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Abstract. Chlorine radicals are strong oxidizing agents in the atmosphere, and the process of chlorine oxidation
results in the formation of chloric acid (HC1O3, CA). Recent studies have shown that trace amounts of CA
have been detected in the Arctic boundary layer. However, the contribution of chlorine-containing species to
oceanic new particle formation (NPF) has not been fully revealed. It is speculated that CA is involved in the
oceanic nucleation process. In this study, the enhancement of CA-based NPF by dimethylamine (DMA) and
sulfuric acid (SA) was comparatively investigated at the molecular level using density-functional theory (DFT)
and atmospheric cluster dynamics simulation (ACDC). The results show that DMA can form clusters with CA
through hydrogen bonding, halogen bonding and proton transfer, which reduces the energy barrier for CA-based
cluster formation and significantly improves the thermodynamic stability of CA clusters. The cluster formation
rate of CA-DMA cluster system is higher than that of the CA-SA cluster system. CA-DMA nucleation may not
effectively contribute to Arctic NPF. These findings may help to reveal some of the missing sources of the Arctic
NPF. The present study contributes to a deeper understanding of the influence of oceanic chlorine-containing

constituents on the oceanic NPF.

1 Introduction

Marine aerosols as the main natural aerosol system have a
major global impact by regulating the radiative balance and
climate of clouds (Moore et al., 2024; Revell et al., 2025).
New particle formation (NPF) contributes to more than half
of the global cloud condensation nuclei, which in turn con-
tributes to cloud formation (Gordon et al., 2017; Takegawa et
al., 2020; Williamson et al., 2019; Zhang et al., 2012; Zhao
et al., 2024). Compared with clouds over land, ocean clouds
cover a wider area and significantly increase the albedo of
the ocean, so ocean clouds contribute more to the climate
system (Merikanto et al., 2009; Wood, 2012; Zheng et al.,
2021). Sulfuric acid (SA, H>SO4), methane sulfonic acid
(MSA, CH3HSO3), and iodic acid (IA, HIO3) are generally
considered to contribute to the formation of oceanic parti-
cles (Hodshire et al., 2019; Yin et al., 2021; Facchini et al.,

2008; Perraud et al., 2015; Arquero et al., 2017; Hopkins et
al., 2008). However, there is still a significant difference be-
tween the particle formation rates observed in the field and
those predicted by simulation (Kirkby et al., 2011; Kirkby et
al., 2016; Zhang et al., 2004; Ehn et al., 2014; Dawson et al.,
2012). Therefore, it is necessary to consider whether other
gaseous precursors are involved in NPF to narrow the gap
between experiments and simulations.

Compared to the main atmospheric oxidants, hydroxyl
radicals, chlorine radicals act as strong oxidants in the po-
lar troposphere at relatively high concentration levels (Stone
et al., 2012). The active chlorine cycle in the Arctic bound-
ary layer during the spring after polar sunrise depletes O3 in
the region (Custard et al., 2016; Foster et al., 2001; Thomp-
son et al., 2015). Chloric acid (CA) has no photoactiv-
ity, with concentrations estimated to range from 1 x 10° to
7 x 10° molec. cm 3 (Tham et al., 2023). Research by Tham
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et al. (2023) indicates that the CA and perchloric acid (PA)
observed in the Arctic atmosphere are primarily generated
through homogeneous reactions involving chlorine, involv-
ing photochemical processes involving HO, and bromine
chemistry (Tham et al., 2023). Fang et al. (2024) employed
quantum mechanical/molecular mechanical methods to in-
vestigate that CA or PA may form as the final oxidation step
of chlorine oxides. CA was not found in the particle phase
of the aerosol, thus it is difficult to determine whether CA is
involved in the NPF phase.

Many studies have shown that atmospheric bases such as
methylamine (MA), dimethylamine (DMA), trimethylamine
(TMA) and ammonia can effectively enhance SA-based NPF
(Yao et al., 2018; Almeida et al., 2013). Although amines
emit 10-20 times less than ammonia in the ocean, amines
can effectively form clusters with substances such as SA in
the ocean (Myriokefalitakis et al., 2010; Semeniuk and Das-
toor, 2018; Almeida et al., 2013). Of these amines, DMA has
been found as a component of marine secondary aerosols
(Facchini et al., 2008). Widely dispersed DMA has an at-
mospheric concentration of 0.4-10 pptv over the ocean and
plays a key role in marine NPF (Van Pinxteren et al., 2019).
DMA has been identified as the strongest enhancing atmo-
spheric amine for SA and IA-driven NPF (Olenius et al.,
2017; Ning et al., 2022). Thus, DMA may have a higher en-
hancing potential (EP) than NH3 for CA-based NPF.

Sulfuric acid (H2SO4, SA) has been detected in both gas
and particulate phases in polluted coastal areas of China (Zhu
et al., 2019; Yu et al., 2019). It is noteworthy that the con-
centration of SA is two orders of magnitude higher (up to
108 molec. cm™3) in the coastal polluted areas due to urban
air pollution compared to the clean marine atmosphere (Zhu
et al., 2019). Sulfuric acid is poor nucleating agent in the
atmosphere and promotes nucleation processes when com-
bined with bases (Sipilé et al., 2010; Faloona, 2009). This
precisely demonstrates the value of studying the CA-DMA
system — it may serve as an additional source of acidic sub-
stances in the marine atmosphere. The nucleation of iodine
species (oxyacids and oxides) is a current hot topic (Li et
al., 2024; Ning et al., 2024). Additionally, extensive quan-
tum chemical studies have been conducted on the clustering
phenomena of sulfuric acid, methanesulfonic acid, and al-
kali compounds (Wu et al., 2023; Zhang et al., 2023). En-
gsvang et al. (2024) has investigated the formation mecha-
nism of CA clusters, concluding that CA did not contribute.
The study by Engsvang was on fairly small clusters (up to 2
acid-base pairs). The formation rate and mechanism of larger
CA-DMA clusters deserve further investigation.

Using density functional theory (DFT) and the Atmo-
spheric Clusters Dynamic Code (ACDC), the involvement of
DMA and SA in the initial phase of CA-based NPF has been
investigated. We obtained the minimum free energy struc-
tures of the (CA);_4(DMA);_4 and (CA)1_4(SA)1_4 clusters.
The temperatures used in this study are within the temper-
ature range of the atmospheric boundary layer in the ordi-
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nary range (Mifijovsky and Langhammer, 2015). The spe-
cific temperature value studied is 238, 258 and 278 K. The
concentration of CA was estimated to be in the range of
1.0 x 10°~1.0 x 108 molec. cm™> based on measured data.
The concentration of CA used is higher than the measured
value and is intended solely for testing/prediction purposes.
Further study of CA-DMA clusters under Arctic atmospheric
conditions and the corresponding thermodynamic data used
as input to the ACDC reveals the growth pathways and for-
mation rates of the clusters.

2 Computational methods

2.1 Configurational Sampling

We employed a multi-step global minimum sampling scheme
to search for the global minimum of (CA);_4(DMA);_4 and
(CA)1_4(SA)14 clusters (Temelso et al., 2018; Schmitz and
Elm, 2020). In this study, the initial structures of 1000-10000
(CA)14(DMA)|4 and (CA){_4(SA)i_4 clusters were ran-
domly generated using the ABCluster software to determine
their global minima (clusters with the lowest Gibbs free en-
ergies) (Odbadrakh et al., 2020; Zhang et al., 2018; Kubecka
et al., 2019). In the multistep sampling scheme, the geom-
etry optimization is performed at the PM7, wB97X-D/6-
314G(d,p) and wB97X-D/6-314++G(d,p) levels of theory,
and the single-point energy calculations are performed at the
DLPNO-CCSD(T)/aug-cc-pVTZ level of theory (Elm and
Mikkelsen, 2014; Myllys et al., 2016). Geometry calcula-
tions are based on the wB97X-D/6-314+4-G(d,p) theory level
(Elm et al., 2020; Smith et al., 2021; Li et al., 2024; Ning
et al., 2024; Wu et al., 2023). The GAUSSIAN 09 program
package (Frisch et al., 2016) was used to perform the PM7
and wB97X-D calculations. DLPNO-CCSD(T) calculations
were performed in the ORCA 4.0.0 program (Neese, 2012).
For convergence problems and failures such as ending with
a false frequency in the optimization of (CA);_4(DMA)|_4
and (CA)1-4(SA)1—4 cluster geometries, the initial structures
will be modified and re-optimized until the optimization is
successful. The free energy of formation (AG) of individ-
ual clusters is calculated at different temperatures 238, 258,
and 278 K. The structures of (SA);_4 and (DMA) _4 clus-
ters were obtained from previous studies and are recalculated
here (Xie et al., 2017).

2.2 Atmospheric Cluster Dynamics Code (ACDC)
Simulation

Cluster formation rates, steady-state concentrations, and
growth paths for (CA);_4(DMA);4 and (CA)14(SA)14
clusters were calculated using ACDC without considering
the effects of charge and water (McGrath et al., 2012). ACDC
simulation conclusions are obtained based on the birth and
death equation (Almeida et al., 2013; Lu et al., 2020; Kiirten
et al., 2018). The (CA)s(DMA)s clusters are set as bound-
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ary clusters (see Supporting Information (SI) for details).
The concentration ranges of [CA], [SA] and [DMA] were set
to 10°-108, 10°—108 cm™3 and 0.1-100 ppt, respectively.
Widely dispersed DMA has an atmospheric concentration of
0.4-10 ppt over the ocean and plays a key role in marine NPF
(van Pinxteren et al., 2019). DMA at concentrations up to
100 ppt is primarily used for prediction.

3 Results and discussion

3.1 Cluster Structures and Cluster Formation Free
Energy

To evaluate the thermodynamic stability of the formed CA-
DMA clusters, the formation free energies (AG, kcal mol~ 1)
at 278 K are calculated for the (CA);_4(DMA)|_4 clusters
at the DLPNO-CCSD(T)/aug-cc-pVTZ//wB97X-D/6-
314++G(d,p) level of theory. As shown in Fig. 1, hydrogen
bonds play an important role in the formation of CA-DMA
clusters. Proton transfer reactions are not observed in the
pure (CA); and (CA)3 clusters, whereas spontaneous proton
transfer reactions are observed in all (CA);_4(DMA);_4
clusters. For most (CA)j_4(DMA);4 clusters, protons
are transferred from CA to DMA. Proton transferring
wasn’t observed in pure (CA), and (CA)3 clusters, whereas
spontaneous proton transfer reactions were present in all
(CA)1_4(DMA)|_4 clusters. For most (CA);_4(DMA)|_4
clusters, protons are transferred from CA to DMA, form-
ing ClI-O---H-N hydrogen bonding, accompanied by the
production of ClO; negative ions and DMA ions. In
CA-DMA clusters containing two or more chlorine atoms,
including (CA);(DMA);, (CA)3(DMA);, (CA);(DMA),
(CA)3(DMA);, (CA)3(DMA)4, (CA)4(DMA);,
(CA)4(DMA);, (CA)4(DMA)3, and (CA)4(DMA)4 clusters,
O-Cl---O-Cl halogen bonds and Cl-O---H-N hydrogen
bonds together stabilize these clusters described above.
Halogen bonds are not present in clusters containing
single Cl atom and in (CA)2(DMA);, (CA),(DMA)3,
(CA)2(DMA)4, as well as (CA)3(DMA); clusters. For the
CA-SA clusters, the ClO; negative ions generated in the
CA-DMA cluster system were not found in the CA-SA clus-
ter system because proton transfer do not occur. In contrast
to the O—Cl.--O-Cl halogen bond found in the CA-DMA
cluster system, the CA-SA cluster adds S—O- - -Cl-O halogen
bond (in the Fig. S2). It is worth noting that the most stable
cluster structure of CA-DMA we obtained exhibits similar-
ities to the findings of Engsvang et al. (2024). CA-DMA
clusters are primarily stabilized by hydrogen bonds.

The formation Gibbs free energy values of (A)
(CA);_4(DMA)|4 and (B) (CA);_4(SA);4 at 278K and
1 atm are shown in Fig. 2. The Gibbs free energy values
for the formation of (CA),, (CA)3, and (CA)4 clusters in
the pure acid system are 1.31, 2.52, and 5.37 kcal mol~!,
respectively, implying that at 278 K, pure CA clusters are
thermodynamically difficult to form. The difference between
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the AG values of (CA)4(DMA)4 cluster and (CA)4(SA)4
cluster is the largest, up to 61.62kcalmol~!. (CA);(SA),
and (CA);(DMA); are both very important in their re-
spective cluster systems, and their AG values are —2.62
and —10.08 kcalmol~!, respectively~!. The AG values of
(CA)1_4 clusters are 10.08-28.16kcal mol~! higher than
those of the corresponding (CA);_4(DMA); clusters, sug-
gesting that DMA stabilizes the CA clusters. As the size of
CA-DMA clusters increases, the clusters gradually form a
cage-symmetric structure. The AG values of the majority of
clusters in the CA-DMA system are 3.55-61.62 kcal mol~!
lower than the corresponding AG values of the CA-SA sys-
tem. This indicates that the CA-DMA cluster system is more
thermally stable compared to the CA-SA cluster system.

3.2 Evaporation Rates and Cluster Stability

The total evaporation rate (3, s71) of (CA)|_4(DMA)|_4
clusters and (CA)1_4(SA)14 clusters formed at T =278 K is
shown in Fig. 3. The smaller value of ¥ means that the sta-
bility of CA-DMA clusters is higher and the clusters shrink
further. The clusters with the same number of CA molecules
and the number of DMA molecules include (CA);(DMA);,
(CA)2(DMA),, (CA)3(DMA)3, and (CA)4(DMA), clusters,
which have the values of Y y of 10%, 2 x 1074, 5 x 107!,
and 3 x 10! s~1, respectively. (CA)>(DMA); cluster has the
lowest Y y value, implying that (CA)2(DMA); cluster is the
most stable cluster in the “4 x 4” box system of CA-DMA
clusters. For clusters with different numbers of CA and DMA
molecules, the Y_ y value of (CA),(DMA); cluster is signif-
icantly lower than that of other clusters, which indicates that
(CA)2(DMA); cluster has a high probability of competing
for the growth path of nucleation. In this study, we compare
the evaporation rates of clusters from the CA-DMA system
with those from the CA-SA system at 278K. In contrast to
the other clusters, the evaporation rate of (CA);(SA)s clus-
ters is lower than that of the corresponding (CA);(DMA)4
clusters. The evaporation rates of most (CA);_4(DMA)|4
clusters are much smaller than those of the corresponding
(CA)1_4(SA)_4 clusters, indicating that the CA-DMA clus-
ter system is kinetically more stable than the CA-SA cluster
system.

3.3 Cluster Formation Rates and Steady-State Cluster
Concentrations

Cluster formation rate (J) and steady-state CA dimer con-
centration () _[(CA);]) are important indicators for assess-
ing the enhancement potential of DMA for CA-based nu-
cleation. Figure 4 shows the variation of Y [(CA);] and
J values at 278 K with CA concentration ([CA] = 10°-
108 cm™3) and DMA concentration ([DMA]=1, 10 and
100 ppt). The J value of the CA-DMA system showed a pos-
itive correlation with CA and DMA concentrations as CA
and DMA concentrations increased. The dependence of the
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Figure 1. Identified lowest free energy structures of the (CA);_4(DMA);_4 clusters at the DLPNO-CCSD(T)/aug-cc-pVTZ//wB97X-D/6-
314++4G(d,p) level of theory. The red, blue, gray, green and white balls represent oxygen, nitrogen, carbon, chlorine and hydrogen atoms,
respectively. The dashed white and black lines indicate hydrogen and halogen bonds, respectively.
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Figure 2. The formation free energy (AG) (in kcal mol_l) of (A) (CA);_4(DMA)|_4 and (B) (CA)|_4(SA)|_4 clusters at the DLPNO-
CCSD(T)/aug-cc-pVTZ//wB97X-D/6-314++G(d,p) level of theory. The calculations are performed at 278 K and 1 atm.

cluster formation rate on the DMA concentration does not DMA: 1, 10 and 100ppt) were significantly higher than
decrease with increasing CA concentration, which means the CA-SA system (Fig. S4). However, at high concentra-
that the dependence of the system on DMA does not sat- tions of [CA]=1 x 107 molec.cm™> and [DMA] =10 ppt,
urate when the CA concentration is high. The ) [(CA),] the J value of the CA-DMA cluster system only reaches
and J of the CA-DMA system with the full range of acid- 1.39 x 107" ¢cm™3 s~!. The contribution of the CA-DMA

base concentrations considered (CA: 10°~10% molec. cm™3, cluster system to the NPF is not significant under the atmo-
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Figure 3. Evaporation rates for (A) (CA);_4(DMA)|_4 and (B) (CA);_4(SA)|_4 clusters clusters at 278 K and 1 am.

spheric conditions of 278 K. In addition, the CA-PA cluster
system has a lower J value (Figs. S13-S17). This may be due
to the weak bond energies of Cl-O---Cl-O halogen bonds
in the process of CA-PA nucleation (Fig. S12). Compara-
tive studies indicate that the cluster formation rate of SA-
DMA clusters exceeds that of CA-DMA clusters by more
than seven orders of magnitude (Zhang et al., 2022). Under
temperature and concentration parameters relevant to Arctic
environments, the CA-DMA system could be incapable of
forming cluster structures. Despite the negative outcome, this
represents a significant advancement in advancing research
on nucleation mechanisms in marine and Arctic regions.

To further systematically explore the effect of tempera-
ture on the J of the CA-DMA cluster system, Figure 5
shows the simulated J at other temperatures (238 and 258 K),
[CA]=10°-108 molec.cm™3, [DMA]=0.1ppt (red line),
1 ppt (green line), 10 ppt (blue line), and 100 ppt (black line).
A comparison of the simulations at 258 K (Fig. 5a) and 238 K
(Fig. 5b) reveals that the decrease in temperature further in-
creases the J value of the CA-DMA cluster system to a
higher level. However, at a low temperature (258 K), the J
values of the CA-DMA cluster system do not reach higher
levels at high concentrations of [CA] =1 x 107 molec. cm™3
and [DMA] = 10ppt. The J values of the CA-DMA clus-
ter system were further investigated under cold Arctic con-
ditions (238 K). It was found that the J value of CA-DMA
cluster system at 238 K atmospheric condition was signifi-
cantly higher than that of CA-DMA cluster system at other
higher temperature conditions, which was mainly due to the
fact that the low temperature attenuates the evaporation of
CA-DMA clusters.

3.4 Cluster growth pathway

Figure 6 shows the growth paths of CA-DMA and CA-
SA clusters at 278 K, [CA] = 10° cm ™3, [DMA] = 1 ppt, and
[SA]=10°cm™3. The first step in the growth of CA-DMA
clusters is the collision of a CA molecule and a DMA
molecule to form a (CA);(DMA); cluster. There are two
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growth paths for (CA);(DMA); clusters: a CA molecule col-
lides and combines with a (CA);(DMA); cluster to form a
(CA)2(DMA); cluster, and a DMA molecule is subsequently
added to form a (CA),(DMA);, cluster; a (CA);(DMA);
cluster combines with another (CA);(DMA); cluster to
form a (CA)>2(DMA); cluster. This growth pattern is mainly
due to the high stability of (CA)(DMA); clusters. After
the (CA)(DMA);, clusters, the growth route of the CA-
DMA cluster system extends along the direct binding to
the (CA);(DMA); clusters. For (CA)3;(DMA)j clusters, one
route is the addition of acid and base, and the other route
is the direct binding to (CA);(DMA); clusters to produce
(CA)4(DMA)4 clusters. Compared to the nucleation path-
ways observed at 278K in the CA-DMA system, path-
ways at 238 K involve in the formation of (CA);(DMA);
to (CA)(DMA)4 clusters, as well as the combination of
(CA)4(DMA)4 clusters with a single (CA);(DMA); cluster
to generate (CA)s(DMA)s clusters.

The growth pathway of the CA-SA cluster system differs
considerably from that of the CA-DMA cluster system. The
cluster initially formed in the CA-SA cluster system is the
(CA); cluster not the (CA){(SA/DMA); cluster in the CA-
DMA system. After the generation of (CA), cluster, the sys-
tem can generate (CA)3(SA); clusters by successive addition
of acid molecules. Subsequently, (CA)3(SA); clusters com-
bine with (CA);(SA); clusters to generate (CA)3(SA); clus-
ters. The final (CA)4(SA)4 cluster of the system is generated
by collision of a (CA)3(SA); cluster with an (SA), cluster.

3.5 Atmospheric implications and conclusions

In this paper, combination method of quantum chemistry and
ACDC were used to elucidate the molecular structure mech-
anism of DMA and SA enhancing role of CA nucleation
by comparing the CA-DMA and CA-SA nucleation systems.
Proton transfer was observed in all (CA); 4(DMA){_4 clus-
ters while no proton transfer occurred within (CA);_4(SA)14
clusters. The CIO;3 groups generated by the deprotonation
of CA are involved in the formation of at least one hy-
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drogen bond. Hydrogen and halogen bonds together stabi-
lize the CA-DMA and CA-SA nucleation systems. The vast
majority of CA-SA cluster systems have higher AG values
than the corresponding CA-DMA cluster systems. The clus-
ter formation rates of the pure CA-PA and CA-SA nucleation
systems are relatively low, and the contribution of DMA to
CA nucleation is stronger than that of SA. Clusters with the
same number of CA and DMA molecules ((CA);{(DMA);,
(CA)2(DMA);, (CA)3(DMA)3, and (CA)4(DMA)4 clusters)
play a key role in the growth path of CA-DMA clusters,
which is consistent with the existing literature (Wu et al.,
2023; Zhang et al., 2023). This study is important for a
deeper understanding of Arctic atmospheric nucleation. The

Atmos. Chem. Phys., 25, 15359-15368, 2025

current simulations do not take into account charge effects,
the involvement of water molecules, and the influence of
complex atmospheric matrices (e.g., organic matter). In the
future, it is necessary to validate the simulation results with
field observations and extend it to multi-component (e.g.,
IA/SA/DMA mixing or CA-SA-DMA clusters) nucleation
systems in order to quantify the contribution of chlorine-
containing substances to the global NPF in a more compre-
hensive way.
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