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Abstract. Coupled chemistry–climate models (CCMs) are powerful tools for investigating chemical variability
in the climate system, but high computational cost limits their use for hypothesis testing and adequately sampling
variability on long timescales. Here, we present the first application of a linear inverse model (LIM) to emulate
a CCM. A LIM is a low-dimensional empirical model that reproduces the CCM’s statistics and dynamics at low
computational cost. By linearizing the CCM’s dynamics, the LIM captures coherent modes of variability, such
as the El Niño Southern Oscillation (ENSO), that describe the coupled evolution of physical and chemical fields.
Deterministic seasonal forecasts of the LIM result in skillful predictions of physical and chemical variables at
lead times up to a year, outperforming damped persistence models. We show that the LIM’s skill in chemical
fields depends on its coupled chemistry–climate modes: forecasts without the ENSO dynamical mode show a
substantial loss of skill, suggesting the importance of ENSO in driving predictable chemical variability. These
results demonstrate that the LIM can efficiently emulate CCM dynamics. It offers a practical tool for testing hy-
potheses about the drivers of chemistry-climate interactions and may enable efficient chemical data assimilation
in the future.

1 Introduction

Atmospheric composition is modulated by both external
forcing and natural climate variability. Understanding and
predicting the underlying drivers of this variability is essen-
tial to identify the forced trend in tropospheric oxidants such
as the hydroxyl radical (OH; e.g., Prinn et al., 2001; Naik
et al., 2013; Chua et al., 2023) and ozone (e.g., Thornhill
et al., 2021; Fiore et al., 2022), which determine the life-
times of trace gases including ozone-depleting substances
and methane (e.g., Turner et al., 2019). Ozone itself is also
a potent greenhouse gas. Coupled chemistry-climate mod-
els (CCMs), general circulation models with interactive tro-
pospheric chemistry, are powerful tools for investigating the
mechanisms of chemistry-climate interactions and the mag-
nitude of chemical variability. Long integrations or large en-
sembles from CCMs enable statistical characterization of the
internal variability of the chemical system (e.g., Turner et al.,
2018; Fiore et al., 2022; Zhu et al., 2024). However, their

computational cost limits applications such as adequately
sampling variability or rigorously investigating the dynamics
of chemistry-climate interactions. Here, we present a simple
empirical model that emulates the statistics and dynamics of
CCMs at low computational cost. We use this model to probe
the predictability of chemistry-climate variability.

Climate variability drives changes in the chemical system
by modulating chemical production, loss, and transport. Mul-
tiple modes of variability have been shown to have a signifi-
cant impact on the variability of the OH and ozone, including
the El Niño Southern Oscillation (ENSO; Prinn et al., 2005;
Doherty et al., 2006; Turner et al., 2018; Rowlinson et al.,
2019; Anderson et al., 2021; Zhu et al., 2024) and the Indian
Ocean Dipole (Anderson et al., 2021, 2024). El Niño pro-
duces a positive-negative ozone dipole in the west and east
Pacific, respectively, mostly due to changes in the Walker cir-
culation (Doherty et al., 2006). El Niño produces a negative
global OH anomaly due to reduced lightning NOx emissions,
which decrease HOx recycling (Murray et al., 2013; Turner
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et al., 2018), and increased CO biomass burning emissions,
which increase OH loss (Prinn et al., 2005; Rowlinson et al.,
2019; Zhao et al., 2020). While global OH concentrations
decrease during El Niño, Anderson et al. (2021) note an in-
crease in OH in the planetary boundary layer due to increases
in water vapor and the primary production of OH.

CCMs can simulate the response of chemical species to
climate modes of variability, but their computational expense
limits their use in investigating chemistry-climate dynamics
or in directly reconstructing historical chemical variability
with data assimilation. For these applications, past work has
often relied on non-dynamical diagnostic or statistical meth-
ods that infer relationships from coincident correlations be-
tween variables or their spatial patterns. Empirical orthogo-
nal function analysis on CCM simulations has been used to
estimate the magnitude of OH variability caused by ENSO
and to hypothesize its underlying drivers (Turner et al., 2018;
Anderson et al., 2021). Machine learning models trained on
CCM outputs have been used to diagnose differences in OH
variability across models (Nicely et al., 2020) and to infer
historical OH variability from satellite observations of re-
lated chemical species (Anderson et al., 2022, 2023, 2024;
Zhu et al., 2024). Non-dynamical techniques remove the sys-
tem’s feedbacks and memory, which are essential for cap-
turing lagged or emergent responses to perturbations in the
chemical system (e.g., Prather, 1994; Zhao et al., 2025). As a
result, it is difficult to determine the causal impact of climate
variability on chemical species without a model that includes
time-dependent behavior.

We present the linear inverse model (LIM) as a compu-
tationally efficient, dynamical emulator of CCMs. The LIM
is a low-dimensional empirical model calibrated on obser-
vational or model simulation data (Penland and Sardesh-
mukh, 1995). Prior applications have focused on physical
climate dynamics and provide a framework for using the
LIM to investigate chemistry-climate variability. The LIM
has been used to understand the structure, evolution, and dy-
namical influence of climate modes such as ENSO (Penland
and Sardeshmukh, 1995; Vimont et al., 2014, 2022) and the
Pacific Decadal Oscillation (Alexander et al., 2008), where
slow linear dynamics dominate. The simple, linear formula-
tion of the LIM allows easy modification of its components
to probe dynamical relationships between variables in initial
value problems or free-running simulations (Vimont et al.,
2014) or use of linear systems analysis to investigate the
growth structure of dynamical modes (Penland and Sardesh-
mukh, 1995; Alexander et al., 2008; Vimont et al., 2022). As
forecast models, the LIM performs comparably to general
circulation models from the CMIP5 generation at predicting
observed ocean and atmospheric temperatures for lead times
of up to 9 years (Newman, 2013), and thus have been used
to assess predictability of coupled atmosphere-ocean states
(Alexander et al., 2008; Huddart et al., 2017; Perkins and
Hakim, 2020) and sea ice (Brennan et al., 2023). The LIM’s
computational efficiency enables its use as a forward model

in coupled, online reconstructions of unobserved past climate
states (e.g., ocean and atmosphere) over the last millennium
(Perkins and Hakim, 2021).

The remainder of the paper is organized as follows. In
Sect. 2, we present LIM theory and practical application to
existing CCM simulation data. Section 3 validates the statis-
tics of an ensemble of long LIM simulations and investigates
the coupled chemistry–climate dynamical modes of the LIM.
Section 4 assesses the predictability of chemistry-climate
variability, and conclusions are provided in Sect. 5.

2 Calibrating a linear inverse model (LIM) on the
chemistry-climate system

2.1 LIM theory

The linear inverse model (LIM; Penland and Sardeshmukh,
1995) is a low-dimensional dynamical representation of a
statistically stationary dynamical system:

dx
dt
= Lx+ ξ . (1)

The LIM decomposes the tendency of anomalies, dx/dt ,
about a time-independent mean state into a linear, determin-
istic operator L and a stochastic process ξ that is uncorrelated
in time but may be correlated in the state. The anomalies of
any variable from the original dynamical system may com-
prise the state vector x with the assumption that the variable’s
dynamics can be represented by slow-varying, linear dynam-
ics and fast-timescale Gaussian noise representing nonlinear-
ity and unresolved processes.

To produce a forecast from state x(t) over any time incre-
ment τ , Eq. (1) is integrated and represented in discrete time:

x(t + τ )=G(τ )x(t)+ ζ (t, τ ). (2)

The deterministic evolution of the state x(t) from time t to
time t + τ is represented by the propagation matrix G(τ ),
which is the integral of L over τ : G(τ )= exp(Lτ ). The inte-
gral of the stochastic process over τ is represented by ζ (t, τ ).

To calibrate the deterministic propagation matrix, we de-
fine the time-lag (τ -lag) covariance of a system as C(τ )=
〈x(t + τ )x(t)ᵀ〉, in which 〈·〉 denotes an expectation (taken
as a time-average here). Given a trajectory of the original
dynamical system sampled at time increments of τ0, we cal-
ibrate the τ0-lag propagation matrix G(τ0) by dividing the
τ0-lag covariance of the system with the 0-lag covariance:

G(τ0)= C(τ0)C(0)−1. (3)

The calibration of the propagation matrix is akin to a mul-
tivariate least-squares linear regression between two time
steps. In essence, G(τ0) provides the most likely linear evolu-
tion of the state over the time increment τ0 in a least-squares
sense. L can be recovered from G(τ0) by L= τ−1

0 lnG(τ0),
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which gives a continuous representation of the linear ten-
dency derived from the discrete data (Eq. 1). In theory, L
should be insensitive to the time resolution τ0 of the train-
ing data (Penland and Sardeshmukh, 1995); this is known as
the “tau test.” In practice, LIMs calibrated on the same data
at different temporal resolutions may fail the tau test due to
sampling error, a violation of the LIM’s assumptions, or in-
sufficient temporal resolution of important dynamical modes
(Penland, 2019).

The LIM is statistically stationary, meaning the statistics
of the system averaged over a large sample trajectory do
not change over time. For the state to remain bounded in
time, L must be damped such that the real parts of its eigen-
values are all negative. The noise forcing ξ is required to
maintain the covariance statistics for long integrations. We
model this forcing as a Gaussian temporally-white process
with intensity Q such that the covariance of this forcing over
a small time interval dt is Qdt = 〈(ξ dt)(ξ dt)ᵀ〉. Q is de-
rived from the fluctuation-dissipation relationship (Penland
and Matrosova, 1994), which relates the forcing intensity to
C(0) and L:

dC(0)
dt
= LC(0)+C(0)Lᵀ

+Q= 0. (4)

The covariance of this noise represents fast-timescale pro-
cesses that the linear dynamics cannot resolve (e.g., nonlin-
earities, unrepresented processes, etc.).

Practically, LIM integration must be performed carefully
because of the LIM’s temporally uncorrelated stochastic
component. We integrate the LIM with the two-step inte-
gration scheme posed by Penland and Matrosova (1994),
which generates temporally-consistent states that preserve
the spatial and spectral statistics of the system over long in-
tegrations. This scheme has been used extensively to inte-
grate LIMs over millennial timescales in previous applica-
tions (e.g., Perkins and Hakim, 2021):

y(t + δt)= (I+Lδt)x(t)+ Q̂
√
3Q δt α (5)

x(t + δt/2)= [x(t)+ y(t + δt)]/2. (6)

Here, y is an intermediate variable used to update x. For
a small time step δt (e.g., 4 h in this work), the determin-
istic component of y, (I+Lδt)x(t), arises from a forward-
Euler approximation of the linear tendency. The noise forcing
Q̂
√
3Q δt α comes from an eigen-decomposition of the noise

forcing intensity Q= Q̂3QQ̂−1, in which the eigenvectors
are the columns of Q̂ and eigenvalues are the diagonal el-
ements of 3Q. α is a vector of elements sampled indepen-
dently from a standard normal distribution. One issue with
constructing the noise forcing is that the noise forcing co-
variance matrix may not be positive definite. If the negative
eigenvalues comprise a small fraction of the total stochas-
tic variance (e.g., the negative Q eigenvalues in our monthly
LIM comprise less than 5 % of the total Q variance), these
offending eigenvalues and their associated eigenvectors may

be removed, and the remaining positive eigenvalues propor-
tionally scaled such that their sum matches the trace of Q
(Perkins and Hakim, 2021). Similar to prior studies (e.g.,
Perkins and Hakim, 2021), we find that the proportion of
negative eigenvalues to the trace of Q is sensitive to our data
pre-processing, though no coherent relationships were found
(Fig. S1 in the Supplement).

2.2 LIM calibration on chemistry-climate model data

To calibrate and test our LIM, we use a 6000-year pre-
industrial control simulation from the Geophysical Fluid Dy-
namics Laboratory Climate Model version 3 (GFDL-CM3;
Donner et al., 2011) that was previously used by Turner
et al. (2018). Briefly, GFDL-CM3 is a general circulation
model with interactive atmosphere, ocean, land, and sea ice
components (Griffies et al., 2011; Naik et al., 2013). The
atmospheric model uses a cubed sphere configuration with
48× 48 cells per face and 48 vertical pressure levels (1 Pa
at model top) for the dynamical core (Donner et al., 2011),
resulting in a 2°× 2.5° horizontal resolution. Atmospheric
composition is interactive, in which the tropospheric chem-
istry scheme is based on MOZART-2 (Model for OZone and
Related chemical Tracers; Horowitz et al., 2003), and the
stratospheric chemistry scheme is based on AMTRAC (At-
mospheric Model with Transport and Chemistry; Austin
and Wilson, 2006). Land cover, climate forcings, greenhouse
gas surface concentrations, and surface emissions of car-
bon monoxide (CO), nitric oxide (NO), and organic com-
pounds are prescribed in annually-repeating seasonal cy-
cles at 1860 conditions. Lightning emissions of nitrogen ox-
ides (NOx) are calculated interactively with a convective
cloud-top height scheme. Outputs from the simulation are
saved in monthly-averaged increments. We use the stable last
3000 years of the simulation, from which we use 2000 years
to calibrate our LIM and withhold 1000 years to test our LIM.

We build the LIM state vector with variables that (1) we
want to predict or provide predictability, and/or (2) may ex-
plain the physical or chemical processes of the phenomena
being investigated. From the GFDL-CM3 simulation, we cal-
ibrate our LIM on a subset of variables that form a minimal
representation of the coupled chemistry-climate system: we
use sea surface temperatures (SST) to represent physical cli-
mate dynamics, and we use atmospheric concentrations of
OH, CO, NOx , and ozone (O3) for a simple representation
of chemical dynamics that modulate global concentrations of
OH (e.g., Murray et al., 2013, 2021). Our conclusions are not
sensitive to the subset of chemical variables used. While we
train and test the LIM on all aforementioned variables, we
show results for SST, OH, and ozone in the main text (see
Sect. S2 in the Supplement for the remaining variables). We
choose to highlight OH and ozone to demonstrate LIM per-
formance for both short- and longer-lived chemical species,
respectively.
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Following Turner et al. (2018), mass-weighted averages
over the free tropospheric column (850 to 300 hPa) are com-
puted for each chemical species in each horizontal grid cell.
Conclusions are largely insensitive to the choice of free
tropospheric or entire tropospheric column averages (not
shown). Data are de-trended, and the seasonal cycle for each
variable at each grid cell is removed by subtracting the time-
averaged value for each month, which transforms the data
into anomalies about a mean seasonal cycle. However, while
the seasonal cycle mean has been removed, many variables
retain a seasonal cycle in their covariance, particularly in
higher latitudes where there are large seasonal changes to in-
solation. Large changes in the amount of sunlight affect the
dynamics of many chemical species, which results in con-
siderable differences in the magnitude of anomalies between
seasons. For example, OH production by ozone photolysis is
negligible in the winter for high latitudes, which results in
near-zero anomalies. This seasonal cycle in variance is po-
tentially problematic for our methodology because we cali-
brate one LIM to emulate dynamics across all seasons. Here
we choose to mask out anomalies of all chemical states in
polar latitudes (> 60°), however future work could calibrate
one LIM for each month or season (e.g., Shin et al., 2021).
OH requires a more stringent mask because its production
is strongly dependent on sunlight in the midlatitudes. We
mask out all data in the extratropics for OH (> 30°). Despite
this large spatial mask, only ∼ 20 % or less of global area-
weighted variance in the chemical fields is removed by this
masking. This can be seen in Fig. 1, which shows the grid
cell variance for ozone, OH, and SSTs. For SST, changes to
sea ice extent causes large interannual-to-decadal variabil-
ity in the poles. As such, we again mask out polar regions
(> 60°) for SST, which removes relatively more variance
(57 %) compared to the chemical data.

In order to effectively use limited training data, a LIM typ-
ically employs a low-dimensional representation of the sys-
tem’s state prior to calibration. We compress the state us-
ing empirical orthogonal functions (EOFs) of each masked
variable. EOFs provide an orthogonal basis of a variable
in which the leading EOFs optimally explain the variance
in the data. To account for differing areas of grid cells in
the model data, we weight the data by latitude (

√
cos(lat)).

Defining the weighted data matrix for a single variable to
be Z ∈ Rm×n, where m is the number of grid points (grid-
ded anomalies stacked in a vector) and n is the number of
time samples, we compute the variable’s EOFs 9 using a
singular value decomposition: Z=968ᵀ. Then, we retain
the leading p EOFs (here, p = 40) and truncate the remain-
der: 9̃ ∈ Rm×p. The leading 40 EOFs explain 54 % to 64 %
of the global field variance of the chemical data (Fig. 1).
Retaining more EOFs per variable does not notably change
our results. We project the weighted data onto the retained
EOFs by Z̃= 9̃ᵀZ; Z̃ ∈ Rp×n. Finally, we standardize the
projected data by the total retained field variance σ 2 to ensure
that variables have comparable variance when calibrating the

LIM (Perkins and Hakim, 2020). We perform this process for
each variable and concatenate the resulting matrices to form
the final data matrix for the LIM (Eq. 7). Columns of X are
LIM states x at equally-spaced time samples, which is used
for training using Eq. (3):

X=
[

Z̃ᵀ
SST
σSST

,
Z̃ᵀ

OH
σOH

,
Z̃ᵀ

O3
σO3

,
Z̃ᵀ

CO
σCO

,
Z̃ᵀ

NOx
σNOx

]ᵀ
∈ R5p×n (7)

3 LIM emulation of CCM statistics and dynamics

A well-calibrated LIM reproduces the spatial and temporal
statistics of the original dynamical system. We calibrate a
LIM on 2000 years of monthly data from the GFDL-CM3
simulation. We use the remaining 1000 years of data to val-
idate the statistics of our calibrated LIM. To ensure a one-
to-one comparison, we de-trend and de-seasonalize the test
data before projecting it onto the same EOF basis used to
prepare the LIM training data. We simulate a 300-member
ensemble of free-running 1000-year integrations of the cou-
pled chemistry-climate system using our LIM. Given the
chaotic nature of the climate system, simulations from the
LIM and GFDL-CM3 will have different trajectories but
should be statistically indistinguishable. Timeseries of tropi-
cal OH anomalies from the test data and one member of the
LIM ensemble are shown in Fig. 2a. One hundred years of
simulation with the LIM takes 16.6 s± 0.017 s (mean± stan-
dard deviation over 10 ensemble members) when run on a
single 2.9 GHz core of an Intel Xeon Gold 6226R proces-
sor. From Fig. 2b, we can see that these timeseries are statis-
tically indistinguishable, producing similar ranges and dis-
tributions of tropical OH anomalies over time. To compare
the spectral characteristics of the simulations, we compare
the power spectral density of tropical OH anomalies of each
1000-year simulation (Fig. 2c) using the multitaper method
(Prieto et al., 2009). The large 95 % confidence interval of
the power spectral density of the LIM simulations captures
the broad features of the GFDL-CM3 spectrum. The GFDL-
CM3 spectrum is noisy given its single realization, especially
at high frequencies, but the power spectral density of indi-
vidual LIM ensemble members show similar noisy charac-
teristics (Fig. S24). The LIM may have too little power at
the lowest frequencies, but the low frequency portion of the
GFDL-CM3 spectrum has few degrees of freedom and is
poorly resolved given the length of the sample. Finally, we
compare the spatial patterns of standard deviations of OH
anomalies across time from one member of the LIM ensem-
ble (Fig. 2e) to those from the test data (Fig. 2d). The LIM’s
spatial statistics are comparable to those from GFDL-CM3
(domain-average error of 3.2 % for the standard deviation
of OH), in which regions of high variance and low variance
match between the simulations from the GFDL-CM3 model
and the LIM.

To investigate if the LIM captures the the dynamics of
GFDL-CM3, we decompose the deterministic dynamics of
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Figure 1. Variance remaining after latitude masking and EOF truncation. (a) Cumulative percentage of global field variance retained as
a function of the number of EOFs in the LIM state vector. Dashed lines indicate percentage of global field variance remaining after high
latitudes are masked out. Percentage of global field variance in each grid cell for (b) ozone, (c) OH, and (d) SST. Dashed lines indicate
latitude cut-off for the extratropical masks.

the LIM (L) through eigenanalysis (Eq. 8) into a linear ba-
sis of empirical normal modes (ENMs; the column vectors v
that comprise V):

L= V3V−1. (8)

ENMs are dynamical modes that oscillate and decay at char-
acteristic timescales. These timescales are recovered from
the eigenvalues associated with each ENM (diagonal ele-
ments of 3, which take the form λ= a+ ib), in which the
real part of the eigenvalue describes the damping time or “e-
folding” time of the ENM, τ =−a−1, while the imaginary
part of the eigenvalue describes the period of oscillation of
the ENM, T = 2πb−1. ENMs must all decay (a < 0) because
L is fully damped. However, because these ENMs are non-
orthogonal, the anomalies of an initial condition evolved by
the fully-damped L operator can transiently grow before they
decay. This transient anomaly growth is the result of “con-
structive interference” of multiple oscillating ENMs, which
gives the LIM predictable dynamics beyond the persistence
of the spatial patterns of anomalies (Penland and Sardesh-
mukh, 1995).

One such oscillating ENM that prior work has identified to
be important for physical climate dynamics is an ENM that
resembles ENSO (e.g., Penland and Sardeshmukh, 1995; Vi-
mont et al., 2014, 2022). Given that ENSO causes signifi-
cant OH variability in GFDL-CM3 (Turner et al., 2018), we
search for an “ENSO mode” in the ENMs of our LIM. The
spatial evolution of an ENM over time can be visualized by

rotating its vector in the complex plane, from which only the
real component of the ENM appears in the state space. A sin-
gle state element vj of ENM v takes the form vj = cj+idj =

|vj |exp(iθj ). The evolution of the real component of the state
element is <

{
vj (t)

}
= |vj |exp(at)cos

(
bt+ θj

)
. We identify

an ENM with a damping time of 1.3 years and an oscillation
period of 3 years that strongly resembles ENSO (Fig. 3). Spa-
tial patterns of SST anomalies in the high-variance phases
of this ENSO mode are highly correlated with the SST pat-
tern obtained by regressing the Niño 3.4 index onto SST
(r > 0.95). To highlight the oscillatory component of the
ENSO mode, we show its spatial evolution without damp-
ing, and we linearly scale the mode’s anomalies such that
the variance in the Niño 3.4 index of the training data and
the ENSO mode are identical. The ENSO mode captures the
evolution of SST through El Niño and La Niña events. Dur-
ing the El Niño stage of the mode, weak positive SST anoma-
lies in the Central Pacific strengthen and propagate eastward,
which culminate in a mature El Niño event. The mature El
Niño eventually decays and leads to the initial evolution of
the La Niña event. The dynamics of La Niña are symmetric
to those of El Niño in the ENSO mode.

Because our LIM is calibrated on coupled chemistry-
climate dynamics, the ENSO mode captures the co-evolution
of the chemical system with physical climate variables. In
particular, the ENSO mode captures the relationship between
ENSO and OH as noted by Turner et al. (2018), in which the
dominant spatial pattern of variability in tropical OH anoma-
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Figure 2. Comparison of tropical OH statistics of 1000-year free-running integrations of GFDL-CM3 and the LIM. (a) Timeseries of OH
averaged over the tropics (between 30° N and 30° S) from GFDL-CM3 (blue) and one LIM simulation (orange). (b) Distribution of tropical
OH anomalies over time. (c) Power spectral density of tropical OH anomalies from GFDL-CM3 (blue) and a 300-member ensemble of
simulations from the LIM (orange). Solid orange line is the LIM ensemble median, and the shading represents the LIM 95 % confidence
interval. Standard deviation of OH anomalies over time for the (d) GFDL-CM3 simulation and (e) one simulation from the LIM.

lies co-varies with ENSO strength: the principal component
of the first OH EOF is almost perfectly out of phase with
the Niño 3.4 index (r =−0.98). Consistent with prior work
(e.g., Doherty et al., 2006), the ozone anomalies during a
mature El Niño exhibit a dipole pattern in the tropical Pa-
cific, in which negative anomalies exist over the central and
east Pacific and positive anomalies form a horseshoe shape
centered over the Maritime Continent and Indian Ocean. In
addition to these expected 0-lag statistics, the LIM’s ENSO
mode captures the dynamics of the chemical system during
ENSO. That is, anomalies of chemical variables grow and de-
cay through the phases of ENSO in spatial patterns distinct
from their patterns during mature El Niño or La Niña events
(i.e., compare the left and right columns of Fig. 3 to the cen-
ter column). Coupled dynamics in the ENSO mode are sup-
ported by lead-lag analysis of the independent GFDL-CM3
test data (Fig. S25), in which the Niño 3.4 index is shifted
in time and linearly regressed with each variable. The pat-
terns of El Niño growth, peak, and decay in the ENSO mode
and the lead-lag analysis match for all variables. This is ex-
pected, since the deterministic dynamics of the LIM are cal-
ibrated with a linear regression of the time-lagged data. The

existence of the ENSO mode in the LIM suggests that lin-
ear dynamics can capture the dominant drivers of coupled
climate–chemical variability. These dynamics are captured
for all chemical species regardless of their lifetime in the at-
mosphere, as both OH (lifetime ≈ 1 s) and ozone (lifetime
≈ 3 weeks) show coherent dynamics with the evolution of
SST. Future CCM experiments could be performed to vali-
date the ENSO chemistry-climate dynamics captured by the
LIM.

While the ENSO mode shows dynamics consistent with
expectations, the dynamics of each individual ENM of the
LIM are not guaranteed to be interpretable. Because the eige-
nanalysis yields an ENM for each element in the state vec-
tor, a single dynamical mode could be split among different
ENMs depending on how the state vector is structured (e.g.,
choices in latitude/longitude masking or dimensional reduc-
tion). For this reason, it can be difficult to isolate the dynam-
ics of other modes of internal variability in individual ENMs.
The ENSO mode we show is particularly robust: the oscilla-
tion period and SST dynamics of this mode are insensitive to
choices in the LIM calibration such as the pressure bounds of
the tropospheric column averaging, the variables chosen for
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Figure 3. Evolution of the oscillatory component of the ENSO mode without damping. (top) Timeseries of the Niño 3.4 index (blue) and the
first principal component of OH (orange) as a function of phase. Three vertical black lines indicate three phases during the El Niño stage of
the ENSO mode that are visualized in contour plots (bottom). From left to right, the columns of contour plots show snapshots of the growth,
peak, and decay of anomalies in the phases of the ENSO mode. From top to bottom, the rows of contour plots show SST, OH, and ozone
anomalies.

the state vector, the number of EOFs retained, or the time res-
olution of the training data (monthly or seasonal; not shown).

4 Predictability of chemistry-climate dynamics with
the LIM

To evaluate the performance of the LIM as a forecast model,
we use a 300-year independent test dataset from the GFDL-
CM3 simulation to perform and validate LIM forecasts. We
perform 1-year deterministic forecasts initialized at each
state in the 300-year dataset. A deterministic LIM forecast
at lead time τ that was initialized with initial condition x(0)
evolves with the trajectory x(τ )=G(τ0)τ/τ0 x(0). Recall that

G(τ0) is the propagation matrix calibrated on data sampled
in time increments of τ0. Here, we calibrate our LIM at a
seasonal resolution to prolong its forecast skill at long time
horizons. We average the original monthly GFDL-CM3 data
by season (December–February, March–May, June–August,
and September–November). Notably, while this formulation
of the LIM produces a fully-damped L operator, variance
in its free-running simulations are biased low around 30 %
compared to the test data due to large negative Q eigenval-
ues (> 10 % eigenvalue rescaling necessary). While remov-
ing negative eigenvalues and inflating positive eigenvalues
preserves the trace of Q, the scaled noise forcing on the re-
maining Q modes (eigenvectors) does not preserve the equi-
librium variance. Predictability in the LIM depends only on
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Figure 4. Domain-averaged forecast skill (CE) over lead time from
the LIM (red), the LIM with no ENSO mode (purple), and damped
persistence (cyan) for (a) SST, (b) OH, and (c) ozone. Dotted hori-
zontal line indicates CE of climatology (CE= 0).

the deterministic L operator, but inaccurate stochastic forc-
ing could compromise applications that rely on uncertainty
quantification (e.g., data assimilation).

To provide a comparison forecast model to the LIM, we
calibrate a damped persistence model x(τ )= A(τ0)τ/τ0 x(0),
in which A(τ0) is a diagonal matrix comprised of the τ0-lag
autocorrelations of the training data in EOF-space used to
calibrate the LIM (in Eq. 7). In contrast to the LIM, a damped
persistence model has no interaction between state elements:
forecasts made with damped persistence decay towards zero
anomalies (climatology) at characteristic timescales.

We use the coefficient of efficiency (CE; Nash and Sut-
cliffe, 1970) as a metric to evaluate the forecast skill of the
LIM and the damped persistence model. Given an ensemble
of forecasts fi and validation data vi with N ensemble mem-
bers, CE is a skill metric that normalizes the mean square er-
ror of the ensemble of forecasts relative to the validation data
with the mean square error of the climatological forecast v̄
relative to the validation data (Eq. 9). Therefore it penalizes

an ensemble of forecasts for (1) bias in the mean of the fore-
casts, (2) bias in the variance of the forecasts, and (3) lack of
correlation between the forecasts and validation:

CE= 1−
∑N
i=1(vi − fi)2∑N
i=1(vi − v̄)2

. (9)

A CE of one indicates perfect forecast skill, a CE of zero
indicates forecast skill equivalent to climatology, and a nega-
tive CE indicates forecast skill worse than climatology (bias
in mean or variance). Because CE places forecast error in the
context of climatological error variance, we show results in
CE rather than in correlation (r) or root mean square error
(RSME) in the main text (see Sect. S3 for these other met-
rics). Conclusions are invariant to the choice of metric used.
We mask the high latitude test data for validation but do not
project the test data onto the truncated EOF basis used by the
LIM.

The LIM outperforms damped persistence for all variables
at every forecast lead time (Fig. 4). At initialization, the
domain-averaged CE for both the LIM and damped persis-
tence models are less than one because the EOF-truncated
states have less variance than the untruncated validation data
(CE< 0.8 at initialization). Damped persistence has low skill
for SST in the first six months of the forecast and is indistin-
guishable from climatology by nine months. Its forecast skill
for the chemical system is even lower, with minimal skill by
three months for OH (CE= 0.02) and six months for ozone
(CE= 0.01). In contrast, the LIM exhibits high forecast skill
for SST for long (> 1 year) lead times (CE decreases from
0.37 to 0.10 from 3 months to 1 year). Forecast skill for
chemical variables is lower than for SST but reasonable for
prediction of atmospheric variables (e.g., comparable to 2 m
air temperature reconstruction skill in Perkins and Hakim,
2017): some chemical forecast skill remains for forecasts one
year after initialization (OH CE decreases from 0.17 to 0.05
from 3 months to 1 year). Skill for seasonal average anoma-
lies of chemical variables is not related to the mean lifetime
of the species. For example, forecast skill for OH and CO
are comparable (CE= 0.17 and 0.15 at 3 months, respec-
tively) despite the much longer lifetime of CO (∼ 12 weeks)
compared to OH (∼ 1 s). Similar forecast skill for the two
species probably occurs because surface emissions of CO
are fixed to a seasonal cycle in the GFDL-CM3 simulation,
so CO anomalies are driven by changes in transport, chem-
ical production, or loss with respect to OH. Therefore, pre-
dictability in the chemical sources and sinks constrained by
chemistry-climate interactions is likely more important than
atmospheric lifetime in determining forecast skill.

To investigate the difference in skill between the LIM and
damped persistence forecasts, we analyze spatial patterns
of CE for OH forecasts (Fig. 5). Damped persistence loses
nearly all of its skill in the first three months of the forecast,
where there is only weak skill in regions with high variance
in the first EOF of OH. At three months, LIM forecasts have
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Figure 5. OH forecast skill (CE) over lead time from the LIM (left column), the LIM with no ENSO mode (middle column), and damped
persistence (right column). Lead time increases from 0 months (top row) to 9 months (bottom row).

much higher skill than damped persistence, where forecasts
exhibit the highest skill over the tropical Pacific and Mar-
itime Continent. The LIM displays moderate skill over the
rest of the domain except for over subtropical Africa. As lead
time increases, LIM forecast skill decreases but maintains
a similar spatial pattern to the three-month forecast. Strong
performance of the LIM compared to damped persistence
highlights the importance of ENM dynamics in predicting
the state of the chemical system. Unlike the LIM, the damped
persistence propagation matrix A(τ0) is fully diagonal, so its
ENMs are orthogonal and have no oscillatory component.
Forecasts made with damped persistence simply decay with
the same spatial pattern as the initial condition. The LIM’s
non-orthogonal, oscillating ENMs allow an initial condition
to grow and evolve its spatial anomalies, following a trajec-
tory closer to the true dynamics of the system. For example,
an initial condition in the early stages of El Niño could grow
into a mature El Niño if forecast by the LIM but would erro-
neously decay if forecast by damped persistence.

Regions of high skill in the LIM’s OH forecast are coinci-
dent with regions of large OH anomalies during the mature
phases of the ENSO mode. To investigate the contribution of
the ENSO mode towards forecast skill, we project LIM fore-
casts onto the ENMs, remove the projection onto the ENSO
mode, and project the altered forecasts back into the state
space for validation (middle column of Fig. 5). Removal of
the ENSO mode results in lower, sometimes negative, CE

at initialization in the highest-variance regions of the ENSO
mode. Low skill in these regions are the result of low bias in
variance of forecasts with no ENSO mode. At three months,
LIM forecasts without the ENSO mode show regions of mod-
erate skill throughout the domain with regions of negative
skill over parts of the Maritime Continent, over the tropi-
cal east Pacific, and Africa. Skill in all regions, both positive
and negative, decay to zero as lead time increases. For all
variables, LIM forecasts without the ENSO mode have less
than half the domain-averaged skill of the full LIM for lead
times out to one year (Fig. 4). ENSO dynamics contribute
to a large portion of the predictability in the pre-industrial
chemical system, which suggests that the chemistry-climate
dynamics of ENSO could provide a strong constraint on a
reconstruction or prediction of chemical states. Notably, the
LIM forecast without the ENSO mode retains regions of pos-
itive skill that are absent in the damped persistence forecast,
suggesting other sources of dynamic predictability beyond
ENSO on sub-annual timescales.

Given the importance of physical climate dynamics for
chemical predictability, we repeat our forecast tests with a
LIM calibrated on only chemical variables (OH, ozone, NOx ,
and CO) to test the sensitivity of chemical forecast skill to
the use of SST during LIM calibration (see Sect. S4). The
chemical-only LIM produces OH forecasts that have slightly
less skill than the original LIM (OH CE decreases from 0.16
to 0.06 over a year). This result suggests either that the chem-
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ical system has its own internal dynamics that are predictable
or that the chemical data from the simulation implicitly re-
tains information about physical climate in the absence of
any physical climate variables. The latter explanation is more
likely, as the chemical-only LIM retains an ENSO mode with
similar oscillation period and chemical dynamics as the orig-
inal LIM (albeit, with a shorter damping time of 0.7 years
compared to 1.3 years for the original LIM). The drivers of
chemical variability are entirely tied to physical climate vari-
ability in the pre-industrial control simulation, so the statis-
tics of the chemical data are dominated by physical climate.
Lack of sensitivity of the LIM to the physical variable used
suggests that any physical variable that has information about
internal variability could be added to the state vector for the
chemistry-climate system. This flexibility could be useful for
applications of the LIM that require covariance statistics be-
tween specific climate fields and the chemical system.

Our predictability experiments assume a system with only
slow-varying, natural processes (i.e., internal modes of vari-
ability), which we have shown can be captured by the LIM.
For the chemical system, external forcings could be substan-
tial (e.g., anthropogenic emissions during industrialization)
and short-lived given the short atmospheric lifetime of many
chemical species. A fundamental assumption of the LIM is
a timescale separation between the linear, resolved dynam-
ics and the fast-timescale, unresolved dynamics (Penland
and Sardeshmukh, 1995). External forcings that have simi-
lar timescales or dynamics to the resolved dynamics could
challenge LIM calibration, and external forcings with unex-
pected dynamics to the LIM’s resolved dynamics could chal-
lenge the LIM’s predictive skill. Future work should assess
the performance of the chemistry-climate LIM under differ-
ent scenarios of background emissions (e.g., pre-industrial,
modern) and forcings (e.g., historical, future).

5 Conclusions

We present the first application of a LIM to emulate the statis-
tics and dynamics of a fully coupled CCM. The LIM is com-
putationally lightweight (e.g., 100 years of simulation takes
∼ 15 s) and can easily generate thousands of years of free-
running simulations that reproduce the spectral and spatial
statistics of the original simulation. As a linear system, the
LIM can be decomposed into interpretable dynamical modes.
These modes capture the expected chemistry-climate dynam-
ics of ENSO, the dominant driver of variability in the pre-
industrial chemical system, and they provide predictive skill
when the LIM is used as a forecast model. When calibrated
at seasonal resolution, the LIM produces skillful forecasts of
chemical anomalies at lead times up to one year, independent
of the atmospheric lifetime of the species.

The lightweight and modular nature of the LIM enables
rapid hypothesis testing that would be expensive and cum-
bersome for a full-complexity CCM. Experiments that re-

quire CCM constraints on chemical variability can be tested
with the LIM prior to or in lieu of the CCM. For example,
we test the predictability of the chemistry-climate system in
forecasts without the ENSO dynamical mode, highlighting
ENSO’s role as the dominant predictor of chemical variabil-
ity: understanding how ENSO modulates chemical dynamics
provides a useful constraint on predicting chemistry-climate
interactions. These types of experiments would be difficult to
implement in full CCMs, which require non-trivial modifica-
tions to climate dynamics in fully coupled simulations or to
boundary conditions (e.g., SST, sea ice) in atmosphere-only
simulations. Provided that the LIM (1) is fully damped, (2)
reproduces the expected free-running statistics, and (3) con-
tains dynamical modes are physically interpretable, it can be
used to investigate chemistry-climate dynamics, variability,
and predictability with initial value problems or free-running
(equilibrium) simulations.

As a medium-complexity emulator of CCMs, the LIM also
provides a baseline for evaluating higher-complexity data-
driven emulators of CCMs or chemical transport models.
These emulators should exceed the LIM’s forecast skill and,
if run dynamically, should capture or improve upon the cou-
pled dynamics represented by the interpretable modes of the
LIM.

A future application of the LIM enabled by its com-
putational efficiency is coupled “online” data assimilation
to reconstruct historical chemical variability. Previous work
has used the LIM as a forecast model to reconstruct unob-
served physical climate states over the past millennium (e.g.,
Perkins and Hakim, 2021). A LIM calibrated on coupled
chemistry-climate dynamics can make use of both physical
climate and chemical observations to jointly constrain past
chemical states over unprecedented centennial timescales.
Such reconstructions could correct chemical biases in CCM
simulations that propagate from errors in the boundary con-
ditions, parameterizations, or reaction schemes.
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