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Abstract. Warming climate is predicted to increase forest fires which can be a major source of black and brown
carbon (BC and BrC) into the atmosphere. Unlike North American forest fires, very limited studies have charac-
terized North Eurasian biomass burning (BB) emissions. In this work, we determined the emission factors (EF)
of carbonaceous aerosols and characterized light absorption of BrC emitted from boreal and peat burning through
offline filter extraction method. The results were compared to African savanna emissions. Effects of atmospheric
dilution and oxidative aging on BrC absorptivity were investigated for selected BB emissions sampled into an
environmental chamber. Organic carbon (OC) and elemental carbon (EC) EFs of fresh BB emissions ranged
between 1.30-89.9 and 0.01-4.80 gkg~! respectively. Methanol soluble OC (MSOC) represented more than
92 % of fresh BB emissions, irrespective of fuel type, and consisted of weakly absorbing BrC with imaginary
refractive index at 550 nm (kmsoc_sso) ranging from 0.002 to 0.011. Water soluble OC (WSOC) fractions varied
among fresh BB emissions but overall exhibited higher mass absorption efficiencies at 365 nm (MAE3¢s) than
MSOC. Dilution-related evaporative loss in environmental chamber resulted in less volatile OC, making them
less soluble in methanol. Photochemical and dark oxidative aging further increased the low volatility OC frac-
tions of the organics along with its oxidation state. Our estimated OC-EC emission factors and kysoc for fresh
BB emissions can be used for future modelling purposes. Further online measurements are needed to account
for non-soluble strong BrC in aged BB emissions.
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1 Introduction

Biomass burning (BB) emission is one of the largest anthro-
pogenic sources of black (BC) and brown carbon (BrC) in
the atmosphere (Bond et al., 2004; Kirchstetter et al., 2004).
Multiple studies have predicted that open BB emissions such
as wildfires will become more prevalent in the future with
the warming climate, with increasing boreal forest and peat-
land fires threatening also the Eurasian regions (Krawchuk et
al., 2009; Costa et al., 2020; Feyen et al., 2020). Along with
the expected overall increase in the frequency of “high-to-
extreme” wildfires in Europe (De Rigo et al., 2017) an ex-
pected shift in vegetation distribution from Southern towards
Northern Europe may further amplify fire hazard of Fenno-
Scandinavian biomass (Costa et al., 2020). Only limited lab-
oratory and field studies exist describing aerosol emissions
from boreal forest and peatland fires in the Eurasian area
(Wilson et al., 2015; McCarty et al., 2021; Zhong et al.,
2024; Schneider et al., 2024a), compared to the more stud-
ied North-American boreal forest and peat fires (Aurell and
Gullett, 2013; Urbanski, 2013; Stockwell et al., 2014; Black
et al., 2016; Andreae, 2019; Phillips et al., 2022; Zhao et
al., 2021). However, the fire regimes in Eurasia are known to
be dominated by surface burning, that likely emits carbona-
ceous aerosol of different characteristics in comparison to
more crown-fire dominated fires in North America (de Groot
et al., 2013; Rogers et al., 2015). Another important source
of global carbon emissions is savanna surface fires, which
has been estimated to account for almost 50 % of total car-
bon emissions from open BB (van der Werf et al., 2017).
Further, roughly 30 % of the total wildfire-induced carbon
emissions originate solely from Southern African savanna
fires (van Wees et al., 2022). Yet, relatively limited studies
have been carried out to characterize these emissions in re-
cent years (Vakkari et al., 2014, 2018; Desservettaz et al.,
2017; Wu et al., 2021; Vernooij et al., 2022, 2023).
Chemical and optical properties of BC have been stud-
ied extensively over the last two decades and it has been
established as an important climate warming agent (Jacob-
son, 2000, 2001; Bond et al., 2013). On the other hand, the
properties of combustion emitted BrC have still not been
fully characterized due to variability in combustion condi-
tions (Martinsson et al., 2015; Wang et al., 2020; Saleh,
2020), fuel chemical composition (Saleh et al., 2014; Smith
et al., 2020; Moschos et al., 2024; Navinya et al., 2024) and
secondary transformation of BrC in the atmosphere (Laskin
et al., 2015; Brown et al., 2018; Hems et al., 2021). BB de-
rived BrC consists of different light-absorbing organic pre-
cursors of BC, such as polyaromatic molecules, which are
not transformed to fully ordered BC during the combustion
process (Saleh et al., 2018). Since BC formation is strongly
temperature-dependent, low combustion temperatures may
favour BrC formation, whereas high combustion temper-
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atures increase oligomerization/polymerization of polyaro-
matic carbon structures to form BC (Faccinetto et al., 2011;
Desgroux et al., 2013; Solum et al., 2001; Wang, 2011).
Consequently, the light-absorbing primary organic aerosols
(POA) emitted from BB emission are chemically diverse and
distinct for different fuel types and combustion conditions.
Additionally, they evolve in the atmosphere through oxida-
tion and functionalization reactions, driven by the formation
of secondary organic aerosol (SOA) and the evaporation and
chemical fragmentation of organic aerosol (OA), resulting in
a complex mixture of organic chromophores with variable
absorptivity.

BB is a dynamic and variable process that strongly de-
pends on fuel moisture content, fuel composition and com-
bustion conditions. A common parameter to characterize BB
is the modified combustion efficiency (MCE), which de-
scribes the share of carbon dioxide to the sum of CO and
CO, emissions. However, studies have typically found only
weak correlations between BrC light absorption and MCE
(Pokhrel et al., 2016; McMeeking et al., 2014). The ratio of
the emitted BC (mainly composed of elemental carbon or EC
structures) to the organic carbon (OC) has been suggested as
a more suitable parameter for correlating the aerosol optical
properties with combustion conditions (McClure et al., 2020;
Stockwell et al., 2016; Saleh, 2020). For instance, flaming
dominated combustion processes generally lead to relatively
high EC/OC ratios and more absorptive BrC than smoulder-
ing emissions (Saleh et al., 2014; Xie et al., 2018; McClure
et al., 2020; Kumar et al., 2018).

In climate models, the light absorption strength of the ma-
terial is described by the imaginary part of the refractive in-
dex (k). For pure BC, k are constrained close to unity and
exhibit very little to no wavelength dependence, especially at
UV and shorter visible wavelengths (Bond and Bergstrom,
2006). However, the k for BB emitted BrC seem to vary
across several orders of magnitude depending on the biomass
type and combustion conditions as well as the measurement
techniques (Chakrabarty et al., 2010; Bluvshtein et al., 2017;
Saleh et al., 2018; Saleh, 2020; Navinya et al., 2024). There-
fore, characterizing the k for individual BrC compounds is
a daunting and, in some cases, impossible task due to in-
strumental limitations. A more comprehensive approach has
been adapted in the last decade where the k values for BB
derived BrC has been shown to fall in a “brown-black carbon
continuum” (Saleh et al., 2018). BB derived BrC generally
exhibit progressively higher k values with increasing temper-
ature and has been termed as “dark BrC (d-BrC)” (Hoffer et
al., 2017; Adler et al., 2019; Atwi et al., 2022; Chakrabarty
et al., 2023) or “strongly absorptive BrC (s-BrC)” (McClure
et al., 2020; Saleh, 2020) when the combustion tempera-
tures approach the BC formation regime. In contrast, the BrC
derived from BB combustions in progressively decreasing
combustion efficiency and temperature has been termed as
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“moderately absorptive (M-BrC)”, “weakly absorptive (w-
BrC) and “very weakly absorptive (VW-BrC)”, respectively
(Saleh, 2020; Moschos et al., 2024), as the k values decrease
with lower burning temperature.

One of the most convenient and widely used methods for
the characterization of optical properties of bulk BrC is the
collection of aerosol particles on filters and subsequent ex-
traction of the organic fractions with suitable solvents fol-
lowed by filtration (Chen and Bond, 2010; Liu et al., 2013;
Mo et al., 2017; Shetty et al., 2019; Li et al., 2020; Yan et
al., 2020). The light absorption of solvent extracted OA is
measured using a UV-vis spectrophotometer which provides
high precision spectral data over a wide wavelength range.
In previous studies water has been one of the primary sol-
vents for extraction of BrC from filters (Bosch et al., 2014;
Kirillova et al., 2014; Mukherjee et al., 2020) because of the
atmospheric relevance of the water soluble organic (WSOC)
fraction (Hallar et al., 2013; Taylor et al., 2017). Quantifi-
cation of WSOC can be done with Total Organic Carbon
(TOC) analysis (Li et al., 2016a), and the loss estimation of
the extraction process has very little uncertainty. On the other
hand, the water insoluble BrC fraction is generally extracted
from aerosol particles using methanol (MeOH) as a solvent
(Chen and Bond, 2010) but it has been recently discovered
that some highly light-absorbing, extremely low volatility or-
ganic (ELVOC) compounds may not be efficiently extracted
by this procedure (Saleh et al., 2014; Liu et al., 2013). Quan-
tifying the dissolved organic mass in MeOH is also chal-
lenging as organic solvents interfere with TOC measure-
ments and indirect methods are used instead (Chen and Bond
2010; Cheng et al., 2017; Huang et al., 2018; Yan et al,,
2020) to estimate MeOH soluble organic carbon (MSOC)
which leads to additional potential sources of uncertainties
(Yan et al., 2020). Nevertheless, MeOH has exhibited very
high organic extraction efficiencies (Chen and Bond, 2010;
Xie et al., 2017) and the optical properties of MSOC have
agreed well with OC extracted by more polar solvents like
Dimethylformamide (DMF) for BB emissions and coal com-
bustion (Xu et al., 2022). Therefore, MeOH should be used
in parallel to water to extract BB emitted organic compounds
with a broader range of polarities and gain more informa-
tion on their light-absorbing properties. Although filter based
solvent extraction has its limitations, such as lack of infor-
mation on size-dependent absorption of extracted organics
(Moosmiiller et al., 2011; Liu et al., 2013; Washenfelder et
al., 2015), this analytical method is low-cost, easily accessi-
ble, and excludes the interference of BC (or EC) and other
light-absorbing species from OA absorption.

This work aims to define the emission factors of carbona-
ceous aerosols and characterize OA optical properties for
emissions originating from different open BB sources. We
used a laboratory open burning setup with the objective to
create conditions representing natural Eurasian forest sur-
face fires, in which the combustion temperatures likely re-
main low and burning is dominated by smouldering (Rogers
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et al., 2015; Walker et al., 2020). Finnish boreal peat and
forest surface samples, commercially available boreal peat
samples, and permafrost peat from arctic Russia and Sval-
bard (Norway) were burned in the laboratory setup. To assess
the effects of burning conditions and biomass materials on
carbonaceous emission factors and their optical properties,
we replicated conditions ranging from smouldering to flam-
ing, with clearly distinct combustion behaviour and MCEs
for each fuel. Furthermore, we extended the study samples to
include South-African savanna biomass and North European
wood stove emissions, thereby encompassing a larger range
of combustion conditions. Finally, we investigated the im-
pact of atmospheric dilution and aging on the chemical and
optical properties of the organic aerosols by conducting envi-
ronmental chamber experiments either under photochemical
or dark aging conditions for selected biomasses. The results
were used to derive imaginary refractive indices (k) for OAs,
allowing for their classification within the black-brown car-
bon continuum. The results are essential to accurately esti-
mate the direct radiative forcing effects of biomass burning
emissions in climate models.

2 Methodology

2.1  Combustion setup and fuels

The combustion experiments were conducted in the ILMARI
laboratory of the Kuopio campus of University of Eastern
Finland (https://sites.uef.fi/ilmari, last access: 16 November
2025) using an in-house designed open combustion appli-
ance. The appliance consisted of a steel cage, a concave plate,
a metal/steel mesh and a metal/steel biomass holder. The de-
tails of the combustion setup and the specific biomass hold-
ers used for each fuel type are illustrated in Fig. S2 in the
Supplement. Combustion was initiated using an electric re-
sistor of which the power was adjusted to generate exclu-
sively flaming or smouldering emissions, similar to previous
studies (Pokhrel et al., 2021; McRee et al., 2025). With this
open combustion setup (Fig. S2), we allowed instant dilution
of the emissions in an aim to simulate real world forest sur-
face fires.

Eight different types of biomasses were used as fuel sam-
ples in the combustion experiments. Namely, commercially
available peat samples (CP), Finnish boreal forest surface
(BFS, including vegetation, litter, and the soil organic layer),
peat from two Finnish boreal peatlands (FIA and FIB), peat
from arctic permafrost regions of Russia (RUS) and Norway
(NOR), savanna wood and grass from South Africa (SW and
SG respectively) were selected as fuels for this study. The
origins and properties of the combusted biomasses are avail-
able in the Supplement (Sect. S1, Table S1). The savanna
biomass included in this study was part of the BASFAA (Bo-
real and savanna fire aerosol aging) measurement campaign
that took place from May to June 2022 at the ILMARI lab-
oratory as described in Vakkari et al. (2025). For this study
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specific combustion phases were selected for sampling rep-
resenting either solely flaming, pre-flame smouldering, or
full combustion consisting of pre-flame smouldering, flam-
ing and post-flame smouldering periods. Therefore, a sub-
set of Savanna biomass (SG and SW) combustions presented
in Vakkari et al. (2025), which included sampling of sepa-
rate combustion phases (either flaming or pre or post flame
smouldering), were chosen to be included in this study. The
sampling periods were selected based on careful visual in-
spection of the combustion process and the concentrations
of CO and CO;, monitored online as described below (Sect.
2.2).

2.2 Sampling setup and gas phase measurements

The emitted smoke was sampled using the setup presented
in Fig. 1. We measured the gaseous compounds from the
fresh, undiluted BB emission using an online multicompo-
nent FTIR analyzer (Gasmet Technologies Inc.), and the
measured compounds are listed in Table S2. The fresh BB
emissions were sampled through a PM;( pre-cyclone and a
heated probe (180 °C) before being diluted using an Ejector
Dilutor (Titta et al., 2016) and porous tube dilutor. A dilu-
tion ratio (DR) of 4-20 was achieved during this two-stage
dilution with clean synthetic air (Woikoski N50) in ambient
temperature. A gas concentration analyzer (Picarro G2401)
measured the concentrations of CO,, CO, CH4 and water va-
por (H20) from the diluted exhaust (Fig. 1). MCEs were cal-
culated from the average increase in CO;, and CO concen-
trations during the sampled combustion period relative to the
background concentrations (Eq. 1):

A[CO2]

MCE =
A[CO2] + A[CO]

ey

MCE was estimated from CO and CO, concentrations mea-
sured in both undiluted and diluted BB emission. Burns
with average MCE values smaller than 0.9 were defined as
smouldering-dominated combustion, while the combustions
with average MCE values larger than 0.9 (Table 1) were clas-
sified as flaming dominated (Yokelson et al., 1996; Stockwell
et al., 2014).

2.3 Environmental chamber and aging of the emissions

Different burning phases of Finnish BFS, and Finnish com-
mercial peat (CP) samples were used in the chamber exper-
iments to study the effects of dilution and oxidative aging
on the organic aerosol optical properties. Additionally, sam-
ples of Savanna burning chamber experiments, described by
Vakkari et al. (2025), were analyzed as part of this study.
For peatland samples FIA, FIB, NOR and RUS, only fresh
emissions were characterized in this study and no cham-
ber feeding was performed. In each of the chamber exper-
iments, diluted primary BB emissions were sampled into a
29 m? Teflon™ chamber (Leskinen et al., 2015) which was
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pre-filled with purified air (Model 737-250, Aadco Instru-
ments Inc.). For each experiment, the sampling period to the
environmental chamber was set based on the targeted mass
concentration of 20-50 ugm™3 as estimated from the fresh
particle size distribution measured online by a fast mobility
particle sizer (FMPS, model 3091, TSI Inc.). The relative hu-
midity (RH) inside the chamber was set at 20 % for SG and
SW emissions and at around 50 % for BFS and CP emissions
to reproduce typical daytime RH in corresponding environ-
ments during the fire active seasons, using a humidification
setup described in Leskinen et al. (2015). The temperature in
the chamber was kept constant at approximately 22 °C. The
sample was first allowed to mix and homogenise for 20 min,
which was an adequate duration for the mass concentrations
of particulate matter (PM) and organics inside the chamber
to stabilize, as observed respectively by a scanning mobil-
ity particle sizer (SMPS) and a soot particle aerosol mass
spectrometer (SP-AMS, Aerodyne Research Inc, USA) con-
nected to the chamber. After sampling of the fresh exhaust,
Picarro was switched to monitor the gaseous components in-
side the chamber. Total DRs inside the chamber were 135-
4045 compared to the two-stage diluted fresh emission (Ta-
ble 1), based on the ratio of CO concentration measured by
Picarro in the diluted exhaust and from the chamber.

After the stabilization period, chamber diluted primary
BB emissions were monitored for additional 45 mins be-
fore adding reactants to the chamber to induce oxidative ag-
ing. Oxidative reactants were injected into the chamber af-
ter the BB emissions, because we first wanted to measure
the characteristics of primary aerosols as well as, to study
the effect of dilution on the partitioning of the POA fraction
without inducing any aging pathways, similar to previous
studies (Kodros et al., 2020, 2022). The oxidative reactants
were allowed to interact with the fresh BB emission in the
chamber for 4.5 h. For each experiment, 2 uLL of d9-butanol
(~ 25 ppb) was injected into the chamber and the concentra-
tion was probed throughout the experimental duration using
a proton-transfer-reaction time-of-flight mass spectrometer
(PTR-ToF-MS). Four distinct aging conditions were simu-
lated in the environmental chamber to evaluate the impact
of aging on the physio-chemical and optical properties of
different BB emissions. Firstly, photochemical aging con-
ditions were induced inside the chamber for both flaming
and smouldering combustion. In the photochemical experi-
ments, UV-light in presence of externally fed Oz (50 ppb)
and H>O; (0.5 mL of 30 % v /v solution) led to the formation
of hydroxyl radicals (OH*). The OH exposure and equivalent
photochemical age were determined from the decay of d9-
butanol (Barmet et al., 2012). In our experiments, equivalent
photochemical age ranged between 1-1.6d (Table 1) with an
assumed ambient OH concentration of 1.5 x 10® cm™3. In ad-
dition, two different dark aging conditions were simulated for
two distinct sets of biomasses. The primary emissions from
SG and SW underwent dark aging in the presence of exter-
nally added 100 ppb of O3 and no additional NO,.. We clas-
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Figure 1. A schematic presentation of the experimental setup for combustion experiments involving the environmental chamber.

sified this aging condition as “low-NOy dark aging”, as the
nitrate radical (NO3) formation was limited by the lack of
NO,. CP and BFS burning emissions were aged in relatively
“high-NO,” conditions in the dark chamber with 100 ppb
NO, followed by 100 ppb O3 directly injected to chamber.
It should be clarified that even though we termed this ag-
ing condition as “high-NO,”, the NMVOC / NO, ratio was
still relatively high (Seinfield and Pandis, 2006), in the range
of 4-6 in these cases (Table 1). Furthermore, the addition
of O3 within a small span of time (~ 10 min) after the addi-
tion of NO; in the chamber might have led to competition
between the expected NOs3 radical chemistry and ozonolysis
pathways, although the reaction rates of ozonolysis are much
slower than nitrate oxidation pathways. Another method for
simulating aerosol aging with NOj3 radicals would be to pre-
condition the chamber with NO;, and O3 before adding the
BB emissions (McRee et al., 2025). However, by doing this,
we would not have been able to study both fresh and ox-
idatively aged aerosol during the same chamber experiment.
Seven additional experiments were conducted in this study
without any added oxidants in the chamber to evaluate the
impacts of chamber dilution, estimate wall lose and other
processes on the exhaust emissions. Out of these seven ex-
periments, three were conducted by sampling emissions from
the whole combustion of BFS, while the other four experi-
ments were constituted with distinct smouldering and flam-
ing dominated burns of CP and BFS.

2.4 Particle size distribution, density and morphology

The particle size distributions were measured from the en-
vironmental chamber for the whole duration of each exper-
iment by a scanning mobility particle sizer (SMPS) consist-
ing of a differential mobility analyzer (DMA, model 3080;
TSI Inc.) and a condensation particle counter (CPC, model
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3775; TSI Inc.). In addition, an aerosol particle mass analyzer
(APM, model 3602; Kanomax Inc.) in tandem with another
SMPS (with DMA 3081 and CPC 3750, TSI Inc.) was used
to measure the size distribution of mass classified particles
to estimate the size-resolved effective densities of the parti-
cles (Leskinen et al., 2023; Mukherjee et al., 2024). Particle
densities of primary emission from the chamber were mea-
sured before the application of any additional reactants to the
chamber. The density of the aged particles in the chamber
were measured 4.5h after the addition and stabilization of
the reactants (for dark aging) and/or turning on of the UV
lights (for photochemical aging; Table S4). Simultaneous to
the density measurements, particles were collected on holey-
carbon grids (S147-4 Holey carbon film 400 Mesh Cu; Agar
Scientific Inc.) from the chamber using an aspiration sampler
at a flowrate of 0.3L min~!. Subsequently, we performed
Scanning Electron Microscopy (SEM, Sigma HD/VP; Carl
Zeiss NTS) to investigate the morphology of both chamber
diluted primary and aged BB emitted particles.

2.5 Offline optical analyses

Biomass burning emissions were collected on precombusted
90mm Quartz microfiber filter (Pallflex™ Tissuquartz™
7203, Pall Corporation) from the fresh emissions and at the
end of each chamber experiment. First, the freshly emitted
particles from the raw exhaust without any additional dilu-
tion were deposited on the filter at a flow rate of 90 L min~!.
For experiments with subsequent chamber study, the sam-
pling was done for the same duration as the chamber feed
(Fig. 1). Approximately 4.5 h after the chamber feeding, an-
other filter sample was collected from the chamber with the
same flow rate for 120 min. For the boreal (FIA and FIB) and
arctic peat (RUS and NOR) samples, the primary emission
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was deposited on the filter throughout the whole combustion
period, and no chamber studies were performed.

Thermal-optical carbon analysis was carried out with the
IMPROVE-A protocol (Chow et al., 2007) in a carbon an-
alyzer (Lab OC-EC Aerosol Analyzer; Sunset Laboratory
Inc.) by placing 1.5 cm? punches of the Quartz fiber filters
(QMA) containing deposited aerosol particles. The details of
the measurement protocol have been described in the Sup-
plement (Sect. S2). Additionally, two separate 1.5 cm? filter
punches from each experiment were extracted, one with ul-
trapure Mili-Q water (> 18.2 M2) and the other with MeOH
(Fisher Scientific, Analytical Reagent Grade > 99.9 % pure).
After solvent extraction, the two filters were dried under gen-
tle airflow in a clean room for 12h before being analysed
with the same OC-EC analyzer. This setup (Fig. S4) enabled
us to measure the dissolved organic concentration in the sol-
vent using Eq. (4) (see Sect. 2.8) and therefore estimate the
MAEqc (Eq. 3).

For filters containing fresh emissions collected from the
raw exhaust, 40 mL of solvent was used for the extraction of
the 1.5 cm? filter area. The volume of solvent used for ex-
traction of highly loaded filters containing fresh emissions
can be a limiting factor for dissolved OC concentration, es-
pecially for BB emitted particles that have been shown to
be dominated by non-polar molecules (Lin et al., 2017) that
are less soluble in water. We chose 40 mL of solvent, as
this volume provided a dilute micromolar solution in which
the light absorption by the dissolved organics would be lin-
early proportional to their concentration, in accordance with
Beer-Lambert’s law (Huang et al., 2018). The utilized solvent
volume was also sufficient to dissolve the sparingly soluble
low volatility strongly light-absorbing fraction of OC. On the
other hand, for the chamber diluted fresh emissions and aged
particles, two 1.5 cm? filter punches (total of 3 cm?) were ex-
tracted in 20 mL water or MeOH (Cao et al., 2021; Fan et al.,
2018) to obtain solution phase organic concentrations nec-
essary for analytically significant S/N ratio in the UV-vis
spectrophotometry.

In parallel to the deposition of primary particles from the
raw exhaust on quartz fiber (QMA) filters for emission fac-
tor calculation, a fraction of the emitted particles was fed to
the Teflon™ chamber to simulate real life atmospheric dilu-
tion. It is important to study these particles in a diluted sys-
tem to understand their chemical and optical evolution in the
atmosphere. The particle size distribution, effective density,
and morphology of the primary BB emission were studied
after feeding them in the chamber and letting them mix ho-
mogeneously with clean air. Subsequently, different oxidants
were added to the chamber to initiate photochemical or dark
oxidation reactions. After 4.5 h of feeding the oxidants, the
particles from the chamber were deposited on another QMA
filter. In addition to that, five separate experiments were con-
ducted for different BB emissions, where no oxidants were
directly injected to the chamber and the primary particles
were collected on QMA filter 4.5 h after the chamber feed.
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These samples are referred to as “chamber primary” samples.
The QMA filters containing chamber aged and chamber pri-
mary particles were produced to undergo OC-EC analyses
and solvent extraction similar to the QMA particles collect-
ing raw exhaust primary particles.

The filter punches were submerged in the solvents and son-
icated for 10 min in three separate intervals in an optimized
ultrasonicator (SONOREX Digitec, Bandelin Inc.). The op-
timization enabled a much gentler sonication as compared to
regular commercial ultrasonicators (Huang et al., 2018; Li
et al., 2020), resulting in high extraction efficiencies without
damaging the filter punch and thereby allowing subsequent
OC-EC analyses. Such gentle ultrasonication also minimised
the dislodging of insoluble organics or EC from the filter to
the solution (Phillips and Smith, 2017). During the intervals
between the 10 min sonication windows, the samples were
kept in a refrigerator to keep the effects of any thermal disin-
tegration of OC or chemical transformation through reactions
with the solvent (Bateman et al., 2008; Chen et al., 2022) due
to the added kinetic and thermal energy during the sonication
at minimal.

After the sonication, the elute was passed through 0.2 um
hydrophilic PTFE syringe filters (Fisherbrand) to remove any
insoluble particles from the solution. Aliquots of 3 mL from
the filtered solutions were taken in a quartz cuvette with
1 cm path length and UV-vis spectra were recorded for the
wavelength range of 250-700 nm using a spectrophotome-
ter (UV-2401 PC, Shimadzu). The overall contact time be-
tween the solvent and the extracted organics in the solution
never exceeded 2 h before the recording of the optical spec-
tra. These were much smaller time intervals compared to the
reaction rates between MeOH and carboxyl groups for in-
stance (MclIntyre and McRae, 2005), enabling us to disre-
gard any potential artifact caused by the solvent (MeOH) to
the chemical composition of the original OC deposited on the
filter (Lin et al., 2012).

2.6 Residential wood combustion experiments

In addition to different open BB emissions, filter samples
from residential wood combustion (RWC) experiments per-
formed with modern European logwood-fired chimney stove
(Aduro 9-3) operated with beech logs from two separate ex-
perimental campaigns were included in the study. This en-
abled us to extend the analysed sample set to conditions rep-
resenting high-temperature biomass combustion, and to test
the validity of the BrC-BC continuum. The general exper-
imental setups of these two sets of experiments have been
presented in our previous works (IThalainen et al., 2019a;
Mukherjee et al., 2024). Each experiment consisted of four
(Thalainen et al., 2019a) or six (Mukherjee et al., 2024)
45 min batches of wood log burning, ignited with wood sticks
as kindling. Photochemical aging of the exhaust was con-
ducted by the Photochemical Emission Aging flow tube re-
actor (PEAR, Thalainen et al., 2019b), in similar conditions
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as the low-dilution aging in Hartikainen et al. (2020). Briefly,
exhaust samples were collected onto quartz fiber filters be-
fore and after the PEAR in a flow rate of 10Lmin~! for
60 min, with each sample consisting of one full batch and
20 min of the subsequent batch, either from the cold stove
(consisting of 1st and 2nd batch of wood) or in the warm
stove (consisting of 3rd and 4th batches of wood) combus-
tion. The filter samples were extracted similarly to the open
biomass burning samples for optical analyses.

2.7 Optical data processing

The raw absorption (A) of the extracted solution measured
by the UV-vis spectrophotometer was converted to the light
absorption coefficient (8,5, M m~!) in the sampled air using
Eq. (2) (Hecobian et al., 2010):

(A — A700) X VI x In(10) x areag
Babs(h) = ~— fer 2)

Va x | x ar€apunch

where A, is the raw absorbance measured by the spectropho-
tometer in base-10 at wavelength A and A7 is the absorption
at 700 nm (which was subtracted from A to correct for base-
line drift caused by the absorption), V] (mL) is the volume of
the solvent used to extract the filter punch (areapunch, cmz),
V, (m3) is the total volume of the air sampled through the
whole quartz filter (areagjer, cmz) during emission measure-
ments, [ is the pathlength of light through the solution, which
is equivalent to the width of the quartz cuvette (0.01 m).

The mass absorption efficiency (MAE) of the extracted
BrC at a particular wavelength A is given by Eq. (3) (Liu
et al., 2013):

MAE(A) = %

3)
where M is the mass concentration of the dissolved organic
in a particular solvent (ug m~3). M for MeOH and water sol-
uble organics (Mvsoc and Mwsoc respectively) were calcu-
lated as:

(OCoriginal — OCwmeon ) X areafilter

Myisoc = v (4a)
a

and,

Mwsoc = (Ocoriginal — OCyater ) X areafilter (4b)

Va

where OCoyiginal refers to the OC concentrations (g Cm_z)
measured from the original filter punch and OCpyeon and
OCyater refer to the measured OC concentrations after
MeOH and water extraction, respectively. Mwsoc was also
directly measured from the aqueous filter extracts using a to-
tal organic carbon (TOC/TN) analyzer (TOC-L, Shimadzu)
to compare with the estimates obtained using Eq. (4b). Over-
all the two methods yielded comparable Mwsoc values
(R2 = 0.98, Fig. S5), so for consistency we have used the
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filter based M values for both MSOC and WSOC in calcu-
lating MAE. The solubility of organics in each solvent were
estimated as:

(Ocoriginal — OCwmeon)
(Ocoriginal)

Solubility of OC in water was estimated similarly. The

imaginary part of the refractive index, k, was related to

MAE at any given wavelength A according to Jennings et al.
(1979):

solubility in methanol =

®)

47 k(L)
oA

MAE(}) = 6)
where p is the density of the dissolved organic (gcm™3). For
fresh, photochemically aged and dark aged emissions dif-
ferent mean density values were used for calculating k as
mentioned in Table S4. For the RWC experiments, particle
densities measured for fresh and PEAR-aged beech combus-
tion exhaust particles from the same appliance (Mukherjee et
al., 2024). were applied for the calculation of k. Specifically,
density values of 1(£0.1) g cm 3 and 1.6(10.1) g cm 3 were
used for the primary and aged RWC exhaust particles, re-
spectively. It should be noted that the MAE values obtained
in this study for soluble OC will need to be divided by an
OA/OC factor (typically in the range of 1.8-2.2 for fresh
emissions, Hartikainen et al., 2020) to obtain the MAE of
MeOH or water-soluble OA before comparing with previous
literature reporting light absorption properties of BB emitted
OA.

Absorption ;\ngstrém exponent (AAE) of MSOC and
WSOC were estimated between a pair of wavelengths 1| and
Ay as the power law exponent of the ratio between the ab-
sorption coefficients at the two wavelengths (Moosmiiller et
al., 2009), such as:

AAE(A, o) = In{Babs (A 1)/ Babs (A2)} o

In(A2/21)

For this study, AAE between wavelengths 300-550 nm were
used to describe the optical behaviour of BrC emitted from
different biomass sources. The wavelength dependence of the
imaginary refractive index k is denoted as w (Saleh et al.,
2014) which we derived for fresh and chamber samples using
a similar power law relationship as Eq. (7) but involving k at
two different wavelengths. In literature, w has also been es-
timated using AAE (Saleh et al., 2014; McClure et al., 2020)
as they are related by:

AAE ~ w + 1 8)

2.8 Emission Factor Calculation

Emission factors from the combustion experiments were cal-
culated by the carbon mass balance method according to (Eq.
9; Yokelson et al., 1999):

ER,
EF, = F. - 1000 —2- 9)

ACO
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where F. is carbon fraction in the combusted sample and
the summation ) AC is the total carbon released during the
combustion. For savanna biomasses (SG and SW) Y AC was
estimated as (Vakkari et al., 2025):

Z AC = ACO, + ACO + ACH4 + AOC + ArBC

+ Z ACvoc (10a)

ACO2, ACO and ACH4 were their respective concentrations
in ppm subtracted by background and synthetic air concen-
tration, AOC was measured by AMS, rBC was measured by
SP2 and VOCs were measured by VOCUS. For commercial
peat (CP), boreal forest surface (BFS) and natural peatland
(FIA, FIB, RUS and NOR) emissions, Y AC was estimated
as:

Z AC = ACO; + ACO + ACH4 + AOC + AEC
+ ZACVOC

For CP and BFS, CO;,, CO and CH4 were measured using
Picarro and non-methane VOCs (NMVOC) were estimated
from FTIR (Table S2). For natural peatland samples CO,
CH4 and NMVOCs were all measured by FTIR, while CO,
was measured by a CO; analyzer (Siemens). OC and EC for
all of these samples were estimated from OC-EC analyses of
filters.

ERx in Eq. (9) is the ratio of measured concentration in
ug m~3 relative to the CO carbon concentration in ugCm=3.
ERx was calculated by Eq. (11), where the CO concentration
measured in ppm is converted to CO carbon concentration in
ugC m~3 using the following equation:

(10b)

X

12.01 gmol~!-101 325Pa
8.31451J (mol K)~1-T

AERy = (11)

x ACO

Where X is the concentration of the measured parameter in
ugm~3, ACO is the CO concentration in the emission in ppm
compared to background, T is measured temperature in the
chamber in Kelvin, 12.01 is the molecular weight of carbon
(gmol~"), 101325 is the standard atmospheric pressure in
Pa, 8.31451 is gas constant in SI unit.

2.9 FT-ICR MS analyses

Chemical compositions of the biomass burning emission
samples collected on quartz filters were characterized by
means of ultrahigh-resolution mass spectrometry. All ex-
periments were performed using a 12-T Bruker solariX
XR Fourier transform ion cyclotron resonance mass spec-
trometer (FT-ICR MS) (Bruker Daltonics GmbH, Bremen,
Germany), equipped with a dynamically harmonized ICR
cell (ParaCell®). The mass spectrometer was coupled to an
Apollo-II atmospheric pressure chemical ionization (APCI)
source, fitted with a direct insertion probe (DIP) accessory.
This set-up enabled chemical characterization of the filter
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samples directly with minimal sample preparation. Five lay-
ers of each quartz filter sample were packed into a prebaked
glass capillary (Hirschmann melting point tube) and inserted
into the ion source vaporizer, held at 370 °C. The capillary
voltage was set to 4500 V and corona current to 4000 nA. Dry
nitrogen was used as the drying (3.5Lmin~!, 220°C) and
nebulizing (2.0 bar) gas. After an induction time of 10s, the
MS data were recorded until the total ion current plateaued
(i.e number of scans ranged from 15 to 35), indicating that
the entire aerosol sample was completely desorbed at the
given temperature.

All DIP-APCI FT-ICR measurements were conducted in a
positive ion mode. The generated ions were accumulated in
the hexapole ion trap and transferred to the ICR cell for trap-
ping, excitation and detection. The instrument control and
data acquisition were performed by Bruker ftmsControl 2.1
software. For each spectrum, a broadband frequency exci-
tation and detection were carried out with 4 MWord time-
domain transients (transient time 1.1s), which were full-
sine apodized and zero-filled once to provide the final 8
MWord magnitude-mode data spanning m/z range of 100-
2000. The time-of-flight and ion accumulation time settings
were 1.0 ms and 0.30s, respectively.

The FT-ICR instrument was externally m/z-calibrated
prior to the measurements using a polystyrene (PS) stan-
dard covering a wide mass range and reaching accuracies
generally below 1 ppm. The initial spectral post-processing
was done with Bruker DataAnalysis 5.1 software, includ-
ing the internal re-calibration of the m/z-axes with a
custom-made mass list for organic aerosol samples. For
the peak picking, a signal-to-noise (S/N) ratio was set at
> 6. PetroOrg IS 18.0.3 software (Omics LLC, Tallahas-
see, FL, USA) was used for the molecular formula assign-
ments with the following constraints: double bond equiv-
alent (DBE) 0-40; mass error = 1.0 ppm; atomic formula
12, 100 THi 2200 N4 100;_15 3281 4. The elemental com-
position boundaries for the annotation were chosen based on
careful manual inspection of spectra identifying the edges of
the observed chemical space. The time-resolved spectral in-
formation of the DIP experiment had been summed to an av-
erage spectral read back for each measurement.

For data interpretation and visualization of the complex
lists of attributed sum formulae, we used established data
grouping and fingerprint diagrams (Schneider et al., 2024a,
b). Visualization and pre-processing, calculating molecular
properties and diagnostic measures from the sum formulae
were performed via MATLAB (MATLAB R2023a, Math-
Works Inc., MA). Characteristic molecular properties en-
compassed double bond equivalents (DBE), aromaticity in-
dex (AI), saturation vapor pressure (C*) and average carbon
oxidation state (OSC) frequently used in ultra-high resolu-
tion mass spectrometric studies of complex environmental
sample materials (Koch and Dittmar, 2006; Kroll et al., 2011;
Li et al., 2016Db).
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2.10 SP-AMS analyses

This study employed a soot particle aerosol mass spectrome-
ter (SP-AMS; Aerodyne Research Inc., Billerica, MA, USA;
Onasch et al., 2012) to analyze the concentration levels, mass
spectral signatures, and size distributions of non-refractory
(organics, sulfate, nitrate, ammonium, and chloride) and re-
fractory (e.g. metals, rBC) components. The SP-AMS en-
hances the capabilities of the standard AMS by incorporat-
ing a laser vaporizer, which enables the analysis of refrac-
tory aerosol components. While the instrument can function
using only the laser vaporizer, both the laser and tungsten
vaporizers were used in this study to ensure comprehensive
detection of mentioned chemical species. Size-resolved mea-
surements were obtained using particle time-of-flight (PToF)
mode, with the SP-AMS aerodynamic lens enabling detec-
tion of particles ranging from roughly 50 nm to 1 um. The in-
strument operated with a time resolution of 60 s, with about
half of the time measuring in mass spectrum mode and the
other half in PToF mode. A calibration of the SP-AMS based
on particle mass was carried out using size-selected, dried
particles of ammonium nitrate and ammonium sulfate. This
approach allowed for the determination of an effective nitrate
response factor, as well as the relative ionization efficien-
cies (RIEs) for ammonium (RIENH4) and sulfate (RIESO4),
by converting the instrument signals into nitrate-equivalent
mass concentrations. The determined RIE value for NH4 was
3.4 while the one for sulfate was 0.9. A default RIE value of
1.4 was used for organics. SP-AMS data processing was con-
ducted using the AMS analysis tools SQUIRREL (version
1.63B) and PIKA (version 1.23B) within Igor Pro 8§ (Wave-
metrics, Lake Oswego, OR).

3 Results

3.1 Emission factors of OC and EC in fresh emission

The emission factors of OC (EFOC) and EC (EFEC) were
determined based on thermal-optical carbon analyses of fil-
ters collected from fresh exhaust aerosol (Figs. 2, S6). Gen-
erally, we observed higher EFgc for smouldering combus-
tions with low MCE, as expected. For EC however, the
trend was reversed, with flaming combustion having higher
MCE producing more EC per kg of fuel (Fig. S6). The
combustion emissions in our experiments were OC rich,
most likely due to the open setup of the burner, which re-
sulted in lower combustion temperature compared to wood
stove emissions, due to high air-to-fuel ratios and because
there is no combustion chamber around the fire to retain
the heat in the surroundings. However, there were signifi-
cant variations in EFgc obtained from different combustion
conditions and for different biomasses, ranging from 1.39—
7.44 gkg™! for flaming dominated combustions and 6.12—
89.9 gkg~! for smouldering dominated combustions. CP and
SW samples had the largest EFoc of 53.4(429.0) gkg™!
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and 50.6(£29.8) gkg™! respectively, during the smoulder-
ing combustion phase. In contrast, full combustion of dif-
ferent natural peat samples yielded EFoc in the range of
5.06-32.7 gkg™!, with FIA (at depth of 30-60cm) having
the smallest (6.09+1.2gkg™!) and FIB (at depth of 30-
60 cm) having the largest (29.8 £2.92 gkg~!) average EFoc
among peat samples. Interestingly, the average MCE values
and EFoc reported for field measurements of subtropical In-
donesian peat fires (Stockwell et al., 2015; Jayarathne et al.,
2018) and laboratory studies of North American (Black et
al., 2016; Chakrabarty et al., 2016), West European (linuma
et al., 2007) and South-east Asian peat fires (Christian et al.,
2003; linuma et al., 2007) fell inside the range of our re-
ported EFgc for laboratory combustion of Finnish (boreal)
and arctic peat samples. In our study,

flaming and smouldering combustion of BFS samples
had average EFoc of 3.17(%0.77) and 21.5(£ 13.8)gkg’1
respectively, while previously reported EFoc for North
American boreal forest fires were in similar range of
59(£25)¢g kg_1 (Andreae, 2019). Savanna wood and grass
(SW and SG) samples burnt under flaming conditions in this
study were estimated to have average EFoc of 6.47(% 0.98)
and 3.56(%£0.91)gkg™" respectively, which were some-
what higher in comparison to previously reported organic
emission factor of 3.0(&% 1.5)gkg_1 (Andreae, 2019) and
2.62(+ 1.24) gkg™! (Akagi et al., 2011) from high MCE sa-
vanna fires.

Emissions from savanna biomass had higher average EFgc
compared to the other biomasses, with an average EFgc
of 3.03(%1.77) and 0.94(% 0.16)gkg_l from the smoul-
dering emissions of the woody (SW) and grassy (SG) fu-
els respectively. The carbonaceous fraction of flaming dom-
inated emissions from the woody savanna samples (MCE
~0.94+0.01) consisted of 12(£2)% of EC while sa-
vanna grass had an EC content of 7.4(£1.5)% (MCE
~0.96 £0.01). Previously reported average EFgc values for
savanna and grassland fires ranged from 0.37(£0.20 gkg™")
(Akagi et al., 2011) to 0.53(£0.35) gkg™! (Andreae, 2019)
while Vakkari et al. (2018) reported EFgc of 0.67 gkg™! for
South African savanna grass burning. These values fell in
between our estimated EFgc from flaming burn of savanna
grass (0.27+0.01 gkg™") and wood (0.72+0.17 gkg™").
Full combustion (MCE 0.74-0.89) of the Finnish peat sam-
ples (FIA and FIB) collected at the depth of 30-60cm
from the surface level and arctic permafrost peat samples
from Svalbard (NOR) and Russia (RUS) had the lowest
measured average EFgc (in the range of 0.02-0.13 gkg™!),
which matched well with previously reported EFgc from
field and lab studies of subtropical Indonesian (Stockwell
et al., 2015; Christian et al., 2003) and laboratory repli-
cates of North American peat fires (Black et al., 2016).
Flaming and smouldering combustions of CP had average
EFgc of 0.70(+0.65)gkg™! and 0.28(£0.14) which re-
sembled EFgc reported from laboratory studies of Western
European and South-East Asian peat fires (linuma et al.,
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2007). Burning of the boreal forest surface sample (BFS)
resulted in higher EC emissions than any of the peat sam-
ples with an average EFgc of 0.45(£0.16) gkg™! for high
MCE (~0.9440.01) combustion and an average EFgc of
0.11(£0.09) gkg™! for low MCE (~0.76 £0.02) smoul-
dering burns. For North American boreal forest fires, An-
dreae (2019) reported EFgc of 0.43(£0.21) gkg’] with the
fire having an average MCE of 0.89(+£ 0.04), which resem-
bles Finnish BFS EFgc for flaming dominated burns. Thus,
it seems that our experiments with simulated surface fire con-
ditions at comparably lower combustion temperature typical
for Eurasian wildfires yield similar EC emissions as reported
for North American wildfires that are commonly high tem-
perature crown fires. The estimated EC/OC ratios for fresh
BB emissions in this study ranged between 0.003—1.3, which
roughly corresponds to BC/OA range of 0.002-0.7, with the
lowest values obtained during smouldering and higher values
during flaming dominated emissions respectively.

In comparison, for residential wood combustion (RWC) of
North European beech wood logs (Mukherjee et al., 2024)
the respective average OC and EC emission factors were
0.64(£0.31) gkg™! and 0.28(£0.04) gkg~!. Thus, the OC
emission factors for the open burning in the current study
were approximately 4-140 times higher for smouldering
emissions and 2—13 times higher for flaming emissions than
our previous estimates of RWC emission. In comparison, we
did not observe such a significant difference between the EC
emission factors of RWC and flaming BB emissions. This
implies that surface fires have the potential to be important
sources of specifically organic pollutants and BrC in forest
fire prone environments, whereas the BC emissions would
not be particularly high from these fires.

3.2 Chemical composition and solubility of fresh organic
aerosol

Chemical characterization of the fresh emission samples
from whole combustions of peat (FIA, FIB, RUS and NOR)
and Finnish BFS have been previously reported by Schneider
et al. (2024a) in which electrospray ionization (ESI) was uti-
lized for the FT-ICR mass spectrometry on extracts, targeting
the polar constituents. For this study, the filters containing
specifically flaming and smouldering emissions of CP and
BFS were analyzed directly from the filters by using 12-T
DIP-APCI FTICR-MS to identify differences in the organic
matter compositions due to both fuel and combustion condi-
tions. The advantage of the DIP-APCI technique used in this
study is the ability to detect analytes with low solvent extrac-
tion recoveries due to minimal sample preparation required
(Riiger et al., 2021). Additionally, APCI was able to address a
wide chemical space covering polar up to non-polar analytes.
Therefore, inspite of the lower mass loadings on the filters for
specific combustion phases compared to full biomass com-
bustions as reported in Schneider et al. (2024a), we could as-
sign up to 2000—4000 monoisotopic elemental compositions.
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Overall, CHO, CHNO and CH compound classes were the
most abundant in the fresh BB emissions of CP and BFS.
The low temperature smouldering combustions have been
shown to emit mostly direct thermal degradation products
from biomass pyrolysis (Chakrabarty et al., 2016) compared
to flaming combustion (Engling et al., 2006; Popovicheva et
al., 2019), with similar chemical composition and molecular
structures to that of the fuel (Kourtchev et al., 2011). Sim-
ilar to the smouldering dominated peat burning emissions
reported in Schneider et al. (2024a), we also observed that
the CP smouldering emissions were chemically most diverse
with the highest number of sum formulae unique to this burn-
ing condition (in total 774), thus reflecting the complex in-
herent compositional variability of the peat samples (Fig. 3).
CP smouldering emissions also had clearly higher CHN and
CHNO fractions than all the other biomasses and combustion
conditions. This observation can be attributed to the fact that
the CP samples contained only below-surface peat that have
decomposed for longer time periods and experienced more
microbial activity than the BFS samples, leading to higher
N containing species. Flaming combustion of CP emitted
the second highest number of unique sum formulae (in to-
tal 297) but had much lower CHN class content compared to
smouldering conditions, suggesting a considerable effect of
the burning condition/MCE on the POA chemical composi-
tion (Fig. 3).

On the other hand, the BFS smouldering and flaming emis-
sions exhibited chemically similar compounds, with nearly
1900 identified molecular formulae shared among all the
analysed BFS samples. Almost none of the molecular formu-
lae were unique to BFS smouldering or flaming samples, as
the variability among replicates themselves was high. This
indicates that although different combustion conditions of
BFS strongly influence the OC emission factor, it does not
lead to prominent chemical differences in POA. Similar to
CP, BFS emissions were also dominated by CHO, CHNO
and CH classes, although a much lower fraction of CHN
was present in the BFS smouldering emission compared to
CP. Furthermore, a more detailed inspection of the identified
formulae of the nitrogen-containing molecules in the fresh
CP and BFS emissions reveals that they mostly belonged
to the CHNO class, contained one nitrogen substitution, and
consisted of both aliphatic and aromatic nitro-organic com-
pounds (Fig. 4). Specifically, nitroaromatics were more abun-
dant in the peat samples, which is relevant, as nitroaromat-
ics are known to be prominent BrC chromophores absorbing
light in the wavelength range of 360—-600 nm (Fleming et al.,
2020).

Due to their different chemical compositions, OC from
various fresh BB emissions exhibited variable solubility in
water and MeOH (Figs. 2, S11). While MeOH extracted al-
most all the OC (~ 95 %) from the filter irrespective of fuel or
combustion type, the water-soluble fraction of OC (WSOC)
exhibited fuel dependent behaviour. For example, both FIA
and FIB emissions exhibited higher WSOC fractions (76 %—
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Figure 2. Emission factors of water-soluble (WSOC), MeOH soluble (MSOC), water-insoluble (WIOC), MeOH insoluble organic carbon
(MIOC) and elemental carbon (EC) in absolute scale (a, ¢) and relative to total EF (b, d).
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83 %) in the total organic carbon (TOC) compared to arctic
permafrost peat samples NOR (~59 % of TOC) and RUS
(~55% of TOC). This has been previously elaborated by
Schneider et al. (2024a), who found that in comparison to
FIA and FIB samples, NOR and RUS peat combustion emis-
sions were constituted by less oxidized primary organic car-
bon (POC), which explains the diminished solubility in a po-
lar solvent like water (Budisulistiorini et al., 2017). Among
the biomass samples used in this study, SG showed the high-
est WSOC fractions for both flaming (~ 92 % of TOC) and
smouldering (~ 91 % of TOC) combustion (Fig. 2c—d), sug-
gesting abundance of more oxidized POC in these emissions,
while smouldering burning of CP consisted of the smallest
WSOC fraction (~ 46 %). These observations point towards
the presence of non-polar organic moieties, which are solu-
ble in MeOH but not in water, as previously reported in the
literature (Lin et al., 2017).

3.3 Optical properties of Fresh organic aerosol

Due to the variation in chemical composition and solubility
of the fresh BB emissions, we observed substantial diversity
in the optical properties of the freshly emitted organic parti-
cles. Since MSOC corresponded to > 92 % of the total OC
in our fresh BB emissions, our estimated MSOC concentra-
tions can be used as a proxy for bulk OC. The absorption
angstrom exponent (AAE3p9—s50, measured in the range of
300-550nm) of the particles sampled from the fresh emis-
sion for different fuels ranged between 4.4-5.3 and 4.7-6.2
for WSOC and MSOC, respectively (Fig. S7). In general, for
all samples, AAEpsoc was found to be marginally higher
than the respective AAEwsoc. These values fall in the ranges
of previously reported AAE for BB emitted as well as ur-
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ban MSOC and WSOC (Cao et al., 2021; Fan et al., 2018;
Yan et al., 2015; Mukherjee et al., 2020). However, our es-
timated AAE300-550 values were higher than reported val-
ues from western-US wildfires for similar wavelength range
(1.6-1.8, Chakrabarty et al., 2023) and AAE401-870 re-
ported from laboratory burns of canopy (2.69 £0.36), litter
(1.86 £ 0.20) and mixed (2.26 £ 0.36) coniferous ecosystem
from western USA (Selimovic et al., 2018). Interestingly, our
reported AAE300-550 values matched well with lab burning
of rotten logs (4.60 = 3.73) of Douglas fir (Pseudotsuga men-
ziesii) and ponderosa pine (Pinus ponderosa) from Western
USA and generally fell in the range of previously reported
AAE values from FIREX campaigns (FIREX 2016: Mc-
Clure et al., 2020; FIREX 2019: Zeng et al., 2022) for emis-
sions with OA/BC ratios ranging from 6.6—143 (McClure et
al., 2020) or EC/OC ratios of 0.01-0.3, assuming an aver-
age OA/OC ratio of 2. All the flaming dominated and full
combustion emissions, as well as some smouldering dom-
inated emissions reported in our work, had EC/OC ratios
that fell in this range. The largest variability in AAEmsoc
in our study was observed among BFS smouldering (5.5-
6.2) and flaming (5.3-6.0) samples, which was likely a result
of the difference in combustion and heterogeneous vegeta-
tion distribution in the burnt BFS samples. The Svalbard peat
(NOR) emission displayed AAEwsoc in the range of 4.6—
5.2, while its AAEMsoc was constrained in the range of 4.9—
5.2. In comparison to open BB, fresh RWC emissions hav-
ing high soot contents (Mukherjee et al., 2024; wood stove
1 in Fig. S7) exhibited much lower AAE for both WSOC
and MSOC (2.2-2.4), while the wood combustions from the
previous campaign (Thalainen et al., 2019a; wood stove 2 in
Fig. S7) displayed larger AAEwsoc (5.8-6.8) and AAEmsoc
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(5-5.6). The lower AAE values of RWC emissions indicates
that BrC from high EC/OC emissions absorb light through-
out the measured spectral range, as shown earlier by Saleh et
al. (2018).

The MAE values obtained from UV-vis spectroscopy
at 365nm for fresh BB emitted MSOC (MAEwmsoc_365)
were constrained between 0.46-1.48 m? g~! for the exper-
iments. In comparison, MAEwsoc 365 was found to be in
the range of 0.51-1.78 m?> g~!. These MAE3¢s values fall
within the same range as observed for BBOA in previous
literature (Park and Yu, 2016; Huo et al., 2018; Moschos
et al., 2018; Cao et al., 2021). In general, flaming domi-
nated BB emissions had higher MAEwmsoc 365 values com-
pared to smouldering emissions (Fig. 5a). Among open BB
experiments, the lowest MAEysoc 365 were generally ob-
served for fresh emissions from BFS smouldering com-
bustions (0.56 &0.10m? g~ "), while flaming combustion of
CP (1.314+0.13m? g™ ") and SW (1.06-1.38m? g~ ') were
estimated to have the highest MAEwmsoc 365 (Table S4).
The MAEysoc 365 for smouldering SG (0.68-0.94m? g~ 1)
and SW (1.05-1.11 m? g~ ') emissions were in a similar
range to the MACopa_370 estimated by Vakkari et al. (2025)
and agreed well with of MAC37¢ from African residential
biomass burning emissions (0.24-2.2m?g~!) as reported
by Moschos et al. (2024). Previously estimated MACgc
(at 405nm) from In-Situ observations made during WE-
CAN campaign (2018) in the US and ORACLES-2016 and
CLARIFY (2017) campaigns over Southern Africa ranged
from 0.9 to 1.6m?g~! (Carter et al., 2021). However, it
should be noted that our estimated MAE values need to
be divided by a suitable OA/OC ratio before compar-
ing with MACpa. In addition, MAE values for high tem-
perature wood log combustion in the modern European
stove were significantly higher than for open BB. Fresh
RWC emissions had MAEpMsoc 365 values in the range of
3.33-16.4m? g_l, while the MAEwsoc 365 values ranged
from 0.32-4.96m? g~!. The trend between the EC/OC ra-
tios obtained for different experiments to the corresponding
MAEwumsoc also suggests that EC rich emissions contribute
to stronger BrC light absorption (Fig. 5a). Formation of BrC
internally mixed with soot particles in high temperature BB
emissions has been shown to contribute to enhanced light
absorption in past studies, due to lensing effect (Jacobson,
2001; Liu et al., 2015; Liu et al., 2017; Zhang et al., 2025),
which supports our observation.

The imaginary refractive index measured at the middle
of the visible light spectrum at 550 nm (ks5s0) for the BB
MSOC varied across orders of magnitude and ranged be-
tween 0.002-0.011 (Fig. 5b, Table S4) in our experiment.
Similar to MAE, the smouldering emissions exhibited lower
kmsoc 550 than the flaming dominated burns. As shown in
previous studies (Saleh et al., 2018; Saleh, 2020) there seem
to exist a continuum between the ratio of EC/OC in the fresh
BB emission to the BrC light absorption, as we again ob-
served enhanced kysoc 550 for EC rich wood stove emis-
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sions (Fig. 5b). Most of the fresh BB MSOC fell in the weak
BrC regime in the “k —w” space (Fig. 6a), proposed by Saleh
et al. (2018), while some of the wood stove combustion gen-
erated particles, in contrast, were in the strong BrC domain.
These results fall in line with previous observations of high
temperature (and high MCE) biomass combustions gener-
ating “darker BrC”, which exhibit much stronger light ab-
sorption compared to lower temperature open BB emissions
(Saleh et al., 2018). The data points in k-w space obtained in
this study matches reasonably well with previous literature,
as shown in Fig. 6a.

3.4 Particle size distributions and morphologies of
chamber diluted primary emissions

Particle size distribution, morphology and effective den-
sity were measured for chamber diluted primary emissions.
Smouldering combustion of BB generally emitted more par-
ticles on average when compared to flaming combustion
(Fig. S8). Overall, there was little variability in the parti-
cle size distributions for flaming combustion experiments,
irrespective of the biomass type. The average particle ge-
ometric mean diameters (GMD) ranged between 48 and
85 nm (Table 1). However, we observed clear variation in
the emitted particle size distribution among the smoulder-
ing combustions, likely due to the unique combustion be-
haviour of individual samples with varying distributions of
different types of biomasses, such as surface vegetation, lit-
ter and woody branches. Smouldering combustion of BFS
gave rise to distinct bimodal size distributions with the lower
mode having a GMD of 30—40nm, and the larger mode
peaking around 100-175 nm. Some replicates of smoulder-
ing emissions from CP and SW burning also exhibited bi-
modal size distribution. The effective densities of primary
particles inside the chamber varied between experimental
replicates (Fig. S9), which can again be explained by the
variability in the combustion and emissions between exper-
iments. The effective densities were largely independent of
the particle diameter for all fuel type and combustion con-
ditions (Fig. S9), unlike soot-rich RWC emissions that ex-
hibited size-dependent behaviour in our previous work (Le-
skinen et al., 2014; Mukherjee et al., 2024). Due to the
size-independent behaviour, we averaged over all experimen-
tally obtained density values and estimated average parti-
cle densities for each BB emissions (Table S4). While CP
and BFS combustion emitted particles had average densities
of 1.1 gem™2 and 1.20(% 0.05) g cm™3 for both smouldering
and flaming dominated combustions, SW and SG emitted
particles were denser with average densities of 1.4 gcm™3
and 1.65(x 0.05)gcm’3 for smouldering combustion re-
spectively. For flaming combustions, SW emitted primary
particles had an average density of 1.45(0.05) gcm™ and
SG particle density was 1.75(%0.05)gcm ™. Little to no
size-dependency for particle density was observed in our
experiments suggesting near-spherical particle morphology
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with mobility exponents close to 3 (Leskinen et al., 2023;
Corbin et al., 2023). SEM images of chamber diluted pri-
mary emissions (Fig. S10) support these results, since mostly
round organic particles were observed from the collected
grids. These findings agree with the measured chemical com-
positions that indicated that freshly emitted particles con-
sisted mostly of POC and very little EC, leading to formation
of particles with a spherical morphology, so-called tarballs.
Tarballs have been previously observed in BB emissions
(Chakrabarty et al., 2010; China et al., 2013; Hoffer et al.,
2016; Adachi et al., 2019) and atmospheric dilution and ag-
ing have been shown to aid the formation of spherical viscous
tarball BrC (Hennigan et al., 2011; Sedlacek et al., 2018). In
chamber diluted CP and BFS emissions, we observed mostly
tarballs (Fig. S10a—d) but SG and SW emissions (Fig. S10e—
h) also had soot agglomerates that were partially coated or
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embedded with organics, as previously reported in China et
al. (2013). Notably, the morphology of fresh particles emit-
ted from open BB was very different to those emitted from a
wood stove (Mukherjee et al., 2024), where the high temper-
ature combustion formed mostly chain-like fractal soot ag-
glomerate structures which were mostly bare or with some
organic inclusions (Fig. S10i; China et al., 2013).

3.5 Effect of chamber dilution on the properties of fresh
emission aerosols

The relative fractions of OC1, OC2, OC3, OC4, PC and EC
in fresh emissions differed before and after dilution in the
chamber (Fig. 7; Table S3), highlighting the effect of dilu-
tion on the overall chemical composition of BB emissions.
The relative fraction of the intermediate volatility (IVOC)

Atmos. Chem. Phys., 25, 16747-16774, 2025
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and semi-volatile organics (SVOC), namely OC1 and OC2
obtained from IMPROVE-A protocol (Ma et al., 2016) were
lower in the diluted chamber samples than in the fresh emis-
sions, while the low volatile fractions from OC3 to PC in-
creased (Fig. 7, Table S3). We might have over-estimated the
OCl fraction in fresh emission due to gas phase VOC ad-
sorption on the filter surface causing positive artifact (Kirch-
stetter et al., 2001). However, the significant increase in low
volatile OC fractions (OC3, OC4 and PC) in chamber sam-
ples indicate dilution related evaporative loss of the volatile
OC fractions in the chamber due to partitioning between gas
and particle phase (Calderon-Arrieta et al., 2024).

The partitioning of OC1 and OC2 fractions between
gaseous and condensed phases is largely influenced by the
prevailing concentrations in the collected aerosol. Thus, a
clear trend is seen between the share of low volatile OC frac-
tions (OC3 4+ OC4 + PC) to the total OC and the collected
aerosol OC concentration (Fig. 8). The dilution and conse-
quent evaporation of the most volatile OC also influence the
solubility of the POC of the fresh emission. MeOH extraction
efficiency significantly decreased for the more diluted POC
in the chamber (Fig. S11b). This is in line with the change
in volatility as the low volatile OC fraction, including tarball
BrC, is generally less soluble in solvents (Chakrabarty et al.,
2023; Saleh, 2020).

The increment in the low volatile OC fractions in chamber
diluted primary emissions could also be seen from the abun-
dance of spherical tarballs in the SEM images (Fig. S15). We
postulate, based on indirect evidence and previous knowl-
edge, that the fresh BB emission collected on the filters prob-
ably had poorly formed tarballs (consisting of higher OC1
and OC?2 fractions) and higher MeOH extractable OC. After
the dilution related change in volatility distribution of the OC
in the chamber (Calderon-Arrieta et al., 2024), MeOH insol-
uble, highly viscous and spherical tarballs were formed in
the chamber (Hennigan et al., 2011; Sedlacek et al., 2018;
Adachi and Buseck, 2011). Interestingly, we observed a
slight increase in the solubility of WSOC for chamber pri-
mary samples (Fig. S11a). This might be the effect of low
OC collected on the chamber diluted filter samples, leading
to higher water to OC ratio during the extraction. Thus, the
volume of water used for extracting chamber primary filter
punches allowed the dissolution of sparingly water-soluble
organics.

The change in particle volatility and solubility due to
dilution in the chamber did not significantly affect the
light absorption wavelength dependency of MSOC and
WSOC. The AAEmsoc and AAEwsoc of chamber di-
luted samples ranged from 5.5-6.1 and 5-5.9, respectively.
At the same time, the AAEmsoc and AAEwsoc for the
corresponding freshly emitted particles were 5.3-5.6 and
4.6-5.3, respectively. However, we observed a 17 % de-
crease in MAEmsoc 365 (Fig. S12) and a 25 % decrease
in MAEwsoc 365 (Fig. S13) in the chamber primary sam-
ples compared to fresh emissions for BFS full combustion
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samples. This suggests that the fraction of OC extracted
by water and MeOH in chamber diluted primary samples
had smaller mass absorption efficiency compared to those
extracted from the fresh emissions. This can again be ex-
plained by the formation of non-soluble dark BrC through
the phenomenon termed as “darkening by volatilization” as
the low volatile fraction consists of stronger chromophores
(Calderon-Arrieta et al., 2024).

3.6 Effects of simulated atmospheric aging on
properties of particulate organic matter

3.6.1 Effects of aging on volatility and solubility of OC

The relative OC fractions of chamber diluted primary parti-
cles and aged particles seemed to be similar (Fig. 7), sug-
gesting that when it comes to the relative distribution of the
OC volatility in BB emissions, the effect of dilution in the
environmental chamber outweighed the impact of photo and
dark oxidative aging we achieved in our experiments. After
oxidative aging there were, however, further increments of
the PC, which refers to the increase of the lowest volatil-
ity organic fraction. Oxidative aging is known to increase
the oxidation state and decrease the volatility of aged parti-
cles, making them more insoluble in organic solvents (Saleh,
2020). Expectedly, we observed that both photochemical and
dark oxidative aging decreased the fraction of MSOC signif-
icantly (Fig. S11b). On the other hand, the more oxygenated
aged OC exhibited slightly higher WSOC compared to POC
in fresh emissions, and we observed a medium correlation
(R = 0.5) between water solubility and the atomic O : C ratio
obtained from SP-AMS (Fig. S14b). The only exception to
this were the smouldering emissions of CP and BFS, which
did not exhibit any significant change in water solubility after
dark or photochemical aging. This suggests that the cham-
ber diluted POA emitted from smouldering burns are more
resistant to photochemical or dark oxidation, inadvertently
hinting towards the highly viscous tarball BrC. Tarballs are
known to be resistant to chemical oxidation (Chakrabarty et
al., 2023) and we also observed the formation of more sta-
ble dark tarballs, especially in smouldering emissions, due to
oxidative aging in the chamber (Fig. S15).

3.6.2 Effects of aging on organic matter density

Oxidative aging, both in photochemical and high NO, dark
conditions, led to a marginal increment in particle den-
sities for BFS emissions. For BFS smouldering emission,
the effective density after photochemical aging increased
to 1.3040.05gcm™> while no significant change was ob-
served between primary and dark aged particle densities.
For flaming dominated combustion, the particle densities in-
creased under both photochemical (1.30 4 0.09 gcm™?) and
dark aging conditions (1.3040.07 gcm™3). For CP, the ef-
fective density of high NO, dark aged particulate emis-
sions remained unaltered at 1.1 gcm™3, while photochemi-
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Figure 8. Effect of OC concentration on the partitioning of the OC fractions in BB emissions. Higher dilution in the chamber resulting in
lower OC concentration result into larger fraction of low volatile OC fractions and lower solubility in MeOH.

cally aged emissions exhibited higher density. For SW emis-
sions, both photochemical aging and low NO, dark aging ap-
peared to have a negligible impact on overall particle effec-
tive densities (Table S4). In contrast, particle effective den-
sities for flaming and smouldering combustion of SG emis-
sions seemed to be slightly lower after undergoing photo-
chemical and dark aging (Table S4), although the effects of
statistical errors couldn’t be discarded due to lack of repeti-
tions of the experiments.
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3.6.3 Effects of aging on organic matter chemical
composition

Due to low OC loading on the filters collected from the cham-
ber, we were only able to assign roughly 120-600 unique
elemental formulae of the most abundant chemical com-
pounds from FT-ICR MS analyses of the photo and dark aged
samples of CP and BFS, while signals arising from other
compounds were below the detection threshold (S/N > 6)
(Figs. S16, S17). Therefore, we were unable to perform a
one-to-one comparison of the chemical compositions of the
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fresh emission with the chamber-aged samples. However, we
could conclude that CH and CHO were the most abundant
compound classes in the chamber diluted primary and aged
samples for both CP and BFS. We obtained elemental ratios
(O:C, H:C and N: C) of the chamber diluted primary and
aged samples from the SP-AMS measurement to character-
ize the variability in the bulk composition of the OC. The re-
sulting Van-Krevelen plots (Fig. S18) showed that the cham-
ber diluted primary emission had H: C values close to 2.0,
while the O:C and N: C values ranged between 0.10-0.25
and 0.013-0.027, respectively. We observed an increment in
the O : C ratios in the chamber aged emission while the H:C
ratio decreased, as in some previous studies (Lambe et al.,
2011). On the other hand, after high NO, dark aging, the
overall N : C ratio did not display a similar increase, proba-
bly due to the fast degradation of the nitroaromatics formed
inside the chamber at the time of filter collection at the end
of the experiments.

3.6.4 Effects of aging on optical properties

Depending on the biomass type and the combustion condi-
tions, photochemical aging either increased (Fig. S19b) or
decreased (Fig. S19a, c, d) the light absorption efficiency
(MAE) at wavelengths below 350 nm, while the MAEMmsoc
at wavelength range 350-450nm decreased for all cases.
Overall, MAEMsoc_sso and kmsoc_ss50 also decreased and
in some cases remain unaltered (Fig. 9, Table S4) after pho-
tochemical aging, while wysoc increased. The wwsoc and
wmsoc varied between 3.3-3.7 and 4.3—4.5 respectively for
fresh emission of CP, while it increased to 4.0-5.1 and 4.0—
6.4 after photochemical aging. The largest increase in wysoc
was observed for flaming combustion of SG, where wysoc
increased from 3.9 to 6.3, while kmsoc_sso decreased an or-
der of magnitude. All the photochemically aged WSOC and
MSOC samples in this study lied in the w-BrC to vw-BrC
region of the k — w space. This behaviour is in line with the
effects of photobleaching and photolysis during OH expo-
sure in the presence of UV lights. Increasing photooxida-
tion has been shown to cause fragmentation reactions after
functionalization (Kroll et al., 2015; Saleh, 2020). OH" has
been shown to cleave polyaromatic chains and give rise to
short unsaturated chemical moieties that absorb light at the
UV range of the spectrum. On the other hand, photochem-
ical aging of RWC emissions in oxidation flow reactor ei-
ther decreased (for samples from Thalainen et al., 2019a)
or increased (Mukherjee et al., 2024) the kyvsoc 550, sug-
gesting that chemical composition of the precursor organic
molecules and the reaction pathways are consequential to
secondary BrC optical properties (Lambe et al., 2013; Sum-
lin et al., 2017; Hems et al., 2020).

The effect of dark aging on the optical properties was more
non-trivial in our study. We noted that for flaming dominated
emissions, the NO, dominated dark aging led to higher k559
values and decreasing w values (Fig. 9) in accordance with
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Saleh (2020). This suggests an increase in light absorption
towards the visible wavelength range, which was also seen in
the absorption spectra (Fig. S19b, d). On the other hand, dark
aging seemed to have minor effect on the smouldering emis-
sions of BFS (Figs. 9, S19a). One explanation for this obser-
vation could be the prevalence of tarballs in the smouldering
dominated emissions of both peat and other biomass sam-
ples, which have been shown to be quite resistant to oxidative
aging (Chakrabarty et al., 2023). Additionally, nitroaromat-
ics are reactive, and certain fractions of them may have de-
graded at the end of the chamber experiments or during filter
collection from the chamber, making it difficult to distinguish
the effects on optical properties. Owing to very limited NO,
concentration in the chamber during the “low-NO,” dark ag-
ing, we observed very limited effects of aging on the savanna
biomasses. In general, the MAE and k decreased after aging
(Table S4), most likely aided by the ozonolysis pathways in
the presence of externally injected O3 into the chamber.

WSOC light absorption in “k — w space” (Fig. 9b) sug-
gests that the water soluble BrC in fresh and aged emissions
of RWC had lower k550 values and therefore less strongly ab-
sorbing chromophores than the corresponding MSOC sam-
ples. Certain dark aged samples, especially those for flam-
ing BFS and SG emissions, also seemed to contain stronger
chromophores in MSOC than in WSOC (Fig. 9). These ob-
servations suggest that less polar organics, which are soluble
in MeOH but not in water, contribute to higher light absorp-
tion in these BB emissions. In addition, it should be noted
that MSOC light absorption in the aged emissions might
be underestimated, because fractions of the aged organics
were non-soluble (Fig. S12b) and might have contained even
stronger chromophores. In future, online measurements of
OA absorption at different wavelengths is needed to confirm
the observed effects of photochemical and dark aging.

4 Conclusions

Our estimated OC and EC EFs suggest that OC generally
dominates open BB emissions and specifically smoulder-
ing conditions emit higher OC than flaming combustion,
in agreement with previously existing knowledge. However,
we observed significant variation in EFs among experimen-
tal replicates, especially for smouldering burns of the same
biomasses (Fig. 2a, ¢). This clearly demonstrates how dy-
namic and variable open BB emissions are inherently, with
many factors, including chemical compositions, fuel mois-
ture content and combustion conditions, playing a crucial
role in determining the emissions. Emission inventories for
open BB from field and lab measurements are often pre-
sented as a single value averaged over experimental repli-
cates (Andreae, 2019) for air quality or regional climate mod-
elling purposes, and our findings highlight the importance of
parameterizing EFs as a function of MCE (Fig. S6) or emit-
ted OA/BC (or OC/EC) ratios for accurate modelling. The
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Figure 9. k — w space for all experimental data included in our study. Black, blue and green colours denote fresh emissions from flaming,
smouldering and full combustion respectively. Purple dots denote primary emission in chamber without any aging (chamber primary). Dark
yellow and red points denote photochemical and dark aging of flaming dominated emissions respectively, while light yellow and red dots
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estimated high EFgc for boreal and arctic peatland burns in
our experiments also indicates that these vegetation types can
become a major source for OA emissions in the region in re-
sponse to increased forest fires, which can have drastic ef-
fects on local air quality and climate.

To include the effects of BrC in climate models, an impor-
tant approach is to parameterize BrC k values as a function
of the BC-to-OA (or alternatively EC/OC) ratio of the emis-
sions. The estimated eBC/OA ratios for different fresh BB
emissions in our study varied by orders of magnitude and
ranged from 0.002 to 0.7. For different climate models, dif-
ferent BC/OA ratios such as 0.03-0.06 (Wang et al. 2018)
and 0.08 (Brown et al., 2018) have been used, which don’t ac-
count for the fuel or combustion phase dependent variations
of BC/OA or EC/OC. The kmsoc_ss0 for fresh BB emis-
sions in our study varied between 0.002 and 0.011, and fell
into the category of W-BrC, as classified by Saleh (2020).
The k values of open BB emissions are very similar to those
used in existing models, whereas BrC from high temperature
combustion is currently underestimated. We also observed a
different trend between kysoc sso and EC/OC in this work
(Fig. 5b) compared to previous literature, suggesting the need
for an extensive fuel and combustion dependent emission in-
ventory for better parameterization of BB emitted BrC & val-
ues for global climate models.

We observed a strong abundance of tarball morphologies
of variable sizes for all open BB emissions, especially for
smouldering burns. Characterization of the BB emissions in
the environmental chamber revealed that the most volatile
OC fractions, OC1 and OC2, decreased in the chamber com-
pared to fresh emissions, due to particle-to-gas partitioning.
This dilution-induced change of OC volatility distribution
resulted in higher fractions of OC3, OC4 and PC (overlap-
ping with SVOC, LVOC and ELVOC), potentially leading to
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more absorbing BrC chromophores (Calderon-Arrieta et al.,
2024) as well as more defined tar balls in the chamber pri-
mary samples. We observed a slight decrease in MAEyMsoc
for wavelengths higher than 365 nm. This contrasting find-
ing is likely because our solvent extraction method cannot
resolve the lowest volatility fraction of organics (with tar ball
morphology) in the chamber primary samples.

We determined an increase in O : C ratio of the particles
upon photochemical and dark oxidation, which resulted in
an increase in ELVOC fractions (PC in particular), mak-
ing it more insoluble in solvents. Dark aged CP and BFS
smouldering emissions in particular had the lowest MeOH
solubility, probably due to the observed high abundance of
highly viscous, low volatility tarballs (Chakrabarty et al.,
2023). For the dark-aged samples, MAEpsoc increased for
all wavelengths, suggesting the formation of stronger light-
absorbing oxygenated compounds and/or nitroaromatics. For
photochemically aged samples, kmsoc 550 decreased, prob-
ably due to photobleaching and breaking down of BrC chro-
mophores. After aging kmsoc_ss0 values ranged from 0.0011
to 0.03 across all studied biomass types, which were signif-
icantly lower than the k550 values currently used in climate
models. However, our estimated k55 values don’t include the
non-soluble and highly light absorbing s-BrC fractions. Con-
sequently, in future it would be important to combine online
and offline optical measurements of open BB emitted OA to
characterize also the non-soluble organic fraction.
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Appendix A: List of abbreviations

APM Aerosol Particle Mass Analyzer

BB Biomass Burning

BC Black Carbon

BFS Boreal forest Surface samples (from Kiviniemi, Finland)
BrC Brown Carbon

CP Commercial Peat samples (from Finland)

DMF Dimethylformamide

DR Dilution Ratio

eBC equivalent Black Carbon, approximated black carbon concentration by Aethalometer
EC Elemental Carbon

EF Emission Factor

ELVOC  Extremely Low Volatility Organic Carbon

FIA Finnish boreal peatland (from Lakkasuo)

FIB Finnish boreal peatland (from Siikaneva)

FTIR Fourier-Transform InfraRed Spectrophotometer

k imaginary part of refractive index

MAE Mass Absorption Efficiency

MCE Modified Combustion Efficiency

MeOH Methanol, an organic solvent

MSOC Methanol Soluble Organic Carbon
NMVOC Non-Methane Volatile Organic Carbon

NOR Arctic peatland samples (from Svalbard, Norway)

OA Organic aerosol

oC Organic Carbon, refers to only the carbon mass of OA
PEAR Photochemical Emission Aging flow-tube Reactor

PM1 Particulate matter with aerodynamic diameter of 1 um or less
PMio Particulate matter with aerodynamic diameter of 1 um or less
POA Primary Organic Aerosol

POC Primary Organic Carbon

PRD Porous Tube Dilutor

uv Ultra-violet, spectral region consisting light radiation wavelength of 100-400 nm
OHRext  external reactivity of hydroxyl radicals

RUS peatland samples (from Rogovaya, Russia)

RWC Residential Wood Combustion

SG Savanna Grass (grassy savnna samples from South Africa)
SMPS Scanning Mobility Particle Sizer

SOA Secondary Organic Aerosol

SOC Secondary Organic Carbon

SW Savanna Wood (woody savanna biomass from South Africa)
TOC Total Organic Carbon

CPC Condensation Particle Counter

DMA Differential Mobility Analyzer

SEM Scanning Electron Microscopy

WSOC Water Soluble Organic Carbon
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