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Abstract. As global warming progresses, weather conditions like daily temperature and precipitation are chang-
ing due to changes in their means and distributions of day-to-day variability. In this study, we show that changes
in variability have a stronger influence on the number of extreme precipitation days than the change in the
mean state in many locations. We analyze daily precipitation and maximum temperatures at four levels of global
warming and under different emission scenarios for the Northern Hemisphere (NH) summer (June—August). Our
analysis is based on initial-condition large-ensemble simulations from three fully coupled Earth system mod-
els (MPI-ESM1-2-LR, CanESMS5 and ACCESS-ESM1-5) contributing to the Climate Model Inter-comparison
Project Phase 6 (CMIP6). We also use information from the Precipitation Driver Response Model Intercompar-
ison Project (PDRMIP) to discern the influence of different climate drivers (notably aerosols and greenhouse
gases). We decompose the total changes in daily NH summer precipitation and daily maximum temperature
into mean and variability components (standard deviation and skewness). Our results show that in many loca-
tions, variability exerts a stronger influence than mean changes on daily precipitation. Changes in the widths
and shapes of precipitation distributions are especially dominating over mean changes in Asia, the Arctic and
sub-Saharan Africa. In contrast, temperature changes are primarily driven by changes in the mean state. For the
near future (2020-2040), we find that reductions in aerosol emissions would increase the likelihood of extreme
summertime precipitation only over Asia. This study emphasizes the importance of incorporating daily vari-
ability changes into climate change impact assessments and advocates that future emulator and impact model
development should focus on improving the representation of daily variability.

tion. Sulfate aerosols reflect incoming solar radiation, which

In 2023, many regions experienced an unusually hot sum-
mer with record-breaking temperatures, widespread wildfires
and heavy rainfall followed by severe flooding events (Ranta-
nen and Laaksonen, 2024; Copernicus, 2023; WMO, 2023).
Changes in climate can be driven by different natural factors,
like volcanic emissions and ocean variability, as well as dif-
ferent anthropogenic drivers, like anthropogenic aerosol and
CO; emissions. Aerosols and CO; affect regional climates
differently: CO, blocks surface upwelling longwave radia-

results in surface cooling during daytime. In contrast, absorb-
ing aerosols, like black carbon, absorb incoming solar radi-
ation and thus lead to a warming of surrounding air masses
(Nordling et al., 2021; Szopa et al., 2021). These different
climate forcings not only affect temperatures differently but
also wet and dry extremes (Sillmann et al., 2019) and the di-
urnal cycle (Stjern et al., 2020). However, while the effects
of carbon dioxide are relatively well constrained, the impact
of aerosols constitutes still one of the major uncertainties in
climate science (Chen et al., 2021). For instance, while the
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global temperature impact of absorbing aerosols is relatively
weak, they play a possibly large but still uncertain role in
regional precipitation changes (Samset, 2022). The aerosol
effect on climate is further complicated by the fact that the
induced climate response is dependent on the location of the
aerosol emissions (Persad, 2023; Westervelt et al., 2020; Per-
sad and Caldeira, 2018) and that the aerosol effects of locally
emitted aerosols can reach far beyond their local emission re-
gions (Wilcox et al., 2019; Fahrenbach and Bollasina, 2023).
For example, Asian aerosol emissions have pronounced ef-
fects on Arctic temperatures due to changes in energy trans-
port and albedo feedback (Merikanto et al., 2021) and the
Australian monsoon due to changes in teleconnection pat-
terns (Fahrenbach et al., 2024). Thus, it is certainly plausi-
ble that regional aerosol emission changes induce changes in
daily weather and extremes in local and remote regions.

Daily weather variability, in particular, plays a key role in
extreme events and is of utmost importance when it comes
to adapting to climate change since climate risk mitiga-
tion strategies depend on our understanding of day-to-day
weather patterns. Changes in weather extremes are influ-
enced by changes in the mean climate conditions (which
are influenced by global warming), variability on decadal
timescales and day-to-day variations in weather (which are
driven primarily by daily-to-annual-scale internal climate
variability). We have observed that extreme weather events
have already changed and are continuing to do so as our
planet warms (Myhre et al., 2019; Sippel et al., 2020). For
example, the unprecedented summer heat wave in Europe in
2019 would have been impossible without anthropogenic cli-
mate change (Ma et al., 2020).

Previous studies have investigated changes in probabil-
ity density functions (PDFs) of precipitation under global
warming. Pendergrass et al. (2017) showed that the variabil-
ity of weather patterns is increasing across most regions un-
der a warming climate. This is evident in the widening of
PDFs, indicating a growing range of possible weather out-
comes. Zhang et al. (2021), utilizing the HadGEM3-GC3.05
model, found that precipitation variability is increasing on
all timescales, from daily variability to year-to-year differ-
ences. This study highlights that changes on short timescales
are closely linked to alterations in synoptic-scale weather
patterns, emphasizing the broad-reaching impacts of climate
change on precipitation. Samset et al. (2019b) focused on the
evolution of regional PDFs under global warming, particu-
larly focusing on changes in daily PDFs of temperature and
precipitation. Using the CESM1 large ensemble, they dis-
covered that even a modest increase in global temperature
(+1.5°C) results in significantly more variable precipitation
over regions like Africa and South America. Katzenberger
et al. (2022) studied the future precipitation variability over
the Indian monsoon region and found that the likelihood of
extreme rainfall is expected to increase significantly (up to
6-fold) by the end of this century depending on future emis-
sions. This illustrates the severe regional impacts of climate
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change, particularly in areas which are already vulnerable to
extreme weather events.

When it comes to temperature, there is a clear footprint of
global warming on the change in temperature variability. In
high latitudes, the annual temperature variability tends to de-
crease, whereas it increases in lower latitudes in the near fu-
ture (Kotz et al., 2021). However, this pattern varies between
seasons and models. Suarez-Gutierrez et al. (2020) investi-
gated how temperature-related extreme events evolve with
global warming using the MPI-GE large ensemble. They
discovered that daily temperatures exceeding 50 °C become
more common in the Arabian Peninsula, northern India and
Pakistan at a global warming level of 2 °C. However, beyond
the 2 °C threshold, these extreme temperatures are expected
to occur on every continent. Future emissions play an im-
portant role in shaping how variability and extreme weather
events will change in the near to far future. For example,
Wilcox et al. (2020) shows that a reduction of aerosol emis-
sions in the near future could lead to an increase in the Asian
summer monsoon. Understanding these dynamic changes is
crucial when evaluating future extreme changes on a regional
scale.

What remains unclear is the role of variability: are precip-
itation and temperature extremes becoming more severe due
to changes in the mean state or due to changes in day-to-day
variability? Another uncertainty relates to the climate mod-
els themselves. Despite generally agreeing on the direction
of changes in extreme precipitation, the current state-of-the-
art climate models show significant uncertainty regarding the
magnitude of these changes, especially at regional scales. In
particular, the different implementations for anthropogenic
aerosols and different climate sensitivities of different ESMs
add to this uncertainty. Another gap in the current knowledge
is how to translate the changes in the daily distribution of
weather variability to meaningful quantities, like the number
of extreme weather events.

In this study, we focus on examining how daily variability
in the Northern Hemisphere (NH) summer precipitation and
daily maximum temperature is evolving under global warm-
ing and different emission scenarios. We also show result for
NH winter months in the appendix. Using large-ensemble
simulation from CMIP6, we investigate changes in the mean
and variability (characterized by the width and shape of the
PDFs) using a similar method as in van der Wiel and Bin-
tanja (2021), Samset et al. (2019b), and Lund et al. (2023)
and further identify the key anthropogenic drivers (aerosols
or greenhouse gases) of those changes. Our results show key
regions where changes in extremes are driven by changes in
variability rather than the mean state. By examining the daily
variability of weather in the context of a changing climate,
we can improve our understanding of the challenges and op-
portunities for climate change adaptation.
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2 Method and data

2.1 Analysis of changes in mean and variability using
PDFs

We are using simulations from single-model initial-condition
large ensembles (SMILEs) from CMIP6, similarly to (Sam-
set et al., 2019b), who studied how daily weather at a re-
gional scale changes with global warming. In SMILEs each
model is run multiple times with the same forcing and model
configuration but different initial states. Figure 1 illustrates
our methodology of defining daily PDFs for precipitation
and maximum temperature using daily CMIP6 data from
CanESM5, MPI-EMS1-2 and ACCESS-ESM-1-5. First, we
defined the 1-4 °C global warming levels (GWLs) follow-
ing the definition outlined in the IPCC ARG6 report (Lee and
Zhou, 2021) (see Fig. 1a). For this, a 20-year centered run-
ning mean of annual temperature for each ensemble mem-
ber is calculated, and the GWL is then defined as the period
£10 years from the first year in which the global warming
threshold was surpassed. A PDF is defined in this way for
each grid point, which can be used to find changes in both
mean and variability (here referred to as the “PDF of total
change”). The second step involves removing the annual cy-
cle at each grid point for each GWL, which gives a PDF that
only differs in daily variability (shape and width of the PDF)
for each GWL. This results in PDFs for each GWL which
differ only by the influence of change in standard devia-
tion, kurtosis and skewness. We quantify changes to the daily
mean by calculating the difference between the means of the
GWL and pre-industrial (PI) PDFs and then shifting the PI
(0 GWL) PDF by the corresponding amount. Figure 1c illus-
trates the PDF changes due to the (1) total change, (2) change
in the mean and (3) change in variability (standard deviation
(SD) and skewness). The final step is to calculate the number
of days during which extreme weather events occur for each
PDF (see Fig. 1d). Here, an extreme event is defined as one
that exceeds the 0.999th quantile. The return period for these
extremes, as simulated by the different models, is approxi-
mately 10 years. Thus, the extreme events analyzed in this
paper refer to events occurring once or less every 10 years
in the pre-industrial era. To test if underlying PDFs are sta-
tistically different, we use Kolmogorov—Smirnov test and the
p value.

For the near-future analysis, we follow the same process
described above to define the PDFs but calculate the PDFs for
four different Shared Socioeconomic Pathway (SSP) scenar-
ios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5; O’Neill
et al.,, 2016) over three distinct time periods (2025-2034,
2035-2044 and 2045-2054) instead of using GWLs. For
each time period and each SSP scenario, there is an under-
lying PDF, which we refer to as the PDF of total change,
similar to the GWL analysis. We then remove the annual cy-
cle as in the GWL analysis to obtain a PDF that contains only
changes attributable to variability (change in SD and skew-
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ness). Here, we quantify changes to the mean by calculating
the difference between the means of the given SSP (and time
period) and the PI PDF, and then shifting the PI (0 GWL)
PDF by the corresponding amount.

These time periods are chosen to represent the largest dif-
ferences in aerosol pathways across the different SSPs where
the full range of uncertainty in greenhouse gas emissions has
not yet emerged (although they are not negligible and are in-
cluded in our simulated climate response) (Lund et al., 2019;
Wilcox et al., 2020; Guo et al., 2021). SSP1-2.6 includes a
rapid reduction in global aerosol emissions until 2050, ex-
cept for an increase over southern Africa due to rapid indus-
trialization. The aerosol emissions in SSP2-4.5 and SSP5-
8.5 show a similar, but weaker, pattern, with a decrease over
the NH and increase in the Southern Hemisphere (SH) as
well as a strong Asian aerosol dipole (i.e., a large increase
over South Asia and large decrease over East Asia) until the
2040s (Wilcox et al., 2020; Samset et al., 2019a). The main
difference between SSP2-4.5 and SSP5-8.5 lies in the black
carbon (BC) emissions from South Asia, which show an in-
crease and decrease until the 2040s, respectively, as well as
the aerosol emissions over South America related to different
rates of deforestation (Lawrence et al., 2016). SSP3-7.0 also
shows an NH decrease and SH increase in emissions. How-
ever, the sulfur dioxide (precursor of sulfate aerosols) emis-
sions stay nearly constant over East Asia but increase over
South Asia, with opposite changes in BC emissions. As mul-
tiple emissions are changing in the SSPs, it is not possible
to quantify the effect of aerosols and greenhouse gas (GHG)
changes separately. However, we can identify the main trend
of emission changes, which is large aerosol and GHG reduc-
tions in SSP1-2.6, while SSP3-7.0 has the opposite emission
trend (Wilcox et al., 2020).

2.2 Data
2.2.1 CMIP6 data

We utilize large-ensemble simulations for the SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios performed by
three CMIP6 models, namely MPI-ESM1-2-LR (Mauritsen
et al., 2019), CanESM5 (Swart et al., 2019) and ACCESS-
ESM5-1.5 (Ziehn et al., 2020). Table 1 gives the model res-
olutions and number of ensemble members for each model.
We use the same models as Lund et al. (2023) for which the
summertime variability of precipitation and daily maximum
temperature was verified using ERA-5 data.

2.2.2 PDRMIP data

We also use idealized single forcing simulations from
the Precipitation Driver Response Model Intercomparison
Project (PDRMIP; Myhre et al., 2017) to assess the expected
impacts of different anthropogenic drivers on daily weather
variability. In particular, we focus on experiments simu-
lating a global doubling of CO; concentrations (hereafter
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Figure 1. Method description. (a) Selection of years for each global warming level. (b) Example of regional daily maximum temperature
with and without subtracting off the annual cycle to extract daily variability from Southeast Asia using the MPI-ESM1-2-LR model. Dashed
lines indicates June—July—August months. (¢) Idealized PDFs of the total changes, the decomposition in mean and change in variability
(shape and width), with a dashed line on the 99.9th percentile as well as changes in the number of extreme days.

Table 1. List of the CMIP6 large-ensemble models used in this study which performed the required SSP1-2.6, SSP2-4.5, SSP3-7.0 and
SSP5-8.5 simulations. The equilibrium climate sensitivity (ECS) values are taken from Zelinka et al. (2020).

Model Ensembles  Horizontal ECS  Aerosol Reference

resolution  value forcing
ACCESS-ESM-1-5 29 1.9°x1.3° 3.88 Interactive Ziehn et al. (2020)
CanESM5 23 2.8°x2.8° 5.64 Interactive Swart et al. (2019)
MPI-ESM1-2-LR 11 1.9°x1.9° 3.03 MACvV2-SP  Mauritsen et al. (2019)

CO; x 2), a 5-fold increase in sulfate concentrations or emis-
sions (hereafter SUL x 5), and a 10-fold increase in black
carbon concentrations or emissions (hereafter BC x 10) rel-
ative to the year 2000. We use the multi-model mean across
nine CMIP5-generation models which participated in PDR-
MIP to get a robust estimate of daily variability changes (Ta-
ble 2). Throughout the analysis, we examine the years 50—
100 of the coupled simulations, discarding the first decades
as spin-up. For the extreme event definition for PDRMIP, we
use the 0.90 percentile threshold to ensure that enough data
are available to accurately estimate variability. The different
definition of an extreme event compared to the CMIP6 anal-
ysis described above is due to the fact that PDRMIP consists
of only one member ensemble per model.

Atmos. Chem. Phys., 25, 1659-1684, 2025

3 Results
3.1 Expected change in daily variability due to different
anthropogenic drivers

Here, we first examine changes in daily weather variability
in response to global increases in CO», sulfate and black car-
bon aerosols simulated as part of PDRMIP. Figure 2 shows
how a 5-fold global increase in sulfate emissions (first col-
umn), 10-fold increase in black carbon emissions (second
column) and doubling of CO» concentrations (third column)
affect the number of days of precipitation above the 90th per-
centile in pre-industrial conditions. In CO; x 2, all models
show an increase in intense summertime precipitation over
Asia, although the exact pattern over Asia differs between

https://doi.org/10.5194/acp-25-1659-2025
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Table 2. List of models which participated in PDRMIP and performed the coupled global experiments (CO, x 2, SUL x 5, BC x 10).

Model Horizontal ~ Aerosol setting reference
resolution
CanESM2 2.8°x2.8° Emissions Arora et al. (2011)
CESM1-CAM4 2.5°x 1.9° Fixed concentrations  Gent et al. (2011)
CESM1-CAMS5 2.5°x1.9° Emissions Hurrell et al. (2013), Otto-Bliesner et al. (2016)
GISS-E2-R 2.0° x 2.5°  Fixed concentrations  Schmidt et al. (2014)
HadGEM2-ES 1.9°x 1.3°  Emissions Collins et al. (2011), The HadGEM2 Development Team et al. (2011)
HadGEM3-GA4 1.9° x 1.3°  Fixed concentrations  Bellouin et al. (2011), Walters et al. (2014)
IPSL-CMS5A 3.8°x 1.9°  Fixed concentration Dufresne et al. (2013)
NorESM1-M 2.5°x 1.9°  Fixed concentrations  Bentsen et al. (2013), Kirkevag et al. (2013), Iversen et al. (2013)
MIROC-SPRINTARS 1.4° x 1.4° HTAP emissions Takemura et al. (2009, 2005), Watanabe et al. (2010)

models (Fig. Al). NorESM1 shows the smallest changes in
intense precipitation overall, with strong increases being lo-
cated around the Tibetan Plateau. These changes correlate
with changes in the SD. Other common features among the
models include a decreasing number of days of intense pre-
cipitation over the southern part of Europe (Fig. 2). Spatial
correlation values between changes in SD and changes in
number of days of extremes vary from 0.22 to 0.49 (Fig. A4),
indicating that changes in the SD can explain some of the
changes in extremes but not all.

The impact of aerosols differs from that of CO;. The
climate response in SUL x 5 shows a similar pattern but
of opposite sign to that of CO,, as expected since sulfate
aerosols cool the climate while greenhouse gases warm it.
For instance, HadGEM3 shows a decrease in precipitation
extremes over Asia and sub-Saharan Africa and an increase
over Europe, with all these signals being opposite to the re-
sponse in the doubling of CO,. Additionally, all models sim-
ulate a decrease in the number of extreme days across the
high latitudes in the NH. Figure AS shows spatial distribu-
tion of change in the PDF SD. These SD differences are sig-
nificant at a p level < 0.05 using the Kolmogorov—Smirnov
test. The spatial correlation between the change in SD and
the change in the number of extreme days for SUL x 5 varies
from 0.42 to 0.61 (Fig. AS).

For BC x 10, the spatial correlation between changes in
SD and changes in the number of extreme days is quite vari-
able and ranges from 0.44 to 0.74 (Fig. A6). The results show
a higher correlation between changes in SD and extremes
for the aerosol simulations than for the CO; x 2 experiment.
This indicates that aerosols lead to a wider/narrower distribu-
tion and thus more days of extreme precipitation than the in-
fluence of CO,. Additionally, the effect of aerosols is highly
regionally dependent, whereas the PDFs for a CO; increase
are getting wider over all regions.

3.2 Changes in extreme events under global warming

Changes in the probability of extreme precipitation events
(> 99th percentile) due to global warming can be attributed

https://doi.org/10.5194/acp-25-1659-2025
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Figure 2. Changes in the average number of days per year of
extreme (0.90 quantile) precipitation due to global doubling of
CO; concentrations (CO x 2), a 5-fold increase in sulfate emissions
(SUL x 5) and a 10-fold increase in black carbon (BC x 10) emis-
sions as simulated by PDRMIP models. Panels (a), (¢) and (e) show
the results for concentration-driven models, and panels (b), (d) and
(f) show the results for emission-driven models. Stippling indicates
where all emission-driven or concentration-driven models agree on
the sign of change.

to two primary factors: changes in the mean state and vari-
ability. The combined impact of these two contributing fac-
tors is depicted in Fig. 3, which illustrates how extreme pre-
cipitation events are evolving in response to global warming.
The spatial pattern of these changes in extreme precipitation
closely follows the overall pattern of annual precipitation
changes, as discussed in IPCC (2021). In essence, regions
that were already dry are experiencing increased in dryness,
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while areas with high climatological levels of precipitation
are becoming even wetter (Feng and Zhang, 2015; Xiong
et al., 2022). To provide a more detailed understanding of
the total changes highlighted in Fig. 3, one can decompose
these changes into two components: changes in variability
(as shown in Fig. 4) and changes in the mean state (as shown
in Fig. 5).

Figure 4 shows how changes in precipitation variability are
changing the likelihood of extreme precipitation events, de-
fined as those events that occur more than once every decade
in the pre-industrial era. This phenomenon is observed glob-
ally, with an overall increase in the number of such extreme
events in most regions. However, there are notable excep-
tions: in regions like the Amazon basin, southern Africa and
Australia, there is a slight decrease in extreme precipitation
events during the NH summer months. Already, a 1° change
in global warming shows a significant increase in the likeli-
hood of extreme precipitation, especially over the Sahel re-
gion, as simulated by MPI-ESM1-2-LR and CanESMS5.

While there is broad agreement among the models about
the increase in extreme precipitation, particularly in Asia,
there are differences in the exact location of these changes.
The most significant changes in extreme summer precipita-
tion due to variability are seen in three main regions: South-
east Asia and South Asia, sub-Saharan Africa, and the Arctic
region. Each of these areas shows a distinct pattern in the in-
crease of extreme precipitation events, underscoring the di-
verse impacts of changing precipitation variability across dif-
ferent parts of the world.

Changes in precipitation patterns can also be influenced
by shifts in the mean state of precipitation driven by global
warming. Figure 5 provides an overview of how shifts in
the mean state affect the number of extreme precipitation
days, although those changes are not as large as those re-
sulting from shifts in variability. A consistent increase in dry
days can be seen over southern Europe and, to a large extent,
North America (Fig. 5). Figure 6 shows whether changes in
the mean state (shown in brown) or variability (shown in pur-
ple) are the dominant factors influencing the overall change
in extreme precipitation events. The relative importance of
change in the mean state and change in variability is defined

w. All three models agree on the spatial
variablity+-AMean
pattern of changes in variability.

The behavior of daily maximum temperature during sum-
mer is quite different from that of daily precipitation (Fig. 6).
While changes in daily precipitation are primarily driven by
changes in variability, daily maximum temperatures are pre-
dominantly influenced by changes in their mean state. On a
global scale, all regions experience an increase in extreme
daily maximum temperatures due to shifts in the average
daily maximum temperature. In a 4° warmer world, the daily
maximum temperature distributions in almost every region
are shifted outside pre-industrial ranges. However, there is
some variability among climate models regarding spatial pat-
terns of the increase in daily maximum temperatures. For
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instance, only the ACCESS-ESM1-5 model predicts that all
summer days in Alaska will surpass rarely observed (0.999
quantile) pre-industrial temperatures in a 4° warmer world
(see Fig. A7).

3.3 Different climate drivers in the near future

In the near future, the Earth’s climate will be influenced by
different anthropogenic drivers depending on different fu-
ture emission scenarios and associated emission reductions.
Above, we have shown the influence of different anthro-
pogenic drivers on Earth’s climate using idealized PDRMIP
simulations (Sect. 3.1). It is not evident that different anthro-
pogenic drivers have an effect on rare extreme events that oc-
curred only once per decade during the pre-industrial period
in the near-future SSP scenarios. However, when examining
more frequent extreme events (events which occur once per
year), differences between aerosol-driven changes and green-
house gas-induced warming become evident. Figures C1, C2
and C3 show changes in the likelihood of these extremes in
the near future under different SSP scenarios (particularly,
SSP1-2.6, SSP2.4-5, SSP3-7.0 and SSP5-8.5) for all three
models due to changes in variability. Similar to the changes
in extremes under global warming, the most distinct near-
future changes are seen in sub-Saharan Africa, where green-
house gas emissions are expected to dominate. In contrast,
most of the reduction in aerosol emissions is expected to oc-
cur over Asia in the future (Lund et al., 2019).

We can estimate the effects of aerosols by subtracting the
changes seen in SSP3-7.0 from SSP1-2.6, where the most
drastic aerosol reductions occur over Southeast Asia and
South Asia (Lund et al., 2019). While greenhouse gas emis-
sion and land use changes will also contribute, previous work
has found this method to give a reasonable first approxi-
mation of the aerosol influence over the coming decades
(Wilcox et al., 2020). Figure 7 shows the effect of aerosol
emission reductions according to the SSP1-2.6 scenario for
the three different climate models over Asia (for the global
pattern see Fig. C4). There is no model agreement on the pat-
tern or sign of change over most land regions. The CanESM5
model suggests that the increase in the likelihood of ex-
treme precipitation events is continuously reduced in the
near future in South Asia and East Asia regions with a con-
tinuous reduction in aerosol emissions. In contrast, MPI-
ESM1-2-LR indicates a slight decrease in extreme weather
events from 2025 to 2034, followed by an increase from
2035 to 2044 over the Tibetan Plateau. This would indi-
cate that reducing aerosol emissions might make extreme
weather more likely during this latter period. The ACCESS-
ESM1-5 model shows the most prominent effect: a reduction
of aerosol emissions leads to a clear rise in the chance of
extreme rain or snow events between 2035 and 2044. This
seems aligned with previous results which showed that an-
thropogenic aerosols suppress precipitation, including ex-
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Figure 3. Total change in the number of days of intense precipitation events during JJA under different global warming levels. Stippling

indicates regions where changes in PDFs are significant at p > 0.05.
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treme precipitation, over Asia (Yang et al., 2022; Wilcox
et al., 2020; Persad, 2023).

These model differences likely stem from differences in
the implementation of aerosols as well as the model’s sen-
sitivity to greenhouse gases. MPI-ESM1-2-LR uses a sim-
plified approach, namely the MACv2-SP parameterization
(Stevens et al., 2017), to represent aerosols (black car-

Atmos. Chem. Phys., 25, 1659—-1684, 2025

bon and sulfate), which only accounts for the first indirect
aerosol effect without considering more complex interac-
tions. CanESMS has a very high climate sensitivity (see Ta-
ble 1), leading to greenhouse-gas-dominated responses even
when aerosol emissions are reduced. CanESMS, further, has
a high atmospheric absorption value due to black carbon
which is likely masking part of the cooling effect due to

https://doi.org/10.5194/acp-25-1659-2025
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Figure 7. Change in the likelihood of days of extreme JJA precipitation between SSP1-2.6 and SSP3-7.0 over Asia for three different models:
ACCESS-ESM1-5 (a—c), CanESMS5 (d—f) and MPI-ESM1-2-LR (g-i). Hatching indicates regions where all three models agree on the sign

of the change.

sulfate aerosols (Fiedler et al., 2023). ACCESS-ESM1-5, on
the other hand, employs the CLASSIC aerosol model (Ziehn
et al., 2020; The HadGEM?2 Development Team et al., 2011;
Mackallah et al., 2022), which is a very detailed representa-
tion considering seven different aerosol types and including
direct and indirect effects.

3.4 Model discrepancies

While all models used here show similar regional changes
in the likelihood of summertime extreme precipitation, they
have different underlying PDFs and associated impacts on
the likelihood of extremes. Figure 8 shows regional mean
PDFs for total changes in daily summertime precipitation for
South Asia (SAS), Western Africa (WAF) and North-Western
North America (NWN) (using the region definitions from the
IPCC report; Iturbide et al., 2020). All these regions show
a significant increase in the number of intense precipitation
days due to changes in variability.

For SAS, the underlying PDFs are quite different between
the individual models. The most prominent difference relates

https://doi.org/10.5194/acp-25-1659-2025

to changes in the kurtosis (Fig. D1). ACCESS-ESM1-5 and
CanESMS5 show higher kurtosis values than MPI-ESM1-2-
LR. CanESMS is the only model that shows decreasing kur-
tosis with global warming. Nonetheless, all models show a
similar widening of the distributions with global warming.

Over the WAF region, all three models exhibit a simi-
lar evolution in skewness. With global warming, the MPI-
ESM1-2-LR and CanESMS distributions are getting wider,
indicating an increase in daily variability and an associated
increase in extremes at both ends. CanESM5’s evolution in
standard deviation plateaus after two degrees of global warm-
ing. While CanESMS5 shows a widening of the PDF, similar
to the other two models, it also shows a clear change in the
mean of the distribution. As a result, the likelihood of ex-
treme values primarily increases at the high end of the tails.
The most prominent discrepancy between the models is in
the evolution of kurtosis, where it shows an increasing trend
in MPI-ESM1-2-LR and ACCESS-ESM1-5 but decreasing
trend in CanESMS.

Over NWN, all three models exhibit similar PDF shapes
(while the distributions are statistically different). However,

Atmos. Chem. Phys., 25, 1659—-1684, 2025
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Figure 8. PDFs of total changes in JJA precipitation over South
Asia (SAS), Western Africa (WAF) and North-Western North
America (NWN) under different global warming levels for all three
models. Inserts show the upper tail of the distributions, and the
black horizontal line indicates the 0.999 quantile threshold.

the model responses diverge regarding the PDF evolution un-
der global warming. CanESMS5 shows a change in the mean
and little change in the width, whereas ACCESS-ESMI-
5 and MPI-ESM1-2-LR changes are mostly in width and
shape. Despite these discrepancies in underlying PDFs, all
three models show a robust increase in summertime variabil-
ity under global warming, which leads to an increased likeli-
hood of extreme precipitation in the Arctic, Asia and Africa.

The next question is about which change dominates the
overall changes: does the change in the SD or the skewness
dominate? Figure 9 shows how these two measures change in
the three different regions (WAF, NWN and SAS) and for the
different models, as well as how this relates to the change in
the likelihood of extreme days. Each marker in Fig. 9 repre-
sents one grid point. For CanESM5 most of the changes are
due to changes in the skewness (shape of the PDF), and the
underlying PDFs are even getting narrower. Both ACCESS-
ESM1-5 and MPI-ESM1-2-LR show an increase of SD to-
gether with an increase in skewness.

Another interesting aspect is the regional dependence of
the relative roles of changes in SD versus skewness. Here,
we find that each region and model behaves differently. Over
WAF, MPI shows large changes in both skewness and SD,
whereas CanESMS5 shows small changes in SD over WAF.
Interestingly, CanESMS5 shows the largest change in SD over
SAS. These findings highlight that each region responds dif-
ferently to global warming and that there is significant model
uncertainty regarding how variability changes.
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4 Discussion

What physical mechanisms drive the changes in variabil-
ity, and what is the relationship between different mech-
anisms and changes in SD and skewness? We calculated
power spectral densities for each region for all three models
to evaluate the dependence on different timescales (Fig. D2).
Zhang et al. (2021) performed a moisture budget analysis on
a parameter perturbed ensemble of the HadGEM3-GC3.05
model. Compared to initial-condition ensembles, this also
samples the uncertainty from the model uncertainty space,
whereas SMILEs only sample uncertainty from climate in-
ternal variability. Their moisture budget analysis reveals that
changes in variability are driven by changes in vertical mois-
ture advection and thermodynamics. Similar conclusions are
drawn by Zhang et al. (2024) using the observed increase in
precipitation variability in ERAS. On longer timescales there
might be a link to ENSO variability suggested by Kohyama
and Hartmann (2017).

Most regions where changes in the mean dominate the
summertime precipitation variations are located in the SH.
The influence of seasons plays a significant role in this hemi-
spheric asymmetry. Figures B1-B4 illustrate similar results
for the NH during NH winter (DJF). Some of the observed
changes are related to seasonal shifts. For example, there is
an increase in intense precipitation due to changes in vari-
ability during DJF, while the number of these days decreases
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in JAS in South America (excluding the Amazon region) and
southern Africa. In Southeast Asia similarly, the number of
intense precipitation events decreases due to changes in vari-
ability. However, only the MPI-ESM1-2-LR model shows
that changes in the mean dominate future changes in win-
tertime intense precipitation over Southeast Asia.

Some extreme attribution studies follow the method from
Philip et al. (2020), which assumes that the shape of the dis-
tribution stays constant. However, we find that this assump-
tion cannot be made in a future climate, although the exact
distribution changes remain uncertain due to large discrepan-
cies between CMIP6 models. Nonetheless, our findings high-
light the importance of including daily variability in climate
change impact and attribution studies. While we find a small
or no change in the summertime mean precipitation, a clear
increase in the number of extreme precipitation days is ev-
ident. Therefore, impact studies which only concentrate on
the mean climate would inevitably underestimate the effects
of extreme events.

This is further applicable to, for instance, the development
of statistical emulators. Most emulators only consider global-
mean temperature or precipitation effects or apply simple lin-
ear scaling (Nath et al., 2022; Watson-Parris et al., 2021).
Based on the findings from this study, we recommend that
the training of emulators should include training with daily
weather variability to capture the complete climate change
impacts. Furthermore, more work is needed so that emula-
tors and simple climate models can fully simulate the effects
of different climate drivers, as already highlighted by Persad
et al. (2023). For future applications, it is relevant to know
how well current ESMs can replicate observed daily climate
variability. Lund et al. (2023) shows that the MPI-ESM1-
2-LR and CanESMS5 models capture the mean present-day
precipitation rates well. However, evaluating the accuracy of
climate models in predicting present-day extreme events is
challenging due to sparse observational data. With only three
rare extreme events recorded (based on our definition), the
limited dataset hampers robust model validation, leading to
uncertainty in the model’s ability to reliably reproduce such
rare but impactful occurrences. As different models show dif-
ferent kinds of underlying distributions, the limitation of this
study is the small number of ESM ensembles used.

Although our findings primarily focus on the impact of
climate change on wet extremes, it is essential to note that
changes in both mean and variability can enhance or reduce
the occurrence of dry extreme events as well. When examin-
ing total changes occurring due to changes in the variability
and mean, we found that changes in the mean reduce the like-
lihood of dry extremes while changes in variability exacer-
bate changes in wet extremes. This finding underlines that it
is crucial to recognize that although changes in climate vari-
ability can influence the frequency of extreme events, these
effects may be offset by shifts in the mean climatic condi-
tions for dry extremes.
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5 Conclusions

This study investigates the role of changes in mean and
variability separately on daily summertime precipitation and
maximum temperature for three different large-ensemble
CMIP6 models. We focus on changes under four different
global warming levels (1-4 °C) as well as changes in the near
future driven by different anthropogenic drivers (specifically
anthropogenic aerosols and greenhouse gases).
Our main findings are listed below.

— Changes in daily variability are the main drivers of
changes in the likelihood of extreme summertime pre-
cipitation. In contrast, the change in the mean state is
the primary driver of changes in temperature.

— Three key regions, namely Asia, the Arctic and sub-
Saharan Africa, show that changes in the width and
shape of the PDFs are particularly relevant in influenc-
ing summertime precipitation.

— In the near future, aerosol emission reductions are likely
to increase the likelihood of extreme summertime pre-
cipitation over Asia.

— Model discrepancies dominate estimates of the impact
of different climate drivers in the near future.

We find that aerosol emissions play a key role in the near-
future evolution of regional precipitation extremes due to the
ongoing reduction of anthropogenic aerosol emissions and
their strong influence on daily precipitation variability. This
would suggest that simple aerosol representations, as imple-
mented in the MPI-ESM1-2-LR model, lead to an underes-
timation of aerosol impacts compared to models with more
advanced aerosol schemes, like in ACCESS-ESM1-5. Still,
large uncertainty remains on how regional PDFs of precipi-
tation will change (shape and width) in the future under dif-
ferent emission pathways. Global warming will lead to more
extreme precipitation in many regions. How the near-term
mix of anthropogenic and natural drivers will influence the
width and shape of the distributions of daily weather, how-
ever, is still a relevant topic for future research.

Atmos. Chem. Phys., 25, 1659—-1684, 2025
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Appendix A: Results from PDRMIP

EXP - BASE

HadGEM2 emi

Figure A1. Changes in the average number of days per year of extreme (0.90 quantile) precipitation due to the global doubling of CO,
concentrations as simulated by nine different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-
driven (conc).
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Figure A2. Changes in the average number of days per year of extreme (0.90 quantile) precipitation due to a global 5-fold increase in sulfate
emissions as simulated by nine different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-driven

(conc).
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Figure A3. Changes in the average number of days per year of extreme (0.90 quantile) precipitation due to a global 10-fold increase in black
carbon emissions as simulated by nine different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-

driven (conc).
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Figure A4. Changes in the daily summertime PDF standard deviation due to a global doubling of CO, concentrations as simulated by nine
different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-driven (conc). Correlation between
standard deviation and change in extremes is shown in the corner.
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Figure A5. Changes in the daily summertime PDF standard deviation due to a global 5-fold increase in sulfate emissions as simulated by
nine different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-driven (conc). Correlation between
standard deviation and change in extremes is shown in the corner.
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Figure A6. Changes in the daily summertime PDF standard deviation due to a global 10-fold increase in black carbon emissions as simulated
by nine different PDRMIP models. Panel titles indicate if a model is emission-driven (emi) or concentration-driven (conc). Correlation
between standard deviation and change in extremes is shown in the corner.
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Figure A7. Change in number of extreme heat days due to change in global warming levels.
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Appendix B: Main figures for DJF
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Figure B1. Total change in the number of days of intense precipitation events during DJF under different global warming levels. Stippling
indicates regions where changes in PDFs are significant at p > 0.05.
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Figure B2. Changes in the number of days of intense DJF precipitation events due to changes in variability under different global warming
levels. Stippling indicates regions where changes in PDFs are significant at p > 0.05.
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Figure B3. Changes in the number of extreme DJF precipitation events due to changes in the mean under different global warming levels.
Stippling indicates regions where changes in PDFs are significant at p > 0.05.
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Figure B5. Change in number of extreme heat days due to change in mean with respect to global warming levels.

Appendix C: Near future
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Figure C1. Near-future changes in number of extreme precipitation days for MPI-ESM1-2-LR under four different SSP scenarios (columns)
and for three different time periods (from left to right: 2025-2035, 2035-2045 and 2045-2050).
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Figure C2. Near-future changes in number of extreme precipitation days for ACCESS-ESM -5 under four different SSP scenarios (columns)
and for three different time periods (from left to right: 2025-2035, 2035-2045 and 2045-2050).
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Figure C3. Near-future changes in the number of extreme precipitation days for CanESMS5 under four different SSP scenarios (columns)
and for three different time periods (from left to right: 2025-2035, 2035-2045 and 2045-2050).
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Figure C4. Change in likelihood in days of extreme JJA precipitation between SSP1-2.6 and SSP3-7.0 for three different models: ACCESS-
ESM1-5 (a—c), CanESMS5 (d—f) and MPI-ESM1-2-LR (g-i). Hatching indicates regions where all three models agree on the sign of the
change.
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Appendix D: Model discrepancies
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Figure D1. Evolution of regional mean standard deviation, kurtosis and skewness for three regions and three models.
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Figure D2. Evolution of regional power spectral density for three regions and three models.
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