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Abstract. We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global
models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simula-
tions and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB
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AOD performance as an indication of smoke source—strength, (2) identify regions where the common emission
dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity
and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source
strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in
boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive
where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as
parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the
mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss
rate from each model. The results point to a need for increased numbers of available BB cases for study in some
regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates
and of detailed particle microphysical and optical properties; this would both better constrain models and help
distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional

efforts at constraining aerosol source strength and other model attributes with multi-platform observations.

1 Introduction

Aerosol particles emitted from biomass burning (BB) play a
significant role in both regional climate and air quality and,
in aggregate, can contribute significantly to direct and indi-
rect aerosol climate forcing (e.g., Andreae et al., 2004; Bow-
man et al., 2009; Gadhavi and Jayaraman, 2010; Ichoku et
al., 2012; Lelieveld et al., 2015; Lu et al., 2018; Randerson
et al., 2006; Solomos et al., 2015). One of the challenges of
representing BB smoke in models that assess their environ-
mental impacts is adequately characterizing the strength of
BB sources.

Several approaches have been taken to estimate smoke
source strength. A widely used set of methods involves cal-
culating the product of burned area, available fuel load,
combustion completeness, and emission factors of primary
aerosols and precursor gases (Seiler and Crutzen, 1980),
where the latter three quantities are determined, to the ex-
tent possible, from field observations. Burned area is derived
from reflectance changes in satellite imagery (e.g., Chen et
al., 2023; Giglio et al., 2006a; Roy et al., 2008; Soja et
al., 2004; Vermote et al., 2009; Wiedinmyer et al., 2011,
2023) or deduced, with some assumptions, from space-based
4 u brightness temperature anomaly (designated fire radiative
power or FRP) measurements (Chen et al., 2023; Randerson
et al., 2012; van der Werf et al., 2006). Other approaches ex-
ploit correlations between FRP and combustion rate (Kaiser
et al., 2009; Wooster et al., 2005). The active fire (FRP)-
based methods are generally more sensitive to small fires
than those relying on burned area estimates; however, FRP
is more affected by observational gaps due to sampling fre-
quency limitations and cloud cover, whereas burned area can
be assessed for some time after active burning has ceased
(e.g., Randerson et al., 2012).

Observations of FRP combined with the aerosol optical
depth (AOD) of the smoke plume itself and/or the difference
between the 4 and 11 p brightness temperatures, all obtained
from the NASA Earth Observing System’s MODerate resolu-
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tion Imaging Spectroradiometer (MODIS) instruments, have
also been used directly to estimate smoke emissions (Ichoku
and Ellison, 2014; Ichoku and Kaufman, 2005; Kaiser et al.,
2012; Konovalov et al., 2014; Sofiev et al., 2009; Wooster
et al., 2005). One implementation of this approach (Ichoku
and Ellison, 2014) uses the plume AOD and area divided by
the advection time, estimated from the apparent length of the
plume in the MODIS imagery and a wind speed obtained
from a reanalysis product, and correlates this quantity with
the FRP for multiple cases to derive ecosystem-specific co-
efficients, which, when multiplied by the observed FRP for
individual fires, yield a smoke mass emission estimate.

Inverse modeling has also been applied in efforts to char-
acterize aerosol source strength from large-scale maps of
AOD (e.g., Chen et al., 2019; Dubovik et al., 2008; Ver-
mote et al., 2009). With this approach, a version of an aerosol
transport model is effectively run in reverse, initialized with
a regional or global AOD distribution, to trace back to the
locations and strengths of the aerosol sources. However,
this approach requires all other aspects, e.g., transport, re-
moval, chemical transformation, source location, and non-
BB aerosols, and the assumptions made to constrain aerosol
properties and processes to be adequately represented in the
model.

Bottom-up inventories are derived from laboriously col-
lected information about primary and secondary aerosol
sources, both anthropogenic and natural, to estimate the re-
sulting aerosol accumulation in the atmosphere (e.g., Ander-
son et al., 2024; Chen et al., 2019, 2023; Liousse et al., 2010;
Petrenko et al., 2012; Schultz et al., 2008; Seiler and Crutzen,
1980; van der Werf et al., 2010, 2017; Wiedinmyer et al.,
2023). This approach has been an essential tool for approxi-
mating aerosol loading for times prior to global satellite ob-
servations and continues to be a key resource for estimating
regional aerosol amounts and types, but it suffers from lim-
ited knowledge about source properties, as well as unknown
sources that would be missing altogether.
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Not surprisingly, there are significant discrepancies among
the different estimates of BB aerosol source strength (e.g.,
Carter et al., 2020; Pan et al., 2020; Petrenko et al., 2012,
henceforth P2012). In an effort to bring additional satellite-
based constraints to bear on smoke source—strength estimates
globally, P2012 adopted a forward-modeling approach that
made explicit use of known smoke source locations and
compared model-derived estimates of aerosol loading for
varying aerosol source strength with satellite-derived AOD
rather than using the top-of-atmosphere brightness temper-
ature itself to characterize smoke source strength. Region-
specific summaries of the relationships between smoke emis-
sion rates used in the model and MODIS-retrieved snapshots
of AOD for individual plumes were provided. In particular,
in the P2012 study, the GOCART model (Chin et al., 2002,
2014) was initialized with varying BB sources, as specified
by a number of widely used smoke source emission invento-
ries, including the Global Fire Emission Database version 3
(GFED3) (Randerson et al., 2012, 2013; van der Werf et al.,
2010). The model was sampled at the time closest to that of
the satellite overpass, and the near-source AOD of the model
was compared with that derived from coincident MODIS ob-
servations. One key observation from this study is that the
model-simulated AOD bias within a given geographic region
is systematic, such that the model overestimated, underes-
timated, or approximately agreed with the observed AOD
snapshots for nearly all plume cases within that region. This
indicated that it might be possible to apply region- and/or
biome-specific adjustment factors to the emission inventories
to bring the model into agreement with the observations.

Petrenko et al. (2017; henceforth P2017) greatly expanded
the database of smoke cases in P2012 and refined the model-
observation comparisons (1) using scaled AOD reanalysis
values from the Modern-Era Reanalysis for Research and
Applications (MERRAero) to fill AOD in those parts of
plumes that are too optically thick to use to derive AOD
from MODIS observations and in areas obscured by clouds,
(2) distinguishing to the extent possible the emitted BB
aerosol from background aerosol generated by other sources,
and (3) assessing qualitatively the effect of small fires based
on emissions from the GFED4.1s database (Giglio et al.,
2013; Randerson et al., 2017, 2018; van der Werf et al., 2017)
to account for fires that are too small to be detected by the
standard satellite-based methods used for GFED3. This anal-
ysis showed that the overall approach works best when the to-
tal AOD and the BB fraction of the total AOD are high, which
occurs primarily for evergreen or deciduous forest fires. Am-
biguities arise when either the background AOD is compara-
ble to or larger than the BB contribution, generally in heavily
polluted regions such as northern India and eastern China, or
when the total AOD is low, which can occur in regions of
sparse vegetation or agricultural burning.

The P2012 and P2017 studies looked only at results from
the GOCART model, which provided a consistent set of re-
sults that were relatively straightforward to interpret in terms
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of emission source strength. However, those studies did not
address the uncertainties associated with a range of underly-
ing model assumptions that are not constrained by the choice
of BB emission source strength alone. The current study ex-
pands upon this earlier work by examining the behavior of
11 global models that are part of the AeroCom community.
The results highlight some of the leading model assumptions
and not well-constrained by measurements that affect model-
simulated AOD, even when the emission strength is speci-
fied.

AeroCom is an open international initiative providing a
platform for multi-model intercomparison and comparisons
between observations and models (https://aerocom.met.no/,
last access: 22 January 2025). AeroCom has a long history
of performing multi-model experiments in which certain fac-
tors are controlled among the model runs, and comparative
analysis yields insights into the impact of different model
assumptions and parameterizations (e.g., Bian et al., 2017,
Curci et al., 2015; GIiB et al., 2021; Huneeus et al., 2011;
Kim et al., 2019; Kinne et al., 2006; Textor et al., 2006;
Tsigaridis et al., 2014; Zhong et al., 2022). These efforts
have produced a great many insights into the factors affect-
ing model performance and have made it possible to isolate
model-specific factors from issues associated with external
constraints. Following this tradition, and as part of the larger
AeroCom phase III experiments, the biomass burning exper-
iment aims to assess the emission source strength (BBESS)
and injection heights (BBEIHs) that are used in models in the
context of global satellite-derived constraints and to identify
any model-related issues that arise from the comparisons.

The current paper reports the results of the AeroCom
BBESS experiment for which the same BB emission in-
ventory from the Global Fire Emission Dataset version
3.1 (GFED3.1) is used in all participating models. The
model-simulated results are evaluated region by region with
the MODIS smoke plume reference database developed in
P2012 and P2017 (the data set of study fire cases is con-
tained in a supporting table for P2017, please refer to cor-
responding reference). In the process, we also refined the
set of geographic regions to better match areas showing dis-
tinct smoke behavior, as well as to correspond to the extent
possible with the biomass burning regions defined by the
GFED (Giglio et al., 2006b). The objectives of this study are
(1) to assess and quantify the AeroCom-model-simulated BB
AOQOD performance as an indication of smoke source—strength
provided by the common emissions inventory, (2) to iden-
tify regions where the emission inventory might underesti-
mate or overestimate smoke sources based on the compari-
son between multi-model outputs and the satellite observa-
tions, and (3) to assess model diversity and identify underly-
ing causes based on the model-measurement analysis. Note
that the effects of using the satellite-derived smoke plume
injection heights from the NASA Earth Observing System’s
Multi-angle Imaging Spectroradiometer (MISR) (Val Martin
et al., 2018) on the BB AOD are currently being examined
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and evaluated in the BBEIH experiment and will be reported
separately.

Section 2 describes the model experiment, reviews the
individual model characteristics, and summarizes the tech-
niques used to analyze the results. Section 3 presents the
key results globally and by region and biome with model—
satellite comparisons based on the observational dataset of
BB cases. Section 4 shifts the focus from region-specific
analysis to global BB-related model characteristics and iden-
tifies the range of model assumptions for which better obser-
vational constraints are needed. Section 5 offers a discussion
of the differences among model simulations, even when ini-
tialized with the same emissions. The paper concludes with a
summary of the results and provides a review of the strengths
and limitations of the approach.

2 Experiment overview and analysis approach

2.1 AeroCom model experiment

For the AeroCom-III BBESS experiment, 11 models sub-
mitted sufficient diagnostics to perform the analysis pre-
sented here. Information about model structure and model
settings relevant to BB aerosol simulation for this experiment
are listed in Table 1. Additional information on sources of
aerosols other than BB smoke, and assumed particle micro-
physical properties for the 11 models, are included in Ta-
bles S1 and S2 in the Supplement. The models represent
a diversity of spatial resolutions, parameterizations, and as-
sumed particle sizes and properties. For example, the hori-
zontal resolution ranges from about 0.5° x 0.625° (GEOS) to
4° x 5° (GEOS-CHEM), and vertical layers range from 30
(CAMS) to 85 (HadGEM). Meteorological fields were ob-
tained from different reanalysis products. Although the mod-
elers were asked to distribute BB emissions within the model
boundary layer, some models chose to prescribe other BB
emission injection altitudes (Table 1). For example, CAMS5
injected smoke evenly within the lowest 1km; ECMWF-
IFS-CY45R1 distributed the amount within the lowest 2 km;
OsloCTM2 incorporated a geographically varying injection
height, with a maximum height of 5km; and ECHAM®6-
SALSA injected the smoke between 0 and 5 km, depending
on the ecosystem. Models with internal aerosol mixing as-
sume homogeneous mixing and use some form of Mie scat-
tering to calculate the optical properties of BB aerosol.

The year 2008 was selected as the “benchmark year” with
prescribed daily biomass burning emissions from GFED3.1
for this study. Among the reasons for selecting this emission
dataset and simulation time period were to examine the ro-
bustness of the analysis done for the single-model simula-
tion presented in P2012 and P2017 and to evaluate the multi-
model results with hundreds of satellite-observed cases com-
piled in previous studies (summarized in Sect. 2.3). Other
aerosol emissions, including emissions from desert dust, fos-
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sil fuel combustion, and other anthropogenic and natural
sources, were determined by the individual models.

In this study, we are using model output from two simu-
lations, namely a control run (BB1) with all sources, includ-
ing prescribed daily BB emissions from GFED3.1, anthro-
pogenic emissions from a number of external emission inven-
tories (Table S1) chosen by the modeling groups, and natural
sources such as dust and sea salt calculated by the models and
arun with the same sources but with no BB emissions (BBO).
The difference between BB1 and BBO allows the BB contri-
bution to be isolated from other contributions to the aerosol
load. In addition to these baseline simulations, the models
performed three perturbation runs with the GFED3.1 daily
emissions multiplied by factors of 0.5 (BBOp5), 2 (BB2), and
5 (BBS), respectively, to create an ensemble of four runs,
where multiples of GFED3.1 represent a range of possible
emission estimates for the same fires. The models were run
for the full year and preceded by a 3-month spin-up.

2.2 The GFED BB emissions

GFED is one of the most widely used BB emission inven-
tories in the global modeling community. It is also continu-
ously updated to include the latest findings in BB emission
development studies (Chen et al., 2023; Giglio et al., 2013;
Randerson et al., 2012, 2017; van der Werf et al., 2017). At
the time when the AeroCom BB experiment was proposed,
GFED3.1 (Mu et al., 2011; Randerson et al., 2013; van der
Werf et al., 2010) was the latest GFED version available. It
was, therefore, used for the model runs performed for the cur-
rent study. GFED3.1 provides daily biomass burning emis-
sions of CO, SO,, NO,, NH3, VOC (volatile organic com-
pound), BC (black carbon), and OC (organic carbon). The
map of the 2008 annual GFED3.1 emission of OC, the most
abundant primary aerosol species emitted from fire, is shown
in Fig. la.

The later version, GFED4.1s, became available after the
model runs were performed, using the newer GFED dataset
in Sect. 5.

The global monthly BB emissions of BC and organic
aerosol (OA) implemented in each model are shown in
Fig. 1b and c, respectively. Unlike the nearly identical BC
emissions from all models (Fig. 1b), the OC emissions pro-
vided by GFED3.1 had to be converted to organic aerosol
mass (OA; also known as organic matter or OM) by multiply-
ing OC by an OA/OC ratio that is based on information from
various observations. However, in reality, this ratio depends
on the chemical age of OA, the particular OA species, and
environmental conditions; it therefore can, in general, have
a wide range of values, typically from a little over 1 to well
above 2 (e.g., Aiken et al., 2008). As a result, although the
same OC emissions are prescribed, the primary OA from BB
emissions varies among the models by nearly a factor of 2,
with OsloCTM2 and SPRINTARS having the highest values
(2.6) and CAMS, GISS, GEOS, HadGEM3, and ECHAMG6-
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Figure 1. Global biomass burning emissions of carbonaceous aerosols. (a) Annual emissions of OC in 2008 from GFED?3.1. (b) Monthly
BC emissions implemented in 9 out of 11 participating AeroCom models (BB emissions were not available from CAMS and HadGEM3).
(c) The same as panel (b) but for OA that is converted from OC with the OA/OC ratio of the model’s choice (listed in the legend to the
figure). (Note: colored lines in panels b and ¢ can overlap for models with identical emissions).

SALSA having the lowest (1.4), as listed in Table 1 and illus-
trated in Fig. lc. Figure 1 also shows that a primary emission
peak occurs in July—August, which is when burning tends
to favor northern mid-to-high latitudes and the southern sub-
tropics; secondary peaks occur in December—January, which
is when burning occurs preferentially in the northern hemi-
spheric tropics, and in April, which is when burning takes

Atmos. Chem. Phys., 25, 1545—-1567, 2025

place mainly in central America and southern Siberia (see
Fig. 2 and Giglio et al., 2006a).

2.3 The MODIS BB plume AOD dataset

We use the MODIS Collection 6 Level 2 AOD retrievals at
550 nm and 10 km resolution from the Terra and Aqua satel-
lites as the key observational dataset to evaluate and constrain

https://doi.org/10.5194/acp-25-1545-2025
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Jan Feb Mar Apr May Jun

Figure 2. Locations and months of the fire case boxes in this study.

the models. The MODIS BB plume AOD dataset was intro-
duced and refined in P2012 and P2017, respectively. Here,
447 fire/smoke cases in different biomass burning regions
that fall within the benchmark year of 2008 are selected as the
reference observational dataset from about 900 identified in
P2017. The main criteria for selecting BB cases are detailed
in P2012 and P2017; briefly, these include (1) plumes with at
least one linear dimension of 100 km to be useful for global
modeling studies with fairly coarse resolution of 1° or larger
(Table 1), (2) a coordinated pattern of elevated AOD, (3) a
visible smoke plume in the satellite imagery, and (4) a fire
signal in the MODIS thermal anomaly product (MOD14).
The locations and seasonality of the cases in the database are
shown in Fig. 2. Note that fire activity in Alaska, Indonesia,
and southern Australia was rather weak in 2008, so no cases
were specified in these regions.

A comparison of the model instantaneous output matched
to the snapshots of actual fires around the globe provides a
unique perspective, complementing the usual model—satellite
intercomparison that applies some spatial and temporal aver-
aging. This study presents a test of how well and how consis-
tently the models perform in simulating actual fire events.
The observational dataset of fire/smoke events at the time
they actually occur in different BB regions and seasons pro-
vides a way to assess the models, and this is distinct from typ-
ical model output analyses. The fact that this study reaches
coherent results and comes to some conclusions that are sim-
ilar to those of previous studies despite using different meth-
ods (e.g., Gli} et al., 2021) helps validate the effort. Other
conclusions are obtained as well.

There is currently no algorithm of which we are aware that
differentiates the BB portion of the AOD from the contribu-
tions of other aerosol types in the MODIS data (except pos-

https://doi.org/10.5194/acp-25-1545-2025
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sibly over dark water and based on the assumption that the
coarse mode is essentially dust or sea salt, and fine mode is
BB or pollution; e.g., Kaufman et al., 2005). Therefore, to
estimate BB AOD from MODIS, we first estimate the back-
ground AOD value, i.e., AOD from non-biomass burning
sources for each case box (defined below), by determining
the most frequent mean pixel AOD within the case box over
the 16 years (2000-2015) of available MODIS Terra data
during the pre-burning-season month in that box and then
subtracting this value from all the MODIS AOD values in
the box during the BB event, as done in P2017. Before sub-
tracting these “background” values, missing MODIS AOD
retrievals within the plumes are filled with MERRAero re-
analysis values (Buchard et al., 2015; da Silva et al., 2015),
and scaled to retrieved MODIS AOD values in immediately
surrounding locations for which MODIS and model values
are available (details are presented in P2017).

Of course, this approach has limitations due to the interan-
nual variability in burning and the variability in other aerosol
sources. There is also the need to correct for possible neg-
atives in the BB AOD values obtained in this way, as not
all retrieved 10 km pixels are above the historically most fre-
quent AOD background value. We set these to zero BB AOD
to obtain a physically meaningful AOD value; this possibly
introduces a positive bias into the averaging process, though
only the lowest AOD values in the distribution are affected. A
more detailed analysis of this BB AOD separation approach
is presented in P2017; in summary, the “zeroing of negative
BB AOD values” has the least effect in forested regions (such
as those in group A; see below), and the largest number of
negative BB AOD values replaced by zero occurs in AUST
(Australia), followed by NHSA (northern hemispheric South
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America) and CEAS_W (central Asia west), which is consis-
tent with the low MODIS AOD values in these regions.

2.4 Biomass burning regions

Based on the analysis in P2017 and the regional character-
istics of fires, our analysis in the current study focuses on
the same geographical regions. To better associate our analy-
sis with other biomass-burning-focused studies (e.g., Giglio
et al., 2006b; Mezuman et al., 2020; Pan et al., 2020; Ra-
bin et al., 2015), we adopt the region names used by GFED
(Giglio et al., 2006b) and assign our cases to these regions
(Fig. 3). In addition, we further divide the BOAS region into
eastern (BOAS_E) and western (BOAS_W) subregions and
CEAS into eastern (CEAS_E) and western (CEAS_W) parts,
mainly to account for observed differences in burning pat-
terns within the broader GFED regions. In total, 13 region-
s/subregions are included in the current study. The regions
are shown in Fig. 3, and the BB cases within each region are
displayed as symbols, with different symbol styles assigned
to distinctive groups based on the degree of concurrence be-
tween the satellite and model BB estimates, as discussed in
the next section.

2.5 Comparing average values

We first clarify that all AOD values in this paper refer to the
AQOD at 550 nm. In order to compare BB emissions and BB
AQOD between models, we obtain model BB AOD by sub-
tracting results of the no-BB-aerosol simulation (BB0) from
the control run with all emissions (BB1). The method for ob-
taining MODIS BB AOD is detailed in P2017 and is briefly
summarized in Sect. 2.3 above. We then use the instanta-
neous model output closest in time to the satellite observation
to calculate case average values. As each rectangular case
box is defined by a set of latitude—longitude coordinates, the
model output was sampled to include all the grid boxes for
which the centers fall within the case box. Average values
from MODIS and the models were then compared over the
area of the box. In comparing models and satellite observa-
tions with a different resolution over a set of boxes varying
in size, we have chosen to average the variables of interest
over each case box. More considerations on the use of case
box as the unit of comparison are provided in Sect. S1.

When comparing values in further analysis, we calculate
average values in the following ways:

— The case box average AOD (also for BB AOD, load,
loss, and extinction efficiency) is the arithmetic mean
of all AOD values within a case box. For BB AOD,
we first subtracted the background AOD (a fixed, pre-
determined, and case-specific value for MODIS and the
no-BB run for models) from all AOD pixels in the case
box to obtain BB AOD. Then we set any negative BB
AOD values to 0 and average BB AOD over the case
box.

Atmos. Chem. Phys., 25, 1545-1567, 2025

— The regional average is the simple arithmetic mean of
all average case values for cases assigned to the region.

— The all-case average AOD (or BB AOD) is the simple
arithmetic mean of all average case AOD (or BB AOD)
for all 447 cases in the study.

— The global monthly values include all grid boxes
weighed by area and averaged over a month (used for
model-to-model comparisons only).

When working with variables that represent ratios of val-
ues (such as model-to-satellite AOD ratios, loss rate, or mass
extinction efficiency), the robust mean is often used to ex-
clude any values falling beyond 4 standard deviations of the
mean to discard outliers. This approach ensures that, in re-
gions with very low AOD values, the ratios of a few very
small numbers do not skew the regional averages unreason-
ably. This treatment rejects 0 %—10 % of the case values from
contributing to the regional averages.

3 Results

3.1  Comparisons between MODIS and model BB AOD
cases over biomass burning regions

Figure 4 shows the spatial distribution of simulated BB
AOQOD relative to the estimated MODIS BB AOD described
in Sect. 2, covering all the individual cases for each model.
The models are ordered from the highest to lowest overall BB
AOQOD (when all cases are averaged, which is quantified in the
“Multi-region mean” row in Table 2). Many common fea-
tures among the models relative to MODIS appear in Fig. 4.
For example, the models report generally lower BB AOD
than the MODIS estimates, except in some cases in cen-
tral and southern Africa. However, most do fall within 50 %
(ratio between 0.67—1.5) of the MODIS-derived values over
the boreal region of North America (BONA), southern and
parts of central Africa (SHAF — southern hemispheric Africa;
NHAF - northern hemispheric Africa), northern Venezue-
la/Columbia (NHSA), and northern Australia (AUST). The
model BB AOD simulations tend to be much lower over the
USA (temperate North America — TENA), Mexico (CEAM —
central America), western boreal region of Asia (CEAS_W),
central and southeast Asia, China (CEAS_E), and India
(southeast Asia — SEAS), generally by factors of 5 to > 10.
These model-to-MODIS BB AOD ratios are enumerated
in Table 2 for all models and all regions. To make discerning
regional patterns easier, the table cells are colored according
to the color scheme in Fig. 4. These color clusters in Table 2
emphasize the spatial patterns described above. The third-to-
last column of the table contains the multi-model BB AOD
mean for the region (mean of model regional means in the
corresponding row of the table), showing that models gener-
ally tend to output higher or lower AOD in the region, and the
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Figure 3. The 13 regions with the BB cases in each region. BONA is for boreal North America, TENA is for temperate North America,
CEAM is for central America, NHSA is for northern hemispheric South America, SHSA is for southern hemispheric South America, NHAF
is for northern hemispheric Africa, SHAF is for southern hemispheric Africa, BOAS_W is for boreal Asia west, BOAS_E is for boreal Asia
east, CEAS_W is for central Asia west, CEAS_E is for central Asia east, SEAS is for southeast Asia, and AUST is for Australia. Symbols
for BB cases mark the group (A, B, C, or D) to which the BB region belongs. The groups of BB regions are explained in Sect. 3.2.

Table 2. Ratios (r) of model-calculated BB AOD to MODIS-derived BB AOD for cases within each of the 13 regions. Colors illustrate the
bias of individual models relative to MODIS. The means, standard deviation, and diversity are also tabulated. Regions are further grouped
into A, B, C, and D, based on the degree of agreement between multiple models and MODIS to help discussion.
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A | SHSA 067 |076 [053 |0.54 0.53 0.15 |30.6%
A | BOAS_E 099 [075 [074 [069 |061 056 073 051 [0.56 0.61 022 [359%
B | BOAS W 0.14 [47.7%
B | CEAM 0.04 |359%
B | TENA 0.05 [355%
C | NHAF 102 [192 [135 [1.02 |085 117 |116 105 [1.09 [0.56 1.06 039 [37.0%
C | SEAS 0.06 |383%
C | CEAS E 0.65 0.17 [100.5%
D |CEAS W 063 | 0.56 H 0.17 [482%
D |NHSA 1.44 084 |[1.08 |[132 1.85 102 |080 0.63 052 [125 0.57 | 458%
D | AUST 1.65 0.91 154 136 |123 1.04 |1.15 080 [1.09 0.61 122 0.42 | 34.0%

Multi-region Mean | 0.98 097 |0.68 [0.63 |058 065 061 [054 [052 (035 028 |0.62
Multi-region SD 077 080 [050 |045 |045 060 [057 |043 043 (030 0.21

Multi-region Diversity | 77.9 % | 82.5% | 73.9% | 71.3% | 77.9% | 92.5% | 93.0% | 80.4 % | 81.9% [852% |76.1 %

https://doi.org/10.5194/acp-25-1545-2025 Atmos. Chem. Phys., 25, 1545-1567, 2025



1554

(a) GISS-OMA

0s1loCTM2

M. Petrenko et al.: Biomass burning emissions in AEROCOM BB experiment

GISS-MATRIX

7 =

All models average ratio
25T, e
!Dt.gg;" “'”‘aﬁ’uﬂi%* A@

LT S ¥

P o=

(b) MODIS average BB AOD

(c) A1l models average BB AOD (d) BB fraction of total AOD

>10.0

LY —

@’i} i p

Figure 4. (a) Ratio of model-simulated BB AOD (from model experiment BB1-BB0) to the BB AOD derived from MODIS for all individual
fire cases for each individual model, and (bottom-right panel) the multi-model average of these ratios for all study cases. (b) BB AOD derived
from MODIS for reference. (c) BB AOD averaged across all models. (d) BB AOD fraction of total AOD averaged across all models for all

study cases.

last two columns show the standard deviation and the diver-
sity (defined as ratio of standard deviation to the mean; ex-
pressed in percent) of the values from all the model means in
the region, where lower diversity corresponds to greater con-
sistency in model performance in the region. Here and subse-
quently, we calculate diversity as the ratio of the standard de-
viation of the array and its mean (expressed in percent). The
bottom rows of Table 2 contain the standard deviation and
inter-regional diversity for each model, showing that some
models, e.g., GISS-OMA and OsloCTM2, have an overall
mean AOD ratio close to unity but with a higher variation be-
tween regions (higher standard deviation, SD), whereas oth-
ers, such as ECMWEF-IFS-CY45R1 and ECHAMO6-SALSA,

Atmos. Chem. Phys., 25, 1545—-1567, 2025

are more consistently biased low across all region, though
their relative diversity may be comparable.

The regions are further collected into groups A, B, C, and
D, as discussed in the Sect. 3.2. A deeper dive into the abso-
lute values of BB variables for each model in each region is
available in Fig. S3.

3.2 Separating BB regions into different groups

To compare multiple variables for 11 models over 13 re-
gions comprehensively, we developed a multi-factor region—
comparison approach. For example, in P2017, we considered
the magnitudes of total MODIS and model AOD, biomass
burning fraction of total AOD, and model/satellite BB AOD
ratio to assess how effectively our method of estimating the

https://doi.org/10.5194/acp-25-1545-2025
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source—strength by comparing modeled and measured AOD
can be used in different BB regions.

We begin here by stratifying the regions into groups ac-
cording to several observation-based criteria that reflect the
level of confidence in our ability to identify the MODIS and
the model BB AOD components. The criteria for grouping
regions are as follows:

1. Total AOD from MODIS. MODIS AQOD retrieval uncer-
tainties are much lower when the AOD is above about
0.1 (Levy et al., 2013). So, under the conditions when
MODIS AQOD is sufficiently high if the total AOD dis-
crepancy between the models and MODIS is large, it
is likely an issue with the models, such as emission
strength or model processes and assumptions. This pro-
vides important regional information in the context of
the current study. If the total AOD from MODIS is low,
then the relative uncertainty in the estimated MODIS
BB AOD is expected to be high.

2. Biomass burning AOD fraction from MODIS when to-
tal AOD is high. If the BB AOD fraction (fBB) is also
high (i.e., the estimated background non-BB AOD frac-
tion is low), we have greater confidence in the MODIS
BB AOD obtained by subtracting the estimated back-
ground AOD from the total AOD. Otherwise, the esti-
mated MODIS BB AOD is more uncertain.

3. Total AOD and BB AOD from models. If the total AOD
and BB AOD fractions from the models are relatively
high, we are more certain that our constraints can be
applied to assess the biomass burning emission source
strength, as intended. Otherwise, more issues related
to the model simulation of BB and other (background)
aerosol types (pollution, dust, etc.) complicate the inter-
pretation of the results.

Figure 5 is a flowchart showing the process we applied
to assign regions to particular groups, using the three crite-
ria listed above. Overall, the 13 biomass burning regions in
Fig. 3 are associated with groups A, B, C, or D, based upon
the process described in Fig. 5.

A quantitative representation of regional all-model means
for these criteria is provided in Table 3. To make discerning
regional patterns of factor magnitudes in Table 3 easier, we
used bold font to show the values of the factors in the regions
where they exceed the empirically chosen threshold. As such,
the regular and bold fonts in the table represent qualitative
criteria favorable for applying the satellite AOD to constrain
emission source strength in the models, with values above
the threshold being more favorable and those below being
less favorable.

https://doi.org/10.5194/acp-25-1545-2025
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3.3 Broad view of MODIS and model comparisons in
biomass burning regions and groups

We present a broad view of MODIS and model comparisons
by region in Fig. 6. The general model behavior is repre-
sented by the multi-model mean values of AOD and BB
AOD. We show in Fig. 6 (top panel) the total AOD (stacked
bars), as well as BB and background AOD from MODIS
(dark red and blue bars, respectively), and the correspond-
ing multi-model mean values (light red and blue bars) aver-
aged for cases that fall within each region. The 13 regions
are divided into the four regional groups, designated earlier
as A, B, C, and D, based on physical criteria (Sect. 3.2). Also
shown are the BB AOD fractions for MODIS and for the
model means in dark and light red lines, respectively. The
ratios of model mean total AOD, background AOD, and BB
AOD to the corresponding MODIS quantities are shown in
the bottom panel of Fig. 6 with solid, dashed, and dotted-
dashed lines, respectively.

Four regions (BONA; SHAF; SHSA - southern hemi-
spheric South America; and BOAS_E) fall into group A,
where AOD and BB AOD fractions from both MODIS and
model means are generally high (AOD > 0.3 for MODIS and
~> (.2 for the model mean; BB AOD fraction ~> 0.5 for
both MODIS and the model mean). Tree cover dominates in
these regions, with few other aerosol sources and typically
well-defined fire plumes or major burning events (see also
Table 4 in P2012 and Fig. 1a in P2017).

Unlike group A, the model mean AOD and BB AOD are
both dramatically lower than MODIS in group B, by factors
of 5-10 for AOD (solid line; bottom panel in Fig. 6) and
around 20 for BB AOD (dotted-dashed line; bottom panel in
Fig. 6). However, for the group B regions, the non-BB back-
ground AOD between MODIS and the model mean agrees
to within 50 %, with the ratio of model/MODIS for non-
BB AOD = 0.67-1.2 (dashed line; bottom panel in Fig. 6).
Given the high AOD and > 0.5 BB AOD fractions based on
MODIS, and the agreement between MODIS and the model
on background AOD, we are more confident in suggesting
that the GFED3.1 BB emission is systematically low or has
missed significant sources in the group B regions. A high
bias in MODIS total AOD and low bias in our MODIS back-
ground subtraction possibly also contribute, but this is less
likely.

Although the total AOD from MODIS in group C is of
similar magnitude to that in groups A and B, the fraction
of BB AOD is much lower. Regions in group C contain BB
cases with a variety of trees and shrub, grass, or cropland
vegetation types but are heavily influenced by either dust (in
NHAF) or high pollution (in SEAS and CEAS_E), making
the MODIS background subtraction as well as the model-
simulated BB contribution to the total AOD more uncertain
for this group. Meanwhile, the non-BB background AOD is
higher for the MODIS (0.18-0.46) and model mean (0.21-
0.31) than for any other group. Such high non-BB AOD frac-
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Figure 5. Flow chart of the procedure used to separate the 13 biomass burning regions into four groups having distinct characteristics in
biomass burning intensity, fraction of smoke AOD within the total AOD (fBB), and differences between the quantities from MODIS and the
multi-model mean. Regions in each group and their characteristics are shown in Figs. 3 and 6.

Table 3. Multi-factor comparison of BB regions.

Group GFED name P2017 name No. of cases MODIS MODIS Total AOD  Model
total AOD fBB  all-model mean fBB?

A BONA Canada 17 0.34 0.57 0.31 0.86
SHAF SAfrica 66 0.31 0.57 0.23 0.72

SHSAP SAmerica 45 0.33 0.68 018>  0.49°
BOAS_E Russia (E) 47 0.65 0.73 0.38 0.75

B BOAS_W Russia (W), Europe 27 0.37 0.57 0.16 0.23
CEAM LAmerica 23 0.35 0.56 0.10 0.20

TENA WUSA + EUSA® 37 0.40 0.65 0.09 0.37

C NHAF NCAfrica 79 0.30 0.36 0.43 0.31
SEASd SEAsia + India 37 0.45 0.52 0.25 0.21
CEAS_E China 20 0.58 0.24 0.27 0.06

D CEAS_W Europe 22 0.19 0.31 0.14 0.18
NHSA N of SAmerica 4 0.06 0.14 0.08 0.26

AUST NAustralia 22 0.06 0.58 0.10 0.36

Values of each parameter larger than the cut-off value 20.3 20.5 202 20.5

(same as in Fig. 5) are in bold

4 fBB is a fraction of total AOD attributed to biomass burning aerosol. b Total model AOD and model fBB are rounded up to 0.2 and 0.5, respectively,
putting SHSA in group A. ¢ WUSA is west USA, and EUSA is east USA. d Even though MODIS fBB in SEAS is higher than the cutoff threshold for
group C, the complex aerosol mixture in this region makes our confidence in MODIS background AOD values (and thus in MODIS fBB of 0.52) rather
low, and the combination of fairly high model AOD and low BB AOD fraction in the models puts this region in group C.

tions reduce the confidence in our BB source—strength esti-
mates in these regions.

In group D, MODIS total AOD is the lowest among all
groups at 0.06-0.20, and the BB signal is very weak, re-
sulting in BB AOD being estimated at 0.015-0.08. As such,
small errors in any aspect of the MODIS retrievals can pro-
duce large relative uncertainties. Among the regions in group
D, the AUST fire cases are mostly in areas with decidu-
ous shrub cover, and CEAS_W is dominated by cultivated
and managed lands. There are only four cases for NHSA, so
statistics for this region are not robust. Although the model
mean AOD and BB AOD generally agree with the corre-
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sponding MODIS values within a factor of 2, the confidence
in our source—strength estimates in the group D regions is
limited because of the low signal in the observations.

From the above analysis, we reach a few conclusions about
biomass burning emissions of GFED3.1 used by the models.
The biomass burning emissions are most likely to be realistic
in group A regions, but they should be increased by a fac-
tor of 2—-10 in the group B regions for the models to come
into line with the satellite BB AOD, based on the agree-
ment between model and satellite data for the background
non-BB AOD. Model results from the BB5 run (BB emis-
sions increased by a factor of 5) yield a model-to-MODIS BB

https://doi.org/10.5194/acp-25-1545-2025
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Figure 6. (a) Total AOD from MODIS (stacked dark red and shaded blue bars) and from the multi-model mean (light stacked red and shaded
blue bars), the corresponding BB AOD (red colors) and non-BB background AOD (blue colors), and their BB AOD fractions (lines) averaged
for cases in each of the 13 regions grouped by A, B, C, and D (see Fig. 5 and the text). (b) Ratios of the model mean to MODIS for total
AOD (solid line), BB AOD (dotted-dashed line), and non-BB background AOD (dashed line). The shading in light gray indicates the range

of the model-to-MODIS ratio (R) within 50 % (0.67 < R < 1.5).

AOD ratio of around 0.7 for TENA, 0.6 for CEAM, and 2.5
for BOAS_W, suggesting that multiplying aerosol emissions
by 2 in BOAS_W and by almost 10 for TENA and CEAM
would make the model and MODIS BB AOD comparable.
Because of the high non-BB (background) AOD fractions in
group C, and the low total AOD and BB AOD in group D, we
do not have sufficient confidence to draw conclusions about
biomass burning emission strength over regions within these
groups.

4 Model diversity

4.1 Multi-model means of BB OA quantities in each
region

We show in Fig. 7 that the multi-model mean quantities of
BB OA mass load (green bars), loss rate (purple bars), and
the mass extinction efficiency (MEE; orange line) convert the
model BB OA mass to BB OA AOD in all cases of each re-
gion. As expected, more and/or larger fires in the regions of
group A correlate with higher BB aerosol loads. The resi-
dence time, related to OA removal from the atmosphere in
each region, can be estimated by dividing the load by the
loss rate; from the relative heights of the green and purple
bars for each region in Fig. 7, we estimate the different res-

https://doi.org/10.5194/acp-25-1545-2025

idence times of OA among regions. For example, in group
A, OA residence time in boreal regions BONA and BOAS_E
(higher purple bars than green) is shorter than that in SHAF
and SHSA (higher green bars than purple), reflecting the dif-
ferences in the mass balance of smoke aerosol emission, de-
position, and transport fluxes in each region. On the other
hand, the multi-model mean OA MEEs, calculated as the ra-
tio of BB AOD to BB load here, are similar across the re-
gions in all groups (3000—4000 m?>kg™!), despite large dif-
ferences in BB OA mass or load in these regions. How-
ever, despite this region-by-region similarity of mean values
(generally between 3000 and 400 m*kg~!), MEE diversity
among individual models is remarkable, as seen from the
large MEE standard deviations in each region. Details of in-
dividual model values by region are provided in Fig. S2. As
much as Fig. 7 demonstrates the general aerosol and fire fea-
tures in different BB regions and is based on the averages of
individual and specific BB cases, the characteristics of the
models that would describe their performance are explored
in the Sect. 4.2, based on the global averages of variables.

Atmos. Chem. Phys., 25, 1545-1567, 2025
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Figure 7. Multi-model mean BB OA load (kg m~2; green bars; left y axis), multi-model mean BB OA loss rate (kgm~2d~!; purple bars;

purple right y axis), and multi-model mean mass extinction efficiency of BB OA (m?2 kg™

1, orange points and whiskers; orange right y axis)

averaged for cases in each of the 13 regions grouped by A, B, C, and D (see Fig. 5 and text). Whiskers show the standard deviations of the

multi-model means, respectively.

4.2 Diversity in atmospheric processes and BB optical
properties among models

Fundamentally, the column AOD reported by the models is
derived from the aerosol mass loading in the atmosphere
and the efficiency with which radiation is scattered and ab-
sorbed by the mass of a given aerosol species present, i.e., the
MEE, under ambient atmospheric conditions. Globally, the
total aerosol mass load within the models is the result of the
total source (including primary aerosol emissions and sec-
ondary aerosol production) and removal processes (including
dry and wet deposition and chemical loss). These factors con-
trol the aerosol amount and lifetime in the atmosphere. On
the other hand, the MEE depends upon aerosol composition,
size distribution, shape, particle density, refractive indices,
aerosol mixing state, and hygroscopicity, which usually de-
pends upon the ambient relative humidity.

Although the transport processes and regionally varying
secondary organic aerosol (SOA) production rates (Carter et
al., 2020) that affect aerosol spatial distribution might ex-
plain some of the model differences regionally, comparisons
among the global values of the key quantities determining
the BB AOD can shed light on the model diversity that un-
derlies regional differences in a manner that is relatively in-
dependent of the transport. Here, we compare the individ-
ual model global values of five key biomass burning BC and
OA quantities for 2008 in Fig. 8, namely emissions, life-
time, atmospheric mass loading, MEE, and BB AOD, which
is expressed as the percentage departure of individual mod-
els from the multi-model mean, with the numerical value of
the overall spread given below each parameter label. Among
these quantities, the lifetime is calculated as the aerosol mass
load (kg m~2) divided by the loss rate (kg m~2d~1), and the
MEE (m? kg’l) is obtained by the ratio of AOD to mass load
(kgm™2). (Note that in taking the global mean of all the BB
variables, we subtracted the BBO from the BB1 model runs
and then calculated global means, which effectively com-
pares model characteristics in general and not just those as-
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sessed for the specific regions and cases that are considered
elsewhere in this study.)

As shown in Fig. 1b, the BB BC emission rates im-
plemented in the models are identical, as prescribed from
GFED3.1, except ECMWF-IFS-CY45R1, which is 10%
lower than all other models, leading to a 3.4 % model di-
versity of the BB BC emission (Fig. 8a). In comparison, the
diversity of the end-product of BB BC AOD is 38 %, which is
more than 10 times higher than that of the emissions. Consid-
ering that the AOD is the product of mass load and MEE, it
is remarkable that the diversity of BB BC AOD is lower than
the diversities associated with the associated mass (58 %) and
MEE (49 %). This can be explained by some compensating
factors that can be seen in Fig. 8a. For example, SPRINTARS
(Spectral Radiation-Transport Model for Aerosol Species)
and GOCART have the same BC BB emission and the same
BC BB AOD, but the BC load from SPRINTARS is 2.5 times
larger, and the BC MEE is 2.5 times smaller than the corre-
sponding values for GOCART. Also, notably, CAMS has the
highest MEE, making its simulated BC BB AOD the high-
est among the models, despite the moderately low BC BB
mass loading. The results in Fig. 8a illustrate that the inter-
model difference in BB AOD cannot be explained by the dif-
ference in the emission, but is driven by the differences in
(a) BC load, governed by the removal processes (thus life-
time), and (b) MEE, determined by the particle physical and
optical properties (including size, density, refractive indices,
mixing state, and hygroscopic growth). Currently, neither of
these is well constrained; this is primarily due to a lack of
adequate observations.

The propagation of the inter-model differences from emis-
sion to AOD can be further revealed in the BB OA cases
(Fig. 8b and c). As discussed in Fig. 1c, although all models
use the same BB emissions for OC from GFED?3.1, the dif-
ferent OA /OC ratios chosen by individual models result in a
difference of nearly a factor of 2 in OA emissions, produc-
ing an inter-model diversity of 28 % for emissions (Fig. 8b).

https://doi.org/10.5194/acp-25-1545-2025



M. Petrenko et al.: Biomass burning emissions in AEROCOM BB experiment

(a) BBBC

200 120
150

100

-100

% Departure from multi-model mean

(b) BBOA with various OA/OC ratio

1559

(c) BB OA with same OA/OC ratio

Emission Lifetime Load MEE AOD Emission  Lifetime Load MEE AOD Emission Lifetime  Load MEE AOD
o/<x>=P> 3.4% 36.1% 57.5% 48.6% 37.9% 28.1% 33.8% 39.4% 24.2% 51.3% 1.4% 31.9% 29.8% 23.8% 31.6%
max/min= (1.1)  (4.1) (4.0) 6.1 @.5) (1.9) 26) “38) 22 (5.9) (1.0) @4  (38) 22 (4
=@= G|SS-OMA OsloCTM2 GISS-MATRIX =@=GEOSCHEM-v902 e=@=CAMS5
a=@=SPRINTARS «=@=GOCART =@==GEOS @@ ECMWF-IFS-CY45R ] en@e ECHAMG6-SALSA

Figure 8. Differences among model-simulated key parameters determining the (a) BC AOD and (b) OA AOD from biomass burning
sources, expressed as the percentage departure of each model from the multi-model mean values. The quantities are derived from global
mean values for 2008. The model diversity of each parameter, defined as the percent of the standard deviation/multi-model mean for each
parameter is listed under the corresponding parameter. The spread of values, represented by the ratio of the largest of the model values for the
corresponding parameter to the smallest, is given in parentheses under the corresponding diversity. (¢) Same as panel (b) but with OA/OC
factors normalized across all models. (Note that emissions and lifetime are not available from CAMS, and HadGEM3 is not included here

for the lack of all budget terms).

Higher BB emissions generally lead to higher BB AOD glob-
ally, but this is only part of the story, as the diversity of BB
OA AOD among the models (51 %) is much greater than that
of their corresponding BB emissions overall. Some of the
difference can be traced to the disparity of the BB OA emis-
sion rates that begins with OA emissions from SPRINTARS
and OsloCTM2 being 80 % higher than that from ECMWF-
IFS-CY45R1 and ECHAMG6-SALSA because of the differ-
ent OA/OC ratios assumed (see Fig. 1b). On the other hand,
some model behaviors are more difficult to explain. For ex-
ample, globally, SPRINTARS and OsloCTM2 have the same
OA emission rates, but the OA load from SPRINTARS is
60 % higher, despite having a 50 % shorter lifetime than
that from OsloCTM2. Among all models, SPRINTARS pro-
duces the highest BB OA AOD that is 100 % higher than
the multi-model mean, whereas ECMWEF-IFS-CY45R1 and
ECHAMG6-SALSA are the lowest, at about 60 % lower than
the multi-model mean.

To address the inter-model difference in the simulated BB
OA AOD that is caused by the disparity of the OA/OC ratios,
we normalize the BB emission, load, and AOD for OA to a
fixed common OA /OC ratio and then re-calculate each term
displayed in Fig. 8b. The results are compared in Fig. 8c.
In this case, the diversity of emission becomes 1.4 % (the
emission from ECMWF-IFS-CY45R1 is 4 % higher than all
other models), and the diversity for BB OA AOD is reduced
to 31.6 %, suggesting that using different OA/OC ratios by
the participating models in this study contributes to nearly
20 % of model diversity of BB OA AOD on global annual
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basis. Meanwhile, the diversity of the intensive properties,
MEE, and lifetime remain the same as in Fig. 8b, as expected.

Another factor that adds diversity to the models’ treat-
ment of OA is the simulation of secondary organic aerosol
(SOA). Previous studies (e.g., Carter et al., 2020, and ref-
erences therein) suggest that SOA amount varies regionally
and is very challenging to estimate both due to large possi-
ble variation in the POA and the lack of consistent and con-
clusive observations to constrain SOA sources. Among the
models in this study, all emissions shown in Fig. 8 are for pri-
mary OA (POA), but BB OA AOD includes both primary and
secondary organic aerosol (SOA) in the OsloCTM2, GEOS-
Chem, and CAMS5 models. In the attempt to work with to-
tal OA output provided by the models, whether the model
includes SOA simulation or not, these three models also in-
clude SOA in their load and loss estimates, with BB SOA
contributing around 5 % to loads and AOD of BB OA in
CAMS and OsloCTM2 and 15 % in GEOS-Chem, with these
fractions being much smaller than the SOA fraction of the
total (BB and non-BB) OA; furthermore, these values vary
greatly, both seasonally and regionally, in all the models.
Note that some models such as GOCART and GEOS have
SOA produced from non-biomass-burning sources that are
included in the total OA but not in BB OA.

In summary, although consistency among the models does
not necessarily indicate an accurate representation of smoke
plume properties and behavior, the model diversity does at
least provide a lower bound on uncertainty. Individual and
significant outliers point to areas where specific questions
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about model assumptions might be asked, and more gener-
ally, observations are clearly needed to better constrain loss
mechanisms and MEE.

5 Discussion

The multi-model diversity illustrated in Sect. 4 above high-
lights uncertainties in the key quantities in the model sim-
ulations of BB AOD, starting from emissions and propa-
gating through atmospheric processes and the models’ im-
plementation of the aerosol physical and optical properties.
These model uncertainties, compounded with uncertainty in
the separation of MODIS BB and background AOD, limit
the confidence with which any method combining satellite-
retrieved AOD with model simulations can constrain source
strength or other model attributes. However, having iden-
tified these limitations, we can at least apply the method
in places offering the best conditions for assessing smoke
source strength with this approach, i.e., the group A and pos-
sibly group B regions, with an appropriate consideration of
the uncertainties involved in these areas. On the other hand,
the analysis presented here underlines the limitations of this
method, especially in regions with high non-BB aerosol frac-
tions, such as several regions in groups C and D. This calls
for the application of satellite measurements with more reli-
able BB AOD separation methods, such as having a multi-
angle (e.g., Junghenn Noyes et al., 2022; Kahn et al., 2010)
and possibly polarization, as well as multi-spectral sensitiv-
ity, (e.g., Dubovik et al., 2019) in global remote-sensing mea-
surements.

Background AOD subtraction for BB AOD measurement
estimation is likely to improve once tighter constraints on
satellite-retrieved particle properties (e.g., Junghenn Noyes
et al,, 2022) become more widely available. Also, cur-
rent global models may best be used to compare coarser-
resolution variables, e.g., averaged over larger areas and over
weeks or months, rather than comparing individual events.
Our study indicates that focusing on snapshots of single
events might require obtaining a larger sampling of cases in
some regions and/or having models offering finer spatial res-
olution. Also, there might be other novel ways to run mod-
els that would better isolate specific sources and thus im-
prove inter-model and model-measurement comparisons. As
applied here, the approach works best for large and well-
defined smoke plumes in low-background environments.

With all models significantly underestimating both total
and BB AOD but matching the MODIS background AOD
values within 50 % in regions of group B (TENA, CEAM,
and BOAS_W), we infer that the inputs of aerosol source—
strength to the models from the aerosol emission inventory
are most likely too low in these regions. Regions of group
B contain predominantly cultivated lands and mixed vege-
tation types. Both small fires and other factors likely con-
tribute to the emission deficit in these regions that are proba-
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bly severely underestimated in the GFED3.1 emission mod-
els used in this study. Although GFED has evolved since
the model runs were performed using the newer version,
GFEDA4.1s, that includes aerosol emissions from small fires
(van der Werf et al., 2017), the BB emission of carbonaceous
aerosol from GFED4.1s has increased only modestly (10 %—
40 %) in the group B regions (Pan et al., 2020), which is cer-
tainly far from the factor of > 10 increase needed for models
to match the MODIS BB AOD. In that regard, some more
aggressive BB emission estimates, such as the Quick Fire
Emission Dataset, QFED2.4 (Darmenov and da Silva, 2015),
which is based on the MODIS fire radiative power (FRP) and
optimized with the MODIS observed AOD in the BB regions,
could produce a closer agreement between model and obser-
vations in some of the model-underestimated places, such as
regions in group B; the QFED2.4 emissions are 4—16 times
higher than GFED3.1 in these regions (Pan et al., 2020).
Other aspects of the model treatment of aerosol microphysi-
cal and optical properties, such as size distributions, mixing
states, hygroscopic properties, and MEE, will also affect the
BB AOD calculations.

Another emission-related issue is the choice of OA/OC
ratios by individual models that vary by a factor of 2 from
1.4-2.6 (Table 1 and Fig. 1c). This range is justified, as avail-
able observations show similar ranges of values, such as 1.4—
2.1 (Turpin and Lim, 2001), 1.8 (Hand et al., 2012), 1.3-2.1
(Philip et al., 2014), and 2.2-2.5 (Hodzic et al., 2020). In
reality, the ratio should change with space and time, depend-
ing on the type of biome, OA composition (which models
do not deal with), aging process (which models usually do
not explicitly account for), and chemical production of SOA
rather than the simple fixed ratios used by current models. At
present, models do not have the capability to resolve these
dynamic processes for OA, and the specific measurements
required to provide constraints are also lacking.

The current study demonstrates that even with the same
BB emissions going into the model, the resultant BB AOD
varies considerably in all regions studied. Given the diver-
sity in the results and the high dimensionality of the data, we
could not identify any BB region or model that could be used
as a benchmark for further comparison (or calibration) with
confidence. In the absence of adequate observational con-
straints on the particle properties and the processes involved,
differences in the processes and assumptions make it possi-
ble for models with very different aerosol loads and optical
properties to arrive at similar AOD values, and vice versa.
For future multi-model experiments aiming at understand-
ing the inter-model disparities, we recommend implementing
common tracers into all participating models, such as a trans-
port tracer and a removal tracer, to help isolate the causes of
model diversity in these key processes, as well as equalizing
OA/OC ratios or adjusting for their diversity. Note, however,
that this does replace the need for having agreed-upon values
and other model assumptions based on actual measurements.
In that regard, we also stress the importance of enabling the
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observability that can provide information to directly infer
or indirectly derive aerosol loss rates and MEE in order to
further constrain the model-calculated AOD.

6 Conclusions

We have explored in some detail the strengths and limita-
tions of an approach to constraining wildfire smoke source
strength by comparing simulated AOD samples obtained
from 11 AeroCom global models with AOD derived from
space-based remote sensing. We observe a range of biomass-
burning-related results, including significant differences in
atmospheric load, lifetime, parameterized particle properties,
and the resulting BB AOD among the 11 participating mod-
els, even when all models are initialized with the same BB
emissions. This often points to differences in model treat-
ment of physical and chemical processes such as plume in-
jection height, aging time, removal mechanisms, and sec-
ondary aerosol formation, as well as aerosol microphysical
and optical properties such as particle size distributions, mix-
ing state, hygroscopic growth rates, and mass extinction effi-
ciencies. For example, higher assumed ratios of BB OA/OC
(Fig. 1c) are reflected in higher BB AOD for many models
(Fig. 8a). Although in situ observations do show a wide range
of OA/OC ratios similar to the model adopted values, the ra-
tio is not static but varies with conditions in space and time,
which models are unable to simulate at present. More gener-
ally, some models generate lower BB AOD estimates consis-
tently across biomes when compared to others.

Differences also appear between model BB AOD and that
estimated from MODIS AOD measurements. Some of these
differences are likely due to difficulty in distinguishing back-
ground aerosol vs. BB from specific sources in the inter-
pretation of MODIS data. In this study, we estimate back-
ground AOD from MODIS statistically, based on retrieved
AOQOD for months just prior to regional burning seasons, as-
sessed over multiple years. Such estimates are quite uncer-
tain, which matters primarily in regions where other aerosol
sources or aged smoke dominate or where the total AOD is
low. We associate such regions with groups C and D in the
current study; the model and measurement estimates of BB
AQOD are more uncertain in these regions, resulting in poor
BB source strength constraints when using our method.

The most meaningful results from this method are ob-
tained for regions where MODIS-based individual, opti-
cally thick smoke plumes occur and background AOD lev-
els are low, such as in the regions of groups A and B. The
primary factors limiting source—strength estimation results
in regions more favorable to the method include uncertain
MEE, aerosol loss frequency, and the OA/OC mass ratio as-
sumed in the models, as well as background AOD subtrac-
tion for the satellite AOD values. Model results and com-
parison with remote-sensing data will improve greatly once
the requisite measurements are acquired and applied to con-
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straining the models. In addition to the frequent global AOD
and aerosol type that can be provided by satellite aerosol re-
mote sensing, this necessitates systematic aircraft measure-
ments of detailed microphysical and optical properties for
the major aerosol air mass types near the source, as well
as during transport and aging. This need is not adequately
addressed by current research efforts but is essential for re-
fining the source—strength estimation approach applied here
and, far more generally, for reducing the uncertainty in mod-
eling aerosol effects on climate (e.g., Kahn et al., 2023).

As has also been shown in previous studies, the AeroCom
consortium of modelers, especially in collaboration with the
AeroSAT community that contributes measurement expertise
to such investigations, together offer a broad-based, effective,
and collegial environment for pursuing advanced studies of
aerosols and their impacts on climate. The great variety of
assumptions, approaches, and characteristics represented by
the models participating in the current study has allowed us
to assess the efficacy of some key model choices.

In summary, the observed systematic patterns among mod-
els, and between models and estimated BB AOD from mea-
surements, show that our approach of comparing a model
AOD simulation with satellite-retrieved BB AOD can be
useful for constraining the strength of natural BB aerosol
sources in some regions; this is a quantity for which there are
few other ways to estimate it empirically. It also offers an ex-
ample of how satellite measurements can help place aerosol-
related climate modeling on more solid ground and how cur-
rently lacking aerosol measurements that are best made by
suborbital sampling would reduce model diversity and un-
certainty, which are major reasons for acquiring such data.

Code and data availability. The datasets used in this work are
publicly accessible and referenced in the text.

The GFED3.1 emission dataset can be obtained from
https://doi.org/10.3334/ORNLDAAC/1191 (Randerson et al.,
2013).

Output from the individual models for the phase III BB experi-
ment is stored in the AeroCom repository, which can be accessed
on request, as described at https://aerocom.met.no/data (AeroCom,

2025).
MODIS datasets can be obtained from the Level-
1 and Atmosphere Archive & Distribution System

(https://doi.org/10.5067/MODIS/MOD04_1.2.061, Levy et al.,
2015a; https://doi.org/10.5067/MODIS/MYDO04_1.2.061, Levy et
al., 2015b; https://doi.org/10.5067/MODIS/MOD14.006, Giglio
and Justice, 2015a; https://doi.org/10.5067/MODIS/MYD14.006,
Giglio and Justice, 2015b;
https://doi.org/10.5067/MODIS/MODO021KM.061, MODIS
Characterization Support Team (MCST), 2017).

Coordinates and descriptions of all observational study cases
for 2008 are included in Table S2 in Petrenko et al. (2017)
(https://doi.org/10.1002/2017JD026693).
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