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Text S1 NO2 correction

As the most important precursor of HONO, accurate measurement of NO, was crucial for analyzing
HONO formation. A commercial Thermo Scientific analyzer (42i) used in this study could specifically
detect NO. The measurement of NO, was achieved by converting NO, to NO through a molybdenum
converter. However, the chemiluminescence (CL) technique could overestimate NO; concentrations
because of the interference of NOy. These interferences included HONO, HNO3, HNO4, N2Os, NOs,
peroxyacetyl nitrate (PANs, RC(O)OONOQO3), organic nitrates (RONO>), and peroxynitrates (ROONO2)
(Villenaetal., 2012; Wu et al., 2022). Therefore, the NO, measured by the CL-NOXx analyzer represented
the sum of real NO; and these interfering species. In contrast, the commercial Teledyne API-N500 NOx
analyzer was based on cavity attenuated phase shift (CAPS) technique. It could provide direct absorption
measurement of NO, at 450 nm in the blue region of the electromagnetic spectrum, allowed fast and
accurate detection of NO, without interference from water vapor. The only known potential interferences
in the typical ambient environment were dicarbonyl compounds such as glyoxal and methylglyoxal,
whose concentrations were usually much lower than NO, mixing ratios (Kebabian et al., 2008). Therefore,
NO; measured by the CAPS-NOXx analyzer (CAPS_NO>) could be used to correct the NO, measured by
the CL-NOx analyzer (CL_NOy).

We conducted a NO- field campaign at the ICCAS site from September 19 to October 11, 2023, to
compare the performance of the CL-NOx and CAPS-NOx analyzers. The sampling inlets of both
instruments were placed at the same location, with identical sampling tube lengths, and the analyzers
were housed in the same indoor environment to minimize external interference. The results showed that
CAPS_NO; and CL_NO: exhibited similar temporal variations (Figure S1(a) and S1(b)). Notably,
CL_NO; was consistently higher than CAPS_NO,, with a more pronounced difference during the
daytime. This discrepancy was mainly attributed to elevated NOy concentrations caused by enhanced
photochemical reactions. Consequently, the fraction of CAPS_NO; in CL_NO; displayed a distinct
diurnal pattern, being higher at night and lower during the day (Figure S1(c)), which was consistent with
previous findings (Xue et al., 2022; Zhang et al., 2022¢). Based on this result, we applied separate
calibrations for daytime (07:00-18:00 LT) and nighttime (19:00-next 06:00 LT) data. The results
indicated strong linear correlations between CAPS_NO, and CL_NO; during both periods (R? = 0.96 for

daytime and R? = 0.95 for nighttime). The regression equations were “y = 0.98x — 2.27” for daytime and



“y =0.99x — 2.29” for nighttime, where y represented CAPS_NO; and x represented CL_NO, (Figure
S1(d) and S1(e)). Using these relationships to correct the NO, data obtained in this study provided a more

reasonable estimation of true NO, concentrations and offered a reliable basis for further analysis.

Text S2 Special event on December 12 from 5:00-23:00 LT

During the observation period, a special event was noted from 5:00-23:00 LT on December 12, during
which particulate matter concentrations exhibited abnormally high values, with PM2s and PMio
concentrations reaching 318 pg m™ and 1410 pug m?, respectively. Concurrently, the WS and RH
remained within normal ranges, consistent with other time periods. The concentrations of additional
pollutants (O3, CO, and SO,) obtained at the Wanliu monitoring station of the Beijing Environmental
Monitoring Station did not exhibit similar elevations. This pattern suggested that the abrupt increase in
PM2s and PM3o concentrations may have been attributable to local emission sources. After excluding

this specific event, the data was further analyzed.

Text S3 General analysis of related air pollutants and meteorological parameters

Throughout the entire observation period, there was a significant temperature (Temp) variation due to
span across two seasons, ranging from -9.44 °C to 30.92 °C, with an average of 10.62 +8.68 °C. Similarly,
the relative humidity (RH) also exhibited a wide range of variation, and was noticeably higher at
nighttime than at daytime, ranging from 6.89 % to 83.86 %, with an average of 34.03 £17.61%. The
photolysis frequency of HONO (juono) gradually decreased from the beginning to the end of the
observation, indicating that solar radiation diminished from autumn to winter, which was also illustrated
by the photolysis frequencies of NO2 (jno2) and Oz (joio) (Figure S2). The average concentrations of
PM25 and PMyp in this observation were 38.25 £ 39.49 ng m™ and 72.48 + 56.98 pg m3, respectively.
The hourly concentration of NO and NO- ranged from below the detection limit to maximum values of
97.53 ppb and 84.60 ppb, with average values of 8.60 +13.44 ppb and 19.64 +17.63 ppb, respectively.
NH3; and CO exhibited similar trends during the observation period, suggesting a common source for
them in urban areas, predominantly attributed to vehicle emissions and haze pollution (Xu et al., 2023;
Sun et al., 2017; Meng et al., 2011). The hourly concentrations of NH3 ranged from 4.18 to 75.63 ppb,

with an average of 17.25 +9.90 ppb. And the hourly concentrations of CO ranged from 0.08 to 1.51 ppm,



with an average of 0.44 = 0.28 ppm. The concentration of SO, remained at a low level in this
measurement, with hourly concentrations consistently below 4 ppb and an average of 0.90 £0.47 ppb.
Since SO, served as a tracer for coal combustion (Zhang et al., 2022b), the low levels of SO in this study
indicated that the impact of coal combustion could be negligible in urban area of Beijing. The hourly
concentrations of Oz had a range of 0.46-126.19 ppb, with an average of 16.78 £18.78 ppb, which was
significantly lower than O3 concentrations in Beijing during the summer (Li etal., 2021; Xue et al., 2021).
This was attributed to the reduced light intensity and diminished photochemical formation of Os in
autumn and winter.

The diurnal variations of chemical species (HONO, NO, NO,, NHs, CO, Os, PM25) and meteorological
parameters (Temp, RH) during DHP, PEP and CLP were illustrated in Figure 2. The concentration
comparison of the main species during three periods was shown in Table S1 in the Supporting
Information. Since the observation period spanned both autumn and winter, the mean Temp during the
three periods gradually decreased (22.87 +£4.12 °C in DHP, 13.07 +4.28 °C in PEP, and 0.02 £4.45 °C
in CLP), which was also reflected in the gradual decrease of the solar radiation intensity, joip (Figure
S4). The diurnal variation of Temp remained consistent across three periods, with Temp gradually
increasing after sunrise, peaking in the afternoon (14:00-15:00 LT), then decreasing to reach the
minimum values around sunrise. However, due to seasonal differences, the time of the lowest
temperature (i.e., sunrise time) varied among the three periods, being around 6:30 LT in DHP, around
7:00 LT in PEP, and around 8:00 LT in CLP. The delay in sunrise time across the three periods was also
observed in the diurnal variations of joip and RH. The diurnal variations in RH were consistent across
all three periods, displaying a pattern inverse to that of Temp, with higher RH at night and lower during
the day. Notably, the average RH was similar during DHP (40.71 +18.45 %) and PEP (39.60 +17.23 %),
whereas it decreased by 50 % in CLP (19.94 +6.40 %). The average WS during the three periods was
similar, maintaining at a low level (< 0.7 m s1), and showing consistent diurnal variation, with higher
during the day and lower at night. The characteristics of low WS and high RH enhanced atmospheric
stability and reduced air mixing, which may lead to the accumulation of pollutants near the ground,

making them difficult to disperse (Wang et al., 2017b; Xu et al., 2019).



Text S4 Calculation of direct HONO emission factor

It is commonly accepted that the AHONO/ANOX ratio in freshly released air masses can represent the
direct emission factor of HONO (EFemis) (Zhang et al., 2020; Meng et al., 2020). Previous studies have
obtained a wide range of EFemis (0.1-2.1 %) (Yang et al., 2014; Liu et al., 2017; Kurtenbach et al., 2001;
Rappengluck et al., 2013), influenced by many factors such as vehicle types, fuel composition, and
engine types. Therefore, to assess the impact of vehicle emissions in this observation, the local emission
factor EFemis (FAHONO/ANOx) was derived based on ambient measurements. Considering the
possibility of secondary HONO formation from aging air masses during the transport process, six criteria
were used to ensure that the selected air masses were as fresh as possible:

1) Only nighttime data (from 19:00 LT to next 06:00 LT), to avoid photochemical reactions of HONO
(Lietal., 2012; Meng et al., 2020).

2) NO > 20 ppb, to ensure the existence of obvious vehicle emissions (Su et al., 2008b).

3) Sharp NOx peaks with ANO/ANOx > 0.9, along with strong positive-relationships between NO and
NOXx (correlation coefficient, R? > 0.9), to convince that the air mass was almost fresh (Liu et al., 2019;
Xu et al., 2015).

4) Strong positive-relationships between HONO and NOx (R? > 0.8) to ensure HONO was closely related
to vehicle emissions (Xu et al., 2015).

5) The duration of the air mass was less than 1 hour, minimizing the impact of HONO secondary
production (Meng et al., 2020).

6) The WS was less than 2 m s, and there was no precipitation, in order to mitigate the influence of
transport processes and wet deposition (Yun et al., 2017).

Figure S6 displayed three fresh plumes observed on 1 to 2 November 2022 based on the preceding
selection criteria. In these cases, high ANO/ANOx ratios (1.19, 1.08, and 1.01) and good correlations
between HONO and NOx (R?=0.97, 0.85, and 0.94) were observed. The slopes of the linear regression
between HONO and NOx were considered the emission factor EFemis (Rappengluck et al., 2013), with
the emission factor EFemis of 0.0164, 0.0143, and 0.0206 for the two cases. According to these criteria, a
total of 21 fresh air masses were identified during the observation period and summarized in Table S2.

The AHONO/ANOX ratios in these selected air masses ranged from 0.0051 to 0.0210.



Text S5 Calculation of NO:z uptake coefficient on the surfaces

In previous studies, the uptake coefficient of NO- (y) on the ground and aerosol surfaces varied widely
under different laboratory conditions, ranging from 108 to 10 (George et al., 2005; Kleffmann et al.,
1998; Wong et al., 2011; Colussi et al., 2013). It was challenging to determine which y was more
representative in the real atmospheric conditions. Therefore, it was necessary to obtain an appropriate y
to adapt to the surrounding environment being analyzed. Based on the current observations, we planned
to choose ideal air masses where heterogeneous reactions of NO2 only occur at the ground surface to
quantify the vy at the ground surface. The data involved in the calculation process needed to meet the
following criteria:

1) Only nighttime data (from 19:00 LT to next 06:00 LT) was considered to avoid complex
photochemical reactions and ensure a stable boundary layer height.

2) Wind speeds were kept below 2 m s to ensure stable conditions with minimal horizontal and vertical
transport.

3) The concentration of NO was maintained below 10 ppb to mitigate the impact of homogeneous
reactions between NO and OH.

4) The concentration of PM,s was kept below 20 ug m™ to minimize the influence of heterogeneous
reactions of NO- on aerosol surfaces.

5) Continuously increasing HONO, with a positive correlation between HONO and NO,, where the
correlation coefficient (R?) was greater than 0.6, ensuring that HONO originated from the heterogeneous
conversion of NO.

Based on the criteria above, to further understand the heterogeneous conversion of NO; to HONO at
night and to correct for the influences of other sources and diffusion processes, the conversion frequency
of NO, to HONO (knet) was calculated using the following formula. It was assumed that all measured
HONO originated from the heterogeneous conversion of NO; (Wang et al., 2017a; Su et al., 2008a; Xuan

etal., 2023).
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where, [HONOcor]i, [NO2];, and [X]: respectively represented the concentrations of HONOcorr, NO2 and
the reference gases (CO and NOy) at time t. [X] was the average concentration of the reference gases
during the time intervals t; and tz. kiono Was the conversion frequency scaled with the reference gases.
koo Was calculated by combining kiono (ot scaled kpono), kiiono (CO scaled kyono) and koo
(NO; scaled kyono), reducing the impact of uncertainties from emissions and diffusion processes on the
conversion frequency.

A total of 12 cases of the heterogeneous processes on the ground surfaces had been selected. The average

value of Kpe.g Was 0.0101 ht,

knet-g at the ground surface could also be expressed by the following formula.

o1 [sRT 1
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where, R was the ideal gas constant (J mol? K1), T was the temperature in Kelvin (K), M was the

molecular mass of NO, (kg mol?), and MLH was the mixed layer height of HONO (m). vy, represented
the uptake coefficient of NO; at the ground surfaces. The average value of obtained y4 was 2.94x10®,
which was comparable to previous studies (Alicke, 2002; Yu et al., 2022b).

The conversion frequency (knet-a) and uptake coefficient of NO> (ya) on aerosol surfaces were calculated
using the same method. Based on the following criteria, only ideal air masses featuring heterogeneous
reactions of NO; on aerosol surfaces were included in the analysis.

1) Only nighttime data (from 19:00 LT to next 06:00 LT) was considered to avoid complex
photochemical reactions and ensure a stable boundary layer height.

2) Wind speeds were kept below 2 m s to ensure stable conditions with minimal horizontal and vertical
transport.

3) The concentration of NO was maintained below 10 ppb to mitigate the impact of homogeneous
reactions between NO and OH.

4) The concentration of PM, s was kept above 20 ug m to make sure that the heterogeneous reactions
of NO, happened on aerosol surfaces.

5) Continuously increasing HONO, with a positive correlation between HONO and NO,, where the
correlation coefficient (R?) was greater than 0.6, ensuring that HONO originated from the heterogeneous

conversion of NO,.



Based on the above criteria, a total of 13 ideal cases of heterogeneous conversion occurring on aerosol
surfaces were selected. The average value of Knet.o was 0.006 h2.

knet-a at the aerosol surfaces could also be expressed by the following formula.

1 |8RT
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SA=60.03xPM, "6

where, SA represented the surface area of aerosols (m? m). Since SA was not measured in this
observation, it was calculated by using empirical formula (Zhang et al., 2022c; Cai et al., 2017). After
subtracting the impact of NO; heterogeneous reactions at the ground surface, the average of y. was
3.12x105. This was comparable to v, obtained by Zhang et al. during haze periods in Beijing (Zhang et
al., 2023).

For the photo-enhanced NO- uptake coefficient on ground surfaces (ygnv) took the same value as vyq, and
for the aerosol surface uptake coefficient (yan) also took the same value as y.. Laboratory studies had
shown that solar irradiance could enhance the heterogeneous conversion of NO, to HONO on various

surfaces (Yu et al., 2022a; George et al., 2005). Therefore, the photo-enhanced reaction during the

daytime was scaled using the photo-enhanced factor 0;“(;% The frequency of conversion of NO, on a

wide range of surfaces (knet) results from the combination of the MLH, NO; uptake coefficients, and the
HONO vyield. Although there is currently some uncertainty in obtaining appropriate NO; uptake
coefficients for real atmospheres, knet Values derived from our observations are relatively reliable and are

a useful method for obtaining appropriate NO; conversion frequencies during in situ observations.

Text S6 The specific parameter values for the production and removal pathways of HONO

According to previous research, the average dry deposition velocity of HONO (vVwono) was taken as 2
cm s' (Harrison et al., 1996). The BLH was obtained from the ECMWF website
(https://lwww.ecmwf.int/), as illustrated in Figure S8 in the Supplementary Information. According to

Text S5, the values of yq and ygny Were set to 2.94x10®, while the values of y, and yan Were set to

3.12x105. The average molecular speed of NO2 (vnoz2) was calculated using the formula vyg,= /?—MT

MLH denoted the mixing layer height of HONO, typically ranging from 25 to 100 m (Xue et al., 2022;

Zhang et al., 2022¢). MLH was considered significantly lower than BLH because HONO was formed
8



from the local and ground-level sources and had a short lifetime, which could be confirmed through
gradient measurements (Meng et al., 2020; He et al., 2023; Ryan et al., 2018; Zhu et al., 2011). AHONO
gradient study in Leshan, Sichuan Province, indicated that HONO was mainly localized, with
concentrations rapidly decreasing from 4.8 ppb at ground level to below 0.2 ppb at 300 m (Xing et al.,
2021). Based on previous studies (Lee et al., 2016; Xue et al., 2020; Xue et al., 2022), MLH was taken
as 50 m in this observation to assess the ground-level sources of HONO.

EF represented the enhancement factor of the photolysis rate of pNOs relative to that of HNOs.
Laboratory studies reported EF values between 1 and 700 for aerosols (Romer et al., 2018; Ye et al.,
2016; Ye et al., 2017), and experimental values up to 1700 for urban grime (Baergen and Donaldson,
2013). However, EF is widely considered to carry substantial uncertainty, which can translate into
uncertainty in HONO concentrations. In this study, we adopted a moderate EF (=30) commonly used for
autumn in Beijing (Zhang et al., 2022a; Xuan et al., 2024). In addition, to comprehensively evaluate the
potential impact of EF uncertainty on the results, a sensitivity analysis was conducted by decreasing and
increasing the EF by one order of magnitude (i.e., EF=3 and EF=300). The corresponding changes in
HONO concentrations during the three periods were summarized in Table S3. When EF=3, the changes
were approximately 3.2 %, 3.4 %, and 2.1 % during DHP, PEP, and CLP, respectively, indicating that
the variation in the contribution of pNOj3 photolysis to HONO formation was negligible compared with
that under EF = 30. In contrast, when EF=300, the changes were 31.5 %, 34.1 %, and 20.5 %, respectively,
suggesting that the contribution of pNO3 photolysis to HONO formation increased slightly relative to the
EF=30. These results demonstrated that the EF value could influence the contribution of pNO3 photolysis
to HONO formation, highlighting the importance of EF in quantitatively constraining the HONO budget.
The reliability of model simulation results was typically evaluated using the Index of Agreement (I10A),

and its calculation formula was as follows (Liu et al., 2022; Hu et al., 2023):
L1 (S-0)’
- = .2
L, (ISi-Ol+]6;-01)

where, S; represented the simulated values, O; was the observed values, O was the average of the

I0A=1-

observed values, and n was the number of samples. The I0A ranged from 0-1, with higher values
indicating better consistency between the simulated and observed values. In this study, the 10A for

HONO simulation was 0.92, which was within the range of previous studies (Wang et al., 2018;



Ghahremanloo et al., 2021). Thus, the simulation results of HONO using this Box model were deemed

acceptable.
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represented by color shading. The south wind was the dominant wind direction during all three periods,
with wind speeds consistently below 2 m s These conditions were typical of the stagnant

meteorological conditions in Beijing.
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resolution of 1 hour.

12



ANO/ANOx = 1.19 ] [ ANO/ANOX = 1.01
254  AHONO/ANOx = 0.0164 AHONO/ANOX = 0.0206
—_ R? (HONO vs. NOx) = 0.97 R? (HONO vs. NOX) = 0.94 /L.80 &
) o3
o o
= 2.0- 7 >
@) - 60 o
< =z
5 I
1.5 ANO/ANOX = 1.08 - 40
AHONO/ANOX = 0.0143
R2 (HONO vs. NOX) = 0.85
1.0 T T v T T T 20
19:00 21:00 23:00 01:00 03:00 05:00 07:00
2022111 2022/11/2

Figure S6 Hourly time series of the concentration of HONO and NOx on 1 to 2 November 2022. The

region marked by the black frames indicated three fresh plumes. The HONO emission ratios were

estimated using the data collected in the black frames.
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Table S1 Hourly average concentrations of meteorological parameters (Temp, RH, WS, jHono), chemical

species (HONO, O3, NO, NO2z, NH3, CO, SO, PM25) and HONO/NO- during double-high period,

cyclic-haze period and clean period.

Parameters DHP PEP CLP
Temp (°C) 22.87 +£4.12 13.07 +4.28 0.02 +4.45
RH (%) 40.71 +£18.45 39.60 +17.23 19.94 +6.40
WS (ms™) 0.61 +0.34 0.48 +0.25 0.63 +0.31
jrono (<10 s 3.39 +£4.60 2.27 £3.61 1.81 +2.89
joip (<10 s1) 4.02 +4.86 2.44 £2.60 1.57 +1.13
PM2;s (ug m3) 46.03 +37.85 46.78 +44.05 17.17 £15.16
PMuo (ug m) 91.74 +58.87 79.14 +60.97 49,59 +29.22
NO (ppb) 3.25+7.11 10.91 +15.69 7.52 +£10.91
NO (ppb) 24.79 £23.74 23.67 +16.94 9.26 +£9.23
NH3 (ppb) 26.15 +9.84 19.83 +8.80 8.35 +2.61
CO (ppm) 0.54 +0.26 0.50 +0.30 0.26 +0.15
SO; (ppb) 1.07 £0.59 0.50 +0.30 0.89 +0.42
HONO (ppb) 1.71 +1.08 1.46 +0.90 0.50 +0.38
Os (ppb) 39.01 +32.30 12.32 +13.38 14.87 +9.53
HONOcor/NO; 0.114 +0.106 0.086 +0.078 0.085 +0.105
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Table S2 A total of 21 fresh air masses were identified during the observation period in this study.

Number Date Local time R? (HONO vs. NOx) ANO/ANOx AHONO/ANOx
1 2022/10/5 04:00:00-04:10:00 0.87 1.28 0.0174
2 2022/10/11 03:00:00-03:15:00 0.99 0.98 0.0051
3 2022/11/1 23:35:00-23:45:00 0.97 1.19 0.0164
4 2022/11/2 00:45:00-00:55:00 0.85 1.08 0.0143
5 2022/11/2 02:15:00-02:35:00 0.94 1.01 0.0206
6 2022/11/5 00:35:00-01:00:00 0.88 0.98 0.0174
7 2022/11/5 02:35:00-03:00:00 0.88 1.13 0.0126
8 2022/11/7 22:00:00-22:10:00 0.96 1.13 0.0113
9 2022/11/8 01:25:00-01:35:00 0.99 1.01 0.0101
10 2022/11/8 02:10:00-02:25:00 0.82 0.94 0.0131
11 2022/11/8 03:10:00-03:25:00 0.99 1.32 0.0131
12 2022/11/8 22:25:00-22:40:00 0.80 1.08 0.0079
13 2022/11/9 03:10:00-03:20:00 0.86 1.15 0.0197
14 2022/11/10 04:20:00-04:30:00 0.96 1.15 0.0193
15 2022/11/16 19:15:00-19:40:00 0.95 1.05 0.0061
16 2022/11/17 20:00:00-20:15:00 0.89 1.06 0.0167
17 2022/12/6 04:05:00-04:55:00 0.94 0.96 0.0194
18 2022/12/15 01:05:00-01:25:00 0.97 1.00 0.0185
19 2022/12/19 05:20:00-05:30:00 0.80 1.34 0.0210
20 2022/12/19 05:45:00-05:55:00 0.93 1.10 0.0139
21 2022/12/20 04:50:00-05:00:00 0.99 1.03 0.0085
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Table S3 Sensitivity study with EF uncertainty for HONO formation processes.

EF DHP PEP CLP
3 -3.2% -34% -2.1%
300 31.5% 34.1% 20.5 %
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