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Abstract. The response in cloud water content to changes in cloud condensation nuclei remains one of the major
uncertainties in determining how aerosols can perturb cloud properties. In this study, we used an ensemble of
large eddy simulations of marine stratocumulus clouds to investigate the correlation between cloud liquid water
path (LWP) and the amount of cloud condensation nuclei. We compare this correlation directly from the model to
the correlation derived using equations which are used to retrieve liquid water path from satellite observations.
Our comparison shows that spatial variability in cloud properties and instrumental noise in satellite retrievals
of cloud optical depth and cloud effective radii results in bias in the satellite-derived liquid water path. In-depth
investigation of high-resolution model data shows that in large part of a cloud, the assumption of adiabaticity does
not hold, which results in a similar bias in the LWP–CDNC (cloud droplet number concentration) relationship
as seen in satellite data. In addition, our analysis shows a significant positive bias of between 18 % and 40 %
in satellite-derived cloud droplet number concentration. However, for the individual ensemble members, the
correlation between the cloud condensation nuclei and the mean of the liquid water path was very similar between
the methods. This suggests that if cloud cases are carefully chosen for similar meteorological conditions and
it is ensured that cloud condensation nuclei concentrations are well-defined, changes in liquid water can be
confidently determined using satellite data.

1 Introduction

Clouds play a crucial role in the Earth’s climate, affecting
the radiative balance of the Earth as they cover the major-
ity of the Earth’s surface and have high reflectivity of the
incoming solar radiation and absorbing outgoing thermal ra-
diation (Bellouin et al., 2020; Forster et al., 2021). As aerosol
can perturb the cloud properties, accurate knowledge of how
aerosol–cloud interactions affect clouds will allow for bet-
ter estimation on how changes in anthropogenic emissions
affect the Earth’s radiative balance and thus the climate.
Satellite based estimates of aerosol effects on clouds have

proven to be challenging to interpret as they have not always
supported the theoretical assumptions of decreasing cloud
droplet sizes with an increasing number of cloud droplets
(Twomey, 1974; Jia et al., 2019) or the increase in cloud
liquid water content with an increasing number of cloud
droplets (Albrecht, 1989; Gryspeerdt et al., 2019). These
mixed results have been attributed to several counteracting
physical processes, for example the effects of solar heating,
cloud-top mixing, and variability in moisture on the liquid
water path (LWP) (Feingold et al., 2022; Gryspeerdt et al.,
2022; Glassmeier et al., 2021; Zhang et al., 2024), but also
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challenges in satellite retrievals (Feingold et al., 2022; Arola
et al., 2022).

Arola et al. (2022) showed that variability in positively
correlated cloud droplet number concentration (CDNC) and
liquid water path (LWP) data will dilute the correlation and
can even result in an apparent strongly negative correlation
between CDNC and LWP. However, in that study, the causes
of variability were not studied further. Such variability can
come from (1) internal variability in clouds originating from
the circulation within clouds, e.g., in updrafts at the center
of the cloud cells and downdrafts at the edges of the cell;
(2) mesoscale variability in meteorological conditions and
phase of the cloud evolution; and (3) instrumental noise in
satellite retrievals.

Figure 1 shows the cloud properties in a stratocumulus
deck west of Peru and Chile, South America. In the figure,
the wide rectangles show regions in the cloud field, which
show mesoscale variability in CDNC and LWP, while the
small squares indicate internal variability in CDNC and LWP
within a cloud cell. The smaller squares are magnified in
the right-hand side panels, showing both the effective radius
and the reflectivity of the cloud at visible wavelengths. The
wide rectangle in the figure shows a region with significant
mesoscale variabilities in cloud properties.

As for the small squares in Fig. 1, we can see that the
retrieved cloud effective radius decreases towards the cloud
cell edges. The decrease in retrieved cloud effective radius re-
sults from the entrainment mixing at the cloud top and down-
drafts in the cloud cell boundaries, which both reduce the liq-
uid water path. At the cloud cell edges, this is in conflict with
the assumptions made in the calculation of CDNC. Calcula-
tion of CDNC based on the effective radius, and assuming
constant sub-adiabaticity, would lead to overestimation in re-
trieved CDNC values compared to the real CDNC values at
the cell boundaries (see Eq. 2 in Sect. 2). In addition to ac-
tual variability in physical properties of clouds, satellite re-
trievals include uncertainties and instrument noise, causing
another potential source of bias in the satellite-derived corre-
lation between CDNC and LWP. All these different sources
of variability are potential causes for biasing the estimate
of the aerosol effect on the LWP, as shown by Arola et al.
(2022).

In this study we use a cloud-resolving large eddy simu-
lation (LES) model to investigate the relative contribution of
these sources of variability (cloud condensation nuclei, cloud
structure, and noise in satellite retrievals) to the correlation
between CDNC and LWP. We will analyze how the diag-
nosed response in LWP to perturbed aerosol concentrations
differs when calculated with equations used in the satellite
retrievals of LWP, compared to LWP diagnosed directly from
the LES model.

2 Methods

2.1 Model description

We simulated the effect of aerosol concentration on cloud
properties, especially the liquid water content, using the
UCLALES-SALSA large eddy simulation model (Stevens
et al., 2005; Kokkola et al., 2008; Tonttila et al., 2017; Ahola
et al., 2020). In this model setup, UCLALES, which simu-
lates the dynamics of the boundary layer, is coupled to the
aerosol–cloud model SALSA, which simulates aerosol and
cloud droplet microphysics. SALSA has a sectional descrip-
tion for aerosol particles, cloud and precipitation droplets,
and ice crystals.

The model is built around UCLALES, a platform for
idealized cloud simulations. The model resolves the turbu-
lent flow in a three-dimensional Cartesian grid with cyclic
boundary conditions. The main prognostic scalar variables
include the liquid water potential temperature and tracer vari-
ables describing water vapor and liquid water mixing ra-
tios. When coupled with the sectional aerosol–cloud mi-
crophysics model SALSA, the set of prognostic scalars is
vastly extended, now including the number and mass mix-
ing ratios for each size section of four particle categories,
comprising aerosol particles, cloud droplets, drizzle/precip-
itation, and ice (the latter not used in this study). The size-
resolved framework is used to describe particle growth via
condensation and coalescence processes in all categories.
Aerosol cloud activation is determined directly from the re-
solved particle growth, whereas the transition between cloud
droplets and drizzle is diagnosed from the resolved collision–
coalescence process. UCLALES-SALSA has been validated
against observations in liquid phase clouds and fogs and
found to reproduce the observed droplet distributions (e.g.,
Boutle et al., 2018; Calderón et al., 2022). More details on
the model and simulations are given in Sects. S1 and S2 in
the Supplement.

2.1.1 Experiment setup

To better understand the features of the LWP response to
changes in CDNC seen in the satellite data, UCLALES-
SALSA was configured for a typical marine stratocumu-
lus cloud setup (nocturnal drizzling stratocumulus cloud
DYCOMS-II RF02 of the Second Dynamics and Chemistry
of Marine Stratocumulus field campaign, Ackerman et al.,
2009), representing a very commonly occurring cloud type,
which allows for disentangling the potential underlying nu-
merical biases related to satellite retrievals. The horizontal
model domain size was 51×51km with a resolution of 75 m,
with the vertical domain extending up to 1.4 km and a verti-
cal resolution of 20 m. Vertical profiles of atmospheric vari-
ables used for model initialization are shown in Fig. S1 in the
Supplement.
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Figure 1. Cloud properties of a stratocumulus cloud deck west of Peru and Chile over the South Pacific on 30 August 2003. Panel (a)
shows the CDNC calculated according to Quaas et al. (2006), and panel (c) shows the retrieved LWP from Moderate Resolution Imaging
Spectroradiometer (MODIS) Level-2 (L2) Collection 6.1 (Platnick et al., 2015). Panels (b) and (d) show a magnification of the structure of a
cloud cell within the cloud field, denoting the cloud effective radius and the cloud reflectance for the corresponding cloud cell. Small squares
are approximately 3km× 3km, and large rectangles are approx. 500km× 6km.

For aerosol, we used a bi-modal size distribution. The
Aitken mode is centered at 0.022 µm, with a standard devi-
ation of 1.2 and a total number concentration of 150 cm−3.
The accumulation mode is centered at 0.120 µm, with a stan-
dard deviation of 1.7. To determine the effect of aerosol
on cloud properties, we ran a set of three simulations
with cloud condensation nuclei (CCN) equivalent to initial
accumulation-mode aerosol concentrations of 65, 150, and
300 cm−3 (corresponding to the total number concentrations
of 78, 180, and 360 cm−3 for the whole size distribution).
Size distributions are illustrated in Fig. S2 in the Supplement.

The simulations span 14 h, and the model output was sam-
pled 2, 6, and 10 h from the start of the run. These time inter-
vals allow us to draw samples from different cloud structures,
as the microphysical properties and circulation structures are
allowed to evolve freely in the model. In particular, the sim-
ulations with the lowest initial aerosol concentrations exhibit
a clear drizzle-induced transition from closed stratocumulus
cells to an open-cell structure within 10 h of model time.

It is well-known that satellite-based CDNC values are bi-
ased because radiances used in the cloud effective radius
(CER) retrievals correspond to an optically thicker region be-
low the cloud top. Platnick (2000) established that infrared
radiance fluxes from liquid clouds include all reflected pho-
tons that penetrate to a maximum optical depth equivalent
to up to 3.5 units below the cloud top (Grosvenor et al.,
2018b) depending on the viewing geometry and cloud het-
erogeneity (Grosvenor et al., 2018a). With CER values that
are smaller than those expected at the cloud top, the cloud-
top-based pseudo-adiabatic model inevitably fails, producing

satellite retrievals of CDNC and LWP that are different from
real ones (Grosvenor et al., 2018a).

In this study, we followed a sampling methodology that
mimics this so-called penetration depth bias (Grosvenor
et al., 2018a). We determined the CER and CDNC values
for the top part of a cloud based on as many model layers as
needed to reduce the cloud optical thickness (COT) in the in-
frared region by three units. The infrared COT was calculated
using the wavelength band of 2.38–4.00 µm to match the
MODIS retrievals done at the 2.13 and 3.7 µm channels. Both
CER and CDNC were calculated as average values weighted
by the extinction coefficient bext that consider all model lay-
ers in the top part of the cloud (Eqs. S.1 and S.2). For the sake
of simplicity we refer to this region as the extended cloud top.
COT was calculated for the visible wavelength band of 0.25–
0.69 µm as a surrogate of MODIS retrievals done at 0.66 µm.
More details on the sampling methodology can be found in
Sect. S2 in the Supplement.

Values for CDNC (Nd) were calculated with CER (re) and
COT (τc) obtained for the extended cloud top in each cloud
column from the following equation:

Nd =

√
5

2πk

(
fadcwτc

Qextρwr5
e

) 1
2
, (1)

where k is the relation of volume mean radius and effective
radius of the droplet size distribution, fad is the adiabaticity
factor, cw is the rate of increase of liquid water content with
height in a moist adiabatically ascending air parcel, Qext is
the Mie extinction efficiency, and ρw is the density of water
(Grosvenor et al., 2018b). The parameters k, fad, cw,Qext, τc,
and re were diagnosed from the UCLALES-SALSA model.
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The cloud parameters k, fad, cw, and Qext vary with time
along the cloud structure. However the actual values can-
not be directly derived from MODIS observations, and thus
they are assumed to be constant and denoted by α, for
which an often-used value for marine stratiform clouds is
1.37×10−5 m−

1
2 (Quaas et al., 2006; Grosvenor et al., 2018b;

Gryspeerdt et al., 2022; Arola et al., 2022). Estimates of
fad could possibly be improved by combining MODIS and
CALIOP observations. Consequently, CDNC values can be
obtained from

Nd = ατ
1
2

c r
−

5
2

e . (2)

LWP values were calculated with the following equation
(Wood, 2006):

LWP= 5/9ρwreτc. (3)

In the analysis, we filtered the data so that we only considered
cloudy columns where τ > 4 and 4µm< re < 15µm, similar
to Gryspeerdt et al. (2019) and Arola et al. (2022). An exam-
ple of cloud field properties can be seen in Fig. S3.

2.2 Results

2.2.1 The effect of cloud internal variability on retrieved
CDNC and LWP

First, to get an indication on how the cloud cell level variabil-
ity affects the satellite-retrieved LWP adjustment, we com-
pared model-predicted CDNC and LWP values with CDNC
and LWP values calculated using Eqs. (1)–(3). We carried
out an ensemble of UCLALES-SALSA simulations, varying
the conditions for cloud formation and the number concen-
trations of aerosol particles, and then analyzed the simulated
CDNC and LWP values with the approaches detailed below.

As an example, Fig. 2 shows the cloud droplet number
concentration over the model domain of a simulation where
the model was initialized with a total aerosol number con-
centration of 300 cm−3. The leftmost panel in Fig. 2 repre-
sents CDNC values diagnosed directly from the UCLALES-
SALSA model. In the middle panel, CDNC was calculated
from Eq. (1), using LES-simulated values for k, fad, cw,
Qext, τc, and re in the equation. In the rightmost panel
CDNC was calculated from Eq. (2), assuming constant α of
1.37× 10−5 m−

1
2 and using simulated τc and re.

The leftmost panel shows a closed-cell-type structure in
the cloud, with lower values for CDNC at the boundaries of
the cells. A snapshot of LWP is shown in the Supplement,
Fig. S3. Note that the simulated cloud in Fig. 2 is fully over-
cast, also at the cloud cell edges. Comparing Fig. 2a and
b, we can see that when all the parameters in Eq. (1) are
from LESs, CDNC corresponds quite well with the model
values, showing a similar structure although overestimating
the CDNC throughout the model domain. However, the aver-
aging of satellite data will mitigate this since spatial aggrega-
tion of the data will reduce the maximum CDNC values (see

the differences between Figs. S9 and S10 in the Supplement)
making the CDNC distribution more narrow (Fig. S11). This
is also in line with observations where aircraft- and satellite-
observed CDNC is compared (Gryspeerdt et al., 2022).

Comparing Fig. 2a and c, we can see that when we use a
fixed value for α, the satellite equation exhibits inverse be-
havior at cloud cell boundaries compared to the direct out-
put of the model; i.e., CDNC increases towards the bound-
aries of the cloud cells. This indicates that the assumptions
of, e.g., adiabaticity do not hold at the cloud cell boundaries.
This is also in line with a previous study by Feingold et al.
(2022). Biases in LWP also occur differently across cloudy
areas (Fig. S5). Cloud cell boundaries tend to have low bi-
ased LWP values, while cloud cell centers are biased high. In
cloud cell boundaries, processes such as entrainment and lat-
eral mixing lead to sub-adiabaticity. Since these sources of
variability are not considered in the formulation of satellite
retrieval equations, there are important deviations from the
assumptions of vertically constant values for droplet num-
ber concentration, droplet size distribution breadth, and adi-
abaticity. A more detailed analysis of CDNC biases related
to changes in LWP, cloud effective radius, and the adiabatic
factor has been included in Fig. S15.

To see how the discrepancy between the cloud proper-
ties diagnosed directly from UCLALES-SALSA and using
Eq. (3) translates to differences in the correlation between
CDNC and LWP, we calculated this relation for all ensemble
members. Figure 3 illustrates LWP as a function of CDNC
for direct model input and calculated using Eqs. (2) and (3)
for the three different initial CCN concentrations at 6 h into
the simulation. For all initial CCN concentrations, the di-
rect model output indicates an almost linear correlation in
the log–log scale within single cloud scenes. For an individ-
ual simulation, the positive slope between CDNC and LWP
reflects the horizontal structure of the cell, where air flows
from the core, characterized by high LWP and high CDNC,
outward toward the cell edges with lower LWP and CDNC.
The lowest CCN case exhibits a drop in LWP at highest
CDNC values. However, the number of data points is very
low at highest CDNC values. In contrast, when using Eqs. (2)
and (3) the variability and the unphysical behavior in Nd at
the boundaries of cloud cells yield curves which reach a lo-
cal maximum, and for higher CDNC values they exhibit a
downward slope with increasing CDNC. In addition, CDNC
values have a clear high bias. In this case, satellite-derived
CDNC values are at least 2 times higher than the direct LES
values. Values are positively biased due to the assumption of
vertically uniform cloud columns which is not valid in thin
cloud layers such as those observed at cloud cell edges. Al-
though the spatial resolution in LES is much higher than in
satellite data and it has been shown that spatial and tempo-
ral averaging affects the CCN–LWP correlation (Rosenfeld
et al., 2023), this behavior is similar to what is seen in satel-
lite data and what was also demonstrated with synthetic data
by Arola et al. (2022). This same behavior was seen in all of
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Figure 2. CDNC at the cloud top (a) from the direct output of UCLALES-SALSA, (b) calculated using Eq. (1) with UCLALES-SALSA-
simulated values for all parameters, (c) using Eq. (2), (d) relative biases in CDNC between UCLALES-SALSA and Eq. (1), and (e) relative
biases in CDNC between UCLALES-SALSA and Eq. (2).

the ensemble members over all analyzed time instances and
all CCN concentrations (Figs. S6–S8).

The probability distributions of CDNC and LWP data are
shown at the top and to the right of the coordinate frame, re-
spectively, in Fig. 3. From these distributions we can see that
LES-derived data are skewed towards higher CDNC values,
while the LWP probability distributions look very similar for
both LES and satellite equations. The sharp cutoff of data at
low LWP and CDNC values is caused by filtering of the data
to include only values where τ > 4 and 4µm< re < 15µm.
Earlier studies on satellite data limit this filtering to CDNC
but not to LWP (Gryspeerdt et al., 2019). However, due to
doing pixel-by-pixel analysis for CDNC–LWP correlation,
both CDNC and LWP data are filtered here.

Within individual ensemble members, the cloud internal
variability contributes to the CDNC–LWP correlation and
cannot be considered to be an aerosol effect on clouds, also
shown by Zhou and Feingold (2023). In addition, in the anal-
ysis of satellite data, it is a common practice to avoid non-
adiabatic clouds (e.g., Grosvenor et al., 2018b), so that issues

in satellite-retrieved cloud properties at, for example, cloud
cell edges can be avoided. Previous studies have shown that
selecting adiabatic pixels in a model and satellite analysis
brings their results closer to each other (Dipu et al., 2022).
Varble et al. (2023) also showed that removing the differ-
ences between the adiabaticity in an Earth system model and
satellite retrievals brings the observed and satellite-retrieved
LWP adjustment closer to each other.

2.2.2 The effect of combining different aerosol and time
instances on CCN–LWP correlation

In addition to internal variability within clouds due to the
dynamics affecting the cloud structure, cloud scenes can in-
clude clouds at different phases, e.g., transitioning between a
closed-cell structure and an open-cell structure. Cloud scenes
can also include large-scale variability in the cloud geomet-
ric thickness and water content, which is due to differences in
meteorological conditions rather than caused by differences
in aerosol concentration. To get an indication on how such

https://doi.org/10.5194/acp-25-1533-2025 Atmos. Chem. Phys., 25, 1533–1543, 2025



1538 H. Kokkola et al.: LES-simulated CCN–LWP response

Figure 3. Joint and marginal histograms for LWP and CDNC values using (a) UCLALES-SALSA and (b) Eq. (2) at a time instance of
6 h. Simulations are color-coded according to CCN concentrations used in the model initialization. The intensity of color in joint histograms
increases when the probability increases. The probability is represented as a density function calculated as counts/sum(counts)/bin area.
Continuous lines indicate the arithmetic mean.

variability affects the correlation between LWP and CDNC,
we analyzed simulated cloud scenes at different points in
time (2, 6, and 10 h). During the simulation, the closed-cell
structure transformed to an open-cell structure for the case
with the lowest initial aerosol load, and for the cases of
higher aerosol load, the size of convective cells increased.

Figure 4 shows the correlation between CDNC and LWP
from direct model output and calculated using Eqs. (2) and
(3) when all the cloud scenes are aggregated. Figure 4a shows
that the model produces an overall positive correlation, while
satellite equations produce a similar shape correlation as
shown in Fig. 3b for one ensemble member, only spreading
over a wider CDNC range due to the variability in CDNC
concentrations. The direct model output resembles the shape
of the correlation between CDNC and LWP simulated by the
ICON model in Fons et al. (2024), while the satellite equa-
tion exhibits a decrease in LWP at CDNC values higher than
300 cm−3.

To further investigate the differences between the LES
model and satellite equations, we compared the mean LWPs
of the LES domain using both direct output and satellite-
equation-derived LWP for different initial aerosol concentra-
tions. Figure 5 represents a proxy for satellite aggregation. It
shows the LES domain mean LWP at three different time in-
stances into the simulation for three different runs as a func-
tion of the initial CCN concentration. Solid lines denote the
mean LWP in the domain, and the shading indicates the stan-
dard deviation in the data.

Early into the simulation, we expect the simulated clouds
to be close to a very similar phase of the cloud cycle, and

thus the difference in LWP between the different aerosol
cases comes mainly from the differences in CCN concen-
trations. During the first 2 h into the simulation there has
not been enough time for precipitation to develop, and thus
the LWP decreases slightly as a function of CCN concen-
tration. Previous LES studies of the same DYCOMS case
have produced qualitatively similar results (Ackerman et al.,
2009; Bulatovic et al., 2019). Later in the simulation, precip-
itation is initiated with the lowest CCN concentration, and
a typical shape of CCN–LWP correlation is reached where
LWP first increases with CCN and then decreases due to in-
creased entrainment rate (Ackerman et al., 2009; Bulatovic
et al., 2019). However, the difference in LWP between CCN
concentrations of 180 and 360 cm−3 does not change signif-
icantly from 6 to 10 h into the simulation, which is opposite
to the findings in Glassmeier et al. (2021) and can be char-
acteristic of the DYCOMS2 input profile with quite a small
moisture inversion. The figure also illustrates that although
we also included non-adiabatic model grid points in calcu-
lations where Eqs. (2) and (3) are used, changes in LWP
with increasing CCN are strikingly similar to those diag-
nosed from the LES model. There is a slight bias in satellite-
equation-derived LWP (Fig. S5) in all the cases, but the rel-
ative changes correspond well with LES-diagnosed relative
changes in LWP. This indicates that if cloud condensation nu-
clei concentrations are well-defined, changes in liquid water
path due to changes in aerosol can be confidently determined
using satellite data.

This analysis indicates that, when using domain-averaged
CCN and LWP values, the non-adiabaticity of the cloud cell
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Figure 4. Joint histogram of LWP as a function of CDNC (a) from the direct output of UCLALES-SALSA, (b) calculated using Eqs. (2)
and (3) assuming a constant α. Black continuous lines indicate the 25th, 50th, and 75th percentiles of LWP per bin. The color scale indicate
the probability density calculated as counts/sum(counts)/bin area.

edges does not contribute significantly to the correlation be-
tween CDNC and LWP with an “inverted v” shape, seen in
satellite data. Although there are issues in using Eqs. (2)–(3),
coarse resolution of satellite data will reduce these issues sig-
nificantly. Due to their coarse resolution, satellite data can in-
clude both cloud cell centers and edges and could, therefore,
introduce bias in the retrieved LWP values. However, based
on Fig. 5, in our simulated cases this aggregation of differ-
ent cloud structures does not affect the derived response in
LWP to changes in CCN. We also tested this using spatial
averaging of 1.425 km by 1.425 km to correspond to the spa-
tial resolution of satellite data. Since radiances are directly
proportional to cloud optical thickness, we use COT values
in cloudy columns as a weighting factor to perform horizon-
tal averaging operations along subdomains. Figures S9 and
S10 in the Supplement illustrate that spatially averaged data
shows very similar cloud field properties with less frequent
large CDNC relative deviations because averaging reduces
the variability in re (Fig. S11). The CCN–LWP-shaped cor-
relation for different time instances and CCN scenarios lacks
the inverted v shape (Figs. S12, S13, and S14).

2.2.3 The effect of satellite instrument uncertainty or
variability on retrieved CDNC and LWP

In addition to variability in cloud properties that origi-
nate from variability in aerosol concentrations and meteoro-
logical conditions, satellite instruments also include uncer-
tainty, originating from instrument noise as well as three-
dimensional radiative effects. Such variability or noise will
further affect the correlation between CDNC and LWP. Here

we repeated the analysis combining all analyzed cases and
adding 20 % variability in both τc and re and then calculating
CDNC and LWP from Eqs. (2) and (3). The level of vari-
ability was chosen to be in line with that used in Arola et al.
(2022).

Figure 6 shows that adding noise produces a CCN–LWP
correlation that increases, reaches a local maximum, and then
decreases. However, the additional noise does not affect the
correlation between CDNC and LWP compared to Fig. 4b.
Both Figs. 3b and 4b exhibit a similar “inverted v” behavior
of the same magnitude. At high CDNC values the negative
correlation becomes less pronounced due to the variability in
x scale, i.e., increased variability in CDNC.

3 Conclusions

Our LESs show that variability in cloud properties when
including different cloud types, CCN concentrations, and
clouds in different phases of their cycle will bias satellite-
derived correlation between CDNC and LWP, similar to
Arola et al. (2022). The root cause for this is that variability
in the cloud effective radius causes stronger positive bias in
cloud droplet number concentration when using the retrieval
equation (Eq. 2). Although our LESs include a detailed de-
scription of aerosol–cloud interactions, they do not consider
the following potential error sources: 3D radiative effects in
broken cloud fields, viewing geometry effects on the pene-
tration depth bias, cloud heterogeneity at regional scale, and
changes in surface reflectivity induced by changes in cloud
coverage (Grosvenor et al., 2018a). Nonetheless, we could
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Figure 5. LWP as a function of CCN from the direct output of UCLALES-SALSA and calculated using Eq. (3). Time instances are color-
coded. Shaded areas indicate the spread of values in terms of the standard deviation.

Figure 6. Joint histogram of LWP as a function of CDNC cal-
culated using Eqs. (2) and (3) assuming a constant α and in-
cluding 20 % variability in τc and re. Black continuous lines
indicate the 25th, 50th, and 75th percentiles of LWP per bin.
The color scale indicates the probability density calculated as
counts/sum(counts)/bin area.

not find evidence in our model results to validate the per-
sistent negative LWP adjustment predicted by satellite equa-
tions for stratocumulus clouds affected by aerosol perturba-
tions.

Cloud cell level variability in cloud effective radius and
cloud optical thickness caused a significantly different re-
sponse in LWP with respect to changes in CDNC within in-
dividual simulations with different aerosol loads. However,

when comparing the direct output of LWP from LES and
that derived using Eq. (3) for different CCN values, both
show a remarkably similar response between CCN and LWP.
This indicates that although the adiabaticity assumption near
cloud edges causes error in CDNC and LWP, on average,
equation-derived LWP (Eq. 3) corresponds well with av-
eraged LWP diagnosed from the LES output (see Fig. 5).
Furthermore, the relatively coarse resolution of satellite re-
trievals mitigates the impact of cloud cell level variability
through averaging. However, CDNC is overestimated when
using Eq. (2), especially at lower LWP values, and this high-
lights the need to obtain a good constraint for CCN in-
stead of using satellite-derived CDNC as a proxy for CCN.
Based on this, determining LWP requires careful selection
of clouds, estimating the mean LWP for different aerosol
loads, e.g., over regions where there has been a clear change
in aerosol emissions. Since this study focuses only on one
cloud case, analysis could be extended to cover wider vari-
ability in cloud conditions using, for example, large-scale
aerosol-aware high-resolution climate models, which would
also capture the mesoscale variability. The “inverted v” shape
functionality of LWP adjustments is seen in simulations of
general circulation models (GCMs) of the current generation
and could be introducing confounding effects into the effec-
tive radiative forcing of aerosol–cloud interactions (ERFaci)
(Mülmenstädt et al., 2024). This clearly highlights that the
behavior of cloud water in response to changes in aerosol
remains an open question, and current knowledge does not
support modifying the climate model cloud schemes to pro-
duce the “inverted v” behavior.

Code availability. Large-eddy simulations were performed with
UCLALES-SALSA (DEV branch version, November 2023) avail-
able from https://github.com/UCLALES-SALSA/ (last access:

Atmos. Chem. Phys., 25, 1533–1543, 2025 https://doi.org/10.5194/acp-25-1533-2025
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21 March 2024; DOI: https://doi.org/10.5281/zenodo.4451735,
Tonttila et al., 2021). Input files used to initialize the model can
be built as shown in Sect. S1 in the Supplement.

Data availability. Datasets of cloud properties derived
from simulations and equations for satellite retrievals used
are available at https://doi.org/10.57707/FMI-B2SHARE.
8FC77F2C6A8A4DEAB3DE2EFD46683010 (Kokkola et al.,
2024).

Supplement. The Supplement available for this study includes the
following:

1. model initial settings,

2. conditional sampling of modeled cloud properties,

3. surrogates of satellite retrievals for CDNC and re,

4. liquid water path susceptibility to changes in CDNC,

5. spatial aggregation of cloud properties,

6. spatial aggregation effects on liquid water path susceptibility
to changes in CDNC.

The supplement related to this article is available online
at: https://doi.org/10.5194/acp-25-1533-2025-supplement.
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