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Abstract. Stratiform liquid cloud profiles are key to deciphering cloud life cycles, microphysical processes,
and climate change impacts. Nevertheless, remote sensing of cloud vertical structure remains largely unresolved.
CloudSat active measurements provide cloud microphysical profile products but are restricted to narrow orbital
tracks. Multiangle passive imagers, such as Polarization and Directionality of Earth’s Reflectance (POLDER),
are capable of generating a variety of cloud properties with broad area coverage; however, they lack key prior
knowledge and effective methods for obtaining cloud vertical information. Focusing on single-layer cloud profile
retrieval, we first reveal the structural characteristics of stratiform cloud effective radius (CER) profiles based on
global CloudSat data and find that the dominant structures include triangle-shaped and monotonically decreasing
profiles, which account for approximately 88.5 % of global liquid CER profiles. Furthermore, we propose a novel
approach to estimate the structural characteristics of triangle-shaped profiles from POLDER observations like
the properties of the profile turning point (TP). This approach integrates vertical structure morphology recogni-
tion with a combination of fitting methods and machine learning models. The cloud profiles are then accurately
reconstructed using physical parameterization models. Our retrieval results exhibit good consistency with active
observations, with an RMSE of 1.1 µm for TP_CER and 0.1 for the normalized cloud optical thickness at the
TP. This research advances the parameterization of liquid cloud profiles and enables profile structural character-
istic retrieval based on a multiangle passive imager. Our findings provide valuable insights into improving the
understanding and modelling of cloud processes in weather and climate systems.

1 Introduction

Low stratiform liquid clouds, which cover nearly 30 % of
the Earth’s surface (Warren et al., 1986, 1988, 2007; Wood,
2012; Wood, 2015), play a crucial role in the climate sys-
tem due to their extensive coverage and significant radia-
tive effects, including reflecting shortwave solar radiation
and absorbing longwave radiation from the Earth (Slingo,

1990; Chen et al., 2000; Greenwald et al., 1995). These
clouds are a key component of climate and must be ac-
curately represented in general circulation models (GCMs)
(Dong and Minnis, 2023; Turner et al., 2007). Compared
with ice clouds, which have complex vertical structures and
high uncertainty, stratiform liquid clouds are relatively ho-
mogeneous in the horizontal direction and have a certain
thickness (Zhang et al., 2010; Mace et al., 2009). Therefore,
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these clouds are relatively ideal for studying cloud properties
and growth processes using satellite observations and mod-
els.

The cloud microphysical profile is an indispensable pa-
rameter for describing cloud vertical structures, such as the
profile of cloud effective radius (CER) and liquid water con-
tent (LWC) (Chen et al., 2008). Studies have demonstrated
that cloud vertical structures are closely linked to the cloud
life cycle and precipitation characteristics, atmospheric cir-
culation, cloud – precipitation microphysical processes, and
conditions for artificial rainfall (Nakajima et al., 2010a, b;
Zhao et al., 2024; Breon and Doutriaux-Boucher, 2005; Sin-
clair et al., 2021). Accurately and comprehensively detect-
ing and quantifying the vertical structural characteristics and
geographical distribution of clouds is highly important for
reducing uncertainties in the impact of clouds on climate
change and exploring the role of clouds and related feed-
backs in complex processes (Rosenfeld and Lensky, 1998;
Kessler, 1969; Liu et al., 2006).

Active remote sensing systems, such as ground-based,
satellite-borne, and airborne radars, provide precise vertical
microphysical cloud data but are constrained by narrow ob-
servational swaths (Battaglia et al., 2020; Protat et al., 2009;
Fox and Illingworth, 1997). In contrast, passive remote sens-
ing enables large-scale cloud monitoring through multispec-
tral measurements of reflected solar radiation and emitted
thermal radiation, offering broad coverage with high spa-
tiotemporal resolution (Nakajima et al., 2010a; Letu et al.,
2020; Tana et al., 2023; Shi et al., 2025; Letu et al., 2023;
Tang et al., 2025). However, conventional plane-parallel
cloud assumptions in passive satellite cloud retrievals con-
tradict natural three-dimensional cloud structures (Platnick,
2001; Horváth and Davies, 2004). Integrating passive and
active satellite measurements can effectively combine their
complementary advantages, thereby significantly enhancing
the ability of passive sensors to retrieve cloud vertical micro-
physical properties.

Polarimetric multiangle imagers are widely regarded as
pivotal instruments for acquiring multidimensional informa-
tion in global and regional cloud property retrievals (Wang
et al., 2022; Bréon and Goloub, 1998; Shang et al., 2019).
Unlike conventional passive optical satellite payloads, these
advanced sensors synergistically combine multiangle, multi-
polarization, and multispectral characterization capabilities,
thereby maximizing observational information for individ-
ual pixels and specific targets (Dubovik et al., 2019). More-
over, the CER can be retrieved more reliably and robustly
through polarized multiangle observation data, which also
provides effective variance information, than through use of
the MODIS imager (Breon and Doutriaux-Boucher, 2005;
Bréon and Goloub, 1998; Shang et al., 2019). These fac-
tors significantly increase the potential for retrieving cloud
vertical properties from passive satellite observations. The
POLDER series represents the most mature polarimetric
multiangle payloads internationally. Although POLDER-3,

the final payload launched in 2004, was decommissioned in
2013, the upcoming 3MI payload onboard the EUMETSAT
Polar System Second Generation (EPS-SG) program will ef-
fectively inherit and improve POLDER-3’s observational ca-
pabilities (Fougnie et al., 2018).

While significant research efforts have focused on cloud
vertical structure retrieval (Rosenfeld and Lensky, 1998;
Chen et al., 2020; Alexandrov et al., 2020; Barker et al.,
2011; Leinonen et al., 2019; Shang et al., 2023), substantial
challenges persist in large-scale vertical microphysical char-
acterization, including insufficient prior knowledge from ac-
tive sensors to guide passive retrieval algorithms and poorly
understood correlations between key profile features and
other cloud parameters. Additionally, comprehensive statis-
tical analyses examining global-scale cloud profiles from
structural and morphological perspectives are lacking. These
gaps highlight the need for enhanced integration of active
and passive systems with advanced and novel approaches
in cloud profile retrieval. To address the above challenges,
this paper focuses on quantifying and retrieving the vertical
microphysical characteristics of single-layer stratiform liq-
uid clouds. Using observation data from the CloudSat cloud
profile radar (CPR), we extract global stratiform liquid cloud
profile data over nearly three years. Through a novel perspec-
tive of analyzing profile shapes and structural characteristics,
we aim to compensate for the lack of a priori knowledge
of cloud profile retrieval by passive observation, to under-
stand the significance of profile shape in the cloud life cycle,
and to explore the correlation between structural features of
the cloud profile and other cloud parameters. Moreover, this
study reports the first retrieval of key cloud profile features
from POLDER/Parasol satellite observations and the recon-
struction of complete cloud profiles.

2 Datasets

2.1 CloudSat data

The main mission of the CloudSat satellite is to detect cloud
vertical structures and improve the understanding of cloud
abundance, distribution, structure and radiation character-
istics. To date, the CloudSat official website has released
observations from 2006 to 2020. The instrument carried
by CloudSat is the Cloud Profile Radar (CPR), which is a
94 GHz millimeter-wave radar with a sensitivity 1000 times
that of a standard weather radar. The CPR transmits energy to
the Earth and calculates the energy returned by the cloud as a
function of distance. Global CER profiles of liquid stratiform
clouds are derived from the latest version (R05) of Cloud-
Sat’s 2B-CWC-RO product. This dataset provides vertical
measurements of hydrometeor water content, number con-
centration, and effective radius, featuring 125 layers at 240 m
vertical resolution across a 30 km detection range (Austin,
2007). Moreover, we employ the 2B_CLDCLASS_radar
product (R05) of CloudSat for cloud layer information, in-
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cluding cloud layer type, cloud layer base height, cloud layer
top height, land/sea flag, etc. The precipitation flags are ob-
tained from the 2B-CLDCLASS product (R05) of Cloud-
Sat. Users can download all standard CloudSat products
from the official CloudSat Data Processing Center at https:
//www.cloudsat.cira.colostate.edu (last access: 17 November
2025).

As part of the A-train satellite constellation, CloudSat
can also offer synergistic observation capabilities with other
passive sensors, such as MODIS and POLDER. Although
CloudSat/CPR is sensitive to hydrometers, uncertainties in-
evitably exist in these products: (1) Near the cloud base, the
presence of drizzle or raindrops – due to predefined thresh-
old settings – may hinder the ability to reliably distinguish
them from cloud droplets, (2) contamination by drizzle and
raindrops can cause deviations in the observed cloud droplet
size distribution from the theoretical distribution, thereby in-
troducing errors in the retrieval process (Austin, 2007), and
(3) due to the limitations of 240 m resolution, it may not be
possible to identify ultra-thin layer structures below 240 m.

2.2 Parasol data

The POLDER-3/Parasol payload is a multiangle, multipolar-
ized, and multispectral instrument designed for atmospheric
aerosol, cloud, water vapor, and radiation budget studies. Op-
erating from September 2004 to October 2013, POLDER-
3 features three polarized (490, 670, and 865 nm) and six
nonpolarized (443, 565, 763, 765, 910, and 1020 nm) ob-
servation channels, providing atmospheric data from up to
16 angles with a nadir resolution of 5.3 km× 6.2 km (De-
schamps et al., 1994). Parasol joined the A-Train constella-
tion in 2005, but regrettably, it drifted away from the for-
mation in 2009. Nevertheless, the combined POLDER and
CloudSat data still hold significant research value. This study
employs their observations for the remote sensing of profiles,
offering insights for future sensor combinations such as 3MI
and EarthCARE.

Our study uses POLDER-3 Level-1 (L1_B) products and
cloud optical thickness parameters from Level-2 (RB2) prod-
ucts as input data for estimating the structural characteristics
of cloud profiles. Moreover, we employ the CER retrieved
by an improved primary cloudbow retrieval (PCR) algorithm
(Shang et al., 2019) and the cloud-base height and cloud-top
height retrieved based on POLDER data. The PCR algorithm
permits an extended range of CER (3–25 µm) and EV (0.01–
0.29) estimates and a higher resolution (40–60 km) in the re-
trieval by using POLDER polarized measurements from both
primary and supernumerary cloudbow regions. The retrieval
algorithm for cloud base height will be thoroughly described
in a forthcoming article and is therefore not discussed here

3 Methodology

The study workflow (Fig. 1) is divided into three main parts:
first, classifying the shapes of CER profiles from CloudSat
data and examining their structural features; second, con-
ducting correlation analyses between the structural features
of these profiles and other relevant cloud parameters; and
third, parameterizing cloud profiles, retrieving their key char-
acteristics and reconstructing the complete profile. The meth-
ods employed in this study are introduced below.

3.1 Cloud profile data preprocessing and shape
simplification

To ensure the accuracy and consistency of the research data
and to provide a reliable basis for subsequent analysis, we
preprocessed the CloudSat profile data. Preprocessing in-
volves mainly data screening and matching, as well as stan-
dardizing the data to better reveal the structural character-
istics of the profiles. Due to the complexity of multilay-
ered clouds and the dominance of single-layer cases, we
limit our investigation to single-layer cloud profiles. Based
on global CloudSat data product over nearly 3 years (2013,
2019, and the first 8 months of 2020), we extracted approx-
imately 12.47 million CER profiles of single-layer stratocu-
mulus and stratus clouds, with each profile linked to mul-
tiple auxiliary cloud parameters. The auxiliary information
includes profile observation time, geographic coordinates,
cloud-top height, cloud-base height, geometric thickness, liq-
uid water path, corresponding liquid water content (LWC)
profile for each CER profile, cloud type, land/sea flag, and
precipitation flag. Moreover, the normalized optical thick-
ness and normalized height at each layer of the profile are
calculated for subsequent comparative analysis. Notably, the
normalized optical thickness is 0 at the cloud top and 1 at
the cloud base, whereas the normalized height is 1 at the
cloud top and 0 at the cloud base. The selection of 2013,
2019, and 2020 is not arbitrary but strategically chosen to
align with existing polarized multi-angle payload observa-
tions. Furthermore, since our study focuses on relatively ho-
mogeneous and stable single-layer stratiform liquid clouds,
localized atmospheric anomalies do not impact the statistical
results presented herein.

Here, we propose a shape simplification scheme primarily
based on the Visvalingam–Whyatt line simplification (VM)
algorithm (Visvalingam, 2016) to extract the essential shape
characteristics of profiles. This approach effectively simpli-
fies complex profile geometries while preserving their fun-
damental structure, thereby eliminating interference with the
extraction of key profile features. The VM algorithm, which
was originally designed for vector data processing, preserves
geometric characteristics while reducing the number of data
points. The simplification steps include (1) setting a dis-
tance threshold (decimation factor) as the simplification cri-
terion; (2) calculating the area of triangles formed by con-
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Figure 1. Research Framework Flowchart (TP_CER represents the cloud effective radius at the profile turning point; TP_NCOT represents
the normalized cloud optical thickness at the profile turning point; CT_CER represents the cloud effective radius at the cloud top; CB_CER
represents the cloud effective radius at the cloud base; TP_LWC represents the liquid water content at the profile turning point; TP_NH
represents the normalized height at the profile turning point; LWC represents the liquid water content; CTH represents the cloud-top height;
CBH represents the cloud-base height; CGT represents the cloud geometric thickness).

secutive points and identifying the smallest area (Amin); and
(3) deleting the middle vertex if Amin<A and repeating
the process until all areas exceed the threshold. This ap-
proach minimizes angular changes and maintains the pro-
file’s true form, enabling faster and more accurate identifi-
cation of turning points in subsequent analyses.

3.2 Feature selection and variable screening

Feature selection and variable screening were conducted
for the subsequent retrieval of key profile characteris-
tics through correlation analysis. The turning-point cloud
effective radius (TP_CER), normalized optical thick-
ness (TP_NCOT), and related cloud parameters are ex-
tracted from CloudSat-derived CER profiles exhibiting an
“increasing-then-decreasing” shape. The related cloud pa-

rameters include cloud-top CER (CT_CER), cloud-base
CER (CB_CER), the liquid water path (LWP), cloud-top
height (CTH), cloud-base height (CBH), cloud geometric
thickness (CGT), normalized height at the turning point
(TP_NH), and liquid water content at the turning point
(TP_LWC). The correlation coefficients between these cloud
parameters and the key CER profile structural characteris-
tics (TP_CER and TP_NCOT) are calculated. The parame-
ter combinations that exhibit a high correlation with the key
structural characteristics of CER profiles are selected as input
variables for the subsequent model.

Atmos. Chem. Phys., 25, 16167–16187, 2025 https://doi.org/10.5194/acp-25-16167-2025



Y. Wang et al.: Characterization of liquid cloud profiles using collocated active and passive measurements 16171

3.3 Retrieval of profile key characteristics and profile
reconstruction

For the retrieval of stratiform liquid cloud profiles, the esti-
mation of key profile characteristics is performed first, fol-
lowed by inputting these key characteristics into a physical
parameterization model to reconstruct the complete cloud
profile. The estimation methods for the key profile struc-
tural features (TP_CER and TP_NCOT) are carefully se-
lected based on the results of the correlation analysis. When
the correlation analysis shows that certain parameters have
strong correlations with the key profile structural features, a
multiple regression model is employed to estimate these fea-
tures. Conversely, when all the parameters exhibit weak cor-
relations with the key profile structural features, we compare
the performance of the machine learning model with that of
multiple regression and select the approach that demonstrates
superior accuracy. Additionally, different combinations of in-
put parameters are compared to achieve the highest estima-
tion accuracy and computational efficiency.

The optimal multiple linear regression model is selected
based on the number of highly correlated variables in the cor-
relation analysis: the selected cloud parameters with higher
correlations serve as independent variables (X1,X2, . . .,Xk),
whereas TP_CER is treated as the dependent variable Y ,
establishing a multiple linear regression model. The model
takes the following form:

Y = β0+β1X1+β2X2+ . . .+βkXk (1)

where β0 is the constant term and β1,β2, . . .,βk denote the
regression coefficients. Approximately 50 % of the CloudSat
dataset is used as the training set to estimate the regression
coefficients through least squares methods and obtain opti-
mal model parameters, and the remaining 50 % is used for
validation.

Given its demonstrated high stability in cloud property
retrievals and previous testing, the random forest is cho-
sen as the primary machine learning model for estimating
key features. Compared with multiple decision trees, the
random forest model trains each tree through random sam-
pling and feature selection. The ratio of the training set to
the test set remains approximately 1 : 1, which is consis-
tent with the regression models. Ultimately, the most accu-
rate method and optimal input parameter combination are
applied to POLDER data to retrieve the key structural char-
acteristics of CER profiles. The accuracy metrics, including
the root mean square error (RMSE), Pearson correlation co-
efficient (R), coefficient of determination (R2) and relative
root mean square error (rRMSE), are used to evaluate the ac-
curacy of the parameter estimation.

To extend profile feature estimation to the scope of pas-
sive observations, we constructed a cost function F based on
L2 product parameters from POLDER-3 observations cover-
ing all pixels within the observational range, as well as pas-
sive observation L2 product parameters of triangle-shaped

profiles in CloudSat observations. The L2 product parame-
ters include COT, CGT, the temperature profile (10 layers),
and the water vapor profile (9 layers). The cost function is
defined as follows:

F (i,j,m)=
V∑
v=1

[
Pv(i,j )−Pv(m)

Pv(m)

]2

:m ∈ [0,M] (2)

where i and j are the row and column numbers of the pixel;
m is the index of the active-passive synergistic pixel with an
Inc_Dec profile; and Pv represents the value of the L2 prod-
uct parameters. In this study, the threshold for the cost func-
tion is set to 0.5. If the cost function of a pixel is less than 0.5,
the atmospheric environment forming the cloud and the pro-
file shape of the cloud within that pixel are similar to the
triangle-shaped profiles along the CloudSat observation tra-
jectory.

The estimated profile structural characteristics are input
into the cloud profile reconstruction model (CPRM) to re-
construct complete profiles. The CPM, proposed by Shang
et al. (Shang et al., 2023), is a parameterization model de-
rived from extensive cloud profile data simulated by the Col-
orado State University (CSU) Regional Atmospheric Model-
ing System (RAMS). The CPM assumes that the particle ra-
dius profile and liquid water content profile are either linear
or triangular. It identifies eight main parameters necessary to
fully describe a cloud profile: cloud geometric thickness (zc),
cloud optical thickness (τ ), turning-point normalized optical
thickness (tm) measured from the cloud top, effective radius
at the cloud base (rb), effective radius at the cloud top (rt),
effective radius at the turning point (rm), effective variance
of the gamma particle distribution (ve), and slope (k) of the
cloud droplet number concentration profile (N ). The CPRM
is an extension of the CPM, designed to reconstruct detailed
cloud profiles using limited measurement data from active
detection (Shang et al., 2025), which can be iteratively com-
puted based on the retrieved key profile structural features
(TP_CER and TP_NCOT) until it converges to a complete
profile structure with continuous layer information.

3.4 Match-up between POLDER and CloudSat data

To validate the profile structural characteristics retrieved by
passive satellite observations, a match-up process between
POLDER and CloudSat observations is conducted. We fo-
cus on March 2007 and identified coincident orbits that con-
tained a high number of stratiform cloud profiles exhibiting
a triangle-shaped vertical structure in CloudSat data. A spe-
cific dataset from 2 March 2007 (POLDER observation time
between 06:41:09 and 07:24:06 UTC) is selected for detailed
analysis in Sect. 4.3. The POLDER Level 2 (RB2) product
served as the primary dataset for matching with CloudSat ob-
servations. With a spatial resolution of approximately 16 km,
this product is notably coarser than CloudSat’s resolution
of less than 2 km. To establish correspondence between the
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datasets, the Euclidean distance between each POLDER RB2
pixel center and all CloudSat data points within the POLDER
RB2 pixel is computed. Owing to the resolution discrepancy,
a single POLDER RB2 pixel often contains multiple Cloud-
Sat data points. In such cases, only the CloudSat data point
closest to the center of the POLDER_RB2 pixel is retained.

Through the matching process, cloud optical thickness
(COT), latitude, longitude, and other relevant data are ex-
tracted from the POLDER RB2 product. These coordinates
are then used to extract cloud base height (CBH), cloud top
height (CTH), and cloud-top effective radius (CT_CER) ob-
tained through the retrieval algorithm. CBH and CTH are
retrieved from the POLDER L1 product, which has a na-
tive resolution of 6 km, matching the resolution of the source
data. CT_CER is retrieved from the POLDER L1 product at
a 50 km resolution.

3.5 Cloud base height retrieval algorithm

The cloud base height (CBH) retrieval algorithm (Ji et al.,
2025a) employed in this study is based on a deep neural net-
work trained on Parasol L1 measurements collocated active
sensor observations. The training dataset comprises Para-
sol L1 data – including intensity from 14 viewing angles
in the oxygen A-band (763 and 765 nm channels), longi-
tude, latitude, elevation, and cloud indicator – along with
the corresponding CBH values and cloud detection informa-
tion obtained from the CloudSat-CALIPSO L2 product 2B-
CLDCLASS-LIDAR. Data from March, June, September,
and December 2007 are primarily used, with the last seven
days of each month reserved for testing and the remaining
data used for training. To ensure high-quality training data,
only cases where Parasol confidently detected cloudy scenes
and CloudSat identified single-layer clouds are retained.
Spatial collocation accuracy is constrained to within 0.01°,
while temporal discrepancies are negligible due to the near-
simultaneous observations from the A-Train satellites. The
model utilizes geographic coordinates (longitude, latitude,
elevation) and multi-angle oxygen A-band information from
Parasol as inputs to predict CBH, with CloudSat-derived
heights serving as ground truth. This method enables the
CBH retrieval using only passive observations as input. The
validation results indicate that the retrieval achieves a mean
absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a
correlation coefficient (R) of 0.82.

It is important to note that the development, comprehen-
sive validation, and detailed methodological discussion of
this algorithm are beyond the scope of this study. A full de-
scription of the algorithm has been submitted to a separate
journal and is currently under review. To ensure transparency
and reproducibility, we provide a complete documentation
of the algorithm in the Supplement of this article. Further-
more, the code and pre-trained model have been made pub-
licly available (see the Data and Code Availability section).

4 Results

4.1 Typical shape and structural characteristic analysis
of CER profiles

We conduct categorical statistics based on three criteria,
namely, cloud type (stratocumulus/stratus), underlying sur-
face type (sea/land), and precipitation occurrence (non-
precipitating/precipitating), to investigate the characteristic
effective particle profiles across different cloud categories.
Figure 2 presents the results of the quantitative analysis of
the spatial distribution and categorical proportions of the pro-
file data within our dataset. Spatially, single-layer stratiform
liquid cloud profiles occur more frequently over mid- to low-
latitude oceans in the Southern Hemisphere and high-latitude
oceans in the Northern Hemisphere, whereas generally lower
occurrence rates occur over land areas. The striated features
apparent in Fig. 2a result from CloudSat’s narrow-swath ob-
servations. Figure 2b more visually illustrates the significant
land-ocean disparity: for stratiform cloud profiles, the surface
type ratio is 88.3 % ocean to 11.7 % land, whereas for stra-
tocumulus profiles, the ratio is 84.4 % ocean to 15.6 % land.
For both cloud types, the nonprecipitating-to-precipitating
ratio is approximately 2 : 3, and precipitating clouds are
slightly more frequent. It should be noted that the CloudSat
CWC-RO product is known to miss a portion of single-layer
liquid clouds, either due to masking by surface clutter or be-
cause their signal falls below the radar’s detection threshold
(Lamer et al., 2020; Schulte et al., 2023). As a result, the
true ratio of nonprecipitating to precipitating clouds is likely
higher than reported in this study. The vertical distribution
patterns are presented in Fig. 2c. Notably, 99.46 % of sea and
99.62 % of land liquid stratiform cloud profiles are concen-
trated within layers 3–11. Based on the above analysis, given
CloudSat’s vertical resolution of 240 m per bin and the fact
that approximately 99.5 % of the profiles are concentrated
within 11 bins, this study focuses on single-layer stratiform
liquid clouds with a geometric thickness of less than 2.64 km.

Through an extensive literature review and visual analy-
sis of CloudSat single-layer liquid cloud profiles, the vertical
variation of cloud effective radius (CER) can be classified
into four distinct shapes based on the monotonicity between
adjacent layers: (1) triangle shaped (Inc_Dec), increasing
then decreasing; (2) monotonically decreasing (Mono_Dec);
(3) monotonically increasing (Mono_Inc); and (4) decreas-
ing then increasing (Dec_Inc). These shapes depict the verti-
cal variation in the CER from the cloud base to the top. The
four shapes can be simply expressed by the following formu-
las:

Inc_Dec: CER1 < CER2 < .. . < CERk > CERk+1

> .. . > CERN ,1< k < N (3)
Mono_Dec: CER1 > CER2 > .. . > CERN (4)
Mono_Inc: CER1 < CER2 < .. . < CERN (5)
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Figure 2. Distribution and composition of effective data on the investigated liquid stratiform cloud profiles. (a) Geographical distribution of
effective data; (b) statistical chart of land/sea and precipitation/non-precipitation composition of effective data; (c) distribution and number
of profile valid data bins.

Dec_Inc: CER1 > CER2 > .. . > CERk < CERk+1

< .. . < CERN ,1< k < N (6)

Where CERi denote the CER at the ith vertical level
(bin), i = 1 corresponds to the cloud base and i =N to
the cloud top. Systematic classification and statistical anal-
ysis confirm these patterns (Fig. 3a). Collectively, these four
shapes account for 90.1 % of the observed CER profiles,
with Shapes 2 (Mono_Dec: 48.8 %) and 1 (Inc_Dec: 39.7 %)
being the most prevalent, highlighting their dominance in
the liquid stratiform cloud life cycle. The remaining 9.1 %
represent complex-shaped profiles that do not conform to
these four categories, with further analysis of these cases pre-
sented in the Appendix A (Table A3). Approximately 60 % of
these profiles contain only single segments inconsistent with
Shapes 1 and 2. Although our profile simplification program
can reduce complex shapes to simpler forms, there is contro-
versy regarding the specific categories to which these shapes
belong. Taking Fig. A1 as an example, Complex Shape 1 and
Complex Shape 2 can be simplified into different primary
shapes. Therefore, we believe that these 9.1 % of complex
profile shapes can be further analyzed in subsequent studies,
but it is unnecessary to include them in the follow-up parts
presented in this study, as their inclusion would introduce un-
necessary errors into our retrieval prior knowledge.

These shapes correspond to distinct development stages of
the cloud life cycle (Fig. 4). Initial updrafts drive adiabatic
growth, leading to a reduction in droplet size with increasing
optical thickness. Mature clouds exhibit enhanced evapora-
tion at the cloud top due to dry air entrainment, further re-
ducing droplet size (Shape 1, Fig. 4a). In contrast, collision-
coalescence near the cloud base promotes droplet growth and
spectral broadening (Shape 2, Fig. 4d). The distinction be-
tween Fig. 4c and d lies in the presence of precipitation be-
low the cloud base, which results in larger base particle sizes.
If precipitation-induced droplet accumulation in the lower
cloud layer reduces droplet size (based on Fig. 4d), the re-
sulting pattern resembles that in Fig. 4b.

Since the Inc_Dec shape is more complex than the
Mono_Dec shape is and more structural characteristics re-
quire investigation (e.g., turning points of profiles), this
study focuses specifically on analyzing the structural char-
acteristics of Inc_Dec profiles. The analysis establishes a
foundation for subsequent feature parameterization and es-
timation. Unlike other shapes, the key parameters essen-
tial for describing Inc_Dec profiles are the turning-point
CER (TP_CER) and the turning-point normalized optical
thickness (TP_NCOT). Figure 3c shows the TP_CER dis-
tribution for Inc_Dec profiles. Nonprecipitating stratiform
clouds exhibit a single-peak TP_CER distribution between
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Figure 3. Categorical statistics of stratiform cloud profile shape and the distribution of CER and normalized optical thickness at the TP
of Inc_Dec (Shape 1) profiles. (a) Shape of all profile data; (b) shape of land/sea profile data; (c) TP_CER of stratiform cloud profiles;
(d) TP_NCOT of stratiform cloud profiles.

8 and 25 µm, peaking near 12 µm. Precipitating stratiform
clouds exhibit a single-peak TP_CER distribution between
10 and 25 µm, peaking near 17 µm. The analysis reveals
several key results: (1) precipitating cloud profiles present
larger (by 3–5 µm) TP_CERs than nonprecipitating clouds
do, and (2) oceanic stratiform cloud profiles present a nar-
rower TP_CER range than their land counterparts do.

The distributions of TP_NCOT for stratocumulus and stra-
tus clouds are shown in Fig. 3d. TP_NCOT indicates the po-
sition of the TP within the cloud profile. The key observa-
tions include the following: (1) the TP_NCOT of liquid strat-
iform clouds exhibits a multipeak distribution; (2) nonprecip-
itating cloud TPs are concentrated in the upper optical thick-
ness region (NCOT: 0–0.5), while land-precipitating cloud
TPs show a symmetric distribution around NCOT= 0.5,
and oceanic-precipitating cloud TPs are distributed predom-
inantly between 0.5 and 1. This suggests that precipitating
cloud TPs occur closer to the cloud base than nonprecipitat-
ing clouds do, which is consistent with the cloud life cycle
illustrated in Fig. 3. (3) The peak of the oceanic precipitating
cloud distribution clusters around NCOT= 0.5.

4.2 Correlation analysis of profile structural features

During the profile retrieval process, to determine the main
structure of the cloud profile, it is necessary to obtain the
relevant information at the profile TP, as well as at the bot-
tom of the cloud. Many previous studies have focused on the
retrieval of cloud bottom parameters; however, few studies
have explored cloud profile TP information, so we would like
to establish a parameterized scheme and estimation method
for cloud profile TP-related information. To further investi-
gate the correlation between the structural features of the pro-
file and other cloud parameters, we initially examined the re-
lationships of both TP_CER and TP_NCOT with other cloud
parameters for Inc_Dec profiles. The study randomly se-
lected 4800 data points for each of the eight stratiform clouds
to be analyzed, and the correlations between the TP_CERs of
the eight stratiform clouds and the nine cloud parameters are
presented in Fig. 5a. For different types of clouds, TP_CER
has a strong correlation with cloud-base CER and the liquid
water path (LWP), which generally range from 0.75 to 0.92,
among which the cloud-base CER has the highest correla-
tion with the TP_CER of the stratiform cloud profiles. More-
over, TP_CER also has a strong correlation with the liq-
uid water content at the TP (TP_LWC), and the correlation
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Figure 4. Schematic diagram of the cloud life cycle stages corresponding to different profile shapes. (a) and (b) represent cloud droplet de-
velopment corresponding to Inc_Dec (triangle-shaped) profiles; (c) and (d) represent cloud droplet development corresponding to Mono_Dec
profiles.

between stratiform cloud TP_CER and TP_LWC fluctuates
over a wider range, between 0.462 and 0.784. The cloud-base
height, TP_NH, and TP_NCOT have weak correlations with
TP_CER, with correlations in the range of −0.26 to 0.13.
The cloud-top CER and cloud-top height have different de-
grees of correlation for the TP_CERs of different types of
clouds: the correlation of the cloud-top CER is greater for the
TP_CER of nonprecipitating stratiform clouds (0.42–0.51)
than that of precipitating stratiform clouds (0.23–0.27), and
the correlation of cloud-top height with the TP_CER of the
sea stratocumulus and stratus profiles is greater (0.41–0.49)
than that with the land stratiform clouds (0.18–0.29).

Figure 5b shows the correlations between the TP_NCOT
of stratiform cloud profiles and other cloud parameters. In
marked contrast to TP_CER, the correlations of almost all
cloud parameters with TP_NCOT, except for TP_NH, are
relatively weak, and almost all of them are in the range of
± 0.3. Since both TP_NH and TP_NCOT indicate where the
TP occurs in the cloud, it is understandable why they are
highly correlated. The weak correlation for TP_NCOT stems
from the fact that the TP position is largely independent of
common cloud parameters such as droplet size, cloud wa-

ter content, and cloud thickness. Instead, it is primarily in-
fluenced by microphysical processes like cloud-top entrain-
ment and precipitation formation, leading to a relatively ran-
dom distribution of TP_NCOT within the cloud layer. This
inherent randomness makes it inherently difficult to estimate
TP_NCOT using conventional correlation-based method.

To further investigate several parameters that are highly
correlated with TP_CER and their relative distributions with
respect to TP_CER, we randomly selected 4800 samples
with four cloud characteristics (Land Nonprecip, Sea Non-
precip, Land Precip, and Sea Precip) to generate scatter den-
sity plots. The relative distributions of parameters highly cor-
related with the TP_CER of stratiform cloud profiles are
shown in Fig. 6a–p. As illustrated in Fig. 6a–d, the scatter
points are located mostly below and close to the 1 : 1 line,
indicating a strong linear correlation between the CB_CER
and TP_CER of the profile. For sea cloud profiles, TP_CER
also shows a strong linear correlation with the LWP. In con-
trast, Fig. 6e and g show that, for land clouds, while TP_CER
still strongly correlates with the LWP, the scatter density plot
exhibits a vertical distribution along TP_CER, with points
diverging from the density center toward both sides. Sea
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Figure 5. Correlation of TP parameters with other cloud parameters. (a) correlation of turning point CER with other cloud parameters;
(b) correlation of the normalized optical thickness at turning point with other cloud parameters. The nine cloud parameters corresponding
to the vertical axis are, from top to bottom: cloud top CER (CT_CER), cloud bottom CER (CB_CER), liquid water path (LWP), cloud top
height (CTH), cloud bottom height (CBH), cloud geometric thickness (CGT), normalized height at the turning point (TP_NH), normal-
ized optical thickness at the turning point (TP_NCOT), and liquid water content at the turning point (TP_LWC). The nine types of clouds
corresponding to the horizontal axis are, from left to right: land non-precipitation stratocumulus (Land_Sc_np), sea non-precipitation stra-
tocumulus (Sea_Sc_np), land precipitation stratocumulus (Land_Sc_p), sea precipitation stratocumulus (Sea_Sc_p), land non-precipitation
stratus (Land_St_np), sea non-precipitation stratus (Sea_St_np), land precipitation stratus (Land_St_p), sea precipitation stratus (Sea_St_p).

cloud scatter points, however, show a radial distribution pat-
tern, dispersing symmetrically from the center. In Fig. 6i–l,
the scatter points form nearly horizontal stripes, with most
points concentrated around several CGT values. This is due
to CloudSat’s measurement method, which results in a dis-
continuous discrete distribution of CGT, thereby lowering
the linear correlation between CGT and TP_CER. TP_LWC
shows a high linear correlation with TP_CER, with multiple
density centers visible in the scatter density plots. As shown
in Fig. 6m–p, nearly all plots exhibit two density centers.
The two density centers observed in the relationship between
the TP_CER and TP_LWC reflect two distinct cloud micro-
physical regimes. One is primarily driven by condensational
growth, which tends to occur under low aerosol and stable
conditions, resulting in higher LWC for a given droplet size.
The other is dominated by collision-coalescence, typical in
relative high aerosol and dynamically active environments,
leading to lower LWC for the same droplet size.

4.3 Estimation of key structural features of CER profiles

Based on the previous analysis, CB_CER and the LWP
clearly have good linear correlations with TP_CER. There-
fore, we employ multiple linear regression to estimate
TP_CER for cloud profiles with four different characteris-
tics using CB_CER and the LWP as parameters. The goal
is to derive empirical fitting formulas for TP_CER based
on these two parameters. Three combinations of indepen-
dent variables were selected: (1) CB_CER and the LWP,
(2) CB_CER alone, and (3) the LWP alone. For all four cloud
types, using the combination of CB_CER and the LWP for
multiple linear regression clearly yields the highest accuracy
for estimating TP_CER. The validation results of TP_CER
estimation, shown in Fig. 7, indicate that the RMSEs are
1.19 for Sea Nonprecip, 1.30 for Sea Precip, 1.75 for Land
Nonprecip, and 1.96 for Land Precip. The estimation accu-
racy for sea cloud profiles is greater than that for land cloud
profiles. Additionally, for sea cloud profiles, the use of both
parameters for estimation significantly improves accuracy
compared with the use of only one parameter. However, for
land cloud profiles, the accuracy of TP_CER estimation us-
ing only CB_CER is comparable to the accuracy when both
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Figure 6. Relative distribution of cloud parameters (high correlation with TP_CER) and profile TP_CER. The green× represents binned
median of the parameter represented by the vertical axis; the black line segment represents binned median of the parameter represented by
the vertical axis ± σ .

CB_CER and the LWP are used, suggesting that CB_CER
alone is sufficient for estimating TP_CER for land cloud pro-
files. The final empirical fitting coefficient, predictive perfor-
mance and more specific verification results are shown in the
Appendix A.

In addition to TP_CER, we use random forest and mul-
tiple linear regression methods, considering various param-
eter combinations to estimate TP_NCOT, according to the
relatively weak correlation between other cloud parameters
and TP_NCOT. The results indicate that the random forest
method performs well for estimating TP_NCOT. The highest
accuracy for estimating TP_NCOT is achieved by combining
four parameters – CB_CER, CT_CER, CGT, and the LWP –
with RMSEs ranging from 0.1 to 0.12 and an R value of ap-
proximately 0.6, as shown in Fig. 8. Except for CTH, which
can somewhat replace CGT for estimating TP_NCOT, other
parameter combinations significantly reduce estimation ac-
curacy.

This study utilizes POLDER-3 Levels 1 and 2 (RB2)
data, with observations commencing on 2 March 2007, at

06:41:09 UTC, in conjunction with CloudSat products, to
perform active-passive satellite data matching. The primary
objective is to investigate the applicability of the proposed
profile structure characterization method for retrieving cloud
vertical structures from passive satellite data. This study fo-
cuses on a typical stratocumulus cloud region over the In-
dian Ocean, located west of Oceania, within the geographical
range of 40–65° S and 100–125° E, as shown in Fig. 9a. The
cloud-base CER is difficult to obtain directly through satel-
lite observations. Here, we first analyzed the statistical dis-
tribution of CloudSat-observed CB_CER and found its prob-
ability density function to be highly regular. Based on this
observation, we developed a multivariate regression model
using known parameters (CTH, the LWP, CT_CER, CBH) to
estimate CB_CER. The method achieved excellent results,
with the highest retrieval accuracy (for sea nonprecipitating
clouds) and an RMSE of 1.13 µm. Based on the aforemen-
tioned estimation method, we estimated the key structural
features of the cloud field profile in Fig. 9a – TP_CER and
TP_NCOT – with the results shown in Fig. 9f. Here, we
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Figure 7. Accuracy verification contour plots of the optimal TP_CER estimation method for four different types of clouds (sea nonprecipi-
tating, sea precipitating, land nonprecipitating, and land precipitating).

estimate only the TP information for profiles classified as
Inc_Dec.

The estimation accuracy is validated by comparing the es-
timated TP parameters derived from the POLDER-3/Parasol
and CloudSat input parameters against the actual CloudSat
measurements, as illustrated in Fig. 9b–e and g–j. Eight rep-
resentative profiles with TPs are selected based on Cloud-
Sat data. The comparative analysis reveals that the estima-
tion accuracy when CloudSat parameters are used slightly
surpasses that when POLDER-3 data are used. In particu-
lar, cases 3, 4, 5, 6, and 8 demonstrate satisfactory estima-
tion performance, whereas cases 1, 2, and 7 exhibit relatively
lower accuracy. This discrepancy can be attributed to three
primary factors: (1) The coarse resolution of POLDER prod-
ucts cannot capture inherent subpixel heterogeneity. This
study utilizes the POLDER Level 2 RB2 product (16 km
resolution) along with cloud top height (CTH), cloud base
height (CBH) (both at 6 km), and cloud top effective radius
(CER) data (50 km resolution), all of which are derived from
POLDER Level 1 products. Compared to CloudSat data, the
coarser resolution of POLDER may cause biases resulting
from subpixel heterogeneity. We conduct a further analy-

sis of the eight cases in Fig. A2 by averaging the Cloud-
Sat CER profiles within each corresponding POLDER pixel
along the altitude dimension. This process effectively ag-
gregates the high-resolution CloudSat profiles to the spa-
tial scale of a POLDER pixel, simulating what POLDER
would likely “see”. The resulting averaged profiles are then
compared against our validation data – the CloudSat pro-
file closest to the center of the POLDER pixel. Although
this study specifically targets horizontally relatively homo-
geneous single-layer stratiform water clouds, subpixel het-
erogeneity – resulting from POLDER’s coarse resolution –
remains one of the main sources of error in estimating the
structural parameters of cloud profiles. (2) Inherent physical
limitation: Vertically integrated signal. The retrieval of CER
from POLDER observations differs from traditional dual-
channel methods, relying instead on the directional charac-
teristics of polarized reflectance within the cloud bow scat-
tering angle range. It should be emphasized that all such
passive retrieval techniques essentially provide a vertically
integrated measurement – a weighted average signal sensi-
tive to microphysical properties from the cloud top down-
ward through a depth determined by cloud optical thickness.
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Figure 8. Accuracy verification contour plots of the optimal TP_NCOT estimation method for four different types of clouds (sea nonprecip-
itating, sea precipitating, land nonprecipitating, and land precipitating).

This fundamental characteristic inherently increases the un-
certainty in retrieving vertical structural features. (3) Propa-
gation of input uncertainties. Errors in the upstream inputs
(COT, CT_CER from POLDER, and CTH/CBH from the
combination of POLDER and ancillary data) inevitably prop-
agate into the LWP and CB_CER. This accumulated uncer-
tainty then propagates into errors in the final estimated profile
parameters, including the TP_CER and its location. Cases
with higher sub-pixel heterogeneity or where the cloud-top
CER is less representative of the layer-average are particu-
larly susceptible to this propagation effect.

5 Discussion and conclusion

The primary goal of this study was to analyze the structural
features and shapes of single-layer stratiform liquid cloud
CER profiles using global CloudSat data, with a focus on
understanding how these profiles represent different stages
of the cloud life cycle. We also aimed to retrieve key profile
characteristics from multiangle passive imager observations
and reconstruct complete cloud profiles using physical pa-
rameterization models.

Profile analysis of global single-layer stratiform liquid
clouds reveals two dominant profile shapes: Inc_Dec (tri-
angular shape, 39.7 %) and the Mono_Dec (48.8 %), which
represent nearly 90 % of cases. These shapes occur in both
precipitating and nonprecipitating clouds, reflecting differ-
ent lifecycle stages. For Inc_Dec profiles, the turning-point
(TP) CER (TP_CER) and its position are structurally sig-
nificant, showing strong correlations with cloud-base CER
(CB_CER), the liquid water path (LWP), cloud geomet-
ric thickness (CGT), and liquid water content at the TP
(TP_LWC). In contrast, the normalized optical thickness at
the TP (TP_NCOT) depends primarily on its normalized
height (TP_NH) and weakly on other parameters.

Multilinear regression is applied using POLDER-3 data
to estimate TP_CER. For maritime clouds, combining
CB_CER and the LWP achieves high accuracy (RMSE:
1.19–1.30 µm), whereas continental clouds require only
CB_CER (RMSE: 1.75–1.96 µm). For TP_NCOT, random
forest outperforms linear regression, with optimal results
(RMSE≈ 0.1) using CB_CER, cloud-top CER (CT_CER),
CGT, and the LWP. Cloud-top height (CTH) could partially
substitute for CGT.
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Figure 9. Comparative results of estimating the TP using passive data (Parasol) and active data (CloudSat). (a) True-color image drawn by
Parasol observation on 2 March 2007; (b)–(e) and (g)–(j) represent the 8 profile cases indicated in (a) and present a comparison between
the TP estimated by Parasol data and those estimated by CloudSat data, as well as the profiles and TP observed by CloudSat; (f) shows the
TP_CER and TP_NCOT results estimated by POLDER observation. The last row of panels in the figure represents the profiles reconstructed
by CPRM; (k)–(m) and (n)–(p) correspond to cases 1 and 2, respectively.

The primary challenges in retrieving profile structural fea-
tures originate from the following aspects: (1) The coarse res-
olution of POLDER products restricts the ability to capture
sub-pixel cloud heterogeneity; however, by concentrating on
relatively uniform single-layer stratiform liquid clouds, this
study partially mitigates the resulting retrieval uncertainties.
It should be noted that sub-pixel heterogeneity can inevitably
introduce certain errors, particularly at cloud boundaries.
Nevertheless, Shang et al. (2015) pointed out that the error
caused by sub-pixel heterogeneity in cloud effective radius
(CER) retrieval does not exceed 10 %, which remains within
an acceptable range. (2) The estimation of CB_CER remains
subject to certain uncertainties due to the inherent challenges
in retrieving cloud base microphysical properties from pas-
sive observations; (3) The 240 m vertical resolution of Cloud-
Sat is insufficient to resolve ultra-thin cloud layers or capture

fine-scale in-cloud structures, such as sharp inversion layers
or thin drizzling layers near cloud base.

To address the issues mentioned above, the improve-
ment strategies below can be implemented: (1) Internation-
ally, there are currently polarimetric multi-angle payloads
with higher spatial resolution and greater observation an-
gles that have been launched or are planned for launch.
For instance, China’s DPC/GF-5 achieves a spatial resolu-
tion of nadir 3.3 km; the 3MI/Metop-SG developed by the
European Space Agency offers a spatial resolution of nadir
4 km, supports up to 21 observation angles, and incorpo-
rates near-infrared bands. These capabilities collectively en-
able higher-resolution CER retrieval. (2) In terms of estimat-
ing the CB_CER: (a) Introduce meteorological factors – such
as ERA5 reanalysis data (e.g., wind speed, temperature, hu-
midity, pressure, vertical velocity) – to assist in estimating
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the CB_CER, thereby enhancing the physical characteriza-
tion of the cloud-base environment; (b) Optimize existing
methods for directly retrieving cloud-bottom particle size us-
ing passive observations (Level 1 or Level 2 products), im-
prove the robustness of the retrieval model, and clarify the
applicable boundaries of the method – specifically, deter-
mining the optical thickness threshold beyond which pas-
sive observations can no longer capture cloud-bottom infor-
mation; (c) Incorporate an uncertainty weighting framework
to dynamically adjust the contribution weights of different
input parameters based on their reliability, thereby refining
the retrieval accuracy of CB_CER and reducing dependence
on CloudSat-derived empirical relationships. (3) For the is-
sue that CloudSat is insufficient to distinguish thin clouds
or fine cloud structures smaller than 240 m, in the future,
the EarthCARE/CPR observation data with higher vertical
resolution can be adopted to alleviate this problem. Earth-
CARE/CPR demonstrates notable advancements over Cloud-
Sat, most significantly through its finer vertical resolution of
100 m compared to CloudSat’s 240 m. Additional enhance-
ments include higher detection sensitivity, Doppler-based
vertical wind measurements, and synchronized multi-sensor
observational capabilities. These improvements are expected
to deliver enhanced observational capabilities for character-
izing finer-scale cloud microphysical processes and their in-
teractions with atmospheric dynamics.

Meanwhile, the validation results indicate that the RMSE
of stratiform cloud profile structural characteristics over land
is significantly higher than that over sea. This discrepancy
is considered to be mainly attributable to the following fac-
tors: (a) Sub-pixel Surface Heterogeneity: Variations in sur-
face reflectance among different land cover types (e.g., veg-
etation, bare soil, urban areas) lead to mixed-pixel effects,
complicating the decoupling of cloud optical properties. (b)
Aerosol Interference: Higher and spatiotemporally variable
aerosol loadings over land can perturb cloud signals ei-
ther indirectly by altering cloud microphysics (e.g., through
cloud condensation nuclei effects) or directly via scattering.
(c) Surface Heating Effects: The lower thermal inertia of
land surfaces results in more complex boundary-layer dy-
namics, increasing spatiotemporal variability in cloud base
height and cloud layer thickness, which in turn elevates re-
trieval uncertainty. (d) Interference from complex terrain and
high-albedo surfaces: Complex terrain (e.g., mountains) and
high-albedo surfaces (e.g., snow cover) are prone to caus-
ing false positives in cloud detection or overestimation of
optical thickness. It is suggested that the following strate-
gies could be adopted in the future to improve the estima-
tion accuracy of stratiform cloud profile structural charac-
teristics over land: (a) Integration of land cover classifica-
tion data (e.g., MODIS Land Cover product); (b) Integration
of aerosol ancillary data: Multi-source aerosol observations
(e.g., MERRA-2 reanalysis data, AERONET ground-based
measurements) could be incorporated to better constrain re-
trieval parameters in regions affected by aerosol-cloud inter-

actions; (c) Development of advanced retrieval algorithms:
More sophisticated methods, such as machine learning or
deep learning approaches, could be employed to better rep-
resent the complex relationships between land surface, atmo-
sphere, and clouds.

Future work should focus on higher-resolution observa-
tions and improved retrieval methods to refine cloud struc-
tural analysis. In summary, this study advances methods for
estimating TP characteristics in liquid clouds but underscores
the need for enhanced observational capabilities and hybrid
active-passive approaches to fully resolve profile uncertain-
ties. Additionally, our work on the parameterization and re-
trieval of liquid cloud profiles through multiangle passive im-
agers provides valuable insights that can further improve the
understanding and modeling of cloud processes in weather
and climate systems.

Appendix A: Table of acronyms

CALIPSO Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations

CB_CER Effective Radius of Cloud Base
CBH Cloud Base Height
CER Cloud Effective Radius
CGT Cloud Geometric Thickness
CNES Centre National d’Études Spatiales
CPM Cloud Profile Model
CPR Cloud Profile Radar
CPRM Cloud Profile Reconstruction Model
CSU The Colorado State University
CT_CER Effective Radius of Cloud Top
CTH Cloud Top Height
Dec_Inc Decreasing then increasing
ECMWF European Centre for Medium-Range

Weather Forecasts
GCM General Circulation Model
Inc_Dec Increasing then Decreasing
LWP Liquid Water Path
MLR Multiple Linear Regression
Mono_Dec Monotonically Decreasing
Mono_Inc Monotonically Increasing
POLDER Polarization and Directionality of Earth’s

Reflectance
RAMS Regional Atmospheric Modeling System
RB2 Level 2 products of POLDER-3
RF Random Forest
RMSE Root Mean Square Error
TP Turning Point
TP_CER Cloud Effective Radius at the Turning

Point
TP_LWC Liquid Water Content at the Turning

Point
TP_NCOT Normalized Cloud Optical Thickness at

the Turning Point
TP_NH Normalized Height at the Turning Point
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Table A1. Empirical coefficient and predictive performance of estimating TP_CER via the multiple linear regression method.

Cloud profile type Empirical coefficient Predictive performance

β0 β1 (CB_CER) β2 (LWP) R2 R RMSE

Sea Nonprecip 2.2656 0.8342 0.0052 0.77 0.90 1.19
Sea Precip 3.6904 0.7920 0.0022 0.87 0.94 1.30
Land Nonprecip 0.5844 1.1234 – 0.54 0.83 1.76
Land Precip 3.7843 0.8985 – 0.63 0.86 1.96

Table A2. Statistics on the number of stratiform clouds categorized by land and sea, precipitating and nonprecipitating.

Sc St Sc +St

Land Nonprecip 1 034 462 15 823 1 050 285
Sea Nonprecip 4 016 879 135 926 4 152 805
Land Precip 853 197 28 468 881 665
Sea Precip 6 188 612 199 916 6 388 528
Sum 1 209 3150 380 133 1 247 3283

Table A3. Further statistics on CER profiles of complex shapes (“Other”: category V in profile shape).

Sc+St Sc+St

Land Nonprecip Sea Nonprecip Land Precip Sea Precip

Sum total 137 699 308 344 84 026 608 258
Percentage of situation 1a 33.57 % 33.57 % 47.88 % 49.68 %
Percentage of situation 2b 31.41 % 36.72 % 19.07 % 18.93 %
Intersection of 1 and 2c 8.40 % 11.72 % 6.31 % 6.21 %
Percentage of situation 1+2 56.58 % 58.57 % 60.63 % 62.40 %

a situation1 refers to a situation where only one segment of the profile does not correspond to the increasing and then
decreasing shape profile of shape1; b situation2 refers to a situation where only one segment of the profile does not correspond
to the monotonically decreasing shape profile of shape2. c There is an intersection of situation1 and situation2, i.e., a profile
that matches both situation1 and situation2 (Intersection of 1+ 2), which needs to be subtracted out when calculating the sum
of the two in order to avoid double counting.

Table A4. Validation accuracy of TP_CER linear regression when different parameters are used. The bold values indicate the highest
precision.

Dependent
variables

Independent
variables

R2 R RMSE Regression data volume Validation data volume

TP_CER
(Sea Nonprecip)

CB_CER;
LWP

0.77 0.90 1.19 1 400 000 1 389 529

CB_CER 0.52 0.82 1.59
LWP 0.61 0.85 1.47

TP_CER
(Sea Precip)

CB_CER;
LWP

0.87 0.94 1.30 700 000 710 750

CB_CER 0.82 0.92 1.46
LWP 0.35 0.78 2.37

TP_CER
(Land Nonprecip)

CB_CER;
LWP

0.54 0.83 1.75 250 000 260 999

CB_CER 0.54 0.83 1.76
LWP 0.28 0.76 2.43

TP_CER
(Land Precip)

CB_CER;
LWP

0.63 0.86 1.96 120 000 118 706
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Table A5. Validation accuracy of TP_NCOT predictions when different parameters and methods are used. The bold values indicate the
highest precision.

Dependent variables Independent variables R RMSE rRMSE Method

TP_NormCOT
(Sea Nonprecip)

CB_CER, CT_CER, CGT,
LWP

0.59 0.10 0.23 RF

CB_CER, CT_CER, CTH,
LWP

0.56 0.10 0.23

CT_CER, CGT, LWP 0.39 0.12 0.27
CB_CER, CT_CER, LWP 0.49 0.11 0.25
CB_CER, CT_CER, CGT,
LWP

0.51 0.11 0.24 MLR

TP_NormCOT
(Sea Precip)

CB_CER, CT_CER, CGT,
LWP

0.63 0.11 0.22 RF

CB_CER, CT_CER, CTH,
LWP

0.64 0.11 0.21

CT_CER, CTH, LWP 0.40 0.14 0.26
CB_CER, CT_CER, CGT,
LWP

0.52 0.12 0.24 MLR

TP_NormCOT
(Land Nonprecip)

CB_CER, CT_CER, CGT,
LWP

0.58 0.12 0.29 RF
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Figure A1. Complex CER profile shapes and their possible corresponding simplified shapes (examples).
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Figure A2. Comparison of the average CER profile (averaged by height) within the same POLDER pixel versus the CER profile closest to
the center of the POLDER pixel.

Code and data availability. All datasets used in this work are
open-source. The CloudSat datasets are available from the Cloud-
Sat Data Processing Center of the Cooperative Institute for Re-
search in the Atmosphere (http://www.cloudsat.cira.colostate.edu/,
last access: 17 November 2025). The Parasol products are avail-
able from ICARE Data and Services Center (https://www.icare.
univ-lille.fr/, last access: 17 November 2025). The code and
pre-trained model for the cloud base height retrieval algorithm,
along with a minimal dataset required to reproduce the key re-
sults, have been deposited on Zenodo under a permanent DOI:
https://doi.org/10.5281/zenodo.17082185 (Ji et al., 2025b).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-16167-2025-supplement.

Author contributions. HS and HL outlined the project, HS
and YW conceived the methodology and performed the experi-
ments, YW composed the manuscript, and all authors revised the
manuscript. HS and HL funded, supervised, and encouraged the re-
search.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. We are grateful to the Data Processing Cen-
ter (DPC) managed by the Cooperative Institute for Research in
the Atmosphere (CIRA) for providing CloudSat data, which has
greatly facilitated our research. The authors would also like to
thank ICARE Data and Services Center, Villeneuve d’Ascq Cedex,
France, for providing the POLDER-3/Parasol product (https://www.
icare.univ-lille.fr/, last access: 17 November 2025).

Financial support. This work was supported by the National
Key Research and Development Program of China (Grant No.
2023YFB3905900), the National Natural Science Foundation of
China (B) (Grant No. 42522507) and the Youth Innovation Pro-
motion Association of Chinese Academy of Sciences (Grant No.
2021122).

Review statement. This paper was edited by Zhibo Zhang and
reviewed by two anonymous referees.

Atmos. Chem. Phys., 25, 16167–16187, 2025 https://doi.org/10.5194/acp-25-16167-2025

http://www.cloudsat.cira.colostate.edu/
https://www.icare.univ-lille.fr/
https://www.icare.univ-lille.fr/
https://doi.org/10.5281/zenodo.17082185
https://doi.org/10.5194/acp-25-16167-2025-supplement
https://www.icare.univ-lille.fr/
https://www.icare.univ-lille.fr/


Y. Wang et al.: Characterization of liquid cloud profiles using collocated active and passive measurements 16185

References

Alexandrov, M. D., Miller, D. J., Rajapakshe, C., Fridlind, A.,
van Diedenhoven, B., Cairns, B., Ackerman, A. S., and Zhang,
Z.: Vertical profiles of droplet size distributions derived from
cloud-side observations by the research scanning polarimeter:
Tests on simulated data, Atmospheric Research, 239, 104924,
https://doi.org/10.1016/j.atmosres.2020.104924, 2020.

Austin, R.: Level 2B radar-only cloud water content (2B-CWC-RO)
process description document, Data Processing Center, 24, 2007.

Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D. P., and
Hogan, R. J.: A 3D cloud-construction algorithm for the Earth-
CARE satellite mission, Quarterly Journal of the Royal Meteoro-
logical Society, 137, 1042–1058, https://doi.org/10.1002/qj.824,
2011.

Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S.,
Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz,
K., Heymsfield, G., Li, L., and Furukawa, K.: Spaceborne
Cloud and Precipitation Radars: Status, Challenges, and
Ways Forward, Reviews of Geophysics, 58, e2019RG000686,
https://doi.org/10.1029/2019RG000686, 2020.

Breon, F. M. and Doutriaux-Boucher, M.: A comparison of
cloud droplet radii measured from space, IEEE Transac-
tions on Geoscience and Remote Sensing, 43, 1796–1805,
https://doi.org/10.1109/TGRS.2005.852838, 2005.

Bréon, F.-M. and Goloub, P.: Cloud droplet effective radius from
spaceborne polarization measurements, Geophysical Research
Letters, 25, 1879–1882, https://doi.org/10.1029/98GL01221,
1998.

Chen, R., Wood, R., Li, Z., Ferraro, R., and Chang, F.-
L.: Studying the vertical variation of cloud droplet ef-
fective radius using ship and space-borne remote sensing
data, Journal of Geophysical Research-Atmospheres, 113,
https://doi.org/10.1029/2007JD009596, 2008.

Chen, T., Rossow, W. B., and Zhang, Y.: Radiative
Effects of Cloud-Type Variations, Journal of Cli-
mate, 13, 264–286, https://doi.org/10.1175/1520-
0442(2000)013<0264:REOCTV>2.0.CO;2, 2000.

Chen, Y., Chen, G., Cui, C., Zhang, A., Wan, R., Zhou, S., Wang, D.,
and Fu, Y.: Retrieval of the vertical evolution of the cloud effec-
tive radius from the Chinese FY-4 (Feng Yun 4) next-generation
geostationary satellites, Atmos. Chem. Phys., 20, 1131–1145,
https://doi.org/10.5194/acp-20-1131-2020, 2020.

Deschamps, P. Y., Breon, F. M., Leroy, M., Podaire, A., Bricaud,
A., Buriez, J. C., and Seze, G.: The POLDER mission: in-
strument characteristics and scientific objectives, IEEE Trans-
actions on Geoscience and Remote Sensing, 32, 598–615,
https://doi.org/10.1109/36.297978, 1994.

Dong, X. and Minnis, P.: Stratus, Stratocumulus, and Remote Sens-
ing, in: Fast Processes in Large-Scale Atmospheric Models:
Progress, Challenges, and Opportunities, edited by: Liu, Y and
Kollias, P, American Geophysical Union, John Wiley & Sons,
Inc, ISBN 9781119528999, 141–199, 2023.

Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bo-
jkov, B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P.,
Gu, X., Hasekamp, O., Hong, J., Hou, W., Knobelspiesse, K. D.,
Landgraf, J., Li, L., Litvinov, P., Liu, Y., Lopatin, A., Marbach,
T., Maring, H., Martins, V., Meijer, Y., Milinevsky, G., Mukai, S.,
Parol, F., Qiao, Y., Remer, L., Rietjens, J., Sano, I., Stammes, P.,

Stamnes, S., Sun, X., Tabary, P., Travis, L. D., Waquet, F., Xu, F.,
Yan, C., and Yin, D.: Polarimetric remote sensing of atmospheric
aerosols: Instruments, methodologies, results, and perspectives,
Journal of Quantitative Spectroscopy and Radiative Transfer,
224, 474–511, https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.

Fougnie, B., Marbach, T., Lacan, A., Lang, R., Schlüssel, P., Poli,
G., Munro, R., and Couto, A. B.: The multi-viewing multi-
channel multi-polarisation imager – Overview of the 3MI polari-
metric mission for aerosol and cloud characterization, Journal of
Quantitative Spectroscopy and Radiative Transfer, 219, 23–32,
https://doi.org/10.1016/j.jqsrt.2018.07.008, 2018.

Fox, N. I. and Illingworth, A. J.: The Retrieval of Stratocumulus
Cloud Properties by Ground-Based Cloud Radar, Journal of Ap-
plied Meteorology, 36, 485–492, https://doi.org/10.1175/1520-
0450(1997)036<0485:TROSCP>2.0.CO;2, 1997.

Greenwald, T. J., Stephens, G. L., Christopher, S. A., and Vonder
Haar, T. H.: Observations of the global characteristics and re-
gional radiative effects of marine cloud liquid water, Journal of
Climate, 8, 2928–2946, 1995.

Horváth, Á. and Davies, R.: Anisotropy of water cloud reflectance:
A comparison of measurements and 1D theory, Geophysical
Research Letters, 31, https://doi.org/10.1029/2003GL018386,
2004.

Ji, T., Shang, H., Bao, F., Liu, Z., Wang, Y., Bao, S.,
Yin, S., Shi, C., Wang, H., Liu, Z., and Letu, H.: Re-
trieval of the base heights and cloud geometric thicknesses
of clouds based on the PARASOL measurement, SSRN,
https://doi.org/10.2139/ssrn.5515438, 2025a.

Ji, T., Shang, H., and Wang, Y.: Cloud base height retrieval method
based on muti-angle observations and data examples, Zenodo
[data set], https://doi.org/10.5281/zenodo.17082186, 2025b.

Kessler, E.: On the Distribution and Continuity of Water Substance
in Atmospheric Circulations, in: On the Distribution and Con-
tinuity of Water Substance in Atmospheric Circulations, edited
by: Kessler, E., American Meteorological Society, Boston, MA,
https://doi.org/10.1007/978-1-935704-36-2_1, 1–84, 1969.

Lamer, K., Kollias, P., Battaglia, A., and Preval, S.: Mind the
gap – Part 1: Accurately locating warm marine boundary
layer clouds and precipitation using spaceborne radars, At-
mos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-
13-2363-2020, 2020.

Leinonen, J., Guillaume, A., and Yuan, T.: Reconstruction
of Cloud Vertical Structure With a Generative Adversar-
ial Network, Geophysical Research Letters, 46, 7035–7044,
https://doi.org/10.1029/2019GL082532, 2019.

Letu, H., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T.
M., Riedi, J., Baran, A. J., Ma, R., Wang, T., Shang, H.,
Khatri, P., Chen, L., Shi, C., and Shi, J.: High-resolution
retrieval of cloud microphysical properties and surface so-
lar radiation using Himawari-8/AHI next-generation geostation-
ary satellite, Remote Sensing of Environment, 239, 111583,
https://doi.org/10.1016/j.rse.2019.111583, 2020.

Letu, H., Ma, R., Nakajima, T. Y., Shi, C., Hashimoto, M., Nagao,
T. M., Baran, A. J., Nakajima, T., Xu, J., Wang, T., Tana, G.,
Bilige, S., Shang, H., Chen, L., Ji, D., Lei, Y., Wei, L., Zhang,
P., Li, J., Li, L., Zheng, Y., Khatri, P., and Shi, J.: Surface So-
lar Radiation Compositions Observed from Himawari-8/9 and
Fengyun-4 Series, Bulletin of the American Meteorological So-

https://doi.org/10.5194/acp-25-16167-2025 Atmos. Chem. Phys., 25, 16167–16187, 2025

https://doi.org/10.1016/j.atmosres.2020.104924
https://doi.org/10.1002/qj.824
https://doi.org/10.1029/2019RG000686
https://doi.org/10.1109/TGRS.2005.852838
https://doi.org/10.1029/98GL01221
https://doi.org/10.1029/2007JD009596
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2
https://doi.org/10.5194/acp-20-1131-2020
https://doi.org/10.1109/36.297978
https://doi.org/10.1016/j.jqsrt.2018.11.024
https://doi.org/10.1016/j.jqsrt.2018.07.008
https://doi.org/10.1175/1520-0450(1997)036<0485:TROSCP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1997)036<0485:TROSCP>2.0.CO;2
https://doi.org/10.1029/2003GL018386
https://doi.org/10.2139/ssrn.5515438
https://doi.org/10.5281/zenodo.17082186
https://doi.org/10.1007/978-1-935704-36-2_1
https://doi.org/10.5194/amt-13-2363-2020
https://doi.org/10.5194/amt-13-2363-2020
https://doi.org/10.1029/2019GL082532
https://doi.org/10.1016/j.rse.2019.111583


16186 Y. Wang et al.: Characterization of liquid cloud profiles using collocated active and passive measurements

ciety, 104, E1772-E1789, https://doi.org/10.1175/BAMS-D-22-
0154.1, 2023.

Liu, Y., Daum, P. H., McGraw, R., and Wood, R.: Parameteriza-
tion of the autoconversion process. Part II: Generalization of
Sundqvist-type parameterizations, Journal of the Atmospheric
Sciences, 63, 1103–1109, 2006.

Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens,
G., Trepte, C., and Winker, D.: A description of hydrometeor
layer occurrence statistics derived from the first year of merged
Cloudsat and CALIPSO data, Journal of Geophysical Research-
Atmospheres, 114, https://doi.org/10.1029/2007JD009755,
2009.

Nakajima, T. Y., Suzuki, K., and Stephens, G. L.: Droplet Growth
in Warm Water Clouds Observed by the A-Train. Part I:
Sensitivity Analysis of the MODIS-Derived Cloud Droplet
Sizes, Journal of the Atmospheric Sciences, 67, 1884–1896,
https://doi.org/10.1175/2009JAS3280.1, 2010a.

Nakajima, T. Y., Suzuki, K., and Stephens, G. L.: Droplet Growth
in Warm Water Clouds Observed by the A-Train. Part II: A Mul-
tisensor View, Journal of the Atmospheric Sciences, 67, 1897–
1907, https://doi.org/10.1175/2010JAS3276.1, 2010b.

Platnick, S.: Approximations for horizontal photon transport
in cloud remote sensing problems, Journal of Quanti-
tative Spectroscopy and Radiative Transfer, 68, 75–99,
https://doi.org/10.1016/S0022-4073(00)00016-9, 2001.

Protat, A., Bouniol, D., Delanoë, J., O’Connor, E., May, P. T., Plana-
Fattori, A., Hasson, A., Görsdorf, U., and Heymsfield, A. J.: As-
sessment of Cloudsat Reflectivity Measurements and Ice Cloud
Properties Using Ground-Based and Airborne Cloud Radar Ob-
servations, Journal of Atmospheric and Oceanic Technology, 26,
1717–1741, https://doi.org/10.1175/2009JTECHA1246.1, 2009.

Rosenfeld, D. and Lensky, I. M.: Satellite-Based Insights into
Precipitation Formation Processes in Continental and Mar-
itime Convective Clouds, Bulletin of the American Meteoro-
logical Society, 79, 2457–2476, https://doi.org/10.1175/1520-
0477(1998)079<2457:SBIIPF>2.0.CO;2, 1998.

Schulte, R. M., Lebsock, M. D., and Haynes, J. M.: What CloudSat
cannot see: liquid water content profiles inferred from MODIS
and CALIOP observations, Atmos. Meas. Tech., 16, 3531–3546,
https://doi.org/10.5194/amt-16-3531-2023, 2023.

Shang, H., Chen, L., Bréon, F. M., Letu, H., Li, S., Wang, Z.,
and Su, L.: Impact of cloud horizontal inhomogeneity and di-
rectional sampling on the retrieval of cloud droplet size by
the POLDER instrument, Atmos. Meas. Tech., 8, 4931–4945,
https://doi.org/10.5194/amt-8-4931-2015, 2015.

Shang, H., Letu, H., Bréon, F.-M., Riedi, J., Ma, R., Wang, Z.,
Nakajima, T. Y., Wang, Z., and Chen, L.: An improved algo-
rithm of cloud droplet size distribution from POLDER polar-
ized measurements, Remote Sensing of Environment, 228, 61–
74, https://doi.org/10.1016/j.rse.2019.04.013, 2019.

Shang, H., Hioki, S., Penide, G., Cornet, C., Letu, H., and Riedi, J.:
Establishment of an analytical model for remote sensing of typ-
ical stratocumulus cloud profiles under various precipitation and
entrainment conditions, Atmos. Chem. Phys., 23, 2729–2746,
https://doi.org/10.5194/acp-23-2729-2023, 2023.

Shang, H., Letu, H., Wei, L., Ma, R., Wang, Y., Cai, Z., Yin, S., and
Shi, C.: Remote sensing of liquid cloud profiles based on an ana-
lytical cloud profiling model, Science China Earth Sciences, 68,
998–1012, https://doi.org/10.1007/s11430-024-1532-2, 2025.

Shi, C., Letu, H., Nakajima, T. Y., Nakajima, T., Wei, L., Xu, R., Lu,
F., Riedi, J., Ichii, K., Zeng, J., Shang, H., Ma, R., Yin, S., Shi,
J., Baran, A. J., Xu, J., Li, A., Tana, G., Wang, W., Na, Q., Sun,
Q., Yang, W., Chen, L., and Shi, G.: Near-global monitoring of
surface solar radiation through the construction of a geostation-
ary satellite network observation system, Innovation, 6, 100876,
https://doi.org/10.1016/j.xinn.2025.100876, 2025.

Sinclair, K., van Diedenhoven, B., Cairns, B., Alexandrov, M.,
Dzambo, A. M., and L’Ecuyer, T.: Inference of Precipi-
tation in Warm Stratiform Clouds Using Remotely Sensed
Observations of the Cloud Top Droplet Size Distribu-
tion, Geophysical Research Letters, 48, e2021GL092547,
https://doi.org/10.1029/2021GL092547, 2021.

Slingo, A.: Sensitivity of the Earth’s radiation bud-
get to changes in low clouds, Nature, 343, 49–51,
https://doi.org/10.1038/343049a0, 1990.

Tana, G., Ri, X., Shi, C., Ma, R., Letu, H., Xu, J., and
Shi, J.: Retrieval of cloud microphysical properties from
Himawari-8/AHI infrared channels and its application in sur-
face shortwave downward radiation estimation in the sun
glint region, Remote Sensing of Environment, 290, 113548,
https://doi.org/10.1016/j.rse.2023.113548, 2023.

Tang, C., Shi, C., Letu, H., Yin, S., Nakajima, T., Sekiguchi, M.,
Xu, J., Zhao, M., Ma, R., and Wang, W.: Development of a
hybrid algorithm for the simultaneous retrieval of aerosol op-
tical thickness and fine-mode fraction from multispectral satel-
lite observation combining radiative transfer and transfer learn-
ing approaches, Remote Sensing of Environment, 319, 114619,
https://doi.org/10.1016/j.rse.2025.114619, 2025.

Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard, J. C.,
Cady-Pereira, K., Chiu, J. C., Clough, S. A., Flynn, C., Khaiyer,
M. M., Liljegren, J., Johnson, K., Lin, B., Long, C., Marshak,
A., Matrosov, S. Y., McFarlane, S. A., Miller, M., Min, Q.,
Minimis, P., O’Hirok, W., Wang, Z., and Wiscombe, W.: Thin
Liquid Water Clouds: Their Importance and Our Challenge,
Bulletin of the American Meteorological Society, 88, 177–190,
https://doi.org/10.1175/BAMS-88-2-177, 2007.

Visvalingam, M.: The Visvalingam Algorithm: Metrics, Mea-
sures and Heuristics, Cartographic Journal, 53, 242–252,
https://doi.org/10.1080/00087041.2016.1151097, 2016.

Wang, Y., Ma, J., Li, J., Hong, J., and Li, Z.: Review of cloud po-
larimetric remote sensing, National Remote Sensing Bulletin, 26,
852–872, https://doi.org/10.11834/jrs.20221404, 2022.

Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne,
R. L.: Global distribution of total cloud cover and cloud type
amounts over land (No. DOE/ER/60085-H1; NCAR-TN/STR-
273), Washington Univ., Seattle (USA), Dept. of Atmospheric
Sciences, Colorado Univ., Boulder (USA), National Center for
Atmospheric Research, Boulder, CO (USA), 1986.

Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. and
Jenne, R. L.: Global distribution of total cloud cover and
cloud type amounts over the ocean (No. DOE/ER-0406;
NCAR/TN-317-STR), USDOE Office of Energy Research,
Washington, DC (USA), Carbon Dioxide Research Div., Na-
tional Center for Atmospheric Research, Boulder, CO (USA),
https://doi.org/10.2172/5415329, 1988.

Warren, S. G., Eastman, R. M., and Hahn, C. J.: A survey of changes
in cloud cover and cloud types over land from surface observa-
tions, 1971–96, Journal of climate, 20, 717–738, 2007.

Atmos. Chem. Phys., 25, 16167–16187, 2025 https://doi.org/10.5194/acp-25-16167-2025

https://doi.org/10.1175/BAMS-D-22-0154.1
https://doi.org/10.1175/BAMS-D-22-0154.1
https://doi.org/10.1029/2007JD009755
https://doi.org/10.1175/2009JAS3280.1
https://doi.org/10.1175/2010JAS3276.1
https://doi.org/10.1016/S0022-4073(00)00016-9
https://doi.org/10.1175/2009JTECHA1246.1
https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
https://doi.org/10.5194/amt-16-3531-2023
https://doi.org/10.5194/amt-8-4931-2015
https://doi.org/10.1016/j.rse.2019.04.013
https://doi.org/10.5194/acp-23-2729-2023
https://doi.org/10.1007/s11430-024-1532-2
https://doi.org/10.1016/j.xinn.2025.100876
https://doi.org/10.1029/2021GL092547
https://doi.org/10.1038/343049a0
https://doi.org/10.1016/j.rse.2023.113548
https://doi.org/10.1016/j.rse.2025.114619
https://doi.org/10.1175/BAMS-88-2-177
https://doi.org/10.1080/00087041.2016.1151097
https://doi.org/10.11834/jrs.20221404
https://doi.org/10.2172/5415329


Y. Wang et al.: Characterization of liquid cloud profiles using collocated active and passive measurements 16187

Wood, R.: Stratocumulus Clouds, Monthly Weather Review, 140,
2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.

Wood, R.: CLOUDS AND FOG |Stratus and Stratocumulus, in: En-
cyclopedia of Atmospheric Sciences (Second Edition), edited by:
North, G. R., Pyle, J., and Zhang, F., Academic Press, Oxford,
https://doi.org/10.1016/B978-0-12-382225-3.00396-0, 196–200,
2015.

Zhang, Z., Platnick, S., Yang, P., Heidinger, A. K., and Com-
stock, J. M.: Effects of ice particle size vertical inho-
mogeneity on the passive remote sensing of ice clouds,
Journal of Geophysical Research-Atmospheres, 115,
https://doi.org/10.1029/2010JD013835, 2010.

Zhao, Y., Li, J., Wang, Y., Zhang, W., and Wen, D.: Warming
Climate-Induced Changes in Cloud Vertical Distribution Pos-
sibly Exacerbate Intra-Atmospheric Heating Over the Tibetan
Plateau, Geophysical Research Letters, 51, e2023GL107713,
https://doi.org/10.1029/2023GL107713, 2024.

https://doi.org/10.5194/acp-25-16167-2025 Atmos. Chem. Phys., 25, 16167–16187, 2025

https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.1016/B978-0-12-382225-3.00396-0
https://doi.org/10.1029/2010JD013835
https://doi.org/10.1029/2023GL107713

	Abstract
	Introduction
	Datasets
	CloudSat data
	Parasol data

	Methodology
	Cloud profile data preprocessing and shape simplification
	Feature selection and variable screening
	Retrieval of profile key characteristics and profile reconstruction
	Match-up between POLDER and CloudSat data
	Cloud base height retrieval algorithm

	Results
	Typical shape and structural characteristic analysis of CER profiles
	Correlation analysis of profile structural features
	Estimation of key structural features of CER profiles

	Discussion and conclusion
	Appendix A: Table of acronyms
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

