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Table S1 List of seven Automatic Weather Stations operated in airports —five land-based and two 1 

coastal—alongside the Wind-blown Sand Experiment (WISE) site and two AERONET stations, 2 

Mezaira and Dewa, for AOD assessment in the United Arab Emirates (UAE). 3 

Station Name Metar code Latitude Longitude Elevation 

(m) 

Region 

WISE-UAE WISE 23.58 53.72 119 Land 

Abu Dhabi  OMAA 24.43 54.65 27 Land 

Abu Dhabi OMAD 24.43 54.46 3 Coastal 

Al Maktoum OMDW 24.90 55.16 19 Land 

Dubai OMDB 25.25 55.37 5 Coastal 

Sharjah OMSJ 25.33 55.52 33 Land 

Al Ain OMAL 24.26 55.61 262 Land 

Ras Al Khaimah  OMRK 25.61 55.94 31 Land 

Mezaira   23.11 54.76 201 Land 

Dewa   24.77 55.37 88 Land 

 4 

The WRF-Chem model effectively represents the observed variability in T2m, RH2m, and 5 

WS10m across all seven meteorological stations during June and December 2022. An 6 
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inspection of Table S2 reveals the WRF-Chem model generally overestimates the observed 7 

T2m values by less than 0.8 °C in June and underestimates in December by less than 5.2 °C 8 

across most locations. Previous studies revealed a cold bias, more pronounced in the summer 9 

months (e.g., Branch et al., 2021; Chaouch et al., 2017; Fonseca et al., 2020; Temimi et al., 10 

2020), which has been attributed to an incorrect representation of the aerosol loading, 11 

greenhouse gas concentrations and surface properties (e.g., very high surface emissivity values, 12 

as noted in Parajuli et al., 2023), and deficiencies in the physics schemes, in particular in the 13 

land surface, PBL and radiation schemes. The fact that the temperature bias is positive in the 14 

summer, and of a much reduced magnitude compared to that reported in other studies where it 15 

exceeds 3 °C (Branch et al., 2021; Temimi et al., 2020), stresses the importance of correctly 16 

representing the aerosol loading in this region, as noted by Fonseca et al. (2021). Correlation 17 

coefficients for the observed T2m with model simulations ae between 0.81 and 0.85 in June, 18 

slightly decreasing to a range of 0.79 to 0.81 in December. Lower correlation values in the 19 

December month likely arise from an incorrect simulation of the timing of the passage of mid-20 

latitude baroclinic systems, which largely control the weather conditions in the region during 21 

the colder months (Nelli et al., 2022). The fact that even at 3 km the model will not be able to 22 

fully capture the complex land-sea mask may justify the slightly lower correlation values at 23 

coastal sites when compared to inland stations, as noted by Abida et al. (2022). The WS10m 24 

biases are also lower than those reported in other studies, typically by a factor of two to three, 25 

suggesting an overall improved representation of the boundary layer dynamics. As this field 26 

exhibits a more pronounced spatial and temporal variability compared to T2m, the correlation 27 

coefficients will be lower, with values in the range 0.3-0.4. The dry bias, noted by virtually all 28 

previous modeling studies in the region and more pronounced in the summer months (e.g., 29 

Branch et al., 2021; Temimi et al., 2020), is also present with this model configuration. Possible 30 

explanations include deficiencies in the representation of the soil moisture, which plays an 31 

important role in driving the atmospheric dynamics in the region (e.g. Francis et al., 2021; 32 

Wehbe et al., 2019), and an incorrect representation of the mesoscale land-sea breeze 33 

circulations (Fonseca et al., 2022; Gopalakrishnan et al., 2023; Temimi et al., 2020). 34 

Table S2 Statistical evaluation against UAE Airport station data: skill scores for air 35 

temperature at 2m (T2m), wind speed at 10m (WS10m), and Relativity humidity at 2m (RH2m) 36 

for seven airport stations (categorized into land and coastal regions) over the UAE listed in 37 

Table S1. 38 
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Parameter Month Region MOD OBS MB MAE RMSE R 

T2m (o C) June Land 35.65 35.50 0.16 3.67 4.52 0.85 

Coastal 35.66 35.42 0.24 4.48 5.34 0.81 

Dec Land 19.03 22.36 -3.32 3.90 4.65 0.86 

Coastal 19.04 24.12 -5.07 5.54 6.53 0.79 

WS10m 

(m/s) 

June Land 3.98 4.03 -0.05 2.03 2.58 0.25 

Coastal 3.98 3.54 0.43 1.74 2.18 0.36 

Dec Land 3.55 3.08 0.47 1.50 1.89 0.34 

Coastal 3.55 3.06 0.49 1.43 1.78 0.42 

RH2m (%) June Land 17.69 40.71 -23.02 25.32 29.77 0.36 

Coastal 17.68 46.96 -29.28 31.21 35.48 0.29 

Dec Land 52.32 62.44 -10.12 15.70 19.11 0.63 

Coastal 52.29 59.06 -6.78 14.60 17.88 0.57 

  39 

The WRF-Chem model performance has also been evaluated against WISE-UAE 40 

measurements for T2m, RH2m, WS10m, and SW for December 2022 (the experiment initiated 41 

in July 2022 so no data for June 2022), with the skill scores summarized in Table S3. By and 42 

large the model performance is similar to that found for the airport stations in Table S2. In 43 

particular, there is an underestimation of T2m by about 1.6 °C, and a slight overestimation of 44 
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WS10m by 0.78 m/s, and a negative bias in RH2m by about -17%. The higher correlation 45 

values at this inland barren site indicate a superior model skill in capturing the diurnal cycle in 46 

a rural environment as opposed to major urban airport areas, whose complexity will not be 47 

fully represented in WRF-Chem. The WRF model has shown a tendency to overestimate the 48 

observed wind speed across the country over all seasons (e.g., Branch et al. 2021; Fonseca et 49 

al. 2020, 2021, 2022b; Temimi et al., 2020), which has been put down to an incorrect 50 

representation of its subgrid-scale variability and deficiencies in the surface drag 51 

parameterization scheme. Additionally, the model overestimates SW by 29 W/m², even though 52 

it captures very well its diurnal cycle, as evident by the high correlation coefficient of 0.94. 53 

The positive bias in SW may be attributed to an underprediction of the observed cloud cover, 54 

as noted by Wehbe et al. (2019) and Fonseca et al. (2020, 2022a), which is the highest in the 55 

region in the colder months (Yousef et al., 2020). 56 

Table S3 Statistical evaluation against WISE-UAE measurements: Skill scores for 2-meter 57 

air temperature (T2m), 10-meter wind speed (WS10m), 2-meter relative humidity (RH2m), 58 

and downward shortwave radiation flux (SW) at the WISE-UAE location in the UAE. 59 

Parameter MOD OBS MB MAE RMSE R 

T2m (o C) 18.74 20.34 -1.60 2.19 2.66 0.94 

WS10m (m/s) 3.56 2.78 0.78 1.52 1.82 0.59 

RH2m (%) 52.75 69.62 -16.87 18.21 21.94 0.76 

SW (W/m2) 204.13 174.91 29.22 57.33 98.61 0.94 

 60 

A more detailed analysis  is presented in Fig, S1(a), which shows the average diurnal variation 61 

in T2m from WRF-Chem simulations and observations for December 2022. The negative T2m 62 

bias seen in Table S3 arises mostly from cold nighttime temperatures, Fig. S1(a), as noted 63 

before and reported in previous studies (e.g., Abida et al., 2022; Branch et al., 2021; Fonseca 64 

et al., 2021; Schwitalla et al., 2020; Temimi et al., 2020), with the daytime temperatures 65 
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simulated well by the model, generally within 1 °C. The sharp drop between 14-15 UTC (18-66 

19 LT) occurs around the sunset, Fig. S1(d), at a time when the model’s underestimation of the 67 

observed RH2m becomes more pronounced exceeding 20%, Fig. S1(c), and just before it starts 68 

overestimating the strength of the observed wind speed, Fig. S1(c). This is consistent with a 69 

stronger offshore flow in WRF-Chem, advecting the cooler and drier inland air into the WISE-70 

UAE site.  71 

Fig. S1(b) shows an overestimation of the observed wind speed at night, by up to 2 m/s, and a 72 

slight underestimation during daytime, by up to 1 m/s, indicating deficiencies in the 73 

representation of the nighttime PBL, as noted by Chaouch et al. (2017), Temimi et al. (2020) 74 

and Abida et al. (2022). The dry bias is more pronounced during nighttime hours, Fig. S1(c), 75 

arising from increased advection of drier air from the inland desert owing to a more offshore 76 

wind direction in the model (not shown). The underestimation of the observed cloud cover is 77 

evident in Fig. S1(d) by the smaller variability of the model-predicted SW and the 78 

overestimation of the observed magnitude by up to 100 W/m2, the latter also reflecting 79 

deficiencies in the radiation scheme and an incorrect representation of the aerosol loading and 80 

greenhouse gas concentrations. The 1-h lag between the observed and WRF-Chem SW diurnal 81 

cycle has been noted by Weston et al. (2018). It may be explained by discrepancies between 82 

the modelled and observed aerosol loading, greenhouse gas concentration, surface properties 83 

and topography.  84 

 85 
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Figure S1: WRF-Chem Evaluation at WISE-UAE Site for December 2022: Diurnal cycle 86 

of monthly-mean values for WRF-Chem simulated (red) and observed (blue) air temperature 87 

at 2m (T2m, °C) in (a), wind speed at 10m (WS10m, m/s) in (b), relative humidity at 2m 88 

(RH2m, %) in (c), and downward shortwave radiation flux (SW, W/m²) in (d), for December 89 

2022. The averaged spatial standard deviation is represented by error bars at each hour. 90 

      91 

In Fig. S2, a spatial comparison is presented between the averaged ERA5 T2m and the 92 

corresponding WRF-chem simulation output across the simulation domain during June and 93 

December of 2022. The model adeptly captures regional temperature variations, displaying an 94 

underestimation in the south-western regions typically by 1-3°C and an overestimation in the 95 

north-eastern region of the UAE, by less than 1°C (Figs. S2(a)-(c) and (e)-(g)). A comparison 96 

with the statistics against the airport stations (Table S2) and the WISE-UAE field 97 

measurements (Table S3; Fig. S1) suggests the reanalysis dataset gives a good representation 98 

of the observed air temperature in both months, which has been noted by Nelli et al. (2024). 99 

WRF-Chem underestimates the area-averaged temperature (T2m) over the UAE compared to 100 

ERA5 in both seasons, Figs. S2(d) and (h). This is in contrast with the evaluation against the 101 

airport station data, which indicates an overestimation during the summer and an 102 

underestimation during the winter (Table S2). Kishta et al., (2023) reported minor 103 

discrepancies in temperature measurements between the observational data and ERA5 104 

reanalysis, identifying a strong correlation coefficient of 0.89 over Abu Dhabi. This is further 105 

confirmed by Nelli et al. (2024), who found air temperature biases not exceeding 0.7 °C and 106 

correlation coefficients not lower than 0.92 for all seasons. The spatial average of the WRF-107 

Chem and ERA5 values are 33.1 °C and 34.0 °C, respectively, with an underestimation of 1°C 108 

over the UAE. The model displays a high correlation (r) of 0.97 and a RMSE of 0.8 °C, MAE 109 

of 1.1 °C in June. For December, the model shows a similar pattern, with an underestimation 110 

of 0.9 °C, which is slightly lower compared to June, an r value of 0.92, a MAE of 1.0 °C and a 111 

RMSE of 1.1 °C (Table S4). 112 
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 113 

Figure S2: ERA-5 and WRF-Chem Air Temperature: Average 2-m air temperature (°C) obtained 114 

from ERA5 reanalysis (a,e), simulated by WRF-Chem (b,f), the corresponding absolute differences 115 

(c,g), and scatter plots between the two datasets (d,h) during June (top) and December (bottom) 2022. 116 

The 10m wind vectors are overlaid on the corresponding spatial plots. 117 

It is widely recognized that the Planetary boundary layer (PBL) plays a crucial role in the 118 

advection and dispersion of pollution over the region (Phanikumar et al., 2020). The PBL is 119 

deeper during summer and shallower in winter (Nelli et al., 2021). There are noticeable 120 

differences in the PBL between land areas (approximately 2400–2500 m) and marine regions 121 

(about 1200–1500 m), as expected given the contrasting thermal inertia between the ocean 122 

water and the land surface . Basha et al. (2019) discovered that ERA-Interim reanalysis data 123 

tends to underestimate the PBL depth when compared with data obtained from Global 124 

Positioning System Radio Occultation (GPSRO) in most regions and in all the seasons. Chen 125 

et al. (2022) emphasized the critical role of the boundary layer in influencing air quality and 126 

facilitating the transboundary transport of pollutants. The authors noted that a deeper boundary 127 

layer enhances the potential for pollutant transport to the Tibetan Plateau. Wang et al. (2022) 128 

highlighted the critical role of meteorological conditions in severe PM2.5 pollution episodes, 129 

stressing that rapid cold air advection can quickly disperse pollutants, in contrast to the slow 130 

accumulation of pollutants under weak high-pressure systems. This slow build-up is 131 

characterized by low wind speeds, and low atmospheric boundary layer heights, which lead to 132 

prolonged heavy pollution periods and potentially fog events given the aerosols’ role in acting 133 

as cloud condensation nuclei (Pauli et al., 2024). 134 
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 Fig. S3 shows a comparison of the mean ERA5 PBL with corresponding WRF-chem simulated 135 

values for the months of June and December 2022. The spatial distribution of PBL across the 136 

UAE, with higher values over land regions and lower values over the marine regions in the 137 

summer, Figs. 3(a)-(b), and the opposite in winter, Figs. 3(e)-(f), is seen in both ERA5 and 138 

WRF-Chem, and is consistent with the  seasonal temperature variations (cf. Figs S2(a)-(b) and 139 

(e)-(f)). In particular, warmer summer temperatures contribute to an elevation in PBL, and 140 

cooler winter temperatures are accompanied by lower PBL heights (Basha et al., 2019). It is 141 

surprising that over the Arabian Gulf the PBL is deeper in December than in June, cf. Figs. 142 

S3(a)-(b) but (e)-(f). This arises because of increased wind speeds and turbulent mixing in the 143 

colder months, which drive deeper PBLs (Dai, 2024). In terms of the model simulated PBL 144 

depths (averaged spatially for the UAE), WRF-Chem exhibits good performance in capturing 145 

the regional variations seen in the reanalysis dataset. In June, the modelled PBL is at 657 m 146 

compared to 606 m in ERA5, with a correlation coefficient of 0.98 and a RMSE of 232 m. In 147 

December, the modelled PBL is 516 m compared to the ERA5 of 526 m, with a high correlation 148 

coefficient of 0.98 and an RMSE of 136 m (Table S4). The good agreement between the WRF-149 

Chem and ERA5’s PBL depth suggests the model is capable of simulating the spatial and 150 

temporal variability of the PBL across the UAE in both seasons. 151 

 152 

Figure S3: ERA-5 and WRF-Chem Boundary Layer Height: Same as Fig. S2, but for the 153 

planetary boundary layer (PBL) height. 154 

In addition to T2m and PBL, Table S4 also summarizes the spatially averaged statistical 155 

verification scores for WS10m and SR over UAE. Regarding WS10m, it is accurately 156 
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simulated by the model with small differences in MB (June: 0.6 m/s, Dec: 0.4 m/s), which are 157 

largely comparable to those obtained at the location of the airport stations (Table S2) and 158 

WISE-UAE location (Table S3), with good correlations in both seasons (June: 0.51, Dec: 0.88).  159 

This suggests the reanalysis dataset also overestimates the strength of the wind speed in the 160 

region, as noted by Nelli et al. (2024). These biases have been attributed to an incorrect 161 

representation of the near-surface wind subgrid-scale variability and deficiencies in the surface 162 

drag parameterization scheme employed in the model (Nelli et al., 2020; Temimi et al., 2020). 163 

The excessive SW in WRF-Chem seen with respect to the WISE-UAE field measurements 164 

(Table S4) is also seen with respect to ERA5 data in Table S5, with the reanalysis also 165 

exhibiting a tendency to overpredict the net shortwave radiation flux (Nelli et al., 2024). In any 166 

case, these results presented in Figs. S1-S3 and Tables S2-S4 indicate a very good performance 167 

of the WRF-chem model in simulating meteorological parameters over the UAE during the 168 

specified months with respect to both in situ observations and a state-of-the-art reanalysis 169 

dataset. Since WRF-Chem simulates meteorology and chemistry simultaneously, accurate 170 

meteorological simulations are crucial for the precise computation of chemistry fields within 171 

the model domain.   172 

Table S4 Statistical evaluation against ERA-5 data: skill scores calculated for model simulations for 173 

air temperature at 2m (T2m), wind speed at 10m (WS10m), downward shortwave radiation flux (SW), 174 

and planetary boundary layer (PBL) during June and December of 2022 over the UAE. 175 

Parameter Month MOD ERA5 MB MAE R RMSE 

T2m (
o 

C) 
June 33.06 34.04 -0.99 1.05 0.97 0.78 

Dec 21.87 22.76 -0.90 0.95 0.92 1.06 

WS10m 

(m/s) 

  4.29 3.72 0.57 0.63 0.51 0.53 

  3.88 3.46 0.42 0.53 0.88 0.60 

SW (W/m2)   350.2 309.0 41.3 41.3 0.94 1.9 

  188.1 172.2 15.9 15.9 0.99 2.6 



10 

PBL (m)   656.8 605.8 51.1 101.8 0.98 231.9 

  516.0 525.9 -10.0 91.2 0.98 136.3 

  176 

 177 

 178 

Figure S4: The tropospheric column NO2 from TROPOMI and WRF-Chem: Spatial 179 

distribution of tropospheric column NO2 over the UAE as observed by TROPOMI and 180 

simulated by the WRF-Chem model during the summer (a,b) and winter (c,d) of 2022. 181 

 182 
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 183 

Figure S5: The total column CO from TROPOMI and WRF-Chem: Same as Fig. S4, but 184 

for total column CO. 185 

  186 
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 187 

Figure S6: The tropospheric column ozone from TROPOMI and WRF-Chem: Similar to 188 

Figure S3, but for tropospheric column ozone. Note the differences in color scales between 189 

TROPOMI and WRF-Chem for both summer and winter. 190 

 191 
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 192 

Figure S7: The averaging kernel from TROPOMI: (a) for tropospheric column NO2 193 

(example days for June (black) and December (red)). (b) for total column CO (example days 194 

for June (black) and December (red)), (c), and (d) for ozone averaging kernel profile for June 195 

and December, respectively. Note the differences in color scales. 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 
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 207 

 208 

 209 
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