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Abstract. Understanding the urban-rural patterns and driving drivers behind the recent decrease in particulate
matter (PM) pollution across eastern China is essential for assessing the efficacy of environmental policies and
ensuring equitable health co-benefits. By employing an interpretable, end-to-end machine learning framework
integrating satellite observations, meteorological factors, and auxiliary datasets, this study reveals changes in
urban and rural PM pollution and the underlying drivers. During the period 2015-2023, the average decrease
rates of PM g and PM, 5 in eastern China were —4.02 4 1.29 and —2.41 £0.91 ugm~3 yr~!, respectively. The
rate of decrease in urban areas was higher than that in rural areas, which played a dominant role in PM reduction.
Significant reductions in PM concentrations were observed in urban core areas, suburbs, towns and regions with
high agricultural pressure. The interpretability analysis showed that temperature and interannual variability were
the main drivers of PM pollution reduction. However, only interannual variability showed a significant decreasing
trend in its effect on PM pollution, while other driving factors showed periodic variations. Furthermore, there
were differences in the drivers of PM reduction between urban and rural areas, particularly with interannual
variability in particular contributing to PM pollution reduction in urban areas, but having a lesser impact in most
rural areas. This study reveals the urban-rural patterns of PM pollution reduction in eastern China, and highlights

the need for differentiated air pollution control strategies in urban and rural areas.

1 Introduction

Air pollution caused by PM» 5 and PMj( (airborne particu-
late matter with diameters less than 2.5 ym and 10 pm, re-
spectively) has adversely affected China’s atmospheric envi-
ronment (Huang et al., 2014a; Zhang et al., 2012). PM pollu-
tion is now considered the greatest environmental risk factor
for global human health (Apte et al., 2015), as exposure to
PM can trigger various respiratory and cardiovascular dis-
eases (Burnett Richard et al., 2014; West et al., 2016; Co-
hen et al., 2017). The indirect health risks associated with
PM exposure (Yin et al., 2020) contribute to millions of pre-
mature deaths annually in China (Burnett et al., 2018). To
mitigate the escalating risks of particulate matter exposure
and reduce the public health burden, the Chinese govern-
ment introduced the “Air Pollution Prevention and Control
Action Plan” in 2013 (State Council of the People’s Repub-

lic of China, 2013). This initiative aims to implement poli-
cies to improve energy efficiency, reduce energy-related pol-
lution, and curb anthropogenic emissions to control particu-
late matter pollution in the atmosphere (State Council of the
People’s Republic of China, 2014). As a result of this ini-
tiative, China’s atmospheric particulate matter pollution has
improved significantly (Cheng et al., 2021). Between 2013
and 2017, the annual average concentration of PM» s de-
creased by 28 %—40 % (Zheng et al., 2018; Ministry of Ecol-
ogy and Environment of the People’s Republic of China,
2017), and the population-weighted national annual aver-
age concentration of PM; 5 decreased by 32 % (Xue et al.,
2019). Data from the National Air Quality Monitoring Net-
work show that between 2013 and 2020, the annual average
PM; 5 concentration in urban areas of China decreased from
72 to 33 ugm~> (Song et al., 2023). As a result, the Clean
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Air Action has achieved remarkable results in reducing PM
pollution (Zhang et al., 2019b).

It is widely accepted that improvements in air quality
can be attributed to both reductions in anthropogenic emis-
sions (Geng et al., 2019; Zheng et al., 2023; Zhao et al.,
2018) and changes in meteorological conditions (An et al.,
2019; Cao and Yin, 2020; Chen et al., 2020a). To assess the
driving factors behind changes in PM concentration trends,
it is essential to distinguish between anthropogenic emis-
sions and meteorological factors (Zhong et al., 2018). Zhong
et al. (2021) found that PM; 5 concentrations decreased by
44 % from 2013 to 2019, and by 34 % when the influence
of meteorological conditions was excluded, thus demonstrat-
ing the effectiveness of emission reduction measures. Qiu et
al. (2022) used the GEOS-Chem chemical transport model to
simulate the impact of anthropogenic emissions on PM pol-
lution trends and provided recommendations for attributing
PM pollution trends to emission changes. Vu et al. (2019)
used machine learning to assess the impact of air quality
trends in Beijing and found that PM; 5 and PMo concen-
trations decreased by 34 % and 24 %, respectively, after ex-
cluding meteorological influences, attributing the decrease to
reduced coal burning. Zhai et al. (2019) used a stepwise mul-
tiple linear regression (MLR) model to quantify PM s trends
in China between 2013 and 2018, and found that meteoro-
logical conditions contributed about 12 %. However, Xiao
et al. (2021) used statistical methods to separate the contri-
butions of emissions and meteorology to long-term PM3 5
trends in East China, and found that meteorological contri-
butions were even higher in certain years. Overall, distin-
guishing the contributions of anthropogenic emissions and
meteorological changes to PM pollution is crucial to improve
understanding of pollution processes and to inform pollution
control policies and future air quality predictions.

However, the urban-rural patterns of PM pollution im-
provement remain poorly understood in existing research
(Chen et al., 2020b). Many studies on PM pollution either fo-
cus on highly polluted regions (such as the Beijing-Tianjin-
Hebei region) (Chen et al., 2019b, c), or on developed re-
gions with a high concentration of large cities (such as the
Yangtze River Delta and the Pearl River Delta) (Gui et al.,
2019; He et al., 2017). This focus is mainly due to the high
concentrations of air pollutants in developed cities (Sicard
et al., 2023), where PM pollution poses a significant public
health threat to densely populated urban areas (Brauer et al.,
2016; Southerland et al., 2022). Although PM pollution in
urban areas highlights the importance of environmental gov-
ernance, rural areas, with different consumption habits and
living conditions (e.g., solid fuel burning in households) (Li
et al., 2014), may experience air pollution that differs from
urban areas (Wang et al., 2024a). In certain seasons and re-
gions, PM exposure factors in rural areas are generally higher
than those in urban areas, with exposure levels reaching up
to 70 % (Wang et al., 2024b). Therefore, the contribution of
these regions to PM pollution improvement may differ (Li et
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al., 2024b). Without targeted assessments, perceptions of the
relative importance of urban and rural areas in China’s air
pollution control efforts may be distorted, hindering the de-
velopment of appropriate environmental policies and the pro-
motion of green development in urban and rural construction
(Yang et al., 2024).

Currently, many studies have used machine learning mod-
els to obtain particulate matter concentration products and
apply them to pollution assessment (Chen et al., 2019a;
Huang et al., 2021). Among these, extreme tree models and
data from the Himawari-8 satellite have demonstrated out-
standing performance (Wei et al., 2021b, a, c). In particu-
lar, the extreme tree model demonstrates its unique advan-
tages, including greater randomness and interference resis-
tance, and outperforms other similar models in terms of per-
formance (Wei et al., 2023). This study advances the under-
standing of the current status and driving factors of urban-
rural PM pollution improvement using interpretable machine
learning methods. First, by integrating Himawari-8/9 satellite
top-of-atmosphere reflectance (TOAR) data, meteorological
data, and geographic information, we use a multiple-output
extreme trees (MOET) model to capture the spatiotempo-
ral distribution of PM (including PMjop and PM; 5) across
China and assess the patterns of PM pollution improvement.
We then use various machine learning interpretability tech-
niques, such as relative importance, tree interpreters, and
SHAP values, to quantify the contributions of anthropogenic
emissions and meteorological changes to PM pollution im-
provement. To investigate potential differences in the results
between urban and rural areas, we use land use data to distin-
guish urban from rural regions in eastern China. This study
aims to address the following three questions: (1) What are
the spatio-temporal patterns of PM pollution improvement in
urban and rural areas of China? (2) What are the main driv-
ing factors behind the differences in PM pollution improve-
ment between urban and rural areas? (3) What are the spe-
cific contributions of each driving factor to PM pollution im-
provement? Answering these questions is crucial for a com-
prehensive understanding of the dynamics of urban and rural
atmospheric particulate pollution control in China.

2 Data and Methods

2.1 Satellite TOAR data and ground-based PM
observations

Previous studies have shown that satellite-observed top-of-
atmosphere reflectance (TOAR) data can be used to esti-
mate near-surface air pollutants (Chen et al., 2024a; Yang
et al., 2023; Song et al., 2024). In particular, the TOAR
data from the Himawari-8 satellite have demonstrated ex-
cellent performance in pollutant estimation (Hu et al., 2022;
Liu et al., 2019). The Advanced Himawari Imager (AHI) on
board the Himawari-8/9 satellite is an advanced passive ob-
servation instrument with 16 observation channels, provid-
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ing a spatiotemporal resolution of up to 10 min and 0.5 km
(Bessho et al., 2016). Based on the sensitivity of the AHI
sensor (Yoshida et al., 2018), three visible channels (0.46,
0.51, and 0.64 um) and two near-infrared channels (0.86 and
2.3 um) were used in this study. In addition, four angles re-
lated to aerosol inversion results: SAA (satellite azimuth an-
gle), SAZ (satellite zenith angle), SOA (solar azimuth an-
gle), and SOZ (solar zenith angle) were also included in the
study. TOAR data from the AHI imager were obtained from
the Himawari Monitor P-Tree System data download website
of the Japan Meteorological Agency (https://www.eorc.jaxa.
jp/ptree/index.html, last access: 20 September 2025, IMA,
2025). The time range for Himawari-8 data is from 1 Septem-
ber 2015, to 30 September 2022, while the time range for
Himawari-9 data is from 1 October 2022, to 31 August 2023.

The ground-based PM data were provided by the China
National Environmental Monitoring Center (CNEMC) (http:
/lwww.cnemc.cn, last access: 20 September 2025) and were
calibrated and quality controlled according to the Chinese
National Standard GB 3095-2012 (Ministry of Ecology and
Environment of the People’s Republic of China, 2012). In
this study, hourly mean PMy9 and PM, s data were col-
lected from approximately 1400 stations in eastern China
(102-136°E, 16-56°N) for the period from 1 September
2015 to 31 August 2023. Observations with PMj 5 concen-
trations above 600ugm™> or PMjo concentrations above
1000 ugm=3, as well as those with concentrations below
1 ugm—3, were excluded (Shi et al., 2024).

2.2 Meteorological data and geographic information
data

Studies assessing the impact of meteorological factors
on PM pollution have identified temperature, humidity,
and wind as the main variables influencing PMj 5 con-
centrations, with their effects significantly outweighing
those of other factors. Among these, temperature has
the most significant and stable influence (Chen et al.,
2018b). In this study, meteorological data were obtained
from the ERA-5 reanalysis dataset provided by the Eu-
ropean Centre for Medium-Range Weather Forecasts
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/, last
access: 20 September 2025). The dataset includes boundary
layer height (BLH), relative humidity (RH), surface pressure
(SP), 2 m air temperature (T2M), wind direction (WD), wind
speed (WS), and net solar radiation at the surface (NSR),
with spatial resolutions of 0.1°x 0.1° or 0.25° x 0.25°
(Hersbach et al., 2020). Geographic information can also
influence pollutant concentrations to some extent due to vari-
ations in meteorological conditions (Chen et al., 2018a; Chen
et al., 2021). The geographic information data used in this
study include elevation (HEIGHT), land cover type (LUCC),
and population density (RK). HEIGHT is derived from
SRTM-3 elevation data, with a spatial resolution of 90 m
and a temporal resolution of 1 year. The download URL is
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https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003
(NASA JPL, 2013). LUCC is sourced from the dataset
(MCDI12Q1), with a spatial resolution of 500m and a
temporal resolution of 1 year. The download URL is
https://doi.org/10.5067/MODIS/MCD12Q1.006 (NASA
Land Processes Distributed Active Archive Center, 2019),
used to describe land surface types and land use con-
ditions. RK is derived from the 2015 United Nations
adjusted population density data, with a spatial resolution
of 0.1°x0.1°and a temporal resolution of 1 year, avail-
able at https://doi.org/10.7927/HAPN93PB (Center For
International Earth Science Information Network-CIESIN-
Columbia University, 2018). It is provided by the Social and
Economic Data and Applications Center (SEDAC) of the
National Aeronautics and Space Administration (NASA).

2.3 Data integration and development of the
Multiple-Output Extreme Trees Model

The resolution of the meteorological and geographic infor-
mation data was adjusted to 0.05° x 0.05° using bilinear in-
terpolation. All data were then matched with station data ac-
cording to the 0.05° x 0.05° grid of the Himawari-8 satellite.
The specific matching method is described in detail in Chen
et al. (2022c¢) and Song et al. (2022b).

The DOET model is developed on the basis of the Extreme
Trees (ET) model (Geurts et al., 2006), which is capable
of simultaneously handle multi-target variable output tasks.
The ET model is similar to the Random Forest (RF) model,
both of which consist of multiple decision trees. However,
whereas the RF model randomly samples data with replace-
ment, the ET model uses all available samples. After deter-
mining the samples and features, the ET model constructs
decision trees based on optimal partition attributes. This pro-
cess is repeated until a sufficient number of decision trees
have been constructed to form the ET model. Finally, the av-
erage regression results of all decision trees in the ET are
used as the final output. Several studies have confirmed that
the ET model has excellent fitting performance (Qin et al.,
2020; Zhang et al., 2022a; Chen et al., 2022a).

In this study, three model parameters were optimized: the
number of trees (n_estimators), the maximum depth of the
model (max_depth), and the minimum number of samples
required to split a node (min_samples_split). After balanc-
ing the accuracy and efficiency of the model, these param-
eters were set to 70, 100, and 5, respectively. The model,
which uses satellite observations, meteorological data, and
geographical information to estimate near-surface PM con-
centrations, can be expressed as:

(PMyo, PM35) =

TOAR| > 3,4,6, BLH,RH, SP, T2M, WD, WS, NSR,
f Height, LUCC, RK, (D)
year, mon, doy, hour, lon, lat, SAA, SAZ, SOA, SOZ

Here, f represents the DOET model, and TOAR| 2 3 4,6 de-
notes the radiance values of the three visible channels (0.46,
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0.51, and 0.64 pm) and the two near-infrared channels (0.86
and 2.3um). BLH, RH, SP, T2M, WD, WS and NSR are
meteorological variables, while Height, LUCC and RK rep-
resent geographical information. The variables lon (Longi-
tude), lat (Latitude), SAA, SAZ, SOA and SOZ representing
spatial information. The variables year, mon (month), doy
(day of the year), and hour are temporal information reflect-
ing the influence of anthropogenic emissions on PM pollu-
tion (Wei et al., 2020). Time variables (year, month) effec-
tively characterize cyclical patterns and long-term trends in
human activity, serving as reliable proxy indicators in pollu-
tion analysis (Song et al., 2023). Monthly cycles directly re-
flect seasonal rhythms: winter heating spikes PM5 5 and SO2
levels (Liu et al., 2017), agricultural phases amplify ammonia
emissions (Ma et al., 2025), and transportation peaks during
holidays elevate NO; concentrations (Hua et al., 2021). An-
nual trends capture industrial evolution and policy impacts,
such as the PM; 5 reduction after implementing the “Air Pol-
lution Prevention Action Plan” (Geng et al., 2024; Geng et
al., 2021). As standardized, quantifiable metrics, time vari-
ables circumvent data limitations for complex activities (e.g.,
energy consumption, economic behaviors, urban sprawl), en-
able cross-regional comparisons without normalization, and
reveal pollution responses to socioeconomic rhythms and
policy efficacy (Dai et al., 2021; Shi et al., 2021). Specif-
ically, year and month (mon) are used to represent the in-
terannual and intra-annual variations in anthropogenic emis-
sions, respectively (Zhang et al., 2019a; Park et al., 2019).
The estimation workflow is illustrated in Fig. 1. The specific
estimation process of the DOET model is as follows: firstly,
meteorological factors, geographic information, and satellite
TOAR data are input into the DOET model and matched with
PM observation data. Then, the DOET model fits the PM
observation data with the input variables to obtain two ET
estimation models (PMjog and PMj 5). Finally, the two ET
models are integrated to obtain the DOET model, and the
estimation results of PMg and PM> 5 are output simultane-
ously to save computation time. Finally, the obtained PM g
and PM, 5 data are subjected to further analysis. Addition-
ally, we performed weather normalization on the PM data
to mitigate the impact of meteorological events (Grange and
Carslaw, 2019).

Model performance was evaluated using 10-fold cross-
validation (Rodriguez et al., 2010), incorporating sample-
based, space-based, and time-based validation methods (Wei
et al., 2019). Evaluation metrics used included the coefficient
of determination (R?), root mean square error (RMSE), and
mean absolute error (MAE) for both PMy and PM; 5 (Chen
et al., 2023).
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2)

3)

“4)

In Eq. (2), ssres represents the error between the estimated
value of the model and the average value of the observed
values of PM g and PM3 5, SS;o represents the error between
the observed values of PM g and PM; 5 and the average value
of the observed values of PM;o and PM; 5 from CNEMC.
In Egs. (3)—(5), y; represents the PM g and PMj 5 estimated
value of the DOET model, y; represents the observed value
of PMg and PM; 5 from CNEMC.

2.4 Machine learning interpretability variables

To investigate the influence of potential driving factors on
PM pollution improvement in eastern China, we employed
relative importance (Berner et al., 2020), tree interpreter
(Wang et al., 2022b), and SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) to distinguish the contri-
butions of meteorological changes and anthropogenic emis-
sions to PM pollution improvement. Relative importance
was assessed using the permutation importance value of the
DOET model, defined as the average reduction in model
accuracy when a single feature value is randomly shuffled
(Yang et al., 2022).

The permutation importance of each variable was calcu-
lated using the “permutation_importance” library in Python.
To reduce uncertainty, the training process was repeated 20
times for each grid point to obtain robust estimates of rel-
ative importance (Qu et al., 2023). The tree interpreter was
applied using the “tree_interp_functions” library in Python,
which is designed for predictions based on decision tree en-
semble models and facilitates the decomposition of each pre-
diction into bias and feature contribution components. The
detailed calculation method and code for the tree interpreter
can be obtained from the following URL: https://github.com/
andosa/treeinterpreter/tree/master (last access: 20 September
2025).

SHAP values are based on Shapley value theory, which
explains model predictions by calculating the relative contri-
bution of each feature to the output (He et al., 2024). These
values reflect not only the influence of features on individual
samples but also indicate the positive and negative contribu-
tions of these influences. SHAP explanations can be applied
to any machine learning model, including neural networks
and ensemble models, and provide comprehensive and accu-
rate interpretability results. Thus, the SHAP method provides
superior explanations for both local and global model effects
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Figure 1. Workflow of PM data estimation and pollution driving factors assessment.

(Liu et al., 2023; Hou et al., 2022). In Python, “tree_SHAP”
is specifically tailored for decision tree-based machine learn-
ing models, such as the Extreme Tree model, to provide
greater accuracy and faster computation.

The interpretability variables described above were ap-
plied to the monthly averaged PM ¢ and PM, 5 datasets gen-
erated by the DOET model.

2.5 Land cover type classification

Zhang et al. (2022b) proposed a method to differentiate ur-
ban and rural areas based on the gradient of human land use
pressure. In this study, the MCD12Q1 land cover map, with
a spatial resolution of 500 m was used. For grids measuring
5 x 5 km, urban and rural classifications were determined by
the coverage of specific land cover categories (e.g., urban
land and cropland), which reflect the transition from urban
to rural areas and correspond to different levels of human ac-
tivity. As shown in Table 1 and Fig. S1 in the Supplement,
urban areas in this study include both urban core areas and
suburban regions, while rural areas are categorized into six
types: towns, high agricultural pressure areas, low agricul-
tural pressure areas, forests and grasslands.

https://doi.org/10.5194/acp-25-15487-2025

3 Results

3.1 PM estimation model performance and PM

distribution characteristics

For the period from September 2015 to August 2023 in east-
ern China, a total of 6772429 samples were matched. Af-
ter parameter optimization and feature training, the optimal
DOET model was derived, and long-term time-series spatial
distribution products for PMjg and PM> 5 in eastern China
were generated. Figure 2 shows the results of 10-fold cross-
validation based on sample, spatial and temporal validations.
Overall, the DOET model showed a high level of accuracy in
the estimation of PM data. The sample-based 10-fold cross-
validation results (Fig. 2c and f) yielded an R? of 0.87, with
RMSE (MAE) values of 25.82 (14.87) ug m~3 for PM;o and
14.36 (8.44) ugm~3 for PMy 5. The slope of the fitting line
between observed and estimated values was 0.84. The perfor-
mance of the DOET model in this study is comparable to that
reported in other studies that estimated PM using Himawari-
8 TOAR data (Wang et al., 2021; Chen et al., 2024b; Yin et
al., 2021).

The 10-fold cross-validation results based on spatial and
temporal validation were slightly lower than those based on
samples (Fig. 2d—e and g-h). Spatial validation assessed the
performance of the model in estimating PM concentrations
in areas without monitoring stations, after training the model
with samples from areas with stations. Temporal validation

Atmos. Chem. Phys., 25, 15487-15506, 2025
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Table 1. Definitions of urban and rural land cover classes.
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Urban-Rural Land Cover Class

Definition

Urban

Suburban

Towns

High Agricultural Pressure Areas
Low Agricultural Pressure Areas
Forests

Grasslands

Other

50 % < Urban grid

25 % < Urban grid < 50 %

12.5 % < Urban grid < 25 %

50 % < Cropland grid

12.5 % < Cropland grid grid < 50 %

50 % < Forest grid

50 % < Grassland grid

Remaining unclassified grids (e.g., desert or tundra)

involved training the model with samples from specific years
and testing it with data from years not used in training. For
these two validation methods, the R? values for PM;( were
0.83 and 0.41, with RMSE values of 29.99 and 55.44 uygm—3,
respectively. For PM s, the R? values were 0.83 and 0.52,
with RMSE values of 16.46 and 28.11 ugm™3, respectively.
The DOET model is relatively robust based on sample and
spatial validation results.

By inputting TOAR, meteorological elements and ge-
ographical information into the optimally parameterized
DOET model, a pollutant estimation dataset for eastern
China was generated for the period September 2015 to Au-
gust 2023. Due to the incomplete spatial coverage of TOAR
data in different months and hours (Song et al., 2024), the
study first calculated monthly averages, which were then
used to derive annual averages. This step helps to minimize
errors due to insufficient spatial coverage of the samples
(Ding et al., 2024). As shown in Fig. 2a and b, the Beijing-
Tianjin-Hebei region, the Sichuan Basin, the Guanzhong re-
gion, and central China are hotspots for PM g and PM» 5 pol-
lution (Wei et al., 2021a), with concentrations reaching up to
100 ugm~3 for PMjg and 60 ugm~3 for PM, 5. In addition,
the Inner Mongolia region and northern Gansu, which are
frequently affected by dust storms, are also characterized by
high PM( concentrations (Li et al., 2012). Overall, the PM 1o
and PM; 5 concentrations generated by the DOET model ac-
curately reflect the spatial distribution characteristics of PM
in eastern China, and the estimation results are consistent
with those of previous studies (Yang et al., 2023; Chen et
al., 2022b; Song et al., 2022a).

3.2 Urban-rural differences in PM pollution trends in
recent years

The spatial distribution characteristics of PMjg and PM; 5
trends from 2015 to 2023 were analysed, and the results
(Fig. 3c—f) show a remarkable improvement of PM pol-
lution in eastern China, as indicated by a significant de-
creasing trend in PM concentrations. The average decrease
for PMjo was —4.02+£1.29ug m3 yr_l, while for PMj s,
it was —2.4140.91 ugm=3 yr~!. However, this widespread
decrease in PM concentrations showed considerable spa-
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tial heterogeneity between urban and rural areas. The urban
and rural decrease trends for PM ;g were —4.99 4+ 1.68 and
—3.98+1.26ugm 3 yr~!, respectively, while for PM, s,
they were —3.4341.10 and —2.38 +0.88 ugm=3 yr~!, re-
spectively. This suggests that the decrease in PM con-
centrations in rural areas was close to the regional aver-
age in eastern China, while the decrease in urban areas
was more pronounced than the overall trend. We supple-
mented our analysis by examining the relative change trends
through benchmark concentration standardization. Initially,
the standard deviation of PM concentrations was com-
puted for each grid point to assess spatial variability. Sub-
sequently, the annual mean PM data were used to cal-
culate yearly relative changes normalized against bench-
mark concentrations. Finally, a comprehensive trend analy-
sis was performed on these standardized values. The results
are presented in Fig. S2. Consistent with the overall trends
in PM concentrations, the relative change rates of PMj 5
were quantified as —38.24 +3.40 % yr~! in rural areas and
—40.93 4 1.91 % yr~! in urban areas. Similarly, PMq exhib-
ited relative change trends of —34.03 & 6.55 % yr—! (rural)
and —39.07+2.78 % yr~! (urban). These findings demon-
strate that, when accounting for region-specific baseline con-
centrations across different land cover types, urban areas
continue to show a more substantial reduction in PM pol-
lution compared to rural areas.

From a broader perspective of the changes in particulate
matter concentrations in eastern China, the urban decrease
trends for PM g and PM, 5 were —0.47 and —0.33 ug m~3
per month, respectively, while the rural decrease trends were
—0.37 and —0.22 ug m~3 per month, respectively. These re-
sults indicate that the reduction trend in rural areas was
slower than in urban areas. By 2023, particulate matter
concentrations in urban areas had decreased from about
20 ugm~3 higher than in rural areas to levels almost equal
to those in rural areas.

Urban and rural areas, categorized by land cover type,
comprised eight different categories. The study assessed their
respective roles in PM concentration reduction trends and
found that all eight categories showed declining PM trends.
However, the regions with the highest PM reduction trends
were mainly four types: urban core areas, suburbs, towns

https://doi.org/10.5194/acp-25-15487-2025
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Figure 2. Spatial distribution of PM g and PM; 5 and cross validation results of the DOET model. The dashed lines represent the 1 : 1 line,
while the solid lines show the fitted line between observed and estimated values.

and agricultural land 1 (high agricultural pressure). In con-
trast, the reduction trends were less pronounced in agricul-
tural land 2 (low agricultural pressure), forests, grassland and
other areas.

The trends in PMo and PM; 5 concentrations were cat-
egorized into four levels based on percentiles: slow decline
(grid points with a decline trend below the 25th percentile),
moderate decline (grid points with a decline trend between
the 25th and 75th percentiles), rapid decline (grid points with
a decline trend between the 75th and 95th percentiles), and
sharp decline (grid points with a decline trend above the
95th percentile). As shown in Fig. 4, the regions with the
most significant changes in urban and rural PM trends are

https://doi.org/10.5194/acp-25-15487-2025

mainly concentrated in the Beijing-Tianjin-Hebei region, the
Guanzhong region and Central China.

In areas with slow and moderate declines, forests and
grasslands accounted for the highest proportions, ranging
from 23.51 % to 32.56 % and 23.92 % to 39.25 %, respec-
tively, followed by the agricultural 1 and agricultural 2,
which accounted for about 20 %. In regions with rapid de-
cline, the first type of agricultural land had the highest pro-
portion, ranging from 30 % to 40 %. Urban core, suburban
and towns had higher proportions in the fast decline regions,
accounting for 6.44 %, 6.01 % and 6.83 % of the PMq de-
cline trends and 7.52 %, 6.34 % and 7.21 % of the PM; 5 de-
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Figure 3. Analysis of PM concentration trends in eastern China from September 2015 to August 2023. Panels (a), (c), (d), and (g) represent
PM;, while panels (b), (e), (f), and (h) represent PM> 5. In the legends of panels (g)—(h), blue indicates urban areas, and red indicates rural
areas. In (g) and (h), the upper part of the box represents the upper quartile of the trend, and the lower part represents the lower quartile of
the trend; the dotted line range represents the upper and lower limits of the trend values; the red dot represents the average value of the trend.

cline trends respectively. In particular, the agricultural 1 had
the largest share in the strong decrease regions.

3.3 Assessing potential driving factors for PM pollution
improvement and quantifying their contributions

A DOET model based on monthly PM data was developed to
identify the key drivers of urban and rural particulate matter
pollution changes in China. Monthly mean PMy and PM> 5

Atmos. Chem. Phys., 25, 15487-15506, 2025

concentrations were correlated with meteorological factors
and two temporal variables (year and month) representing
the effects of meteorological changes and anthropogenic in-
fluences, respectively (see Methods for details). The model
was cross-validated using a random training set (70 %) and a
validation set (30 %). As shown in Fig. S3, the DOET model
explains more than 60 % of the PM 1 trends and 80 % of the
PM, 5 trends in eastern China.

https://doi.org/10.5194/acp-25-15487-2025
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areas.

The relative importance of each variable in the DOET
model was determined using the permutation_importance
library. Inter-annual variability, intra-annual variability, air
pressure and temperature were identified as significant con-
tributors to the improvement of urban and rural PM pollu-
tion in eastern China (relative importance > 10 %). Among
them, interannual variability was the most influential fac-
tor for PMjg (26.14 £ 13.35 %), followed by temperature
(19.95 £ 15.06 %) (Fig. 5a). In contrast, for PM> s, interan-
nual variability ranked second (30.79 & 12.86 %), while tem-
perature had a stronger effect (38.90 £ 17.73 %) (Fig. 5b).
The spatial distribution of the relative importance of the four
main contributing factors, shown in Fig. Sc—r, indicates that
regions with high relative importance values overlapped with
PM pollution hotspots. Furthermore, as shown in Fig. S4, the

https://doi.org/10.5194/acp-25-15487-2025

driving factors for urban and rural PM pollution improve-
ment differed significantly between land cover types.

The relative contributions of each variable in the DOET
model to the PM concentration values were obtained using
the permutation_importance library. The results showed that
the improvement in urban and rural PM pollution was pri-
marily driven by interannual variation (Fig. 5), followed by
temperature, which is consistent with the relative importance
results in Fig. 5. Figures S5-S6 illustrate how variations in
the values of the driving factors influence their relative con-
tributions to PM concentrations. In particular, PM concen-
trations showed a clear inverse relationship with tempera-
ture and interannual variations, especially for PM, 5. Rela-
tive humidity also showed clear differences in its contribu-
tion to PMg and PM3 5: lower relative humidity was associ-
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Figure 5. Spatial distribution of the relative influence of each variable on PM pollution. In panels (a)—(b),

emissions and the blue variables are related to meteorology.

ated with higher PM ¢ concentrations, whereas higher PM 5
concentrations were associated with higher relative humidity.
The scatter plots illustrating the relationships between other
variables and their relative contributions to PM are shown in
Figs. S4-S5.

Figure 6 shows the relative contributions of each variable,
with the spatial distribution patterns of interannual varia-
tions being particularly noteworthy. For PM;g, regions such
as Guanzhong, North China, and Inner Mongolia were more
susceptible to the influence of interannual variations. We hy-
pothesize that the improvement in PMq pollution be due not
only be attributed to anthropogenic emission reductions but
also to sandstorm events in recent years, which are impor-
tant sources of PMo (Wang et al., 2024c). However, the ex-
planatory power of the model for PMq trends in these areas
remains relatively low, suggesting the need for further inves-
tigation into the specific causes. For PMj 5, the impact of in-
terannual variability was observed mainly in the Guanzhong
region, North China, and the Sichuan Basin, all of which are
key areas for pollution control (Wang et al., 2022a; Yu et
al., 2022). Contrary to the relative importance results, the
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dominant factor driving the improvement in urban and ru-
ral PM pollution was the influence of interannual variability
(Fig. S7), with other variables showing varying effects across
different land cover types.

Finally, the “tree_SHAP” tool was used to decompose the
SHAP values of each variable in the DOET model. By an-
alyzing the positive and negative changes in the SHAP val-
ues, the influence of each variable on the PM pollution im-
provement — whether positive or negative — was quantified,
thus complementing the assessment of driving factor con-
tributions (Li et al., 2024a). As shown in Fig. 7, the SHAP
values show a strong negative correlation between PM con-
centrations and the contribution of interannual variability in
eastern China. In particular, during the transition from 2019
to 2020, the contribution of interannual variations to PM con-
centrations shifted critically from positive to negative. In-
terestingly, despite the high relative importance and contri-
bution of some variables, their SHAP values showed peri-
odic fluctuations, alternating between positive and negative,
such as for temperature (with a negative contribution in sum-
mer and a positive one in winter). This suggests that mete-
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Figure 6. The spatial distribution of the relative contributions of each variable to PM pollution.

orological factors influence PM concentrations in a periodic
manner, while the only factor that consistently contributes to

the improvement of PM pollution is the interannual variation

driven by anthropogenic influences. The Figs. S8-S9 show
the SHAP values of various variables for PM in urban and

rural areas, respectively. The impact of various variables, in-

cluding temperature, on PM is primarily evident in urban ar-
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eas, where the magnitude of the values and the rate of change
are both higher than in rural areas.

3.4 Trends in the contribution of driving factors to PM
pollution improvement

To further investigate the influence of potential driving fac-

tors on PM concentrations, we conducted a detailed analy-
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change.

sis of the trends in the contributions of each variable was
performed. As shown in Figs. S10-S13, the monthly trends
in the relative contributions and SHAP values of each vari-
able were examined, categorized into significant changes
(p <0.05) and non-significant changes (p > 0.05). For the
relative contributions (including PMj9 and PM;s), with
the exception of interannual variations, all other variables
showed a decreasing trend, although some regions showed
an increasing trend. However, the contribution of interan-
nual variability showed a significant decrease, indicating a
reduced capacity of anthropogenic emissions to trigger PM
pollution events. This phenomenon is more pronounced for
the trends in SHAP values. In particular, only the contribu-
tion of interannual variations showed a significant decreasing
trend, while the other variables showed non-significant de-
creasing trends, mainly due to the periodic variations in their
contributions, as shown in Fig. 7. This shows that the impact
of a variable on PM pollution cannot only be assessed on the
basis of its relative contribution, but its positive or negative
influence on the improvement of PM pollution must also be
considered.

Given the significant decrease in the contribution of in-
terannual variation, we further compared its trends across

Atmos. Chem. Phys., 25, 15487-15506, 2025

different land cover types in urban and rural areas, as this
variable plays the most important role in PM pollution im-
provement. As shown in Fig. 8a—b, the trends in relative con-
tributions for both PMg and PM5 5 did not differ signifi-
cantly between the eight land cover types, although urban ar-
eas showed the highest rate of decrease. However, the trends
in SHAP values shown in Fig. 8c—d revealed that the reduc-
tion in the contribution of interannual variation was most pro-
nounced in urban core areas, suburban areas, and towns. In
contrast, the decrease in interannual contributions was more
pronounced in agricultural areas than in urban areas, while
other rural areas showed a weaker influence of interannual
variations on PM pollution improvement. These results sug-
gest that the improvement in PM pollution in urban areas
is more closely related to anthropogenic influences, whereas
this relationship is less pronounced in rural areas.

4 Discussion and conclusion
Due to the predominant distribution of environmental qual-

ity monitoring stations in urban areas (Park et al., 2020),
discussions on air pollution patterns between urban and ru-

https://doi.org/10.5194/acp-25-15487-2025



Z. Song and B. Chen: Urban-rural patterns and driving factors of particulate matter pollution 15499
0.2
(a) — . Urban
1 - N Rural
T T T T : : T
] 1 1

= 0.0 i 1 i ! 1 1 H -
E 1 1 1 1
b \
- B B B 0 G
l H H
g 1 ] 1 1 : I I
= 1 1 1 1 1 1 1 1

-0.4 1 1 1 1 1 - 1

L 4 A 1 — _|_
-0.6
Urban Suburban Towns Agricultural 1 Agricultural 2 Forests Grassland Other
0.1
b
0.0 ® T T T H T T -
. 1

1 1 | 1 ! ! 1 T
BB B B B 8 g
E 1 1 I
®-0.21 1 1 1 : I 1 1
3 ! ! ! : H
£-03 L - -

-0.41 - Urban
B Rural
-0.5 T . - . : : - -
Urban Suburban Towns Agricultural 1 Agricultural 2 Forests Grassland Other
0.0 —
© T T T i T
! ! : - : T T
-0.21 1 1 1 T
- 1 1 1
U B & & ¢
P T
= -0.4 1 1
2 04 I : - iR
] 1 1
g i | i i B
o0 ! : !
- = - + - Urban
I Rural
-0.8
Urban Suburban Towns Agricultural 1 Agricultural 2 Forests Grassland Other
0.0 - -
(d) T T T T T 1 1
-0.1 I —

! - : L] =
=. LN
£-02 !I . E:I i ! i
£ ! 1 L -

2703 1 ! i
=] ! 1 ! 1
504 H 1 ! +
= 1 -+ -—
-0.51 — Urban
B Rural
-0.6
Urban Suburban Towns Agricultural 1 Agricultural 2 Forests Grassland Other
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ral regions have been limited (Hammer et al., 2020). In this
study, we used a regression-based machine learning DOET
algorithm to integrate station-observed PM concentrations,
satellite-observed TOAR, meteorological factors, and geo-
graphic information data. This approach enabled us to gen-
erate long-term, high spatio-temporal resolution datasets of
near-surface PM g and PM, 5, with a spatial resolution of
5 km, an hourly temporal resolution, and coverage across the
entire eastern China region. Using the generated PM data in
conjunction with a constructed urban-rural land type frame-
work, we successfully captured the broad trends and patterns
of PM|g and PM» 5 concentration changes from urban and
suburban areas to different types of rural regions.

https://doi.org/10.5194/acp-25-15487-2025

Based on the estimated dataset and interpretable parame-
ters, the study identified significant large-scale improvements
in PM pollution in eastern China from 2015 to 2023, in-
dicating notable achievements from the implementation of
clean air measures. The study noted that the second phase of
the clean air action plan, implemented from 2018 to 2020,
also produced positive results, following the success of the
first phase from 2013 to 2017 (Geng et al., 2024). Our re-
sults show that under the urban-rural framework, PM reduc-
tions are generally higher in urban areas than in rural areas.
However, the highly polluted agricultural areas in rural re-
gions also showed significant improvements in PM pollution.
In fact, during air pollution prevention and control efforts,

Atmos. Chem. Phys., 25, 15487-15506, 2025
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China’s main emission reduction measures focused on coal
consumption and energy-intensive industries such as steel
and cement, and these measures were often effective in ur-
ban areas (Yun et al., 2020; Huang et al., 2014b; Wang et
al., 2013). This does not mean that rural areas have been
neglected, as evidenced by reductions in biomass burning
(Shen et al., 2019). The finding that interannual variability
is the main driver of PM pollution improvement is consis-
tent with these facts. It is worth noting that the rate of PM
concentration decline is faster in urban areas than in rural ar-
eas, bringing the concentration levels of the two areas closer
together. Given the more pronounced decrease in the contri-
bution of inter-annual variations in urban areas, future efforts
to prevent and control air pollution should maintain the cur-
rent intensity or balance investments between urban and rural
areas.

Our results indicate that meteorological factors with dis-
tinct seasonal variations, such as temperature, boundary layer
height, and relative humidity, have a cyclical influence on PM
pollution. For example, summer weather conditions, such as
abundant precipitation, high relative humidity and abundant
water vapour favour PM dispersion, while winter weather
conditions are less conducive to pollutant dispersion and
spring is often characterised by frequent dust events. There-
fore, due to their periodic positive and negative contribu-
tions and variability, meteorological conditions do not pro-
vide stable improvements in PM pollution. Moreover, the
contribution of meteorological conditions to PM concentra-
tions does not show a significant trend. Thus, given the high
contribution of inter-annual variability to the improvement of
PM pollution, the impact of meteorological conditions on the
inter-annual variability of PM pollution in China should not
be overemphasised.

Although this study evaluated the patterns of PM pollu-
tion improvement and its driving factors in urban and rural
areas of eastern China, the contribution of interannual varia-
tions driven by anthropogenic influences was represented by
a time variable in our analysis. In the future, key factors driv-
ing changes in air pollutants, such as energy management, ur-
ban traffic management, agricultural nitrogen deposition ef-
fects and biomass burning, need to be further incorporated
into the attribution analysis to distinguish and quantify the
contributions of different anthropogenic emission reduction
measures to PM pollution improvement. Given the different
drivers of PM pollution improvement in urban and rural ar-
eas, it is essential to implement tailored strategies in both
regions to achieve more effective and comprehensive air pol-
lution prevention and control measures in the future.

Code availability. The codes are available from the corresponding
author upon request.
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Data availability. The hourly ground station observations
of near-surface PMjp and PM,s5 concentrations are ob-
tained from the China National Environmental Monitor-
ing Center (CNEMC), which can be accessed on its of-
ficial website (http://www.cnemc.cn/en/, CNEMC, 2025).
Himawari-8 TOAR data provided by the Japan Meteorolog-
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