, MAE, and RMSE in units of
molecules cm−2 for TROPOMI-NO2 and CO and in DU for O3.

Parameter Month MOD SAT MB MAE R RMSE

NO2 (×1015) June 1.6 1.1 0.50 0.74 0.59 0.16
Dec 1.2 1.0 0.18 0.54 0.58 0.15

O3 39.6 19.3 20.0 20.0 0.53 1.70
33.1 17.3 15.4 15.4 0.69 1.62

CO (×1018) 1.93 1.92 0.02 0.03 0.82 0.03
1.91 1.79 0.12 0.12 0.40 0.04

AOD 0.85 0.54 0.3 0.32 0.65 0.22
0.28 0.28 0.0 0.11 0.30 0.13

Figure 4. Evaluation of WRF-Chem against satellite-derived O3:
same as Fig. 5 but for the tropospheric column of ozone.

sive amounts of suspended dust (Ukhov et al., 2021; Parajuli
et al., 2023). The moderate correlation coefficient (r = 0.60)
suggests that the model’s day-to-day variability reasonably
follows that observed. This is expected, as dust lifting in the
warmer months is mainly associated with the shamal winds
(Yu et al., 2016), which are fairly well represented in the
model. Conversely, at DEWA in December (Fig. 5b), the ob-
served AODs are lower, fluctuating between 0.2 and 0.3, in-
dicative of the season’s lower aerosol concentrations (Nelli

et al., 2020). The WRF-Chem model again follows the ob-
served variation but shows occasional significant overestima-
tions, most notably on 10 December, where simulated AOD
spikes to 1.6, far exceeding the observed AODs. Dust lifting
in the colder months is typically associated with the passage
of mid-latitude weather systems (Nelli et al., 2022), which
the WRF model does not fully reproduce, in particular with
respect to its timing (Temimi et al., 2020b; Taraphdar et al.,
2021). This discrepancy is reflected in the weak correlation
coefficient (r = 0.16) and the MB of 0.05. The overestima-
tion of the near-surface wind speed at the location of the air-
port stations (Table S2) and the WISE-UAE site (Table S3)
is also in line with the higher amounts of atmospheric dust
in the model. Figure 5 shows that, while the WRF-Chem
model demonstrates the ability to capture seasonal variations
in AOD, it tends to overestimate AOD levels in both summer
and winter months, suggesting a need for calibration of the
aerosol parameterization scheme in the model or the emis-
sions input. This comparison highlights the model’s potential
and limitations in simulating the UAE-specific aerosol con-
ditions, as well as where research is needed to optimize the
model performance.

4.3.2 MODIS

The comparison between WRF-Chem-simulated and
MODIS AOD (MOD-AOD) is depicted in Fig. 6, with the
statistical comparisons summarized in Table 2. The satellite-
derived MOD-AOD values follow the same seasonal cycle
as the ground-based AERONET observations: they are
higher in the summer, averaging 0.54, and lower in winter,
averaging 0.28, reflecting the annual cycle in aerosol loading
in the region (Nelli et al., 2020). The WRF-Chem simula-
tions capture these seasonal variations, with corresponding
AODs of 0.85 in summer and 0.28 in winter. The model
AOD demonstrates moderate correlation with MODIS AOD,

https://doi.org/10.5194/acp-25-1685-2025 Atmos. Chem. Phys., 25, 1685–1709, 2025



1698 Y. Yarragunta et al.: Evaluation of the WRF-Chem performance

Figure 5. Evaluation of WRF-Chem against AERONET AOD: daily mean aerosol optical depth (AOD; dimensionless) from WRF-Chem
simulations (red) and AERONET observations (blue) at Mezaira during June 2022 (a) and Dewa during December 2022 (b). The lines give
the daily mean values and the error bars show 1 standard deviation from the mean computed using the hourly values. The correlation (r) and
mean bias (MB) are given in the plot.

yielding correlation coefficients of 0.65 for summer and 0.30
for winter, similar to the ones with respect to the AERONET
AOD, indicating the satellite-derived and ground-based
AOD estimates are in close agreement, which has been noted
by Nelli et al. (2020). The WRF-Chem model systematically
overestimates AOD by 0.31 in summer, a similar (albeit of
a smaller magnitude) bias to that of the AERONET station
(Fig. 5a), while it slightly underestimates AOD by 0.004 in
winter.

For June, WRF-Chem generally overestimates AOD com-
pared to the MODIS’ estimates, in particular over the south-
ern and central UAE, as shown in the spatial distribution of
the difference between them (Fig. 6a–c). The frequency dis-
tribution shows most differences clustering around zero, with
a slight positive skew, reinforcing the model’s overestimation
tendency for this month. Stronger wind speeds and an incor-
rect representation of the dust physical and optical properties
can explain the model bias. In contrast, in December there
are more balanced results, with WRF-Chem showing a closer
alignment with MODIS AOD on average. The spatial distri-
bution of the model bias displays areas in the central and
southern UAE where the MODIS AOD exceeds the WRF-
Chem values, with anomalies of the opposite sign over the
Arabian Gulf and parts of the Al Hajar mountains in Oman.
Mostamandi et al. (2023) showed that, over the Arabian Gulf
and in the WRF-Chem model, the dust deposition rates de-
crease away from the coastlines, with coastal UAE having
lower deposition rates than inland sites. Excessive dust de-
position over the Rub’ Al Khali Desert is consistent with a
clearer atmosphere closer to the coastlines in the model when
compared to the MODIS measurements. The positive bias
over the Arabian Gulf can be attributed to higher amounts
of dust transported upstream by northwesterly winds and/or
reduced dust deposition over the water in WRF-Chem. The
frequency distribution in December shows a balanced spread
around zero, suggesting a more accurate seasonal fit than

Figure 6. Evaluation of WRF-Chem against MODIS AOD: same
as Fig. 2 but for the MODIS AOD.

in June. These findings, together with those in Fig. 5 with
respect to the AERONET station observations, underscore
the influence of seasonal atmospheric conditions on WRF-
Chem’s performance and suggest the need for seasonal ad-
justments in the aerosol parameterization to improve model
accuracy in capturing the UAE’s unique aerosol dynamics.
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4.4 Aerosol influence on ozone

Tropospheric or surface ozone (O3) is one of the most sig-
nificant greenhouse gases after carbon dioxide (CO2) and
methane (CH4) (Ehhalt and Prather, 2001). It plays a criti-
cal role in the Earth’s radiation budget, contributing to an in-
crease in radiative forcing of up to 0.47 W m−2 and account-
ing for 3 %–7 % of global warming (Gauss, 2003; Ehhalt
and Prather, 2001). Elevated O3 levels in the atmospheric
boundary layer are toxic and can significantly impact hu-
man health and vegetation (Adams et al., 1989). The inter-
actions between reactive gaseous pollutants and aerosols are
a major focus in the development of air quality and climate
models. Aerosols, through scattering and absorption of solar
radiation, influence photolysis rates and can either increase
or decrease the formation of O3 and its precursors (He and
Carmichael, 1999). Studies have shown that aerosols impact
ozone production and loss by altering photolysis frequencies
(Dickerson et al., 1997; Jacobson, 1998). For example, Li et
al. (2011) used an air quality model to evaluate the changes
in photolysis frequencies caused by sulfate, nitrate, ammo-
nium, and mineral dust aerosols in central and eastern China,
finding a 5.4 % decrease in daily average surface ozone con-
centrations. Similarly, Lou et al. (2014) found that aerosols
reduced annual mean photolysis frequencies, j (O1D) and
j (NO2), by 6 %–18 % in polluted eastern China, resulting in
reductions of up to 0.5 ppbv in O3 during spring and summer,
using a global chemical transport model. Attributing ozone
levels to a specific source region is particularly challeng-
ing, as ozone concentrations are influenced by various pro-
cesses, including stratosphere–troposphere exchange, signif-
icant hemispheric background levels, dominant local emis-
sions, and complex photochemical reactions involving mul-
tiple trace gases (Fiore et al., 2003). Therefore, it is crucial to
understand the impact of aerosol feedback on surface ozone
in the UAE, a region with high aerosol loading in the Arabian
Peninsula.

From Fig. 4 and the discussion in Sect. 4.2, it is evi-
dent that ozone levels are higher during the summer sea-
son, which coincides with a dominance of aerosols over the
UAE. In order to better understand the impact of aerosols on
ozone concentrations, we conducted a simulation in which all
aerosol components in the WRF-Chem model are turned off
(no aerosol+ radiative feedback on), simulating an aerosol-
free atmosphere over the UAE. This simulation is conducted
alongside a control simulation (all aerosol+ radiative feed-
back on) in which all aerosol processes are included, both for
June 2022. The results of these simulations, comparing the
scenarios with and without aerosols, are presented in Fig. 7
and highlight the influence of aerosols on ozone formation
and spatial distribution in the region. This analysis focuses on
daytime hours (04:00–12:00 UTC) and non-daytime hours
(13:00–03:00 UTC) to delve deeper into ozone dynamics,
as ozone production predominantly occurs during the day-
time compared to non-daytime hours. Figure 7a–b show the

ozone distribution with and without aerosols during the day-
time hours (04:00–12:00 UTC; 08:00–16:00 LT). Both pan-
els depict higher ozone concentrations over the northern re-
gions, with a clear gradient decreasing towards the southeast-
ern areas during daytime hours. The influence of aerosols on
ozone production is evident in areas where the ozone levels
are slightly elevated, suggesting that aerosols contribute to
ozone production/loss under daytime conditions based on the
nature of the aerosols. Figure 7c highlights the difference in
ozone concentrations between simulations with and without
aerosols for daytime hours. The difference shows localized
areas of positive and negative changes, indicating regions
where aerosols either enhance or suppress ozone levels. No-
tably, over the northern areas, particularly in oceanic regions
where the ozone concentrations are the highest, the differ-
ences are generally positive, reflecting a positive feedback of
aerosols on ozone production, particularly over the Arabian
Gulf. On the other hand, over land areas, where the ozone is
lower, the lower photolysis rates may limit ozone production.
Therefore, the impact of aerosols on ozone varies based on
their origin, such as dust events. These aerosols can have an-
thropogenic, natural, or marine origins (Filioglou et al., 2020;
Nelli et al., 2021). Aerosols significantly influence surface
ozone through atmospheric chemical and physical processes.
Depending on their nature, aerosols can either increase or
decrease ozone levels, as observed in various studies (Gao et
al., 2023; Shi et al., 2022). As noted in studies such as Wang
et al. (2019), Mukherjee et al. (2020), and Qu et al. (2021),
the reduction in the incoming shortwave radiation flux will
hinder the generation of ozone, as well as an increase in the
NO / NO2 ratio, which can happen when the pollutants’ con-
centration increases in a shallower boundary layer. On the
other hand, higher amounts of CO and NO2 will promote the
production of ozone.

Figure 7d and e illustrate ozone concentrations with and
without aerosols for the remaining hours (non-daytime). The
patterns are largely similar to those observed during the day-
time, except over urban areas where the ozone concentration
is much reduced, owing to the lack of in situ generation due
to the absence of sunlight and underestimation of ozone pre-
cursor concentration. Figure 7d shows slightly higher con-
centrations than Fig. 7e, suggesting that aerosols continue to
have an impact on ozone production, albeit less pronounced,
during non-daytime periods. Figure 7f presents the difference
in ozone concentrations between simulations with and with-
out aerosols for the non-daytime hours. The spatial distri-
bution of positive and negative differences follows a similar
pattern to that observed during the daytime hours, though the
magnitudes are generally larger. This suggests that ozone ad-
vection from upstream sources may play a role. Additionally,
marine aerosols can contribute to ozone production through
their nature.
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Figure 7. Ozone (O3) sensitivity simulations: spatial distribution
of surface ozone concentrations (ppb) simulated by the WRF-Chem
model with (a) and without (b) aerosols over the UAE for specified
daytime hours during June 2022. Panels (d)–(e) are as (a)–(b) for
the remaining hours. Panels (c) and (f) illustrate the difference (%)
in ozone concentrations (with aerosols minus without aerosols) dur-
ing daytime hours and the remaining hours, respectively. The 10 m
wind vectors (m s−1) are overlaid on each plot, indicating the wind
patterns influencing the ozone distribution.

5 Conclusions

This study rigorously evaluates the performance of the
Weather Research and Forecasting model coupled with
chemistry (WRF-Chem) in simulating meteorological pa-
rameters and air pollutants over the United Arab Emirates
(UAE) during June and December 2022, representing con-
trasting summer and winter conditions. The model’s perfor-
mance is assessed through comparisons with ground-based
observations and ERA-5 reanalysis data for meteorological
parameters, as well as AERONET, TROPOMI, and MODIS
satellite observations for air pollutants.

We evaluated WRF-Chem model’s accuracy in simulating
meteorological parameters, in particularly 2 m temperature
(T2m), 10 m wind speed (WS10m), and 2 m relative humid-
ity (RH2m) across seven locations in the UAE. The model
generally overestimates T2m in summer by less than 0.2 °C
and underestimates it in winter by 3 °C, with correlation co-
efficients ranging from 0.7 to 0.85 among the stations. This

is comparable performance with compared to that reported
studies (e.g. Branch et al., 2021; Temimi et al., 2020b), re-
flecting the added value of explicitly predicting chemistry
fields in this aerosol-rich region. An incorrect representa-
tion of surface properties, such as the albedo and surface
emissivity, and deficiencies in the model physics and dy-
namics, may explain the referred temperature biases. For
WS10m, the model’s bias is within ±0.5 m s−1, indicating
good agreement for both land and marine areas. The ten-
dency for the model to overestimate the observed wind speed
may arise from deficiencies in the surface drag parameteriza-
tion scheme and an underrepresentation of its subgrid-scale
variability (Nelli et al., 2020). In any case, and as for air
temperature, the magnitude of the biases is much smaller
than that reported in other studies, for which the wind speed
biases exceed 3 m s−1 (Branch et al., 2021; Fonseca et al.,
2020; Temimi et al., 2020b). The dry bias noted in these
studies, however, is also seen in the WRF-Chem simulations,
possibly arising from a drier soil, an incorrect representa-
tion of the mesoscale (sea–land breeze) circulations, and a
dry bias in the forcing data. The WRF-Chem model evalu-
ation against WISE-UAE measurements reveals a compara-
ble performance to that seen with respect to the airport sta-
tions with respect to T2m, WS10m, and RH2m. An evalua-
tion against the WRF-Chem values reveals the model overes-
timates the incoming shortwave radiation flux (SW) by about
30 W m−2 for December, which can be attributed to reduced
cloud cover, a known WRF deficiency (Wehbe et al., 2019;
Fonseca et al. 2020, 2022a). An inspection of the diurnal cy-
cle revealed the cold (typically by 2–3 °C) and dry (by about
20 %) biases occur mostly at night, when the wind speed in
the model is higher than that observed, suggesting increased
advection of cooler and drier desert air into the site.

The comparison of ERA5 reanalysis data with WRF-
Chem simulations revealed regional variations in T2m,
specifically underestimation in the UAE’s southern region
and overestimation in the northwestern region. Statistical
metrics for summer show an underestimation of 1 °C and a
correlation coefficient (r) of 0.97. In comparison, for winter
a similar pattern is seen with an underestimation of 1 °C and
a r value of 0.92 over the domain. The fact that WRF-Chem
performs well against in situ data and ERA5 reanalysis with
respect to air temperature is also an indication that the reanal-
ysis dataset performs well in this region, as noted by Fonseca
et al. (2022b) and Nelli et al. (2024a). The mean PBL from
ERA5 is largely consistent with that from the WRF-Chem
outputs, with both datasets displaying a clear seasonal varia-
tion – increased PBL during summer and decreased in winter,
correlating with temperature changes.

Regarding gaseous pollutants, both WRF-Chem and satel-
lite data show higher TROPOMI-NO2 columns greater than
5×1015 molecules cm−2 in urban and industrial regions such
as Dubai, Abu Dhabi, and Ras Al Khaimah, reflecting emis-
sions from economic activities like power generation, water
desalination, and industries. Lower concentrations (< 1.5×
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1015 molecules cm−2) are noted in less urbanized areas. The
WRF-Chem model closely reproduces the TROPOMI-NO2
spatial patterns, even though it tends to underestimate the
observed concentrations in the Abu Dhabi region and under-
estimate the northeastern UAE, which has been tied to defi-
ciencies in the emission inventory. Moderate correlation co-
efficients (0.59 in summer and 0.58 in winter) confirm the
model’s effectiveness in capturing NO2’s day-to-day vari-
ability. WRF-Chem overestimates the observed TROPOMI-
O3 column, as indicated by positive MB values of around
11–16 DU, yet maintains high correlation coefficients (0.78
in summer and 0.83 in winter), suggesting accurate ozone
concentration simulations. Colder and drier conditions, along
with deficiencies in the representation of the observed chem-
istry, particularly concerning the NOx emissions linked to
the O3 concentration, can explain the WRF-Chem biases.
TROPOMI-CO column simulations, on the other hand, ex-
hibit significant discrepancies in winter and lower correla-
tion coefficients, highlighting challenges in accurately mod-
elling CO levels. Besides an incorrect emission inventory,
discrepancies in the representation of the atmospheric flow
and its effect on the pollutants’ dispersion can explain the
model performance. In summer, the analysis conducted here
stresses the WRF-Chem model’s strengths in simulating CO,
NO2, and O3 columns with high fidelity with respect to the
TROPOMI’s observations but also points out its limitations
in estimating CO columns accurately in winter.

Regarding aerosol optical depth (AOD) observed by
AERONET stations and the MODIS satellite, the WRF-
Chem model generally tends to overestimate AOD, par-
ticularly during the summer months. At Mezaira in June,
AERONET data showed a steady increase in AOD, which
the WRF-Chem model captured but consistently overpre-
dicted due to factors such as overestimated wind speeds
and inaccuracies in particle size distribution. In December
at DEWA, observed AOD levels were lower, and while the
model followed the observed trends, it occasionally pro-
duced large spikes, reflecting challenges in accurately captur-
ing the effects of mid-latitude weather systems. Correlation
coefficients for AOD comparisons reveal moderate (0.60)
to weak model performance depending on the season, in-
fluenced by dust transport mechanisms. Comparisons with
MODIS satellite-derived AOD similarly indicated seasonal
overestimations during the summer, with a closer alignment
observed in winter. Spatially, overestimations in southern and
central UAE in June were linked to strong winds and dust
properties, while December results were more balanced. Bi-
ases over the Arabian Gulf were attributed to dust transport
and deposition dynamics. Overall, the findings indicate that
while the WRF-Chem model captures seasonal AOD varia-
tions, adjustments to aerosol parameterization and dust rep-
resentation are necessary to improve model accuracy.

This study also explores the impact of aerosols on surface
ozone (O3) in the UAE by altering photolysis rates through
the scattering and absorption of solar radiation. Using WRF-

Chem model simulations for June 2022, we compared sce-
narios with and without aerosols to assess their influence.
The results show higher ozone concentrations during day-
time in northern regions, with aerosols contributing to local-
ized increases or decreases. Marine aerosols notably enhance
O3 production over the Arabian Gulf, while lower photoly-
sis rates limit ozone formation over land areas. During non-
daytime hours, aerosol influence continues but is less signifi-
cant, with urban areas experiencing reduced ozone levels due
to limited photochemical activity. Additional sensitivity sim-
ulations and in situ observations are needed to validate these
findings further.

The WRF-Chem model exhibits enhanced capability in
simulating key meteorological parameters and satisfactory
performance in air pollutants over the UAE, showcasing
significant improvements in regional-scale dynamics. This
is evidenced by high skill scores with respect to obser-
vational data, with a clear improvement over previous re-
search outcomes, particularly during summer. This compre-
hensive assessment validates the model’s effectiveness and
identifies potential areas for improvement in simulating air
pollutant concentrations across the hyper-arid and aerosol-
rich UAE. The discrepancies between model simulations and
various observational datasets likely arise from improper
emission inventories, particularly anthropogenic emissions,
which must be optimized based on existing country-specific
datasets. Other sources of uncertainty are model parame-
terization schemes and the quality of the meteorological
and chemistry input data. Integrating model predictions with
satellite observations and ground-based measurements is cru-
cial for advancing air quality monitoring and enhancing the
predictive accuracy of atmospheric pollutant distributions in
the UAE. This collective approach aids in addressing biases
and improving the overall understanding of regional air qual-
ity dynamics.

Code and data availability. The authors would like to acknowl-
edge that the products used in this study are freely accessible online.

i. ERA-5 reanalysis data are extracted from the Coper-
nicus Climate Change Service Climate Data Store
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al.,
2023a; https://doi.org/10.24381/cds.bd0915c6, Hersbach et
al., 2023b).

ii. Nitrogen dioxide (NO2, https://doi.org/10.5270/S5P-9bnp8q8,
ESA, 2021a), ozone (O3, https://doi.org/10.5270/S5P-
j7l9xvd, ESA, 2021c), and carbon monoxide (CO,
https://doi.org/10.5270/S5P-bj3nry0, ESA, 2021b) column
concentrations estimated from the measurements collected
by the Tropospheric Monitoring Instrument (TROPOMI) on
board the Sentinel 5-P satellite are extracted from the National
Aeronautics and Space Administration’s (NASA’s) website.

iii. Aerosol optical depth is from the Moderate Res-
olution Imaging Spectroradiometer (MODIS,
https://doi.org/10.5067/MODIS/MOD04_L2.061, Levi et
al., 2015).

https://doi.org/10.5194/acp-25-1685-2025 Atmos. Chem. Phys., 25, 1685–1709, 2025

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5270/S5P-9bnp8q8
https://doi.org/10.5270/S5P-j7l9xvd
https://doi.org/10.5270/S5P-j7l9xvd
https://doi.org/10.5270/S5P-bj3nry0
https://doi.org/10.5067/MODIS/MOD04_L2.061


1702 Y. Yarragunta et al.: Evaluation of the WRF-Chem performance

iv. National Centers for Environmental Prediction (NCEP) Final
(FNL) Operational Global Analysis meteorological data used
to drive the WRF-Chem simulations are downloaded from the
National Center for Atmospheric Research (NCAR) Research
Data Archive website (https://doi.org/10.5065/D6M043C6,
NCEP/NWS/NOAA/USDC, 2000), with the chemistry data
used to force WRF-Chem, the output of the Community Atmo-
sphere Model with chemistry (CAM-Chem) model, extracted
from NCAR’s website (https://doi.org/10.5065/NMP7-EP60,
Bucholz et al., 2019).

v. The WRF-Chem model used, version 4.3.1, is freely available
from the developers’ website (https://github.com/wrf-model/
WRF/releases, WRF, 2023), with the pre-processor tools
available from NCAR’s website (https://www.acom.ucar.edu/
wrf-chem/download.shtml, NCAR, 2023).

vi. All figures displayed in this paper were generated with the Ma-
trix Laboratory (MATLAB) software version 2023 (https://uk.
mathworks.com/products/matlab.html, Mathworks, 2023).
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