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Abstract. Quantifying real-world emission reductions is a core goal of atmospheric inversion methods, yet di-
rect validation against known events remains rare, especially for reactive species like ammonia. In this study,
we have applied local-scale Bayesian inversions using ground-based measurements and the LOTOS-EUROS air
quality model, with high-resolution emission inventories as prior input, not to explore a theoretical scenario, but
to evaluate a documented emission reduction. On the island of Schiermonnikoog in the Netherlands, where GVE
(grazing livestock units) decreased from 639 to 541, with a particularly notable reduction in dairy cattle, am-
monia emissions are expected a 23 % reduction between 2019 and 2022. Our inversion captured a similar trend,
estimating a 51 % decrease, which may be overestimated, largely attributed to uncertainties in the 2019 posterior
emissions. The posterior for 2022 shows consistency with the validation and indicates a 27 % reduction com-
pared with the prior emissions of 2019. The associated uncertainty, derived from the posterior error covariance,
highlights both the potential of the method and its limitations for policy verification. Moreover, we developed
a method to assess the usefulness of individual observations and propose that adding a single high-quality con-
tinuous measurement in a strategically chosen location can significantly enhance the inversion performance.
This strengthens the observational constraint and enhances the system’s ability to resolve temporal variations in
emissions.

1 Introduction

Ammonia (NH3) is a crucial component of the global nitro-
gen cycle, playing a fundamental role in agriculture and at-
mospheric chemistry. As the most abundant alkaline gas in
the atmosphere, it significantly influences air quality, ecosys-
tem health, and climate. Since discovery of the the synthe-
sis of ammonia from atmospheric dinitrogen in 1908 (Haber,
1920), the application in fertilisers has revolutionised global
food production, sustaining over half of the world’s popu-
lation (Erisman et al., 2008; Smil, 2004, 2002). However,
this agricultural success comes at an environmental cost. The
widespread use of synthetic fertilisers and intensification of
livestock farming has led to increasing atmospheric ammo-
nia emissions, with profound consequences for air pollu-

tion, nitrogen deposition, and climate change (Erisman et al.,
2008, 2013; Zhang et al., 2020; McCubbin et al., 2002).

Understanding ammonia’s behavior in the atmosphere re-
mains challenging due to its high spatial and temporal vari-
ability. Once emitted, ammonia has a relatively short at-
mospheric lifetime; the average lifetime in the atmosphere
is between a few hours and a few days (Dammers, 2017;
Dammers et al., 2019; Zhang et al., 2021; Norman and Leck,
2005), and it can be rapidly deposited or converted into sec-
ondary particulate matter (Behera et al., 2013; Wyer et al.,
2022). Its emissions are strongly influenced by meteorologi-
cal conditions; for example, emission potential can increase
by up to a factor of nine with a twenty-degree Celsius rise in
temperature (Sutton et al., 2013; Ge et al., 2023). This leads
to steep spatial gradients near sources, with concentrations
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varying significantly over distances of just a few kilometers
(Schulte et al., 2022).

Traditional ammonia emission inventories rely on bottom-
up estimates, which aggregate data from agricultural activi-
ties, industrial processes, and other sources based on produc-
tion statistics and emission factors (Eggleston et al., 2006;
Kuenen et al., 2022). However, these inventories suffer from
inherent limitations. They often lack high temporal resolu-
tion, vary significantly between regions, and fail to capture
the real-time dynamics of ammonia fluxes. Ammonia emis-
sions are particularly sensitive to meteorological conditions,
such as temperature and humidity, which can drive short-
term fluctuations that are not well-represented in bottom-up
models (Sutton et al., 2013; Ge et al., 2023).

To overcome these challenges, top-down approaches that
integrate observational data into atmospheric models have
gained traction. These methods use measurements from
satellites and ground-based networks to constrain and re-
fine emission estimates, offering a more dynamic and data-
driven perspective on ammonia fluxes. Several studies have
successfully applied top-down techniques to improve ammo-
nia emission estimates. To name a few, Paulot et al. (2014)
used the adjoint GEOS-Chem model with ammonium wet
deposition fluxes to infer emissions across the United States,
Europe, and China. Similarly, Zhang et al. (2018) com-
bined satellite TES (Tropospheric Emission Spectrometer)
data with inverse modeling to enhance ammonia emission
inventories over China. More recently, van der Graaf et al.
(2022) demonstrated the value of assimilating CrIS (Cross-
track Infrared Sounder) ammonia retrievals into the LOTOS-
EUROS chemistry transport model, significantly improving
the spatial and temporal representation of emissions. Addi-
tionally, Cao et al. (2022) implemented a 4D-Var inversion
that accounted for bi-directional ammonia fluxes, leading to
an accurate depiction of seasonal variability in ammonia ex-
change between the surface and the atmosphere.

Despite these successes, most top-down studies have fo-
cused on global or mesoscale, leaving the need to under-
stand ammonia emissions at localized scales where emis-
sion sources, meteorology, and deposition processes interact
in complex ways. Moreover, quantifying real-world emission
reductions is a core goal of atmospheric inversion methods,
yet direct validation against known events remains rare, es-
pecially for reactive species like ammonia.

A particularly relevant case study is related to the nitro-
gen crisis in the Netherlands, where high ammonia emissions
from agricultural activities have led to excessive nitrogen de-
position, biodiversity loss, and regulatory interventions (Eris-
man, 2019; Stokstad, 2019; Erisman et al., 2021). Within
this context, Schiermonnikoog, a small island in the north
of the Netherlands, serves as an ideal testbed for ammonia
emission reduction at a fine spatial scale, shown in Fig. 1.
The largest part of the island falls under the National Park
Schiermonnikoog, with rich landscapes that include dunes,
beaches, forests, mudflats, and polders. The National Park

is one of the most important nature areas in the Netherlands,
and its habitats are sensitive to nitrogen deposition (Sival and
Strijkstra-Kalk, 1999). However, intensive dairy farming in
the island’s 275 ha polder has historically contributed to am-
monia loads exceeding critical thresholds (van Wijnen and
Bakker, 1997).

In response, a feasibility study by Erisman and Hofstee
(2016) proposed nature-inclusive agricultural strategies to
mitigate ammonia emissions while supporting the economic
viability of local farmers. Although the transition began in
2016, a more pronounced reduction occurred between 2019
and 2022, during which GVE (grazing livestock units) de-
creased from 639 to 541, with dairy cattle numbers drop-
ping from 510 to 363, according to KringloopWijzer data
(van Dijk et al., 2023). These changes contributed to an es-
timated 23 % reduction in ammonia emissions, providing a
valuable opportunity to evaluate whether current monitoring
systems can effectively capture such changes and where im-
provements may be needed.

Despite the availability of satellite observations, retriev-
ing reliable ammonia concentrations over small islands like
Schiermonnikoog remains inherently challenging. The entire
island and parts of the surrounding sea are captured within
a single satellite footprint due to the limited land area of
the island and the coarse spatial resolution of current satel-
lite instruments. This spatial mismatch reduces the ability
to resolve localized emission patterns. Moreover, the low
ammonia column densities and weak thermal contrast be-
tween land and sea further degrade the retrieval quality and
increase uncertainties in satellite-based NH3 measurements
(Van Damme et al., 2014). As for the ground-based measure-
ments, no high-temporal resolution ammonia monitoring sta-
tions exist in the region, leaving monthly observations from
the Measuring Ammonia in Nature (MAN) network as the
only continuous source of in situ data (Lolkema et al., 2015;
Noordijk et al., 2020). These ground-based measurements
are crucial for validating and refining ammonia models at a
local scale.

To bridge the gap between observations and models, we
employ LOTOS-EUROS, a state-of-the-art regional chem-
istry transport model specifically designed for air quality ap-
plications in Europe. By combining MAN network data with
LOTOS-EUROS simulations, we aim to refine spatial and
temporal emission estimates, ultimately improving ammonia
monitoring and mitigation strategies at the local scale.

In this study, we aim to refine local-scale ammonia emis-
sion estimates using a Bayesian inversion framework sup-
ported by atmospheric modeling and ground-based observa-
tions. We begin by simulating ammonia concentrations with
LOTOS-EUROS and comparing them to measurements from
the MAN network. To support the inversion, we generate
controlled perturbation experiments to compute the Jacobian
matrix and produce synthetic observations. These inputs al-
low us to quantify the model sensitivity and assess uncer-
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Figure 1. The map of Schiermonnikoog, in which the orange circles denote the MAN measurement sites, is provided by © OpenStreetMap
contributors (2017). Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

tainty through detailed error characterization. The inversion
analysis proceeds in three stages:

– A comprehensive test incorporating MAN network un-
certainties to evaluate model sensitivity.

– A refined inversion using real MAN network observa-
tions.

– A more optimized observation network design, outlin-
ing strategies to improve ammonia monitoring across
different timescales.

These findings will provide valuable insights into the effec-
tiveness of current monitoring networks and formulate future
measurement strategies to better quantify ammonia emis-
sions at fine temporal scales.

2 Data and Methodology

To evaluate ammonia emissions at a local scale, we use a
Bayesian inversion framework combining atmospheric mod-
eling, synthetic data experiments, and observational con-
straints. This chapter begins with an overview of real-world
ammonia measurements from the MAN network, followed
by a description of the synthetic data used for controlled
tests. We then introduce the LOTOS-EUROS chemical trans-
port model, along with the emission sources and prior esti-
mates used in the simulations. Finally, we detail the inversion
algorithm and the associated error characterisation.

2.1 Observations

2.1.1 In-situ measurements

The MAN (Measuring Ammonia in Nature) network is ex-
tensively used for monitoring atmospheric ammonia across
the Netherlands. The spatial distribution of MAN sites is
shown in Fig. 2. Unlike active optical techniques, the MAN
network employs passive samplers, which measure monthly
average ammonia concentrations via chemical absorption.
This method is significantly cheaper than active optical tech-
niques. Detailed descriptions of the measurement technique
and associated uncertainties are provided in Lolkema et al.
(2015) and Noordijk et al. (2020). In this study, we utilize
monthly data from 26 MAN sites, 6 of which are located on
Schiermonnikoog, for both annual and monthly emission in-
version analyses.

In addition to the MAN network, the Netherlands also
employs optical measurement techniques with higher tem-
poral resolution. The Dutch National Air Quality Monitor-
ing Network (Landelijk Meetnet Luchtkwaliteit, LML) oper-
ates miniDOAS (active differential optical absorption spec-
troscopy) instruments, providing hourly ammonia concentra-
tions (Berkhout et al., 2017; van Zanten et al., 2017). How-
ever, the LML network has far fewer monitoring sites com-
pared to MAN. Since our study area lacks LML measure-
ments, we introduce synthetic LML-like observations in the
final section to explore their potential impact on inversion
performance.
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Figure 2. The nested domain configuration for LOTOS-EUROS
simulation is shown in (a). In Domain 3, the orange circles de-
note the MAN measurement sites. Schiermonnikoog is located in
the red box. The measurement located within the blue box are used
for inversion, which is shown in (b) with Dutch provinces for source
apportionment.

2.1.2 Simulated observations

To better understand the inversion process, we conducted a
series of controlled tests using simulated observations. These
tests were based on high-resolution hourly data, which were
subsequently averaged into monthly values to align with the
temporal scale of the MAN measurements. This setup en-
abled us to quantify observational uncertainties and assess
how synthetic measurements can enhance the spatial and
temporal coverage of the current monitoring network.

Using LOTOS-EUROS output, we generated synthetic
“observational data” that mimic the current monitoring net-
work. A configuration of the simulated errors is provided in:

sfull error =

√
0.902

+ (0.28× c)2×N (0,σ 2), (1)

in which c is the surface concentrations, designed to reflect
the existing MAN measurement error structure (Lolkema
et al., 2015; Noordijk et al., 2020).

Additionally, we integrated LOTOS-EUROS output into
the current monitoring framework as additional measure-
ments, exploring its potential to support monitoring network
design by providing high-resolution, high-quality measure-
ment proxies.

2.2 LOTOS-EUROS

We use the state-of-the-art air quality model LOTOS-
EUROS (LOng-Term Ozone Simulation and European Op-
erational Smog model), developed by TNO, as the forward
model in our inversion framework. This model integrates at-
mospheric transport, deposition, and chemical transforma-
tions of ammonia, providing a high-resolution framework
for emission quantification. This study employs LOTOS-
EUROS version 2.3.000, with its detailed configuration sum-
marized in Table 1 (Manders et al., 2017; Manders-Groot and
LOTOS-EUROS team, 2023).

The model is driven by Integrated Forecast System (IFS)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF Hersbach et al., 2020). Three-hourly mete-
orological parameters are interpolated to one-hour resolu-
tion for finer temporal representation. To optimize compu-
tational efficiency and data storage, nested domains are used
(Fig. 2): the coarsest domain covers from (35° N, 15° W) to
(70° N, 35° E) with 0.5 and 0.25° resolution; the finest do-
main covers from (50.6° N, 3.15° E) to (53.7° N, 7.5° E) with
1.7 km× 2.15 km resolution.

Beyond standard air pollution modeling, one of key ad-
vantages is its source apportionment functionality, which al-
lows for precise source attribution, distinguishing between
agricultural, industrial, and natural contributions to ammo-
nia concentrations. In this study, we use this function to track
ammonia contributions from key regions:

– Countries: Germany, Denmark.
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– Dutch regions: Schiermonnikoog, Groningen, Fries-
land, Drenthe, Gelderland, Overijssel (5 nearest
provinces), and other locations.

Each emission source is further classified into two sectors:
agricultural and non-agricultural emissions. This labeling
framework enables precise source attribution and allows us
to quantify the relative impact of various regions and sectors
on ammonia concentrations over Schiermonnikoog. Detailed
results are presented in Sect. 3.1.2.

2.3 Prior emission

The prior emissions used in the inversion, as well as the input
for LOTOS-EUROS, are taken from the Copernicus Atmo-
sphere Monitoring Service regional inventory (CAMS-REG
v5.1 REF2, year 2019) for Domain 1 and GrETa and ER
emission inventories for Domain 2 and 3. The temporal al-
location follows the TNO-MACC (Monitoring Atmospheric
Composition and Climate) inventory. This dataset includes
emissions of major air pollutants, with detailed information
available in Kuenen et al. (2021, 2022). The emissions are
provided with a spatial resolution of 0.0167°× 0.0083° in
the finest domain.

In this study, we only optimize ammonia emissions from
agricultural sources, as they are the dominant contributor to
atmospheric NH3. Other emission sectors – traffic, residen-
tial, industrial, and transportation – are categorized as non-
agricultural emissions Further details on the agricultural sec-
tor are provided in the Supplement; more details can be ref-
ered to Kuenen et al. (2022, 2021).

2.4 Bayesian Inversion algorithm

To optimize annual and monthly ammonia emissions us-
ing observational constraints, we apply a Bayesian inver-
sion framework, which efficiently integrates errors from prior
emissions, observations, and the model itself. This approach
is highly flexible, allowing for its application at local scales
with different observational datasets.

Bayesian inversion aims to estimate the posterior proba-
bility density function (pdf) of the state vector x given ob-
servations y. The revised version is expressed as (Rodgers,
2000; Turner and Jacob, 2015):

P (x|y)=
P (y|x)P (x)

P (y)

∝ exp
{
− (x− xa)T Sa

−1(x− xa)

− [y−F(
◦
x)]T SO

−1
[y−F(

◦
x)]
}
, (2)

where:

–
◦
x, the actual (linear) state vector, is defined as the scal-
ing factor that represents the ratio of posterior to prior of

each label. Additional state vector elements are defined
in Sect. “Error covariance matrices”;

– x is defined in logarithmic space such that x = ln(
◦
x).

This log transformation ensures positivity and accom-
modates multiplicative uncertainty in emissions;

– y is the vector with observations, which is monthly data
from 26 MAN sites;

– F operates on
◦
x, to simulate corresponding concentra-

tions;

– xa is the prior state vector in logarithmic form;

– Sa and SO are the prior and observational error covari-
ance matrices, respectively (details in Sect. “Error co-
variance matrices”).

The optimal state x is found by maximizing Eq. (2), which
corresponds to minimizing the cost function:

J (x)= (x− xa)T S−1
a (x− xa)

+ [y−F(
◦
x)]T S−1

O [y−F(
◦
x)], (3)

where x is of shape (n×1); y is (m×1); Sa is (n×n); SO is
(m×m). We then approximate F(

◦
x) linearly with a Jacobian

matrix
◦

K (m× n), thus:

K=∇xF=
∂y

∂x
=

∂y

∂(ln
◦
x)
=
◦

Kdiag(
◦
x), (4)

where K is the Jacobian matrix in logarithmic space;
◦

K is

the Jacobian in linear space, defined as
◦

K ij = ∂y(i)/∂
◦
x(j ),

which is constructed with an one-sided perturbation of 40 %.
Notably, for monthly emission inversions, the Jacobian is de-
fined as a block diagonal matrix so that each month is con-
sidered independent.

To solve the Eq. (3), we apply the Levenberg–Marquardt
approach (Rodgers, 2000; Chen et al., 2022, 2023), itera-
tively updating the state vector:

xN+1 = xN +

[
KT
NS−1

O KN + (1+ κ)S−1
a

]−1

·

[
KT
NS−1

O (y−
◦

K
◦
x)−S−1

a (xN − xa)
]
, (5)

where xN is the state vector at the N th iteration; KN is the
Jacobian matrix at the N th iteration, which updates accord-

ingly through KN =
◦

Kdiag(
◦
xN ), following Eq. (4); κ is the

coefficient for determining the convergence rate and is set

as 10 (Chen et al., 2022);
◦

K
◦
x is equivalent to the forward

model. The uncertainty in the optimized emissions is given
by the posterior error covariance matrix:

Ŝ=
(

KT
NS−1

O KN +S−1
a

)−1

, (6)
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Table 1. LOTOS-EUROS model configuration

Parameters Setting Notes/Citation

Time period 1 January to 31 December 2019 and 2022 with a spin-up for 15 d
Spatial resolution 0.025°× 0.0125° 1.7 km× 2.15 km
Region (50.6° N, 3.15° E) to (53.7° N, 7.5° E) 174× 160 grid cells
Emission CAMS-REG v5.1 REF2, GrETa and ER, Kuenen et al. (2022), year 2019
Meteorology ECMWF Reanalysis v5 (ERA5) Hersbach et al. (2020)

For spatial resolution, the first and second column denote (1lon×1lat) and (1x×1y), respectively.

where KN is the Jacobian at the final iteration. The degree of
freedom for signal (DFS) is then calculated from:

DFS= trace(A), (7)

where A is the averaging kernel matrix:

A=
∂x̂

∂x
= I− ŜS−1

a . (8)

The DFS quantifies how much information is gained from
the observations. Higher DFS values indicate a stronger ob-
servational constraint on the emissions.

Error covariance matrices

The state vector in our inversion framework includes not
only agricultural emissions from Schiermonnikoog but also
contributions from external sources. These external influ-
ences are determined using the labeling functionality in the
LOTOS-EUROS model, which identify regions that signifi-
cantly impact ammonia concentrations on the island. If a la-
beled area has a strong contribution to Schiermonnikoog’s
ammonia levels, then uncertainties in emissions from that re-
gion are likely to propagate to the island’s atmospheric NH3
concentrations. Here, we define the criteria: clabel/ctotal >

10 %. For labeled concentrations larger than 10 % of the to-
tal concentration, the labels are selected as the external influ-
ences, of which the result can be found in Sect. 3.1.2. Thus,
the state vector is constructed with five elements, where the
first represents the local emission source and the remaining
four represent external influences to fix the boundary condi-
tion:

1. agricultural emissions from Schiermonnikoog;

2. total contribution to concentration (agricultural and
non-agricultural) from Groningen;

3. total contribution to concentration from Friesland;

4. total contribution to concentration from Germany;

5. a composite term (“Other”) representing contributions
to concentration from all remaining sources and sectors.

A major source of uncertainty in ammonia emissions are
volatilization rates, which varies with temperature. The re-
emission potential can increase by a factor of 9 for a twenty
degrees Celsius temperature rise (Ge et al., 2023; Sutton
et al., 2013). To account for this variability, and given the
use of a logarithmic state vector, the prior error covariance
matrix Sa is constructed to a diagonal matrix with terms de-
fined as (lnβ)2, where β = 2 represents the assumed annual
emission variability factor, while external influences are as-
signed a factor of 1.5. For monthly emission inversion, the
variability factors are set to β = 4 for emissions and 2 for
external influences.

To estimate the observational error covariance matrix SO,
we first follow the commonly used residual error method
(Brasseur and Jacob, 2017):

SO = E[εεT ], (9)

where:

– ε = (z− z) is the residual error vector, assumed to rep-
resent random noise;

– z= y−F(
◦
x) denotes the misfit between observations

and forward model output, assuming discrepancies arise
primarily from emission uncertainties.

Initially, SO is constructed using only diagonal elements
with the residual error vector. However, this simplification in-
troduces potential uncertainties. To improve representative-
ness, we adopt a hybrid approach that combines (1) resid-
ual error estimates and (2) established uncertainty descrip-
tions from the MAN network (Noordijk et al., 2020; Lolkema
et al., 2015). This integrated error representation enhances
the robustness of the inversion system but might also overes-
timate the total uncertainty.

To assess the performance of this combined error formu-
lation, we perform a series of χ2 tests and optimize the inte-
grated observational error to ensure an appropriate balance
between model constraints and observational uncertainties
(Rodgers, 2000). The total observational error is formulated
as:

ε =

√
ε2

residual+ (α · εMAN)2, (10)

where:

Atmos. Chem. Phys., 25, 15593–15611, 2025 https://doi.org/10.5194/acp-25-15593-2025



S. Li et al.: Local-scale inversion of ammonia emissions on Schiermonnikoog 15599

– εresidual = (z− z);

– εMAN =
√

0.902
+ (0.28× c)2, with c the monthly am-

monia concentrations;

– α is a scaling factor optimized to best match model and
observational uncertainty.

We define a performance score sχ2 to simultaneously eval-
uate statistical consistency (via p-value) and goodness-of-fit
(via normalized χ2, NCS):

sχ2 = p · e
−|1−NCS|, (11)

where:

– p is the p-value from χ2 tests;

– NCS= zT S−1
O z

DOF , with DOF as degrees of freedom.

This score reaches a maximum when both the model-
observation agreement is close to ideal (NCS≈ 1) and the
residuals are consistent with the assumed error distribution
(high p-value). Note that here, DOF refers to the number of
independent observational constraints used in the χ2 calcula-
tion, and should not be confused with DFS, degrees of free-
dom for signal defined in Eq. (7), which measures how much
information from observations is retained in the state vec-
tor after inversion. While both reflect aspects of information
content, they apply to different parts of the inversion frame-
work.

Based on the optimization (Fig. 3), we assign: for monthly
emission inversions α = 0.5; for annual emission inversions,
α = 0.3), reflecting the averaging over longer periods and the
reduced influence of short-term fluctuations. For simulated
observations, α = 0.3 for monthly inversions and α = 0.15
for annual inversions, reflecting the lower uncertainty in syn-
thetic data compared to real-world observations. These ad-
justments ensure that the inversion framework maintains ro-
bustness while adequately capturing observational uncertain-
ties across different timescales. Similar to Fig. 3, the opti-
mization of χ2 statistics of simulated observations can be
found in the Supplement.

3 Results and Discussions

In this section, we first present the simulated results of the
LOTOS-EUROS model, including the source apportionment
output. Next, we validate the inversion framework using syn-
thetic errors and simulated data. We then apply MAN mea-
surements to perform the inversion on real-life data, ana-
lyze emission reductions, and investigate emission estimates
across different timescales. Finally, we explore potential im-
provements to the inversion framework and propose an opti-
mized observational design for enhanced emission monitor-
ing.

Figure 3. Evaluation of χ2 test results in 2019 (a) and 2022 (b) for
the total observational error defined in Eq. (10). The model perfor-
mance is scored by Eq. (11). A score is derived from the p-value
and the normalized χ2 (NCS). An NCS value near 1 and a p-value
close to 1 indicate that the error description is reasonable, reflecting
a good fit and appropriate error covariance. Notably, the August and
July 2019 data are eliminated because of the dune fire in 2019.

3.1 Model performance and source apportionment with
the prior emission

To evaluate the representativeness of the meteorological forc-
ing, model results were compared with observations from
nearby KNMI stations on a daily basis (map shown in Fig. S1
in the Supplement), including one located close to the island.
The agreement was very good, with correlations for wind
components, temperature, and pressure consistently above
0.96 and low RMSE values (Table S2, Fig. S2 in the Sup-
plement). Precipitation was also well reproduced, with cor-
relations around 0.8. These results indicate that the meteo-
rological fields are reliable and representative for the study
area, supporting the robustness of the subsequent analysis.

3.1.1 Model performance

Figure S3 illustrates the monthly variation of prior ammo-
nia emissions and corresponding surface concentrations on
Schiermonnikoog for 2019 and 2022. In both years, agricul-
tural emissions peaked in March, following model time pro-
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Table 2. The statistics of comparison between the simulation of prior emissions with LOTOS-EUROS and the MAN measurements with the
prior emission, including Pearson’s correlation coefficient (r), root-mean-square error (RMSE), mean absolute error (MAE), mean absolute
percentage Error (MAPE), normalized mean bias (NMB) and slope.

MG K MES O OdW P All Unit

20
19

r 0.48 0.57 0.41 0.49 0.55 0.34 0.41 unitless
RMSE 6.39 3.27 3.15 1.89 1.80 2.22 3.49 µg m−3

MAE 5.05 2.30 2.42 1.52 1.41 1.78 2.41 µg m−3

MAPE 61 43 46 41 41 46 46 %
NMB −0.61 −0.42 −0.41 −0.18 −0.14 −0.22 −0.39 unitless
slope 0.22 0.43 0.35 0.52 0.62 0.37 0.26 unitless

20
22

r 0.64 0.75 0.87 0.78 0.78 0.84 0.67 unitless
RMSE 3.24 1.57 1.37 1.27 1.34 1.25 1.81 µg m−3

MAE 2.96 1.36 1.20 0.90 0.94 0.89 1.38 µg m−3

MAPE 1.60 0.68 0.68 0.29 0.30 0.39 0.66 %
NMB −0.47 −0.22 −0.24 0.22 0.23 −0.03 −0.17 unitless
slope 0.72 0.64 0.92 0.54 0.60 1.02 0.77 unitless

The abbrevations correspond to the site names: Schiermonnikoog-Meteo Groenglop, -Kooiduinen, -Monding Eerste
Slenk, -Oosterkwelder, -Om de West, -Paardenwei.

file, with a secondary, smaller peak in August. Other local
emissions, including non-agricultural sources, remain con-
stant through the year. These emission patterns directly influ-
ence surface ammonia concentrations, which follow a char-
acteristic bimodal seasonal cycle: a spring peak associated
with manure spreading and a summer peak driven by higher
temperatures and volatilization. Notably, although the same
emission inventory is applied for both years, the emission
rates vary greatly due to differences in the meteorological
conditions under which the rates are calculated (Skjøth et al.,
2011).

To evaluate the performance of the LOTOS-EUROS
model in simulating ammonia concentrations, a statistical
comparison was conducted against MAN network measure-
ments. The assessment included Pearson’s correlation coef-
ficient (r), root-mean-square error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), nor-
malized mean bias (NMB), and the slope of the regression
between simulated and observed values. Table 2 presents
the statistical results for six monitoring sites on Schiermon-
nikoog in both 2019 and 2022.

In 2019, the correlation coefficient (r) ranged from 0.34
to 0.55 across sites, reflecting a moderate agreement be-
tween model predictions and observations. By 2022, corre-
lation values reached up to 0.87 at certain locations. Notable
discrepancies occur, particularly at sites located near strong
emission sources, such as Meteo Groenglo. This site consis-
tently exhibited the highest RMSE and NMB values in both
years, indicating that the spatial resolution of the model may
not adequately capture local-scale variability in emissions. In
2019, the underestimation of peak ammonia concentrations
is reflected in the strongly negative NMB values and correla-
tion. This bias was reduced in 2022, especially at sites farther
from major emission sources. Furthermore, the slope of the

regression line between simulated and observed concentra-
tions increased in 2022. The difference between two years
may be due to an unaccounted-for occurrence of ammonia
emission.

Digging deeper, a comparison of modeled and observed
ammonia concentrations is illustrated in Fig. 4. The scatter
plots for 2019 (a) and 2022 (c) demonstrate that the model
underestimated ammonia concentrations in high-emission
months, particularly during summer. The regression lines fit-
ted in the scatter plots confirm that the model performed bet-
ter in 2022, aligning more closely with the 1 : 1 reference
line. Monthly variations, as shown in the right-hand panels
of Fig. 4b and d, reveal that while the model captured the
seasonal cycle of ammonia, it underestimated peak concen-
trations in summer and overestimated lower values in winter.
These discrepancies suggest that an improvement in the tem-
poral variations of the emissions is needed.

In addition to statistical performance, spatial variability
was examined as shown in Fig. 5. These maps illustrate the
modeled ammonia concentrations across Schiermonnikoog
for each month in 2019 and 2022, overlaid with MAN mea-
surement locations. The maps highlight a clear seasonal pat-
tern, with elevated concentrations during spring and sum-
mer, consistent with agricultural activity and temperature-
driven volatilization. The spatial distribution of ammonia
shows gradients, particularly in regions downwind of emis-
sion sources. The comparison between modeled fields and
observations suggests that while LOTOS-EUROS effectively
captures broad seasonal trends, local-scale concentration
hotspots remain difficult to resolve due to the inadequate
spatial resolution of the simulation, especially near emission
sources. As shown in Fig. S4, the spatial resolution of the
emission inventory does not always align with the true dis-
tribution of local ammonia sources, particularly on Schier-
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Figure 4. The comparison of model and observation in monthly average on Schiermonnikoog with the prior emission in 2019 (a, b) and
2022 (c, d).

monnikoog, where emissions from agricultural activities are
concentrated in a small area. Since the model operates on a
coarser grid, emissions may be spread over a larger area or
displaced from their actual sources, leading to an underesti-
mation of concentration peaks at specific measurement sites.
This is particularly evident at the Schiermonnikoog-Meteo
Groenglop site, where observed ammonia levels are consis-
tently higher than simulated values, likely due to its proxim-
ity to actual emission sources that are not well-represented
in the model. To assess the potential impact of spatial resolu-
tion, we conducted additional simulations using a nested do-
main with 500 m× 500 m resolution over Schiermonnikoog
(see the Supplement). The results indicate only limited im-
provement compared to the coarser-resolution setup: the
Pearson correlation and regression slope with observations
increased slightly, but overall scatter remained similar. This
limited gain is mainly due to the coarser resolution of the

emission inventory, which constrains the benefit of refining
the model grid. Therefore, for consistency, we present the re-
sults from the coarser-resolution simulations (with bi-cubic
interpolation) in the main analysis.

Moreover, external factors may have contributed to the
high discrepancies observed in specific months. For instance,
in July 2019 (see Fig. 5a), dune fires occurred in the east-
ern dunes of Schiermonnikoog, leading to increased ammo-
nia concentration. Although fires were accounted for in the
model with Global Fire Assimilation System (GFAS) emis-
sion inventory (Kaiser et al., 2012), the simulation remains
highly uncertain due to the complexity of fire-induced emis-
sions. Additionally, the timing of passive sampler collection
in the MAN network may not always align strictly with the
first and last days of the month, potentially introducing in-
consistencies between measured and simulated values.
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Figure 5. Maps of simulated surface concentrations on Schiermonnikoog for 2019 (a) and 2022 (b) with the prior emission.

3.1.2 Source Apportionment of Ammonia
Concentrations

To better understand the origins of ammonia concentrations
on Schiermonnikoog, a detailed source apportionment analy-
sis was conducted, using the LOTOS-EUROS model’s label-
ing function. Figure 6 presents both the monthly variations in
source contributions (panels a, b) and the annual summaries
(panels c, d) for 2019 and 2022. These results reveal that lo-
cal emissions play a relatively minor role in the island’s am-
monia budget, with the majority of the observed concentra-
tions originating from external sources.

In 2019, emissions from Schiermonnikoog itself ac-
counted for 6 % of annual ammonia concentrations, with 4 %

from agriculture and 2 % from other activities. Transported
emissions from Friesland, Groningen, and Germany col-
lectively contributed over 50 %, with Friesland consistently
showing the highest contribution, followed by Germany and
Groningen. The distribution was similar in 2022, though with
a slight reduction in emissions from natural sources, primar-
ily due to a lower frequency of wildfire events compared
to 2019. A particularly significant contributor across both
years was the “Other” label, representing over 10 % of total
concentrations. This category includes ammonia re-emission
during deposition, as accounted for by the bi-directional flux
scheme in LOTOS-EUROS. However, despite its modeled
inclusion, this process remains highly uncertain.
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Figure 6. The relative contributions of different sources to the surface concentration of Schiermonnikoog in 2019 (a, c) and 2022 (b, d)
simulated by LOTOS-EUROS with the prior emission. Each row in the monthly panels (a) and (b) shows the label’s overall contribution,
which includes emissions from the agricultural and other sectors. Panels (c) and (d) show the annual results.

The seasonal variability of ammonia sources is also evi-
dent. The monthly breakdown (Fig. 6a and b) indicates two
distinct peaks in ammonia concentration: one in spring, co-
inciding with manure application, and another in summer,
driven by temperature-enhanced volatilization. These pat-
terns are consistent with expected seasonal fluctuations in
agricultural emissions. Notably, the contribution from Ger-
many is particularly high in spring, a period when Schier-
monnikoog is frequently downwind of eastern air masses.
Strong easterly winds during this time (see Fig. S5 for the
seasonal wind field) enhance long-range transport of ammo-
nia to the island, amplifying the external signal. Besides,
2019 exhibited an exceptionally high contribution from nat-
ural sources, especially in July, attributed to wildfires in the
eastern dunes of Schiermonnikoog.

The annual source breakdown (Fig. 6c and d) further
confirms the dominance of domestic agricultural emissions,
which accounted for 51 % of total ammonia emissions in
2019 and 46 % in 2022. Other anthropogenic sources, in-
cluding industrial, transportation, and residential emissions,

remained relatively stable across both years, contributing ap-
proximately 7 %–8 % to the total ammonia levels.

3.2 Inversion results with synthetic observations

With synthetically constructed observations and an opti-
mized observational error, the inversion system success-
fully reproduces known emission perturbations. As shown in
Fig. 7a, the yearly inversion for 2022 with synthetic observa-
tions demonstrates a decrease. Although the posterior state
vectors fall between the prior value and the prescribed syn-
thetic “true” emissions, the slight overestimation observed
in the posterior emissions confirms that the inversion system
does not overfit.

The results in Fig. 7b present the monthly inversion perfor-
mance for 2022. While the ensemble average appears reason-
able, individual monthly inversions suffer from high uncer-
tainty, primarily due to the limitations of the simulated MAN
error. The passive sampling approach and associated errors
are not well-suited for resolving finer temporal variability.
As such, these findings highlight the need for higher-quality,
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Figure 7. Results of yearly (a) and monthly (b) inversion of emis-
sion on Schiermonnikoog using synthetic observations. The results
shown here correspond to the 2022 inversion.

high-resolution measurements to improve inversion accuracy
at monthly scales and also reduce the impact of seasonal mis-
matches between model and measurements.

3.3 Inversion results of MAN

Table 3 presents the results of the ammonia emission inver-
sion using MAN measurements for 2019 and 2022. The re-
sults show a notable reduction in total emission multipliers
for Schiermonnikoog, from 1.35 (with a credible interval:
0.95–1.92) in 2019 to 0.73 (with a credible interval: 0.46–
1.17) in 2022. Both inversions utilize the same 2019 emission
inventory as prior. To reflect the uncertainty in the posterior
estimates, the credible intervals are derived using the trans-
formation

◦
xpost·

[
exp

(
−
√
ŝ
)
,exp

(√
ŝ
)]

, as shown in Fig. 8.
Despite the wide credible intervals, which is attributable to
the sparse measurement network and high observational un-
certainty, the inversion successfully captures both the direc-
tion and approximate magnitude of the emission reduction.
These results indicate that the reduction in ammonia emis-
sions on Schiermonnikoog is both detectable and significant.
The monitoring system for the emission of Schiermonnikoog

Figure 8. Results of MAN-derived yearly ammonia emission (a)
and monthly ammonia emission (b) with the leave-one-source-out
cross-validation (LOSOCV) and credible intervals, derived from the
posterior error covariance matrix Ŝ. The results shown in (b) corre-
spond to the 2022 inversion.

may still need to improve (due to a low DFS detected), but
due to a larger region with a consideration of external influ-
ences, the results for the external influences received a larger
DFS during inversion, indicating the fixation for the bound-
ary condition is helpful.

The inversion results suggest a 51 % reduction in ammo-
nia emissions on Schiermonnikoog between 2019 and 2022.
However, this figure may be an overestimate. To address
the concern, we performed a leave-one-source-out cross-
validation (LOSOCV). This approach is analogous to leave-
one-out cross-validation (LOOCV), but instead of omitting
one measurement site, we iteratively exclude one state vec-
tor element that represents external influences. In each case,
we subtract the correlated contribution and then re-conduct
the inversion with the remaining elements. The posterior esti-
mate for 2019 exceeded the range of the validation, although
the credible interval still encompasses the validated values.
This suggests that the apparent overestimation of the emis-
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sion reduction originates primarily from an overestimation of
the 2019 emissions rather than an underestimation in 2022.
In contrast, the posterior for 2022 shows consistency with
the validation and indicates a 27 % reduction compared with
the prior emissions of 2019. Thus, the discrepancy between
the inversion (51 % reduction) and the activity data (23 % re-
duction) can largely be attributed to uncertainties in the 2019
posterior emissions.

We also attempted to use the MAN measurements for
monthly emission inversion (see Fig. 8b). However, the re-
sulting posterior estimates exhibited high emission values
during spring and notably low values in autumn. This asym-
metry is caused by strong seasonal variability in both ammo-
nia emissions and meteorological conditions. In spring, am-
monia emissions increase and become more variable due to
fertilizer application. Meteorological factors such as turbu-
lence and boundary layer dynamics also contribute to greater
atmospheric variability. Particularly, the posterior value of
February exhibited more than four times the prior value,
although the result falls within the leave-one-out cross-
validation bounds (see Fig. S7). This increase likely reflects
the onset of manure application season in February, when
agricultural ammonia emissions typically peak due to fertil-
izer spreading on farmland. While both February and April
fall within the spring period, in 2022, February experienced
much stronger wind speeds (Fig. S5b), enhancing transport
and dispersion. In contrast, April had lower wind speeds,
which reduced the spread of ammonia and increased sen-
sitivity to local sources. Additionally, in months like April,
August, and September, prevailing north winds placed most
observation sites on the leeward side of the source, reducing
their sensitivity to local emissions and thus weakening the
inversion constraint. In other words, the low results from the
inversion may not be due to actually low emissions but rather
to the measurements of those months that failed to capture
and represent local emissions adequately. Additionally, the
degrees of freedom for signal (DFS) remained low, indicat-
ing that the system could not extract sufficient information
from the observations to reliably constrain the emissions.

In Sect. 3.4, we explore potential strategies to improve the
performance of monthly emission inversions, including en-
hancements in measurement quality and network design.

3.4 Optimizing the measurement network for evaluation
of emissions

Due to the limitations of the current MAN network on
Schiermonnikoog, the inversion is only sufficient for quan-
tifying annual emissions, albeit suboptimally. Furthermore,
these measurements exhibit high uncertainty, particularly in
low-emission regions, making localized emission changes
difficult to detect due to measurement noise. To address these
challenges, we propose potential enhancements to the ex-
isting monitoring network to improve emission tracking on
Schiermonnikoog.

Table 3. Inversion results of 2019 and 2022 with optimized obser-
vational error. The prior error covariances for the emission is 0.48
and for external influences are 0.16. Notably, the MAN data of July
and August 2019 are eliminated because of the dune fires.

Posterior x DFS Ŝ

20
19

,M
A

N E 1.35 0.74 0.12
Groningen 1.02 0.89 0.02
Friesland 1.01 0.98 0.00
Germany 0.92 0.90 0.02
Other 1.08 0.98 0.00

20
22

,M
A

N E 0.73 0.55 0.22
Groningen 1.05 0.96 0.01
Friesland 0.91 0.99 0.00
Germany 0.61 0.82 0.03
Other 0.72 0.97 0.00

We apply a Monte Carlo approach to simulate Degrees of
Freedom for Signal (DFS) under varying measurement net-
work configurations. Specifically, we test the effects of in-
creasing the number of monitoring sites across Schiermon-
nikoog and reducing observational errors to represent higher-
quality measurements. Figure 9a shows the DFS results av-
eraged over 20 randomized site configurations. The contour
plot highlights how DFS evolves as a function of both site
density and observational precision. The ridge line delin-
eates the transition between two regimes: an error-limited
regime (above the ridge), where measurement uncertainty
dominates, and a site-limited regime (below the ridge), where
sparse spatial coverage is the limiting factor. The results in-
dicate that both increasing the number of sites and reducing
observational errors can enhance DFS, but their relative ef-
fectiveness depends on the regime:

– in site-limited conditions, adding more sites leads to
substantial DFS improvement;

– in error-limited conditions, further reducing observa-
tional uncertainty becomes more impactful.

The star in Fig. 9a marks the current MAN network configu-
ration, which is constrained by relatively high observational
errors, resulting in low DFS. While increasing the num-
ber of high-quality measurements would greatly improve
the system, practical constraints such as cost and logistics
make island-wide deployment of high-quality sensors dif-
ficult. This highlights the need for strategic placement of
enhanced measurement sites to optimize inversion perfor-
mance. Note that for denser monitoring networks (e.g., the
bottom-right corner of Fig. 9a), the achievable improvement
may eventually be limited by the ceiling of the model itself.
In this case, part of the parameter space could be biased by
model error, as also discussed in Turner et al. (2016). Nev-
ertheless, for the current monitoring network, as well as for
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Figure 9. Panel (a) illustrates the DFS as a function of additional
measurement sites and observational errors. The ridge line divides
the plot into two regions: error-limited (above the ridge line) and
site-limited (below the ridge line). Worth mentioning here, the mea-
surement sites are added randomly; thus, (a) shows the averaged
results. The star in (a) represents the current monitoring network.
Panel (b) highlights the spatial distribution of observational useful-
ness. Assuming high-quality measurements are available across the
entire island, we calculate the contribution of each observation to
the inversion result; see Eq. (12) for details. This diagnostic pro-
vides insight into which locations offer the greatest information
gain, thus informing the strategic placement of future monitoring
sites. Circles show the current and proposed sites.

moderate improvements in measurement precision, the anal-
ysis still provides valuable insights.

Figure 9b displays the spatial distribution of observational
usefulness across Schiermonnikoog, averaged over 100 ran-
dom test realizations. Assuming that high-quality measure-
ments (with an observational error of 0.1 µg m−3) are avail-
able uniformly across the island, we quantify the relative
contribution of each observation to the inversion outcome us-
ing the following formulation (Rodgers, 2000):

∂ŷ

∂y
=
∂KN x̂

∂y
=KNG (12)

where G= ŜKT
NS−1

O is the gain matrix, Ŝ is the posterior er-
ror covariance, KN is the Jacobian matrix at the final itera-
tion, and SO is the observational error covariance matrix. To
quantify the influence of each observation only on the inver-

sion of Schiermonnikoog emission, we take the first column
and row of KN and G, respectively, corresponding to the lo-
cal agricultural emission component. The diagonal elements
of this product reflect the influence of each observation on the
inversion model outcome. These values are reprojected spa-
tially in Fig. 9b. This diagnostic provides an intuitive inter-
pretation of where observations are most impactful for the in-
version. Regions with higher values indicate greater potential
for improving the accuracy of emission estimates, offering a
useful basis for strategic sensor placement in future monitor-
ing network designs.

We then propose adding an LML-like measurement
site near Waddenhaven Schiermonnikoog (53.472226° N,
6.167259° E), as shown in Fig. 9b. The most informative lo-
cation would be directly at the island’s main emission source.
However, measurement close to the source can lead to a large
bias in regional misrepresentation of ammonia concentration
(Schulte et al., 2022). Waddenhaven offers a compromise: it
is near the source but lies outside Banckspolder, a reclaimed
polder valued for farming. In addition, all existing MAN sites
are situated to the north of the source, which limits their
effectiveness under northerly winds. By contrast, Wadden-
haven lies within the footprint of the local emission and is
typically downwind of the main source, making it the most
suitable candidate for improving inversion performance.

Figure 10 illustrates the effect of incorporating a single
high-quality, LML-like observation on monthly ammonia
emission inversion for 2022. The synthetic observational er-
ror for the LML-like site is set at 3.5 %, based on values re-
ported by Dammers (2017) and Blank (2001). Compared to
the current MAN-only network, the addition of one strate-
gically placed LML-like measurement significantly reduces
uncertainty in most months. Posterior estimates not only
align closely with target values but also exhibit a narrower
percentile spread across most months, indicating improved
stability. Overall, this result demonstrates that even a single,
well-placed, high-precision observation can substantially im-
prove inversion performance, enhancing the system’s ability
to track temporal variability and increase DFS. With high-
frequency, low-error measurements, it becomes feasible to
detect near-real-time emission changes.

In addition, observational error can be reduced by averag-
ing multiple measurements at the same site, effectively de-
creasing the random component of the total error, as sug-
gested by the central limit theorem. According to Noordijk
et al. (2020) and Lolkema et al. (2015), the total monthly er-
ror in the MAN network comprises three components: ran-
dom uncertainty, uncertainty from the calibration method,
and systematic uncertainty from the calibration standard. The
first two are random and can be substantially reduced by
repeated sampling. By increasing the number of measure-
ments at a given site and averaging them into a single “super-
observation”, the total error can be significantly lowered, ap-
proaching the quality of high-precision instruments. While
enhancing a single MAN site alone does not achieve the same
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Figure 10. The monthly inversion in 2022 with synthetic measure-
ments and a synthetic summer peak. The observational error for the
synthetic LML-like measurement is set at 3.5 %. Panel (a) shows the
posterior emission with the current MAN network. Panel (b) shows
the posterior emission after adding one LML-like measurement.

performance as adding a single LML-like site, substituting
all six MAN sites on Schiermonnikoog with corresponding
super-observations yields substantial improvements. In fact,
this approach performs even better than the LML-like con-
figuration in March and April. More details are provided in
the Supplement.

4 Conclusions

4.1 Summary

In this study, aiming to evaluate a documented emission re-
duction on the island of Schiermonnikoog in the Nether-
lands, we performed a local-scale Bayesian inversion of am-
monia emissions using the LOTOS-EUROS chemical trans-
port model as the forward model, with MAN (Measuring
Ammonia in Nature) observations serving as constraints and
CAMS-REG, GrETa, and ER inventories as prior estimates.
To evaluate the influence of observational uncertainty, we
performed sensitivity analyses by integrating residual errors

with reported MAN network uncertainties from Lolkema
et al. (2015) and Noordijk et al. (2020). By optimizing the
χ2 statistics, we derived observational error covariance ma-
trices for both annual and monthly inversions, improving the
robustness of the inversion framework.

Between 2019 and 2022, GVE (grazing livestock units)
on Schiermonnikoog decreased from 639 to 541, with a par-
ticularly notable reduction in dairy cattle, corresponding to
an estimated 23 % reduction in ammonia emissions based on
activity data. Our inversion successfully captured this trend.
Using the current MAN network, we were able to invert an-
nual emissions, with the inversion indicating a 51 % reduc-
tion between 2019 and 2022. However, this value may be
overestimated, largely attributed to uncertainties in the 2019
posterior emissions. Using the posterior error covariance, we
derived a credible interval, describing the uncertainty of the
inversion. The posterior for 2022 shows consistency with
the validation and indicates a 27 % reduction compared with
the prior emissions of 2019. In contrast, monthly inversions
remain challenging with the current observational network.
High measurement uncertainty hinders the system’s ability to
resolve short-term emission dynamics effectively, especially
for those months that failed to capture and represent local
emissions adequately.

To explore potential improvements, we conducted sensi-
tivity analyses of the Degrees of Freedom for Signal (DFS)
and posterior error. Results showed that the existing network
is limited by relatively high observational errors. Increas-
ing the number of high-quality measurements substantially
improves the inversion performance. In particular, adding a
single, high-quality, LML-like observation at a strategically
chosen downwind site, Waddenhaven, significantly enhanced
the system’s ability to resolve temporal variability and in-
creased DFS.

4.2 Discussion

Although the model captures overall seasonal trends in both
years, significant discrepancies remain in specific months,
particularly during episodic events such as the dune fires in
July and August 2019. Such events substantially affect local
ammonia levels and underscore the need to include event-
driven emissions in the modeling framework.

Furthermore, possible timing discrepancies in passive
sampler collection, where measurements may not align pre-
cisely with calendar months, introduce additional uncertainty
when comparing observations to model outputs. These issues
highlight the need for refined emission timing, better spatial
resolution, and improved observation methodologies to en-
hance simulation-observation agreement.

The source apportionment analysis revealed that ammo-
nia concentrations on Schiermonnikoog are dominated by
long-range transport, which makes emission reductions more
difficult to detect due to the relatively high uncertainty in
MAN measurements. However, the inversion results provide
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not only the emission changes but also an improved estimate
of the transport contribution. While the model indicated that
approximately 50 % of the ammonia originated from Ger-
many, the posterior inversion suggests a lower contribution
of about 30 %. Consequently, the local contribution is likely
larger than indicated by the original source apportionment.
In addition, the “Other” category, primarily representing am-
monia re-emission through bi-directional flux processes, also
plays a key role. This includes volatilization from both soil
and sea surfaces. While LOTOS-EUROS can capture sea-
air exchange processes, these remain highly uncertain due
to complex atmospheric interactions and limited validation
data over marine environments.

In this study we neglected off-diagonal terms in the obser-
vational error covariance matrix, effectively assuming errors
are uncorrelated between sites. This assumption is supported
by the dominance of random measurement errors and by
the relatively small representation errors observed between
nearby stations. Nevertheless, neglecting correlations means
that potential systematic errors, such as seasonal biases in the
model, are not explicitly accounted for. While this simplifi-
cation is unlikely to strongly affect monthly inversions, cor-
related errors could become more relevant for annual-scale
inversions.

4.3 Outlook

The findings from model evaluation and source attribution
offer valuable insights for future ammonia inversion efforts.
Persistent underestimation of summer ammonia concentra-
tions suggests the need for improved temporal representation
of agricultural practices, particularly manure spreading. In-
corporating regional transport is also critical, as the island’s
ammonia concentrations are heavily influenced by upwind
sources. Refining prior emission inventories with higher spa-
tial and temporal resolution is essential for improving inver-
sion outcomes. Deploying high-resolution, continuous mea-
surements, such as LML-like instruments at strategically
chosen sites, would provide much-needed constraints and en-
able more accurate inversion at finer timescales.

In conclusion, while LOTOS-EUROS demonstrates strong
capability in capturing broad seasonal ammonia trends, it
struggles with peak events and local-scale gradients. The
source apportionment confirms that Schiermonnikoog’s am-
monia levels are mainly driven by regional transport, rein-
forcing the need for regional-scale mitigation strategies in
addition to local emission reductions. This highlights the im-
portance of coupling localized monitoring efforts with na-
tional and transboundary air quality policies.

Future work will expand the inversion domain to include
broader regions and higher-intensity emission sources. Fur-
thermore, since the current framework assumes a linear re-
lationship between emissions and concentrations, we will
explore non-linear Jacobian formulations, which may bet-
ter capture the dynamics over diverse and complex emission

landscapes. For upcoming national-scale inversion studies,
we plan to first characterize emission patterns before apply-
ing inversion, to enhance both accuracy and computational
efficiency. In addition, we will incorporate the potential in-
fluence of correlated errors when constructing observational
error covariance matrices.

Code and data availability. The data of the farms and livestock
can be found on https://mijnkringloopwijzer.nl/ (last access: 12
November 2025). The LOTOS-EUROS is an open-sourced model
and the version v2.3 used for the study can be found on the of-
ficial TNO website (https://airqualitymodeling.tno.nl/lotos-euros/
open-source-version/, last access: 12 November 2025). The Mea-
suring Ammonia in Nature (MAN) can be accessed through
the MAN website (https://man.rivm.nl/, last access: 12 Novem-
ber 2025). For LML measurement: https://www.luchtmeetnet.nl/
(last access: 12 November 2025). The observations of mete-
orological parameters can be accessed through KNMI (https:
//daggegevens.knmi.nl/klimatologie/daggegevens, last access: 12
November 2025).
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