Supplement of Atmos. Chem. Phys., 25, 16747–16774, 2025 https://doi.org/10.5194/acp-25-16747-2025-supplement © Author(s) 2025. CC BY 4.0 License.





## Supplement of

# Brown carbon emissions from laboratory combustion of Eurasian arcticboreal and South African savanna biomass

Arya Mukherjee et al.

Correspondence to: Arya Mukherjee (arya.mukherjee@uef.fi) and Olli Sippula (olli.sippula@uef.fi)

The copyright of individual parts of the supplement might differ from the article licence.

### **S1**: Description of Fuels and combustion set up:

Samples of Finnish boreal forest surface (BFS), South African savanna grass and wood (SG and SW), and four different types of peat, including commercially available peat fuel (CP), natural peatlands from Finland (FIA and FIB), subarctic permafrost area of Russia (RUS) and arctic Svalbard peat from Norway (NOR) were used in the experiments (Table S1). Details of the savanna biomasses used in this study can be found in Vakkari et al. (2025), while details regarding the NOR, RUS, FIA and FIB biomasses have been described by Schneider et al., 2024.

Finnish boreal forest biomass and Arctic-boreal peats were selected for this study, specifically due to the lack of knowledge regarding aerosol emission from these biomasses. Furthermore, with ongoing climate warming, unprecedented wildfires have been recorded both in the boreal forest and Arctic and are projected to increase in the future (Jain et al., 2024; Descals et al., 2022). Boreal and particularly Arctic wildfires largely consume soil organic matter, in many cases consisting of peat (Huang and Rein, 2017; Walker et al., 2020). South African savanna biomasses, on the other hand, constitutes a major fraction of wildfire emissions from continental Africa and contributes significantly to global carbon emissions (Vakkari et al., 2018,2025; van Wees et al., 2022). Even though savanna wildfires are open surface fires, yet the emissions contain much more EC (or BC) compared to Eurasian biomasses, therefore allowing us a wider range to study the effects of BB emitted EC/OC on the optical properties of the emission. We also included a few data points in this study from modern European chimney stove emissions, which are classified as residential wood combustion (RWC) emissions. We have previously shown that modern RWC emissions are EC-rich (Mukherjee et al., 2024) due to their high combustion temperatures. Therefore, including these data points in the current study helped us explore the temperature and EC/OC continuum of biomass burning in three regimes such as:

1) the low temperature combustion of Arctic-boreal surface and corresponding OC-rich emissions, 2) the high temperature wood combustion and resulting EC-rich emissions and 3) the woody and grassy savanna fire emissions, which fall in between 1) and 2).

With that background, we then explored how these temperature continuum influence the BC-BrC continuum in the BB emissions along with their corresponding light absorption properties.

Savanna biomass was cultivated in the North-West University's garden in South Africa and delivered to Finland. The savanna biomass used in the study consisted of ten different species representing indigenous savanna biomass from South Africa, including: *Celtis africana*, *Searsia pyroides*, *Vachellia karroo*, *Ziziphus mucronata*, *Asparagus laricinus*, *Gymnosporia buxifolia*, *Euclea undulata*, *Senegalia caffra*, *Pavetta zeyheri*, *Vangueria infausta*, and *Zanthoxylum capense*. The savanna biomass was divided into grass and woody samples. The savanna grasses were burned in an upright position in 50 g batches without shortening or other modification of the samples. The burning samples of savanna trees were prepared as composite batches, including material from all savanna tree species for a total of 60 g. The savanna tree batches included thorns, leaves, and branches from the species. The savanna tree material was cut into smaller pieces to fit into the B and C sample holders marked in Figure S2(i).

Different sample holders were used for different biomasses in our experiments which are illustrated in Supplementary Fig. S2. Boreal forest surface (BFS) samples needed large piece of wire mesh below it on the open biomass burning setup to keep the sample intact so that it doesn't fall between the spaces on grate during long smoldering phase. BFS samples were burnt from top to bottom by placing a heating rod horizontally on top of the sample surface in order to mimick more natural progression of forest floor fires. Extra litters were present in each sample as found in a naural Finnish BFS.

Savanna and peat samples had the heating rod in the middle of the burned sample to provide more surface-area for the sample to heat up for the combustion experiment. Keeping the mass of combusted biomass same between different sample types of peat needed two different sample holder setups. CP, RUS and NOR samples were more dense and solid compared to FIA and FIB, which were more porous and fluffy in texture (Figure S2). Clam shaped (CP, Svalbard, savanna material) sample holder was used to keep the burning material close to the electrical resistor (heating rod), because during the combustion there was a possibility that burned material lost its shape and wasn't close enough to resistor to continue burning. This wasn't necessary for FIA, FIB and Russian sample types because they settled better on the heating rod. Minimal modifications were made to the samples before combustion to keep them as they were provided to us.

### **S2: Description of OC-EC analyses:**

Thermal—optical carbon analysis with the IMPROVE-A protocol was carried out by placing a filter punch in the sample oven of a carbon analyzer. The filter punches were first heated in completely inert (100 % He) condition where various OC subfractions gradually volatilized at temperature ramps of 140 °C (OC1), 280 °C (OC2), 480 °C (OC3), and 580 °C (OC4). The system then switched to an oxidizing atmosphere (He with a fixed amount of O2) where EC subfractions combusted at 580 °C (EC1), 740 °C (EC2), and 840 °C (EC3). The released carbon compounds were converted to either carbon dioxide (CO2) or methane (CH4), followed by infrared absorption (CO2) or flame ionization (CH4) detection. During the thermal analysis, a fraction of OC pyrolyzed or charred (Pyrolyzed Carbon, PC) under the inert He atmosphere into EC-like substances and were accounted for using optical correction by reflectance. Specifically, the instrument monitored the sample filter reflectance throughout the analysis using a laser source. The filter reflectance decreased in response to the formation of PC and then increased as the PC was combusted off the filter. The split between OC and EC is defined as the point at which reflectance returns to its initial reading before the heating started. OC and EC data discussed in this work refer to those after the correction as per the following equations:

Corrected OC = OC1 + OC2 + OC3 + OC4 + PC

Corrected EC = EC1+EC2+EC3-PC

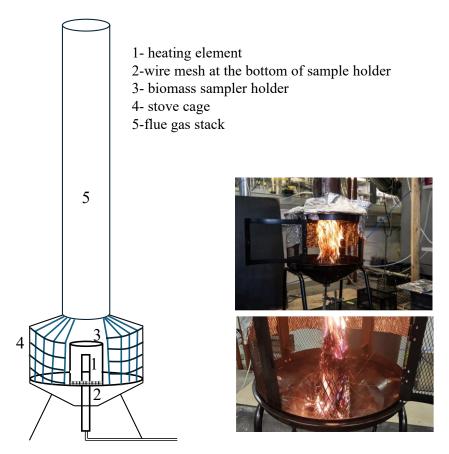



Figure S1: Graphical representation of the combustion set up with its 5 different components along with some pictures taken during the combustion experiments

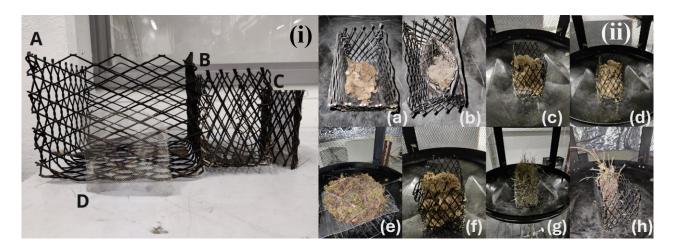



Figure S2: Pictures of different biomass holders used for the experiments. (i) *Left:* biomass holder for BFS samples (A), biomass holders (B and C) for savanna (SG) and peat samples (CP, FIA, FIB, RUS and NOR), and wired mesh used at the bottom of the holders (D); (ii) *Right:* Exemplary images of different biomasses in their respective holders before combustion; (a) Russian Peat, (b) Svalbard Peat (NOR), (c-d) Finnish peatlaland from Lakkasuo (FIA) (e) Boreal forest surface (BFS), (f) Finnish peatland from Siikaneva (FIB), (g) savanna grass (SG) and (h) savanna wood (SW)




Figure S3: Geographic locations of the (a) Northern European Biomass and (b) South African savanna biomass used for this study (© Google maps 2025)

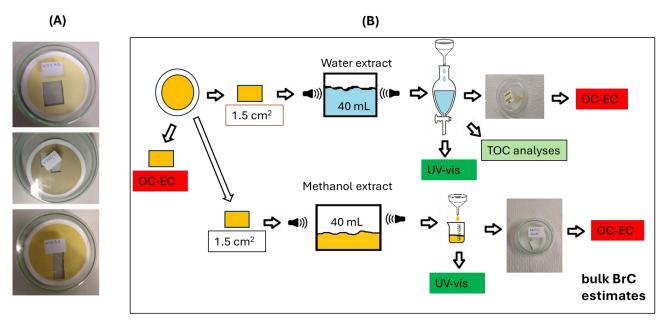



Figure S4: (A) representative images of 90 mm Quartz fiber filters collected for different fresh BB emissions and (B) graphical schematic of the extraction process for filters collecting fresh BB emissions

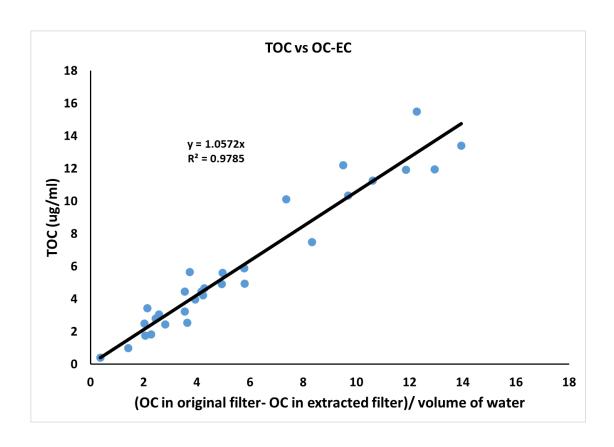



Fig. S5: Comparison between TOC and OC-EC analyzer based estimations of WSOC concentrations for fresh BB emissions

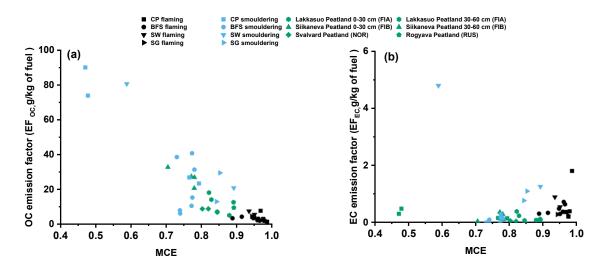



Figure S6: Dependence of  $EF_{EC}$  and  $EF_{OC}$  on MCE of the combustion

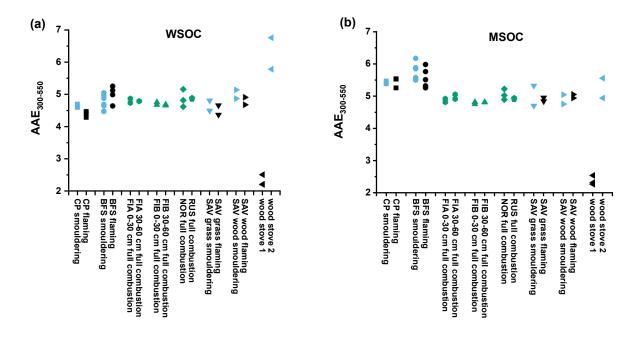



Fig. S7: AAE<sub>300-550</sub> for WSOC (a) and MSOC (b) of fresh BB emissions in this study

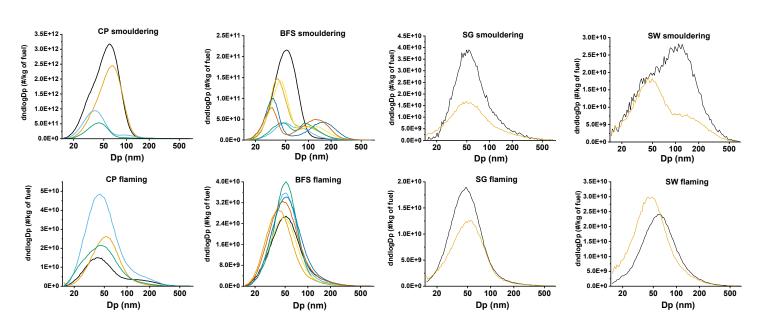



Fig. S8: particle number size distribution of different replicates of the environmental chamber experiments conducted in this study for smouldering and flaming burns of commercial peat (CP), Boreal Forest Surface (BFS), Savanna grass (SG) and savanna wood (SW)

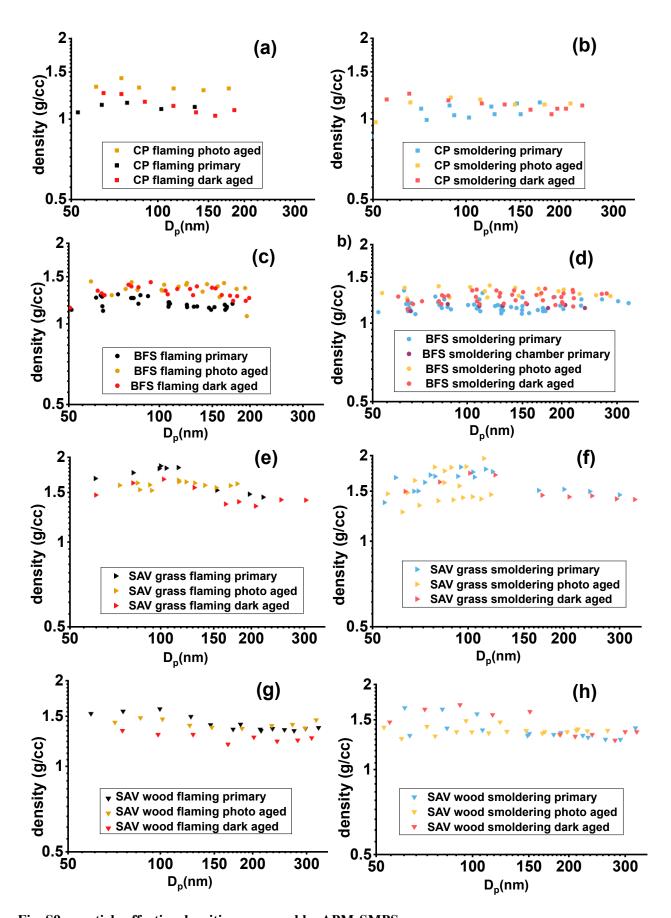



Fig. S9: particle effective densities measured by APM-SMPS

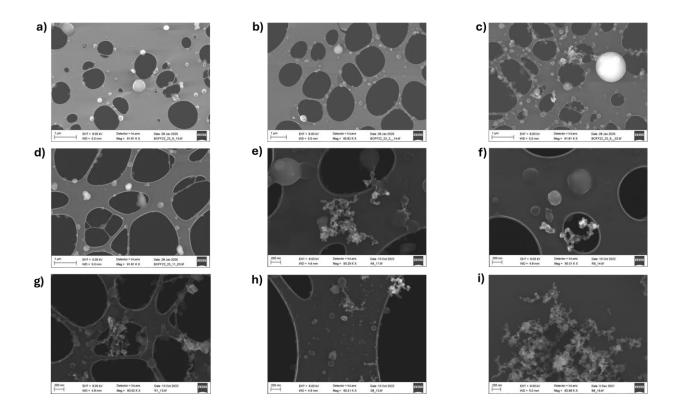



Fig. S10: Electron microscope images of primary particles from a) CP flaming, b) CP smouldering, c) BFS flaming, d) BFS smouldering, e) SG flaming, f) SG smouldering, g) SW flaming, h) SW smouldering and i) wood stove emissions

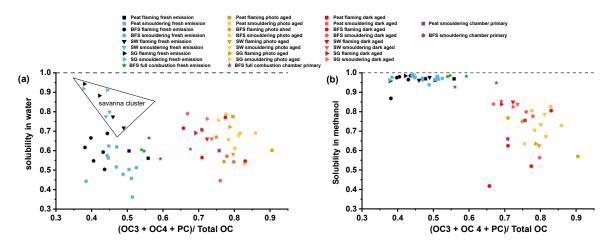



Fig. S11: Solubility of low volatile organics (OC3, OC4 and PC) in water (a) and MeOH (b) for fresh emission, chamber diluted primary emissions and photochemically and dark aged emissions in chamber for smouldering and flaming burns of CP (square) and BFS (circle) biomasses.

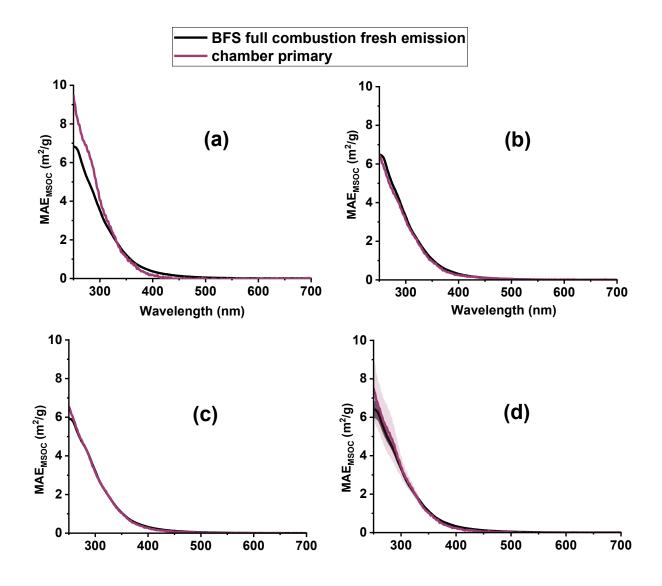



Fig. S12: Wavelength dependence of  $MAE_{MSOC}$  for fresh emission and chamber diluted primary samples from full combustion of BFS samples. (a-c) denote three separate replicates ,while (d) is the mean values (solid lines) of the three replicates and the standard deviation from mean (shaded area)

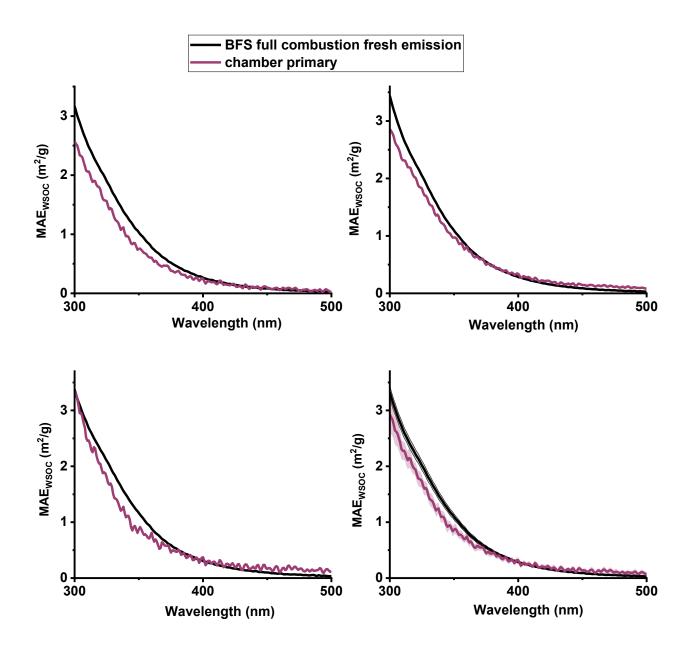



Fig. S13: Wavelength dependence of MAE $_{WSOC}$  for fresh emission and chamber diluted primary samples from full combustion of BFS samples. (a-c) denote three separate replicates, while (d) is the mean values (solid lines) of the three replicates and the standard deviation from mean (shaded area)

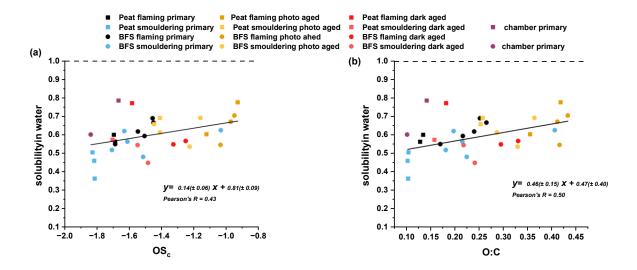



Fig. S14: solubility of OC in water (alternatively WSOC fraction of total OC) vs oxidation state of chamber diluted primary and aged particles (a) and O:C ratio of chamber diluted primary and aged particles (b)

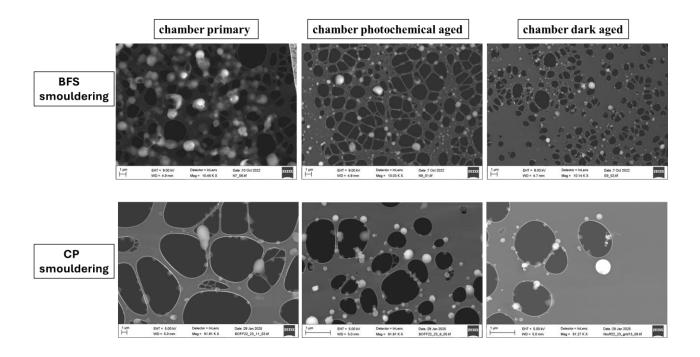



Fig. S15: Representative SEM images of chamber primary and oxidative aged emissions from smouldering combustion of CP and BFS. We observed higher abundance of spherical tarballs in aged samples compared to more amorphous morphology of primary emissions in the chamber.

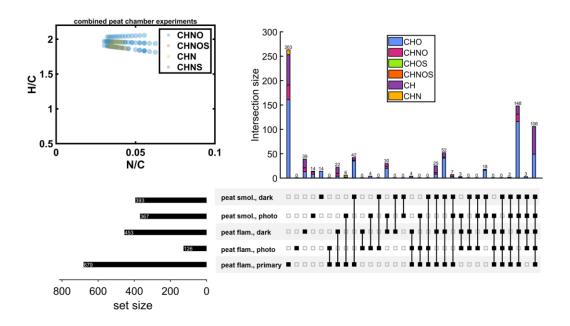



Fig. S16: Upset plot showing the number of unique sum formulae obtained from chamber diluted primary and aged samples from commercial peat (CP) combustions as well as the dominant chemical classes they belong to. Insufficient material on the filters collected from chamber resulted in identification of fewer chemical formulae of only highly abundant chemical groups

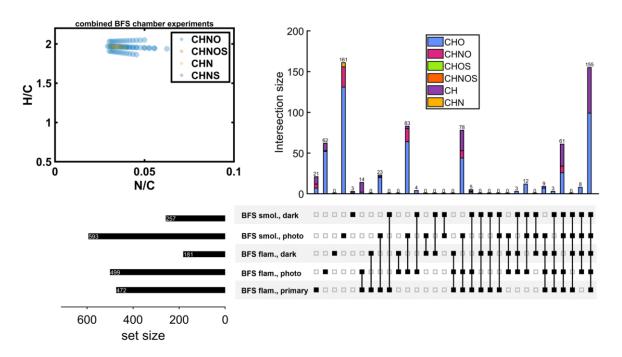



Fig. S17: Upset plot showing the number of unique sum formulae obtained from chamber diluted primary and aged samples from boreal forest surface (BFS) combustions as well as the dominant chemical groups they belong to. Insufficient material on the filters collected from chamber resulted in identification of fewer chemical formulae of only highly abundant chemical groups

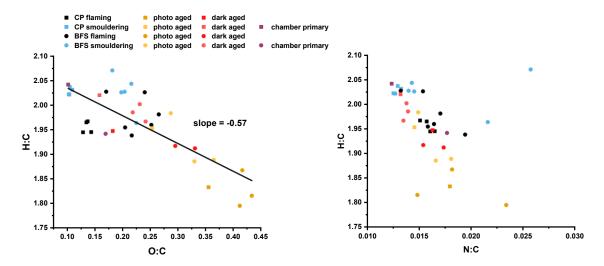



Fig. S18: Van-Krevelen diagrams for H:C vs O:C and H:C vs N:C ratios obtained from HR-AMS from the environmental chamber for CP and BFS combustion experiments. Data obtained for primary emission of flaming (black) and smouldering (grey) burns were compared to the elemental ratios at the end of photochemical (orange for flaming emission, yellow for smoldering emissions) and dark (dark blue for flaming emissions and light blue for smoldering emissions) aging in the chamber.

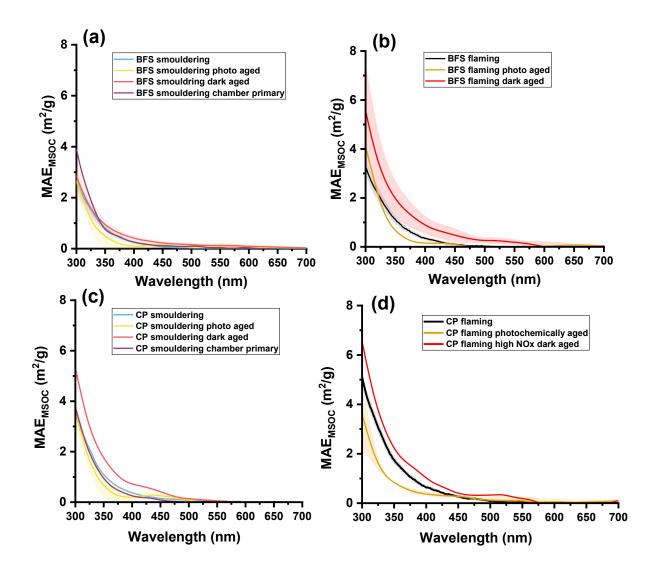



Fig. S19: wavelength dependence of  $MAE_{MSOC}$  for (a-b) BFS and (c-d) CP smouldering and flaming emissions. Here we have compared  $MAE_{MSOC}$  of fresh emission (black) with photochemically (yellow for smouldering, orange for flaming) and dark aged emission (light red for smouldering and dark red for flaming) in the chamber. Straight line denotes the mean of replicates, while the shaded areas highlight the standard deviation of mean.

Table S1: Origins and compositions of the biomasses used in the experiments

| Fuel                           | Origin<br>(longitude/latitude)               | moistur<br>e (%) | composition<br>information<br>(C/N/S/H) % | sampl<br>e mass<br>(g) |                             |
|--------------------------------|----------------------------------------------|------------------|-------------------------------------------|------------------------|-----------------------------|
| Boreal Forest<br>Surface (BFS) | 62.485098"N,<br>27.491264"E<br>(Kiviniemi)   | 8.2-16.1         | 50.5/1.19/0.11/5.4                        | 155-<br>550            | Extra<br>litter 10-<br>24 g |
| Commercial Peat (CP)           | ??                                           | 9.7              | 57/1.92/0.2/5.8                           | 50                     |                             |
| Finnish Peatland (FIA)         | 61°47'21.6"N,<br>24°18'35.9"E<br>(Lakkasuo)  | -                | 46.5/-/-                                  | 50                     |                             |
| Finnish Peatland (FIB)         | 61°49'28.0"N,<br>24°08'25.8"E<br>(Siikaneva) | -                | 47.6/-/-                                  | 50                     |                             |
| Norwegian Peatland (NOR)       | 78°13'00.0"N,<br>13°45'00.0"E<br>(Svalbard)  | -                | 27.9/1.85/-/-                             | 50                     |                             |
| Russian Peatland<br>(RUS)      | 66°33'10.2"N,<br>60°37'57"E<br>(Rogovaya)    | -                | 51.7/2.9/-/-                              | 50                     |                             |
| Savanna Wood<br>(SW)           | 26°34'12"S,<br>26°56'24"E<br>(South Africa)  | 9.4              | 48.8/0.88/0.05/5.6                        | 60                     |                             |
| Savanna Grass (SG)             | 26°34'12"S,<br>26°56'24"E                    | 8.6              | 43/0.94/0.10/5.1                          | 50                     |                             |

Table S2. Components measured by the FTIR and the grouping for the gaseous organic compounds

| Component                      | Formula        | Calibration range | Unit | VOC group               |
|--------------------------------|----------------|-------------------|------|-------------------------|
| Water vapor                    | H2O            | 20                | %    |                         |
| Carbon dioxide                 | CO2            | 25                | %    |                         |
| Carbon monoxide                | CO             | 5000              | ppm  |                         |
|                                | CO             | 10000             | ppm  |                         |
| Nitrous oxide                  | N2O            | 200               | ppm  |                         |
| Nitrogen monoxide              | NO             | 1000              | ppm  |                         |
| Nitrogen dioxide               | NO2            | 200               | ppm  |                         |
| Sulfur dioxide                 | SO2            | 1000              | ppm  |                         |
| Carbonyl sulfide               | COS            | 100               | ppm  |                         |
| Ammonia                        | NH3            | 500               | ppm  |                         |
| Hydrogen chloride              | HC1            | 200               | ppm  |                         |
| Hydrogen cyanide               | HCN            | 100               | ppm  |                         |
| Hydrogen fluoride              | HF             | 100               | ppm  |                         |
| Oxygen                         | O2             | 25                | %    |                         |
| Methane                        | CH4            | 1000              | ppm  | Methane                 |
| Ethane                         | C2H6           | 100               | ppm  | Aliphatic hydrocarbon   |
| Propane                        | C3H8           | 100               | ppm  | Aliphatic hydrocarbon   |
| Butane                         | C4H10          | 100               | ppm  | Aliphatic hydrocarbon   |
| Pentane                        | C5H12          | 100               | ppm  | Aliphatic hydrocarbon   |
| Hexane                         | C6H14          | 100               | ppm  | Aliphatic hydrocarbon   |
| Heptane                        | C7H16          | 100               | ppm  | Aliphatic hydrocarbon   |
| Octane                         | C8H18          | 100               |      | Aliphatic hydrocarbon   |
| Acetylene                      | C2H2           | 500               | ppm  | Aliphatic hydrocarbon   |
| Ethylene                       | C2H2           | 500               | ppm  | Aliphatic hydrocarbon   |
| Propene                        | C2H4<br>C3H6   | 500               | ppm  | Aliphatic hydrocarbon   |
| 1,3-Butadiene                  | C4H6           | 500               | ppm  | Aliphatic hydrocarbon   |
| Benzene                        | C4H6           | 500               | ppm  | Aromatic                |
| Toluene                        | C7H8           | 100               | ppm  | Aromatic                |
|                                | C8H10          | 100               | ppm  |                         |
| m-Xylene                       | C8H10          |                   | ppm  | Aromatic                |
| o-Xylene                       | -              |                   | ppm  | Aromatic                |
| p-Xylene                       | C8H10<br>C9H12 | 100               | ppm  | Aromatic                |
| 1,2,3-Trimethylbenzene         | +              | 100               | ppm  | Aromatic                |
| 1,2,4-Trimethylbenzene         | C9H12          | 100               | ppm  | Aromatic                |
| 1,35-Trimethylbenzene          | C9H12          | 100               | ppm  | Aromatic                |
| Phenol                         | C6H6O          | 200               | ppm  | Aromatic                |
| Furan                          | C4H4O          | 200               | ppm  | Aromatic                |
| Furfural                       | C5H4O2         | 200               | ppm  | Aromatic                |
| Formic acid                    | CH2O           | 100               | ppm  | Non-aromatic oxygenated |
| Acetic acid                    | C2H4O2         | 200               | ppm  | Non-aromatic oxygenated |
| Formaldehyde                   | СНОН           | 500               | ppm  | Non-aromatic oxygenated |
| Acetaldehyde                   | C2H4O          | 100               | ppm  | Non-aromatic oxygenated |
| Methanol                       | CH4O           | 200               | ppm  | Non-aromatic oxygenated |
| Ethanol                        | С2Н6О          | 200               | ppm  | Non-aromatic oxygenated |
| Propanol                       | C3H8O          | 100               | ppm  | Non-aromatic oxygenated |
| Methyl tert-butyl ether (MTBE) | C5H12O         | 100               | ppm  | Non-aromatic oxygenated |

Table S3: Relative abundance of different OC fractions and EC in fresh emission and diluted primary

and aged emissions in teflon chamber

| anu  | ageu       | eiiii | <b>5510</b> | IIS II               | ı tei  | 1011 | CHAI | mber<br>                                |      |      |      |      |      |                                    |      |      |      |      |      | <b>T</b> |                                      |      |      |      |      |  |
|------|------------|-------|-------------|----------------------|--------|------|------|-----------------------------------------|------|------|------|------|------|------------------------------------|------|------|------|------|------|----------|--------------------------------------|------|------|------|------|--|
| Fuel | Experiment |       |             | fresh emission (% of | total) |      |      | chamber diluted<br>primary (% of total) |      |      |      |      |      | photo aged in chamber (% of total) |      |      |      |      |      |          | dark aged in chamber<br>(% of total) |      |      |      |      |  |
|      | I          | OC1   | OC2         | £20                  | OC4    | Эd   | EC   | OC1                                     | OC2  | £20  | OC4  | Эd   | EC   | 120                                | OC2  | £20  | OC4  | PC   | EC   | OC1      | OC2                                  | £20  | OC4  | ЪС   | EC   |  |
|      | 1a         | 19.7  | 24.5        | 30.4                 | 5.95   | 13.9 | 5.54 |                                         |      |      |      |      |      | 5.15                               | 9.40 | 35.5 | 13.0 | 34.8 | 2.15 |          |                                      |      |      |      |      |  |
|      | 116        | 20.8  | 22.2        | 25.7                 | 5.0    | 8.67 | 17.7 |                                         |      |      |      |      |      |                                    |      |      |      |      |      | 7.50     | 12.5                                 | 29.9 | 12.6 | 26.2 | 11.3 |  |
|      | 1c         | 8.73  | 11.0        | 14.1                 | 4.38   | 5.27 | 56.5 | 5.70                                    | 10.6 | 28.1 | 11.6 | 4.70 | 39.3 |                                    |      |      |      |      |      |          |                                      |      |      |      |      |  |
| CP   | 1d         | 22.3  | 26.5        | 29.8                 | 6.54   | 14.3 | 0.47 |                                         |      |      |      |      |      | 6.07                               | 13.9 | 40.1 | 12.1 | 27.8 | 0.03 |          |                                      |      |      |      |      |  |
|      | 1e         | 21.8  | 27.0        | 31.6                 | 6:39   | 12.6 | 0.65 |                                         |      |      |      |      |      |                                    |      |      |      |      |      | 7.46     | 14.6                                 | 35.8 | 12.1 | 30.0 | 0.01 |  |
|      | 1f         | 21.6  | 26.9        | 29.9                 | 6.21   | 14.7 | 99.0 | 8.6                                     | 14.5 | 36.3 | 12.1 | 27.3 | 0.01 |                                    |      |      |      |      |      |          |                                      |      |      |      |      |  |
|      | 2a         | 23.8  | 27.7        | 26.3                 | 4.32   | 4.39 | 13.5 |                                         |      |      |      |      |      | 6.85                               | 14.0 | 34.2 | 12.8 | 13.0 | 19.1 |          |                                      |      |      |      |      |  |
| BFS  | 2b         | 24.6  | 26.2        | 27.7                 | 5.39   | 4.75 | 11.4 |                                         |      |      |      |      |      |                                    |      |      |      |      |      | 7.92     | 13.4                                 | 33.5 | 12.6 | 13.7 | 18.8 |  |
|      | 2c         | 20.3  | 25.7        | 26.7                 | 4.62   | 3.55 | 19.1 | 8.03                                    | 13.4 | 33.4 | 12.3 | 0.42 | 32.4 |                                    |      |      |      |      |      |          |                                      |      |      |      |      |  |

| Fuel | Experiment |      | fresh emission (% of | total) |      |      |      | chamber diluted<br>primary (% of total) |      |      |      |      |      |      |      | photo aged in chamber | (% of total) |      |      | dark aged in chamber<br>(% of total) |      |      |      |      |      |
|------|------------|------|----------------------|--------|------|------|------|-----------------------------------------|------|------|------|------|------|------|------|-----------------------|--------------|------|------|--------------------------------------|------|------|------|------|------|
|      | 1          | OC1  | OC2                  | OC3    | OC4  | PC   | EC   | OC1                                     | OC2  | OC3  | OC4  | PC   | EC   | OC1  | OC2  | OC3                   | OC4          | PC   | EC   | OC1                                  | OC2  | OC3  | OC4  | PC   | EC   |
|      | 2d         | 27.5 | 28.1                 | 28.2   | 5.10 | 10.4 | 0.70 |                                         |      |      |      |      |      | 4.73 | 12.1 | 41.4                  | 14.6         | 27.2 | 0.01 |                                      |      |      |      |      |      |
| BFS  | 2e         | 23.1 | 30.6                 | 31.5   | 5.40 | 9.00 | 0.40 |                                         |      |      |      |      |      |      |      |                       |              |      |      | 8.80                                 | 13.2 | 38.0 | 14.2 | 22.2 | 3.50 |
|      | 2f         | 19.1 | 27.5                 | 29.5   | 6.34 | 15.7 | 1.86 | 12.1                                    | 14.3 | 37.0 | 10.8 | 20.7 | 5.10 |      |      |                       |              |      |      |                                      |      |      |      |      |      |
|      | 3a         | 24.7 | 21.6                 | 24.4   | 7.1  | 11.5 | 10.7 |                                         |      |      |      |      |      | 13.0 | 20.8 | 28.2                  | 9.30         | 16.0 | 12.7 |                                      |      |      |      |      |      |
| Λ    | 3b         | 26.8 | 23.0                 | 27.3   | 6.80 | 7.00 | 9.10 |                                         |      |      |      |      |      |      |      |                       |              |      |      | 8.90                                 | 16.5 | 36.4 | 9.50 | 25.1 | 3.60 |
| SW   | 3c         | 27.0 | 26.1                 | 26.3   | 6.70 | 8.40 | 5.60 |                                         |      |      |      |      |      | 5.20 | 13.6 | 37.0                  | 14.0         | 30.2 | 0.01 |                                      |      |      |      |      |      |
|      | 3d         | 29.2 | 24.6                 | 22.9   | 6.20 | 11.4 | 5.65 |                                         |      |      |      |      |      |      |      |                       |              |      |      | 9.2                                  | 16.1 | 34.5 | 9.1  | 14.0 | 17.1 |
| 7.5  | 4a         | 35.0 | 24.7                 | 20.6   | 5.30 | 8.40 | 6.0  |                                         |      |      |      |      |      | 6.90 | 14.4 | 34.0                  | 13.1         | 31.6 | 0.01 |                                      |      |      |      |      |      |
| 98   | 4b         | 27.7 | 26.1                 | 24.1   | 5.00 | 8.20 | 8.90 |                                         |      |      |      |      |      |      |      |                       |              |      |      | 9.21                                 | 16.7 | 29.8 | 10.7 | 12.6 | 20.9 |

| Fuel | Experiment |      | fresh emission ( % of total) |      |      |      |      |     | chamber diluted | primary (% of total) |     |    |    |      | photo aged in chamber | (% of total) |      |      |      | dark aged in chamber<br>(% of total) |      |      |      |      |      |
|------|------------|------|------------------------------|------|------|------|------|-----|-----------------|----------------------|-----|----|----|------|-----------------------|--------------|------|------|------|--------------------------------------|------|------|------|------|------|
|      | ı          | OC1  | OC2                          | OC3  | OC4  | PC   | EC   | OC1 | OC2             | 620                  | OC4 | ЪС | EC | 120  | OC2                   | OC3          | OC4  | PC   | EC   | 120                                  | OC2  | OC3  | OC4  | Эd   | EC   |
| 75   | 4c         | 31.6 | 27.1                         | 25.0 | 4.20 | 8.50 | 3.60 |     |                 |                      |     |    |    | 5.42 | 8.97                  | 18.7         | 8.22 | 17.5 | 41.2 |                                      |      |      |      |      |      |
| SS   | 4d         | 27.3 | 26.2                         | 26.5 | 4.80 | 09.6 | 5.60 |     |                 |                      |     |    |    |      |                       |              |      |      |      | 10.9                                 | 15.8 | 30.4 | 10.3 | 27.2 | 5.40 |

Table S4: MAE,k in fresh and chamber aged BB emissions along with effective density of bulk BB aerosol (mean  $\pm$  standard deviation)

| Experiment No. | Fuel                        | Combustion Condition<br>(no. of replicates) | MAE <sub>MISOC_368</sub> (m² g <sup>-1</sup> )<br>(fresh emission) | k <sub>MSOC_550</sub> (fresh emission) | $\mathrm{MAE_{WSOC\_365}}$ (m <sup>2</sup> g <sup>-1</sup> ) (fresh emission) | kwsoc_sso (fresh emission) | density (g cm³) (chamber primary) | Aging condition (in chamber) | MAE <sub>MSOC_365</sub> (m <sup>2</sup> g <sup>-1</sup> )<br>(chamber aged) | k <sub>MSOC_550</sub> (chamber aged) | MAEwsoc_365 (m² g¹)<br>(chamber aged) | kwsoc_sso (chamber aged) | density (g/cm³) (chamber aged) |
|----------------|-----------------------------|---------------------------------------------|--------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-----------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------|--------------------------------|
| la             |                             | flaming $(n=2)$                             | 1.32 ± 0.16                                                        | 0.007±0.001                            | $1.59 \pm 0.14$                                                               | $0.012 \pm 0.001$          | NA                                | photo aged                   | $0.65 \pm 0.07$                                                             | 0.003±0.002                          | 1.49 ± 0.27                           | 0.0078± 0.001            | $1.30 \pm 0.05$                |
| 116            |                             | Flaming $(n = 1)$                           | 1.31                                                               | 0.007                                  | 0.78                                                                          | 0.007                      | 1.10                              | high NOx                     | 1.75                                                                        | 0.01                                 | 0.62                                  | 0.003                    | 1.10                           |
| 1c             | Commercial Peat (CP)        | flaming $(n = 1)$                           | NaN                                                                | NaN                                    | NaN                                                                           | NaN                        | NA                                | no aging                     | NaN                                                                         | sNaN                                 | NaN                                   | NaN                      | NaN                            |
| 14             | Commerci                    | smouldering $(n = 2)$                       | 0.76 ± 0.02                                                        | $0.004 \pm 0.00$                       | 1.45 ± 0.32                                                                   | $0.010 \pm 0.002$          | 1.00 ± 0.02                       | photo aged                   | 1.56 ± 0.69                                                                 | $0.009 \pm 0.005$                    | 0.48 ± 0.011                          | $0.002 \pm 0.000$        | 1.20 ± 0.03                    |
| 1e             |                             | smouldering $(n = 1)$                       | NaN                                                                | NaN                                    | NaN                                                                           | NaN                        | 1.10                              | high NOx                     | 1.29                                                                        | 0.007                                | 0.77                                  | 0.005                    | 1.10                           |
| 1f             |                             | smouldering $(n = 1)$                       | 0.78                                                               | 0.004                                  | 1.43                                                                          | 0.011                      | NaN                               | no aging                     | 0.61                                                                        | 0.003                                | 0.34                                  | 0.002                    | NA                             |
| 2a             | face (BFS)                  | flaming (n = 3)                             | 0.71 ± 0.15                                                        | $0.004 \pm 0.001$                      | 0.69 ± 0.13                                                                   | $0.004 \pm 0.001$          | 1.20 ± 0.05                       | photo aged                   | 0.71 ± 0.22                                                                 | $0.003 \pm 0.001$                    | 0.75 ± 0.12                           | 0.002± 0.001             | 1.30 ± 0.09                    |
| 2b             | Boreal forest surface (BFS) | flaming $(n = 3)$                           | 0.75 ± 0.04                                                        | $0.004 \pm 0.000$                      | $0.88 \pm 0.36$                                                               | $0.006 \pm 0.003$          | $1.20 \pm 0.05$                   | high NOx dark                | 2.21 ± 1.23                                                                 | $0.014 \pm 0.009$                    | $0.82 \pm 0.08$                       | $0.004 \pm 0.003$        | 1.30 ± 0.07                    |

| 2c |                             | flaming $(n=1)$       | 0.95        | 0.005             | 9.65        | 0.004             | NaN         | no aging   | NaN             | NaN               | NaN             | NaN           | NaN         |
|----|-----------------------------|-----------------------|-------------|-------------------|-------------|-------------------|-------------|------------|-----------------|-------------------|-----------------|---------------|-------------|
| 2d | urface (BFS)                | smouldering $(n = 3)$ | 0.62 ± 0.11 | $0.003 \pm 0.001$ | 1.17 ± 0.26 | $0.006 \pm 0.002$ | 1.20 ± 0.1  | photo aged | $0.50 \pm 0.06$ | $0.002 \pm 0.000$ | $0.26 \pm 0.04$ | 0.001 ± 0.000 | 1.30 ± 0.05 |
| 2e | Boreal forest surface (BFS) | smouldering $(n = 3)$ | 0.48 ± 0.05 | $0.002 \pm 0.005$ | 0.78 ± 0.11 | $0.005 \pm 0.001$ | 1.10 ± 0.03 | high NOx   | $0.65\pm0.11$   | $0.003 \pm 0.001$ | $0.60 \pm 0.04$ | 0.002 ± 0.001 | 1.10 ± 0.03 |
| 2f |                             | smouldering $(n = 1)$ | 0.58        | 0.003             | 0.92        | 900.0             | 1.20        | no aging   | 0.64            | 0.022             | 0.31            | 0.002         | 1.20        |
| 3a |                             | $flaming \\ (n = 1)$  | 1.38        | 0.011             | 1.28        | 600.0             | 1.40        | photo aged | 1.06            | 0.007             | 1.03            | 0.003         | 1.40        |
| 36 | Savanna wood (SW)           | flaming $(n=1)$       | 1.06        | 0.009             | 1.08        | 0.008             | 1.50        | low NOx    | NaN             | NaN               | 1.22            | 0.007         | 1.30        |
| 3с | Savanna v                   | smouldering $(n = 1)$ | 1.11        | 600.0             | 1.03        | 0.007             | NA          | photo aged | 89:0            | 0.004             | 0.40            | 0.001         | 1.40        |
| 3d |                             | smouldering $(n = 1)$ | 1.05        | 0.008             | 0.85        | 0.007             | 1.40        | low NOx    | 0.73            | 0.006             | 98.0            | 0.005         | 1.40        |
| 4a |                             | flaming $(n = 1)$     | 0.89        | 600.0             | 1.22        | 0.01              | 1.80        | photo aged | 1.35            | 0.005             | 3.43            | 0.012         | 1.60        |
| 4b | Savanna grass (SG)          | flaming $(n=1)$       | 0.93        | 600.0             | 0.94        | 0.008             | 1.70        | low NOx    | 1.21            | 0.01              | 1.56            | 0.008         | 1.50        |
| 4c | Savanna g                   | smouldering $(n = 1)$ | 0.94        | 0.012             | 0.84        | 900.0             | 1.70        | photo aged | NaN             | NaN               | 2.10            | 0.010         | 1.40        |
| 4d |                             | smouldering $(n = 1)$ | 89.0        | 0.005             | 1.18        | 0.011             | 1.60        | low NOx    | 1.32            | 0.01              | 0.83            | 0.005         | 1.50        |

#### **References:**

- Descals, A., Gaveau, D. L. A., Verger, A., Sheil, D., Naito, D., & Peñuelas, J. (2022). Unprecedented fire activity above the Arctic Circle linked to rising temperatures. *Science*, *378*(6619), 532–537. https://doi.org/10.1126/science.abn9768
- Huang, X., & Rein, G. (2017). Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. *International Journal of Wildland Fire*, 26(11), 907. https://doi.org/10.1071/WF16198
- Jain, P., Barber, Q. E., Taylor, S. W., Whitman, E., Castellanos Acuna, D., Boulanger, Y., Chavardès, R. D., Chen, J., Englefield, P., Flannigan, M., Girardin, M. P., Hanes, C. C., Little, J., Morrison, K., Skakun, R. S., Thompson, D. K., Wang, X., & Parisien, M.-A. (2024). Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada. *Nature Communications*, 15(1), 6764. https://doi.org/10.1038/s41467-024-51154-7
- Mukherjee, A., Hartikainen, A., Joutsensaari, J., Basnet, S., Mesceriakovas, A., Ihalainen, M., Yli-Pirilä, P., Leskinen, J., Somero, M., Louhisalmi, J., Fang, Z., Kalberer, M., Rudich, Y., Tissari, J., Czech, H., Zimmermann, R., & Sippula, O. (2024). Black carbon and particle lung-deposited surface area in residential wood combustion emissions: Effects of an electrostatic precipitator and photochemical aging. Science of The Total Environment, 952, 175840. https://doi.org/10.1016/j.scitotenv.2024.175840
- Schneider, E., Rüger, C. P., Chacón-Patiño, M. L., Somero, M., Ruppel, M. M., Ihalainen, M., Köster, K., Sippula, O., Czech, H., & Zimmermann, R. (2024). The complex composition of organic aerosols emitted during burning varies between Arctic and boreal peat. *Communications Earth and Environment*, 5(1). https://doi.org/10.1038/s43247-024-01304-y
- Vakkari, V., Beukes, J. P., Dal Maso, M., Aurela, M., Josipovic, M., & van Zyl, P. G. (2018). Major secondary aerosol formation in southern African open biomass burning plumes. *Nature Geoscience*, 11(8), 580–583. https://doi.org/10.1038/s41561-018-0170-0
- Vakkari, V., Vettikkat, L., Kommula, S., Mukherjee, A., Hao, L., Backman, J., Buchholz, A., Gawlitta, N., Ihalainen, M., Jaars, K., Köster, K., Le, V., Miettinen, P., Nissinen, A., Czech, H., Alton, M., Passig, J., Peltokorpi, S., Piedehierro, A. A., Pullinen, I., Rosewig, E. I., Schobesberger, S., Shukla, D., Siebert, S. J., Somero, M., Virkkula, A., Welti, A., Yli-Pirilä, P., Ylisirniö, A., Zimmermann, R., van Zyl, P. G., Virtanen, A., & Sippula, O. (2025). Laboratory experiments on savannah and European boreal forest fire emissions. *Journal of Geophysical Research: Atmospheres, under revision*
- van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., & Morton, D. C. (2022). Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). *Geoscientific Model Development*, 15(22), 8411–8437. https://doi.org/10.5194/gmd-15-8411-2022
- Walker, X. J., Rogers, B. M., Veraverbeke, S., Johnstone, J. F., Baltzer, J. L., Barrett, K., Bourgeau-Chavez, L., Day, N. J., de Groot, W. J., Dieleman, C. M., Goetz, S., Hoy, E., Jenkins, L. K., Kane, E. S., Parisien, M.-A., Potter, S., Schuur, E. A. G., Turetsky, M., Whitman, E., & Mack, M. C. (2020). Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. *Nature Climate Change*, 10(12), 1130–1136. https://doi.org/10.1038/s41558-020-00920-8