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S1 Model initial settings

Figure S1. Vertical profiles of atmospheric properties used for model initialization in simulations of the DYCOMS-II RF02 cloud case
(Ackerman et al., 2009)

Simulations in UCLALES-SALSA require three main inputs, vertical profiles of atmospheric properties in the well-mixed
layer at the beginning of the cloud event, aerosol composition and size distribution, and vertical profiles of background at-
mospheric properties to resolve the radiative transfer equation. Figure S1 summarizes sounding profiles for the cloud study
derived from radiosonde measurements during flight RF-02 in the DYCOMS-II field campaign (Ackerman et al., 2009). Figure5
S2 shows size distributions used as initial aerosol loadings in our simulation scenarios, all of them share a common Aitken
mode but have increasing number concentrations for the accumulation mode. In this way, we explore the effect of increas-
ing CCN (i.e. in this study CCN are considered equivalent to particles in the accumulation mode) on cloud properties. For
the purpose of comparison, aerosol number concentrations for particles with dry diameter above 0.1 µm or 100nm, N100 are
49.4 cm−3, 114.05 cm−3 and 228.1 cm−3, respectively.10

Background atmospheric properties include vertical profiles from surface to the top of the atmosphere for pressure, temper-
ature and mixing ratio of water vapor and ozone. Simulations were performed assuming constant surface fluxes of sensible and
latent heat equal to 16.0 and 94.0Wm−2 respectively; as well as constant divergence of the large- scale horizontal winds equal
to 3.75×10−6 s−1 as in previous cloud modelling studies for this case (Ackerman et al., 2009).

Horizontal and vertical resolutions were set to be 75m and 20m, respectively. Equations were resolved with a maximum15
time step of 1 s using an hourly period for spin-up without nudging. Each simulation scenario ran for 11 h and model outputs
were saved when the total simulation time reached 2h, 6 h and 10 h.
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Figure S2. Aerosol size distributions used for model initialization in simulations of the DYCOMS-II RF02 cloud case. Values for total
aerosol (N ) and cloud condensation nuclei (CCN) number concentrations are shown to distinguish different simulation scenarios. Number
concentrations of CCN were assumed to be equivalent to N100 values or number concentrations i.e., aerosol particles with dry size equal to
or above 100nm following common procedures in the cloud modelling community.

S2 Conditional sampling of modelled cloud properties

In this study, we follow a sampling methodology that mimics the so-called penetration depth bias (Grosvenor et al., 2018).
We determine CER and CDNC values for a cloud upper region that we refer here in this study as the extended cloud top in20
which COT decreases by 3 units from its maximum value. Properties of the extended cloud top were calculated as extinction
coefficient weighted average values. Expressions used to calculate CER and CDNC in the extended cloud top are

CERmodel =

∑layers
i=1 (bext,iCERi)∑layers

i=1 bext,i
, (S.1)

and

CDNCmodel =

∑layers
i=1 (bext,iCDNCi)∑layers

i=1 bext,i
, (S.2)25

where the index i runs from 1 to layers to cover all layers in the extended cloud top.
The UCLALES-SALSA model version used in this study does not provide extinction coefficients neither cloud optical

thickness as direct outputs (although used for internal calculations). For the purpose of validation, extinction coefficients were
calculated off-line for cloudy layers with LWC is above 0.01 gm−3 using two approaches, a Mie-theory based approach and
the parameterization of Savijärvi et al. (1997).30

In the Mie-theory based approach, extinction coefficients bext were calculated at visible and near infrared bands for each
model layer using wet diameters for cloud droplet and precipitation droplet bins as follows

bext (λ,t,z,x,y) =

cbins∑ π

4
(Dwcba (t,x,y,z))

2
Qext (m,ξ)Ncba(t,z,x,y)+

pbins∑ π

4
(Dwpba (t,x,y,z))

2
Qext (m,ξ)Npba(t,z,x,y) , (S.3)

where Dwcba corresponds to the wet diameter of cloud droplets formed from aerosols and Dwpba corresponds to the wet35
diameter of precipitation droplets, while Qext (m,ξ) is the dimensionless extinction efficiency that represents the ratio between
the extinction cross section (optical shadow) to the geometric cross section (geometric shadow). This variable depends on
the complex refractive index m and the dimensionless size parameter ξ that relates the ratio of the droplet diameter to the
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Table S1. Model parameters to obtain cloud optical properties with the parameterization of Savijärvi et al. (1997)

Cloud property Wavelength [µm] Equation

Extinction coefficient bext 2.38-4.00 LWC
(

1.50µmm2g−1

reff
+ 2.0µm2m2g−1

r2
eff

)
Asymmetry parameter g 0.25-0.69 0.841+2.08× 10−3µm−1reff

Single-scattering coefficient ω 0.25-0.69 1− 5.58× 10−7 − 1.25× 10−7µm−1reff

Cloud optical thickness (COT) ω 0.25-0.69 LWP
(

1.50µmm2g−1

reff
+ 0.50µm2m2g−1

r2
eff

)

wavelength of light (Seinfeld and Pandis, 2016). Extinction efficiencies of water droplets were interpolated from a lookup
table that matches droplet diameter with extinction efficiencies calculated according to the Mie theory using the algorithm of40
Wiscombe (1980) included as an auxiliary calculation routine "MIEV" in LibRadTran.

These extinction coefficients were used to determine COT as follows

COT(λ,t,x,y) =

CT∫
CB

bext (λ,t,x,y,z)dz, (S.4)

where bext is the extinction coefficient, λ is the wavelength, CB and CT correspond to altitude of the cloud top and cloud base;
defined in this study as the minimum and maximum altitudes at which the liquid mixing ratio is above a threshold value of45
LWC>0.01 g m−3.

COT values in the visible wavelength were also obtained with the parameterization of Savijärvi et al. (1997) that is based
on the two–stream approximation of the solar radiative transfer equation. Model expressions and parameters for cloud optical
properties are summarized in Table S1. We did not find significant differences between COT values derived from droplet
microphysics and those from the parametrization. Additional cloud optical properties such as the asymmetry parameter, single-50
scattering coefficient and cloud albedo were calculated and included in the model outputs for the purpose of completeness.

Figure S3 depicts property fields of LWP and COT in correlation with CDNC and CER in the extended cloud top region.
Fields correspond to a late simulation time when the cloud structure is changing from closed to open cells introducing horizontal
heterogeneity in cloud field properties.

S3 Surrogates of satellite-retrievals for CDNC and CER55

Modelled CER and COT values from Equations (S.1) and (S.4) were used to calculate CDNC with two different equations
commonly used in satellite data analysis. Both expressions are based on the pseudo-adiabatic cloud model whose main as-
sumptions are that the liquid water content increases linearly with height being a constant fraction fad of the adiabatic liquid
water content (i.e. negligible effects of temperature and pressure changes on the adiabatic condensational lapse rate) and, that
there is homogeneous mixing and thus the droplet number concentration is vertically constant with an effective value of k and60
CDNC (e.g., Brenguier et al., 2000; Wood, 2006).

In the first approach, satellite retrievals of CDNC are calculated using Equation (1) in the main paper with explicit con-
sideration of the adiabatic factor, the water condensational lapse rate and the breadth of the droplet distribution besides the
dependencies to COT and CER.

Following common practices in satellite data analysis, we assumed Qext = 2 and ρw =1000 kgm−3. Values of k and cw used65
in this equation were calculated as extinction coefficient weighted average values in a similar way as it was shown for CER in
Equation (S.1).

Condensational lapse rate values cw were calculated at every model layer of the selected upper cloud region using properties
of the moist air as

cw =

(
(ϵ+ r)

rγaLv

RdTP
− rPg

(P − p)RdTP

)
ρa, (S.5)70
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Figure S3. Modelled cloud properties for an initial CCN loading of 360 cm−3 at the time instant of 10h. Fields for cloud effective radius
CER, Equation (S.1) and cloud droplet number concentration CDNC Equation (S.2) correspond to the extended cloud top region.

where r is water vapor mass mixing ratio, p is vapor pressure, P is total pressure, T is temperature, Rd is the gas constant
for dry air, γa is the moist adiabatic lapse rate (Stull, 2017), ϵ is the ratio between the gas constant for dry air and pure water
vapor, g is the gravitational acceleration and Lv is the latent heat of water vaporization. We included temperature effects on
water vapor pressure and latent heat of vaporization.

The adiabatic factor was calculated as the ratio between the modelled adiabatic liquid water path and the adiabatic liquid75
water path LWPadiab calculated as

fad =
LWP

0.5cw,modelH2 +LWCmodel,CBH
, (S.6)

where cw,model is the water condensational lapse rate in the extended cloud top region, H is the cloud geometrical thickness
or the difference between the maximum and minimum altitudes at which the liquid mixing ratio LWC>0.01 g m−3 (Brenguier
et al., 2000).80

The adiabatic factor defined by Brenguier et al. (2000) considers that the adiabatic value of the liquid water path increases
linearly with increasing altitude from zero at the cloud base to its maximum value at the cloud top being equal to

LWPadiab = 0.5cw,modelH
2, (S.7)

where cw,model is the water condensational lapse rate in the extended cloud top region, H is the cloud geometrical thickness.
In our study, we defined the cloud base differently as the minimum altitude at which the liquid water content is equal or higher85
than 0.01 gm−3 instead of zero. To have comparable conditions at cloud base, we introduced the term LWCmodel,CBH in
Equation S.6

Biases between modelled values (X as CDNC or LWP) and emulated satellite retrievals were calculated as relative deviations
from the model

∆(X) =
Xmodel −Xsatellite

Xmodel
× 100. (S.8)90
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Figure S4. Biases between modelled and surrogate satellite-retrievals of CDNC using Equation (1) and Equation (2) in a simulation initialized
with a CCN loading of 360 cm−3 at the time instant of 10h.
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Figure S5. Biases between modelled and surrogate satellite-retrievals of LWP with Equation (3) in a simulation initialized with a CCN
loading of 360 cm−3 at the time instant of 10h.

Figure S4 depicts variable fields for CER and adiabatic fraction, main variables used in Equation (1) and Equation (2) in
the main text as well as biases in CDNC values. Satellite-based biases in CDNC values are always positive despite the fact
than modelled values should reflect the penetration depth bias. Biases are larger in the edges of cloud cells where cloud get
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thinner showing smaller adiabatic fraction values (i.e. smaller LWP values compared to adiabatic) and CER values. Biases are
significantly larger for CDNC retrievals with Equation (2) that considers a very simplified pseudo-adiabatic model. However,95
despite the larger degree of sophistication of Equation (1), positive biases in CDNC still remain and show an average value of
38.6% compared to an average value of 59% for Equation (2).

Nonetheless, biases in LWP between the model and Equation (3) are significantly lower remaining below ±20% with larger
values at cloud edges and adiabatic cores as can be seen in Figure S5. All datasets at different simulation times show similar
trends suggesting that biases are caused by processes at cloud edges related to stratocumulus dissipation (e.g. evaporative100
cooling during cloud top mixing or lateral mixing) which are not considered in the pseudo-adiabatic cloud model from which
satellite equations are derived. Positive biases in satellite retrievals of LWP can be also expected when cloud top CER values
do not reflect droplet growth fully driven by adiabatic cooling but instead correspond to super-adiabatic droplet growth after
entrainment mixing (e.g. Yang et al., 2016; Zhu et al., 2019)

S4 LWP susceptibility to changes in CDNC105

We used joint histograms to study the LWP susceptibility to changes in CDNC using model-derived values and surrogates of
satellite retrievals. The histograms were built using bin sizes determined with the Freedman Diaconis Estimator, a more robust
method recommended for non-Gaussian distributions with extreme values.

Figures S6, S7, and S8 show the LWP susceptibility to CDNC variations at three different time instances, 2, 6, and 10
hours. Simulations with different aerosol loadings are colour coded in both, joint and marginal histograms; and mean values110
are represented with continuous lines. Marginal histograms of LWP for both, model-derived and satellite-surrogate values do
not show significant deviations when CCN concentrations increase. However, there are positive biases between modelled and
satellite-derived CDNC distributions. The histograms of satellite-surrogate CDNC are shifted to larger values and show less
skewness and kurtosis compared to the modelled CDNC.

Joint histograms in panels a), b) and c) of S7 indicate an increase in the LWP susceptibility to changes in CDNC when CCN115
increases. Although, LWP and CDNC values correlate linearly on a logarithmic scale in the majority of the CDNC range, the
variation in LWP with CDNC decreases at lower CDNC values, especially for the simulation scenario with the lowest CCN.
This suggest that droplet growth and coalescence during drizzle formation dominate the LWP behaviour.

Joint histograms for both satellite-equations give an "inverted v" shape for the LWP variation as a function of CDNC variation
regardless of the time instance or the CCN number concentration used in the simulation scenario. The negative branch appears120
at LWP/CDNC pair values with very low probability of occurrence in our data set. This suggests that the decreasing trend of
LWP with increasing CDNC is a numerical artifact caused by averaging operations in CDNC concentrations that have a very
small amount of data and may not reflect realistic cloud conditions due to extreme positive bias in satellite retrievals of CDNC
at very small CER values.

S5 Spatial aggregation of cloud properties125

To assess possible effects of cloud heterogeneity on the LWP susceptibility to changes in CDNC, we calculated average cloud
properties in subdomains of 1.425 km by 1.425 km (19 model vertical columns each 75m by 75m) whose size mimics the
spatial resolution of satellite observations (e.g. cloud properties in the MODIS L2 product have either 1 km or 5 km pixel
resolution). Since radiances are directly proportional to cloud optical thickness, we use COT values in cloudy columns as a
weighting factor to perform horizontal averaging operations along subdomains. For a cloud property X , its average value in130
the subdomain is calculated as

X̄model =

∑n
i=1 (COTiXi)∑n

i=1COTi
. (S.9)

Spatially aggregated values for relevant cloud properties (e.g., CER, CDNC, k, fad, cw) were used to emulate satellite
retrievals of LWP and CDNC with equations 3, 2 and 1, respectively.

6



Figure S6. Joint and marginal histograms for LWP and CDNC values using a) UCLALES-SALSA b) Equation (1) and c) Equation (2) at
a time instance of 2 hours. Simulations are colour coded according to CCN concentrations used in the model initialization. The intensity
of colour in joint histograms increases when the probability increases. The probability is represented as a density function calculated as
counts/sum(counts)/bin area. Continuous lines indicate the arithmetic mean.

Figure S7. The same as Figure S6 for the time instance of 6h.
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Figure S8. The same as Figure S6 for the time instance of 10h.

Subdomains with a cloud fraction less than 0.3 were excluded from calculations of the LWP susceptibility to changes in135
CDNC (Grosvenor et al., 2018). The cloud fraction was calculated with Equation (S.10) where i is the index of subdomain.
Cloudy columns were identified using the same criteria applied to high resolution model outputs: columns whose COT is above
4.0 and CER larger than 4 µm are considered as cloudy (Gryspeerdt et al., 2019; Arola et al., 2022), CER values larger than
15 µm were used to identify possible precipitation effects on the LWP susceptibility (e.g., Arola et al., 2022).

cf =

∑n
i=1 (COTi > 4.0,CERi > 4µm)

n
. (S.10)140

The effects of spatial aggregation on CDNC and LWP fields can be observed in Figures S9 and S10. The usage of COT
weighting in the aggregation flattens the signal from the cloud edges because optically thicker columns dominate the average
sub-domain property. Figure S11 depicts how this results in a reduction of the skewness and kurtosis of the probability density
function of CDNC biases.

S6 Spatial aggregation effects on the LWP susceptibility to changes in CDNC145

LWP and CDNC values in the dataset with coarser resolution (i.e. spatially aggregated data) correlate linearly and joint his-
tograms for both modelled and satellite retrievals, do not show of the "inverted v" shape as it is shown in Figures S12, S13
and S14. This factor together with the fact that the signal from cloud edges is flatten out after spatial aggregation of cloud
properties (Figure S9), support the hypothesis that the inverted-V shape in satellite-based studies is likely related to positive
biases in satellite retrievals of CDNC at small CER values. Additional cloud modelling studies reflecting a wider palette of me-150
teorological conditions and background aerosol loadings would be needed to offer a definitive confirmation. Satellite-equations
suggest a shift onto negative LWP adjustments regardless of the aerosol loading or time instance in the simulation. Negative
adjustments are expected in clouds affected by evaporation–entrainment or sedimentation-entrainment (Zhang et al., 2022).
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Figure S9. Variation in modelled CDNC fields after spatial aggregation to a coarser resolution. CDNC values correspond to the simulation
initialized with a CCN loading of 360 cm−3 at the time instance of 10h.

Figure S10. Variation in satellite retrievals of CDNC fields calculated with Equation (2) after spatial aggregation to a coarser resolution.
CDNC values correspond to a simulation initialized with a CCN loading of 360 cm−3 at the time instant of 10h.

However, our model was not able to reproduce them, except in a precipitating-cloud scenario (i.e. low aerosol loading after
long simulation time) when it is expected to have a reduction of the LWP. The negative LWP adjustment also appeared after155
temporal aggregation of simulation with different aerosol loadings reflecting different stages in the cloud lifetime.
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Figure S11. Probability density function of biases between modelled and satellite-surrogate CDNC determined in fine resolution (75m)
and coarse resolution (1.5 km simulation scenarios. Each continuous line depicts the distribution shape of CDNC biases for all simulation
scenarios and time instances. The left and right panels describe the CDNC biases with respect to Equations (1) and (2), respectively.
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Figure S12. Joint and marginal histograms for spatially aggregated LWP and CDNC values using a) UCLALES-SALSA b) Equation (1)
and c) Equation (2) at a time instance of 2 hours. Simulations are colour coded according to CCN concentrations in the aerosol loading used
for model initialization. The intensity of colour in joint histograms increases when the probability increases. Continuous lines indicate the
arithmetic mean.

Figure S13. The same as Figure S12 for time instance of 6h
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Figure S14. Joint and marginal histograms for spatially aggregated LWP and CDNC values using a) UCLALES-SALSA b) Equation (1) and
c) Equation (2) at a time instance of 10 hours. For this particular time instance, we included model columns with CER > 15 µm to explore
precipitation effects. Simulations are colour coded according to CCN concentrations in the aerosol loading used for model initialization. The
intensity of colour in joint histograms increases when the probability increases. Continuous lines indicate the arithmetic mean.
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Figure S15. Comparison of distributions for cloud droplet number concentration (CDNC) obtained at high resolution (75 m × 75 m) from
model outputs and satellite-retrieval equations in a simulation initialized with a CCN loading of 360 cm−3 at the time instant of 10 h a)
Histograms of CDNC distribution indicating the overlapping index value (OVL) (i.e. If OVL=1 distributions are equivalent to each other)
b) Scatter plot using LWP in the color scale and CER in µm for marker size c) Scatter plot using the adiabatic factor in the color scale and
CER in µm for marker size. In the scatter plots, we have indicated linear correlation coefficient values (p<0.05) and added continuous black
lines of perfect correlation as a visual guide. Mean values are highlighted with black edges keeping the variable color scale. For both satellite
equations, larger biases correspond to thinner and subadiabatic columns with smaller droplet effective radius, conditions that are likely to
happen in cloud edges. Histograms for CDNC-satellite values from Equation (2) show lower overlapping index as well as more frequent and
higher positive deviations. Despite having a more robust approach that considers deviations from the adiabatic liquid water path as well as
changes in the droplet distribution breadth, CDNC-satellite values from Equation (1) are still much higher than those from the model.
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Figure S16. Comparison of distributions for cloud droplet number concentration (CDNC) obtained at low resolution (1425 m × 1425 m)
from model outputs and satellite-retrieval equations in a simulation initialized with a CCN loading of 360 cm−3 at the time instant of 10 h. a)
Histograms of CDNC distribution indicating the overlapping index value (OVL) (i.e. If OVL=1 distributions are equivalent to each other) b)
Scatter plot using LWP in the color scale and CER in µm for marker size c) Scatter plot using the adiabatic factor in the color scale and CER
in µm for marker size. In scatter plots, we have indicated linear correlation coefficient values (p<0.05) and added continuous black lines of
perfect correlation as a visual guide. Mean values are highlighted with black edges keeping the variable color scale. After spatial aggregation
using COT as a weighting factor, CDNC distributions become more symmetric and less spread out around the mean which in turn results
in a reduction of the overlapping index between modeled and satellite-retrieval distributions. Although the aggregated dataset have a much
lower influence of model columns with thinner sub-adiabatic clouds with smaller CER values, CDNC satellite-retrievals are still higher and
linearly proportional to modeled ones (i.e. correlation coefficients in Figure S16 are larger than 0.5) confirming the systematic deviation.
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