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Abstract. Understanding stratospheric intrusion (SI) is crucial for elucidating atmospheric complexities and
improving strategies to mitigate surface ozone (O3) pollution. This study investigates a deep trough-induced SI
event in China from 10 to 13 June 2013, based on ozonesondes from Beijing, Changchun, and Hong Kong,
and validated O3 reanalysis products. Ozonesondes from Beijing indicated notable upper-level secondary O3
peaks (> 400 ppbv) since 11 June. Tropospheric sub-high O3 layers were observed in Changchun on 12 June
(> 120 ppbv) and Hong Kong on 13 June (> 80 ppbv). Nationwide surface measurements recorded severe O3
pollution (> 100 ppbv) from western plateaus to eastern plains over China. Together, these observations suggest
a widespread influence of stratospheric O3 intrusion. Further, the ozonesonde-validated EAC4 reanalysis repro-
duced the fine-scale SI structure (O3-rich “tongue”), in turn well explaining the secondary O3 peaks and sub-high
O3 layers in ozonesonde observations. The Oz-rich “tongue” swept through the Tibetan Plateau on 10 June, trig-
gering extreme O3 pollution with a stratospheric contribution up to 30 ppbv (> 30 %). With the trough’s eastward
movement, the O3-rich “tongue” penetrated into the lower troposphere of eastern China, and then entrained into
the surface layer, exacerbating surface O3 pollution occurred in eastern China on 13 June, with a stratospheric
O3 contribution of 3—15 ppbv (2 %—-10 %). This research underscores the importance of multi-site ozoneson-
des in understanding stratospheric O3 intrusions and the potential of the publicly available EAC4 reanalysis in

multiyear SI analyses.

1 Introduction

Surface ozone (O3) poses significant risks to public health
and ecosystem productivity due to its strong oxidative prop-
erties (Monks et al., 2015). While O3 in the lower atmosphere
is predominantly produced through photochemical reactions,
stratospheric intrusions (SIs) — the process where Os-rich
air masses from the stratosphere descend to the lower tro-
posphere — can also increase surface O3 concentrations in
certain regions (Akritidis et al., 2018; Skerlak et al., 2019:
Dreessen, 2019). The natural SI processes complicate efforts
to manage and reduce anthropogenic O3 pollution (Zhao et

al., 2025). Therefore, understanding how SI affects surface
O3 is crucial for improving strategies to mitigate O3 pollu-
tion.

SI is a key component of extratropical weather processes,
and detecting SI events and their influence on tropospheric
chemistry has been a major scientific concern across Europe
(Appenzeller and Davies, 1992; Stohl et al., 2003; Akritidis
etal., 2018), North America (Hocking et al., 2007; Lin et al.,
2016; Wang et al., 2020b), East Asia (Lin et al., 2021; Liu et
al., 2024; Chen et al., 2024), and other extratropical regions
(Zhang et al., 2024). Numerous evidence has shown that sur-
face O3 concentrations can episodically rise during the SI
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events (Cristofanelli et al., 2010; Langford et al., 2012; Yates
et al., 2013; Lin et al., 2015; Dreessen, 2019; Ou-Yang et
al., 2022; Chen et al., 2023; Chen et al., 2024). In previous
studies, balloon-based ozonesondes generally served as a key
tool for identifying the SI events since it provides complete
O3 profiles up to approximately 35 km. However, the detailed
structure of stratospheric O3 intrusion into the surface layer
remains poorly understood due to limited ozonesonde mea-
surements at both temporal and spatial scales (Chen et al.,
2011; Zhao et al., 2021; Hong et al., 2024). Consequently,
the SI contribution to surface O3 has long been a topic of
much debate over the past few decades (Stohl et al., 2003;
Yang et al., 2022; Zheng et al., 2024). Up to now, much of
the understanding of SI and its contribution to surface O3
pollution comes from satellite observations (Li et al., 2015;
Zhang et al., 2022; Jaeglé et al., 2017), atmospheric reanaly-
sis (Chen et al., 2023; Knowland et al., 2017; Bartusek et al.,
2023; Akritidis et al., 2018), and model simulations (Wang
et al., 2020a; Zhao et al., 2021; Zhang et al., 2022; Chang
et al., 2023; Hong et al., 2024; Luo et al., 2024; Zhao et
al., 2024; Zhu et al., 2024; Skerlak et al., 2019). Due to a
common dearth of validation against with ozonesonde mea-
surements, large uncertainties existed in the abovementioned
studies. On the other hand, there are some studies that try to
quantify stratospheric influences using ground-based chemi-
cal tracers, e.g., the ratio of O3 to CO (03/CO) (Ma et al.,
2014; Chen et al., 2024), cosmogenic sulfur (*3S) (Lin et
al., 2016, 2021), and the ratio of cosmogenic beryllium-10
to beryllium-7 (loBe/7Be) (Jordan et al., 2003; Liu et al.,
2024). Their results also have embedded uncertainties be-
cause little is known about the SI structure aloft from the
ground-based measurements alone (Zheng et al., 2024). Op-
posite conclusions were even drawn from different chemical
tracers. For example, a study using 3°S as chemical tracer
(Lin et al., 2021) revealed a west-high—east-low SI contri-
bution over China, whereas a study using O3/CO ratio as
tracer (Chen et al., 2024) suggested an inverse distribution
of SI contribution. The lack of consensus led to significant
cognitive confusion, emphasizing the urgent need for direct
ozonesonde observations to refine the fundamental under-
standing of stratospheric O3 intrusion and its contribution to
surface O3 pollution.

This study focuses on a typical SI event associated with
a high-level trough observed over China during 10-13 June
2013. During this event, severe surface O3 pollution suc-
cessively occurred in the high-elevation Tibetan Plateau and
low-altitude eastern China. To explore the potential link-
age between the SI process and O3 pollution, we combined
multi-site consecutive ozonesondes, ground-based O3 mea-
surements, satellite O3 products, and atmospheric O3 reanal-
ysis. Through detailed analysis of multi-source data in this
SI event, this study aims to (1) characterize the spatial and
temporal behavior of high-level trough-induced stratospheric
O3 intrusion, (2) quantify the SI contribution to surface O3
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pollution and (3) elucidate the underlying dynamical mecha-
nisms.

2 Datasets

2.1 Ozonesonde observation

In China, ozonesondes, along with radiosondes, were rou-
tinely launched weekly in Beijing (39.80°N, 116.47°E) and
Hong Kong (22.31°N, 114.17°E). During June 2013, an
intensive ozonesonde launch experiment was held in Bei-
jing and Changchun (43.90°N, 125.20°E), with consecu-
tive launches from 10 to 13 June. The details of the inten-
sive experiment can be found in Zhang et al. (2013). These
sondes (including the routine ozonesonde in Hong Kong)
were launched around 13:30 China Standard Time, provid-
ing high-resolution profiles of O3z partial pressure, atmo-
spheric pressure, temperature, and humidity from the surface
up to approximately 35 km (Zhang et al., 2021; Liao et al.,
2024). For this study, data from nine ozonesonde observa-
tions were analyzed to examine stratospheric O3 intrusion
during 10-13 June 2013, including 4 consecutive days in
Beijing and Changchun, and a single launch on 13 June in
Hong Kong. By comparing the sonde-based surface O3 con-
centrations with ground-based O3 measurements (Fig. 3b),
we demonstrated good accuracy of these ozonesonde obser-
vations (R =0.981 and MAB = 3.2 ppbv).

2.2 Atmospheric reanalysis data

ERAS, the fifth-generation ECMWEF (European Centre for
Medium-Range Weather Forecasts) global reanalysis, of-
fers a comprehensive dataset at a spatial resolution of
0.25° x 0.25° and a temporal resolution of 1h for climate
and weather analysis (Hersbach et al., 2020). It integrates
model data with observations using four-dimensional varia-
tional assimilation in ECMWEF’s Integrated Forecast System
(IFS). This study utilized ERAS data, including geopotential
height, potential vorticity, and wind fields, to describe the
synoptic conditions during the stratospheric intrusion event.

EAC4 (ECMWF Atmospheric Composition Reanalysis
4) represents the fourth generation of ECMWEF’s atmo-
spheric composition reanalysis, with a spatial resolution of
0.75° x 0.75° and a temporal resolution of 3 h (Inness et al.,
2019). EAC4 assimilates data from various satellite sources,
including total column O3 from the Ozone Monitoring In-
strument and Global Ozone Monitoring Experiment-2 on
MetOp satellites, profile data from the Microwave Limb
Sounder, and partial columns from Solar Backscatter Ultra-
Violet and Ozone Mapping and Profiler Suite. Note that sur-
face O3 measurements and ozonesonde O3 profile data in
China are not assimilated into the EAC4 reanalysis. The
IFS used in EAC4 incorporates an extended version of the
Carbon Bond 2005 chemical mechanism, which includes
126 tropospheric reactions. The emission datasets are com-
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posed of anthropogenic emissions from the MACCity in-
ventory (Granier et al., 2011), biogenic emissions from the
MEGAN2.1 model (Guenther et al., 2006), and biomass
burning emissions from the Global Fire Assimilation Sys-
tem (Kaiser et al., 2012). Apart from O3, the stratospheric
O3 tracer (O3S, O3 originating from the stratosphere) is also
provided in the EAC4 reanalysis. This study employed both
O3 and O3S to characterize the three-dimensional structure
of stratospheric O3 intrusion.

2.3 Auxiliary data

Additional data sources included ground-based O3 measure-
ments from the China National Air Quality Monitoring Net-
work and the Hong Kong Environmental Protection Depart-
ment, satellite cloud images from the Moderate Resolution
Imaging Spectroradiometer (MODIS), satellite O3 products
from the Atmospheric Infrared Sounder (AIRS) (Aumann et
al., 2003), and atmospheric O3 reanalysis from the Modern-
Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA2) (Gelaro et al., 2017). According to
previous studies (Jaeglé et al., 2017; Knowland et al., 2017;
Zhang et al., 2022), we used satellite O3 retrieved from AIRS
Level 3 product, which has a spatial resolution of 1° x 1°. In
contrast, the MERRA?2 reanalysis has a spatial resolution of
0.5° x 0.625°. Both AIRS and MERRA?2 O3 products served
as alternative references to EAC4 O3 reanalysis to provide a
large-scale view of horizontal and vertical O3 structures dur-
ing the SI event. Hourly surface O3 concentrations from 77
cities in China (including Hong Kong) were used to assess
nationwide O3 pollution during the stratospheric intrusion
event.

3 Results

3.1 Ozonesonde evidence of stratospheric Ogz intrusion

Figure 1 illustrates the evolution of the upper-level trough
event from 10 to 13 June 2013. On 10 June, the upper-level
trough extended from the Mongolian Plateau towards the
Tibetan Plateau. By 11 June, the trough had moved east-
ward and deepened into a “V-shaped” structure between
90 and 120°E, causing an extremely distorted westerly jet
and strong northerlies at the western flank of the trough.
On this day, the emerged 1.5 PVU potential vorticity con-
tours at 400hPa provide convincing evidence for a deep
stratospheric intrusion. On 12 June, the “V-shaped” trough
persisted at 200 hPa. By 13 June, the upper-level trough
had weakened to be a shallow structure over the North
China Plain (NCP). Three-dimensional dynamics associated
with upper-level troughs involves stratospheric dry intrusion
(SDI) and warm conveyor belt (WCB) airstreams (Browning
and Roberts, 1994; Browning, 1997). The SDI originates in
the lower stratosphere on the cold side of the trough (west of
the trough axis) and descends behind the cold front, while the

https://doi.org/10.5194/acp-25-14865-2025

14867

WCB originates in the warm sector of the trough (east of the
trough axis), ascending rapidly to the middle and upper tro-
posphere. During this event, these contrasting airstreams led
to significantly different weather conditions at the two sides
of the trough, with cloudy weather in the WCB zone (east)
and clear weather in the SDI zone (west). There appeared an
obvious transition from cloudy to clear weather in the eastern
China with the eastward movement of upper-level trough. On
13 June, China, excluding the northeast and eastern coastal
regions, experienced clear weather.

Previous  ozonesonde-based  observational  studies
(Lemoine, 2004; Hwang et al., 2007; Chen et al., 2011;
Ojha et al., 2017) revealed that a secondary O3 peak in a
height range between 9 and 16 km (i.e., near the tropopause)
is a characteristic Oz-profile structure when SI occurs and
triggers tropopause folding. The continuous and multi-site
ozonesondes in this study provided a unique opportunity to
characterize stratospheric O3 intrusion linked to an upper-
level trough from an observational perspective (Fig. 2). On
10 June, before the trough arrived, Beijing was influenced by
WCB airstreams, showing high relative humidity (> 60 %)
in the upper troposphere. By 11 June, Beijing was near
the trough axis, and the Osz-rich SDI airstream began to
affect the upper atmosphere, creating a secondary O3
peak (~400ppbv at 9.5km height) just above the rapidly
descended thermal tropopause (which dropped from 10.5 km
on 10 June to 8.2km on 11 June). Besides, the cold dry air
of the SDI led to a quick drop in relative humidity from
70% on 10 June to below 25 % on 11 June in the upper
troposphere of Beijing. On 12 and 13 June, the secondary
O3 peaks continued to be observed over Beijing, with peak
concentrations rising to 650 ppbv by 13 June, but the altitude
of these peaks gradually increased up to 13.6 km by 13 June
with the increase in thermal tropopause height. Unlike that in
Beijing, the sonde-based O3 profiles in Changchun showed
secondary O3 peak only in 13 June, when upper-level trough
moved eastward to affect Changchun. However, sub-high
O3 layer (> 120 ppbv) appeared in the middle troposphere
(4.2-8.1km height, the shaded light gray in Fig. 2) in
advance on 12 June, accompanied by extremely low relative
humidity. This sub-high O3 layer is likely the transport
result of pre-intruded O3 from stratosphere over Beijing or
its surroundings. Similar sub-high O3 layer (> 80 ppbv) also
occurred in the lower troposphere (3.5-6.0km height, the
shaded light gray in Fig. 2) of Hong Kong (a subtropical city)
on 13 June. These high-O3 and low-humidity air masses
in the troposphere reflect obvious stratospheric origin,
suggesting a widespread SI influence from extratropics to
subtropics during this deep trough event.

3.2 Three-dimensional structure of stratospheric Oz
intrusion

The multi-site ozonesonde observations only provide a snap-
shot of stratospheric O3 intrusion. To further visualize the
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Figure 1. (a) Horizontal distribution of geopotential height (shading, gpm), and wind direction of jet stream in excess of 20 m s~1 (arrows)
at 200 hPa, and potential vorticity of 1.5 PVU (blue contours) at 400 hPa. (b) MODIS satellite cloud images with the dashed box marking
eastern China (21-41°N, 105-121°E). Red dot lines in panel (a) denote the axis of the upper-level trough at 200 hPa. Magenta circles in
panels (a) and (b) mark the available ozonesondes at different sites (BJ: Beijing, CC: Changchun, and HK: Hong Kong) on different days.

three-dimensional structure, we introduced the commonly
used O3 products, including AIRS satellite observation,
MERRA?2 and EAC4 reanalysis (Li et al., 2015; Knowland
et al., 2017; Akritidis et al., 2018). These three large-scale
O3 products were firstly validated against our ozonesonde
observations. As shown in Fig. 2, AIRS satellite observation
missed the upper-level secondary O3 peaks and the boundary
layer O3 enhancements. MERRA?2 reanalysis captured the
secondary O3 peaks but still showed large negative biases
to the observed boundary layer O3 enhancements. In con-
trast, EAC4 reanalysis reproduced well the major features of
the O3 vertical distribution, including upper-level secondary
O3 peaks and boundary layer O3 enhancements. Particularly,
EAC4 exactly captured the SI-induced sub-high O3 layers in
the middle troposphere of Changchun (on 12 June) and the
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lower troposphere of Hong Kong (on 13 June). This quali-
tative comparison suggests that EAC4 had a powerful abil-
ity to reproduce both the SI dynamics and boundary layer
photochemical processes. The scatter comparison with quan-
titative statistics in Fig. 3a further demonstrates that EAC4
O3 reanalysis had the strongest correlation (R = 0.947), the
lowest mean absolute bias (MAB = 19.1 ppbv), the lowest
root mean square error (RMSE = 36.9 ppbv), and the largest
index of agreement (IOA =0.985) with the ozonesonde ob-
servation. This sonde-based validation (Fig. 3a), along with
validation against with nationwide surface O3 observations
(Figs. 3b and 5a), provides us enough confidence in adopting
EACH4 reanalysis to explore the three-dimensional structure
of trough-induced stratospheric O3 intrusion.
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Figure 2. O3 vertical distribution over (a) Beijing, (b) Changchun, and (¢) Hong Kong derived from ozonesonde and other data sources
(including AIRS satellite observation, EAC4 and MERRA2 reanalysis) during 10-13 June 2013. Black and blue lines denote the sonde-
based temperature and relative humidity profiles, respectively. Gray dashed lines represent the thermal tropopause height, and gray dot
lines indicate the boundary layer top height. Upper-level secondary O3 peaks are shaded heavy gray, and Sl-induced Oj-rich layer in the

troposphere is shaded light gray.

Figure 4 illustrates the EAC4-based three-dimensional
structure of upper-level trough-induced stratospheric O3 in-
trusions over China. High O3 concentrations at 200 hPa
aligned with the trough location, extending southwestward
(10 June) and southward (11-13 June) along the trough
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axis, which explained the upper-level secondary O3 peaks
over Beijing since 11 June and over Changchun on 13
June well (Fig. 2a and b). The stratospheric intrusions de-
veloped into elongated (about 2000 km) and slender (about
200 km) streamers with elevated O3 concentrations exceed-
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ing 150 ppbv (referred to as SDI-induced Os-rich belts) at
400 hPa. On the east of the SDI streamers, the WCB stream-
ers were parallel with anomalously low O3 concentrations
(referred to as WCB-related O3-poor belts). On 12 June, the
SDI-induced Os-rich belt stretched to northeastern China,
explaining the observed sub-high O3 layer in the middle
troposphere of Changchun (Fig. 2b). In the lower tropo-
sphere (700 hPa), Os-rich air masses appeared over sub-
tropical southern China on 11 June, the strongest SI day,
indicating the southern edge of stratospheric O3 intrusion.
These lower-tropospheric Os-rich air masses persisted on
subsequent days and were able to be captured exactly by
Hong Kong’s ozonesonde on 13 June (Fig. 2c). From 11
to 13 June, there was a significant northeastward transport
and dispersion of Os-rich filament due to the strengthen-
ing southwesterly winds in the lower troposphere of east-
ern China. Through vertical and horizontal transport, lower-
tropospheric O3 concentrations increased by approximately
20 ppbv across eastern China, consistent with the 18 ppbv
O3 increase observed at 2—6 km height over Beijing, indicat-
ing widespread enhancement of lower-tropospheric O3 back-
ground due to stratospheric O3 intrusion and accumulation.
Compared with total O3, O3S provides a more direct view
of stratospheric intrusion (Fig. 4b). The three-dimensional
O3S structure depicts the upper-level trough-induced strato-
spheric O3 intrusion as a sheet-like lowering of the O3S-rich
layer along the western flank of the trough and an O3S-
rich tongue extending southward and westward from the
trough base. These features aligned well with the typical
structure of extratropical stratospheric intrusion associated
with tropopause folding (Bithell et al., 1999; Hocking et al.,
2007). On 10 June, stratospheric O3 intrusion directly hit the
Tibetan Plateau, triggering extremely high surface O3 con-
centrations. From 11 to 13 June, the O3S-rich tongue pro-
gressed eastward into eastern China with the trough’s east-
ward movement. Unlike that on the Tibetan Plateau, the O3S-
rich tongue in eastern China was blocked in the lower free
troposphere and did not further intrude the surface layer.
This result agreed well with the observed sub-high O3 layer
at 3.5-6.0km height over Hong Kong (Fig. 2c), sugges-
tive of no direct stratospheric O3 intrusion to the surface in
the low-elevation eastern China. Nevertheless, these O3-rich
stratospheric air masses can be further transported into atmo-
spheric boundary layer via convective mixing pathway, con-
tributing to boundary layer O3 increase. In this process, their
stratospheric characteristics (high O3, low humidity) tend to
be lost due to strong turbulence mixing, eventually becoming
unrecognizable in atmospheric boundary layer. Interestingly,
another stratospheric intrusion induced by severe tropical
storm (name: “Yagi”) over the northwestern Pacific provided
a parallel reference (Fig. 4b). Compared with the tropical
storm-induced stratospheric O3 instruction, the upper-level
trough-induced intrusion descended to a relatively lower al-
titude, causing widespread O3S signals in the atmospheric
boundary layer over eastern China. Note that apart from the
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trough- and storm-induced SI, a secondary SI emerged in
the upwind of upper-level trough on 12 June likely driven
by peripheral compensatory flows. This secondary SI led
to elevated O3 concentrations over the Mongolian Plateau
(Fig. 4a). However, they were not further transported into
eastern China.

3.3 Stratospheric intrusion contribution to surface O3
pollution

Figure 5a presents the spatial distribution of surface O3
concentrations derived from ground-based measurements
and EAC4 reanalysis during the SI event. The EAC4-
based surface O3 reanalysis agreed well with nationwide
ground-based observations (R =0.697, MAB = 12.4 ppbv,
RMSE =23.5 ppbv, and IOA =0.961, Fig. 3b), again con-
firming the reliability of the EAC4 reanalysis as in the pre-
vious validation with ozonesondes. On 10 June, the Tibetan
Plateau experienced high O3z concentrations near or exceed-
ing 80ppbv, with observed O3 in Lhasa reaching up to
100 ppbv at 14:00 BJT. In contrast, eastern China exhibited
low O3 concentrations (< 40 ppbv) due to cloudy and rainy
weather on this day. From 10 to 13 June, surface O3 concen-
trations decreased day by day on the Tibetan Plateau, while
they increased from west to east in eastern China. By 13 June,
eastern China suffered severe O3 pollution, with observed
O3 concentrations exceeding 100 ppbv in most of the NCP
cities. From 10 to 13 June, the continuous stratospheric dry
intrusion led to a weather transition from cloudy to cloud-
less in eastern China (Fig. 1b), enhancing photochemical O3
production due to the abundance of O3 precursors over there.
On the other hand, strong solar radiation in cloudless weather
promoted the development of thermal convection, facilitat-
ing the mixing of pre-intruded O3-rich stratospheric air from
the lower free troposphere into the surface layer. These two
mechanisms combined to trigger severe O3 pollution in east-
ern China on 13 June. The continue ozonesondes in Beijing
provide convincing evidence for these two mechanisms. Re-
turning to Fig. 2a, boundary layer O3 concentrations in Bei-
jing increased significantly from 57.8 ppbv on 10 June to
120.6 ppbv on 13 June. Considering the sharp O3 gradient
in the interface between the atmospheric boundary layer and
the lower free troposphere, the dramatic increase in boundary
layer O3 can be primarily attributed to photochemical pro-
duction (Liao et al., 2024). However, the concurrent rise in
O3 concentrations in the lower free troposphere (an 18 ppbv
O3 increase at 2—6 km height from 10 to 13 June) indicated
that stratospheric O3 intrusion contributed to elevating lower-
tropospheric O3 background, ultimately exacerbating bound-
ary layer O3 pollution.

To quantify the contribution of stratospheric intrusion to
surface O3 pollution, Fig. 5b illustrates the spatial distribu-
tion of EAC4-based surface O3S concentrations during the
SI event, and Fig. 5c shows the contribution fraction (CF) of
03S in surface O3 concentrations (CF =100 % x 03S/03).
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at different sites (Beijing, Changchun and Hong Kong) on different days.
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The high-elevation Tibetan Plateau received a high concen-
tration O3z from stratospheric intrusion, particularly on 10
June, when the upper-level trough was oriented northeast—
southwest towards the Tibetan Plateau. On this day, surface
O3S concentration exceeded 30 ppbv (up to 48.5 ppbv) on
the Tibetan Plateau, contributing to over 30 % of the sur-
face O3 concentration (up to 44.7 %). Subsequent days saw
a gradual decrease in O3S over the Tibetan Plateau. On
12 and 13 June, significant O3S hotspots (> 20 ppbv) ap-
peared in the Mongolian Plateau. In conjunction with the
three-dimensional O3S structure (Fig. 4b), the elevated O3S
concentrations in the Mongolian Plateau can be attributed
to the emerged secondary SI on 12 June rather than initial
trough-induced SI. It seems that the elevated O3S in the Mon-
golian Plateau had no influences on surface O3 over east-
ern China considering its downwind location in the lower
troposphere. Nonetheless, eastern China was affected not
only by the “fresh” stratospheric air in the eastward move-
ment O3S-rich tongue (via convective mixing), but also by
the pre-intruded “aged” stratospheric air from the Tibetan
Plateau (via eastward transport). Due to continuous accu-
mulation, region-averaged O3S concentrations increased ap-
proximately 1.0 ppbv in eastern China from 10 to 13 June,
whereas their fraction in surface O3 decreased from 11.8 % to
8.3 % as local O3 photochemical production accelerated. On
13 June, surface O3S concentrations in eastern China ranged
from 3 to 15 ppbv, accounting for 2 %—10 % of surface O3
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concentrations. Particularly in the highly polluted NCP re-
gion, O3S contributed approximately 10 % of surface O3, re-
flecting a non-negligible role of stratospheric O3 intrusion in
exacerbating surface O3 pollution.

4 Conclusions and discussion

This study reveals that the upper-level trough-induced strato-
spheric O3 intrusion over China did not occur as a local-
scale vertical descent from the stratosphere to the lower tro-
posphere just at the mid-latitude location where tropopause
folding occurs; instead, it involved a long-range transport
from mid-latitude tropopause folding zone (e.g., Beijing) to
lower-latitude areas (e.g., Hong Kong), featuring an O3-rich
“tongue” structure with upper-level secondary O3 peak at the
base of tongue (e.g., over Beijing) and lower-tropospheric
sub-high O3 layer at the tip of tongue (e.g., over Hong Kong).
The Os3-rich “tongue” swept through the high-elevation Ti-
betan Plateau when the upper-level trough extended towards
this highland region at its initial stage, triggering extreme
surface O3 pollution. With the eastward movement of upper-
level trough, the O3z-rich “tongue” penetrated into the lower
troposphere of low-elevation eastern China. Over there, the
intruded Os-rich stratospheric air masses in the lower tro-
posphere, including the “fresh” stratospheric air vertically
transported from Osz-rich “tongue” and the “aged” strato-
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Figure 6. Schematic illustration of upper-level trough-induced stratospheric O3 intrusion influence on surface O3 pollution over China.

spheric air horizontally transported from the Tibetan Plateau,
were then entrained into the atmospheric boundary layer via
lower-tropospheric dynamic processes (e.g. convective mix-
ing). At the same time, the strengthening lower-tropospheric
southwesterly winds with the eastward movement of upper-
level trough gradually participated to transport these O3-rich
stratospheric air back to the mid-latitudes, ultimately exacer-
bating surface O3 pollution in the NCP region (e.g., Beijing).
While several SI events have been reported in China (Chang
et al., 2023; Hong et al., 2024; Li et al., 2015; Luo et al.,
2024; Wang et al., 2020a; Zhang et al., 2022; Zhao et al.,
2024), this trough-induced SI episode may be the first event
of its widespread impact and refined structure documented
(Fig. 6).

The quantitative stratospheric intrusion contributions de-
rived from the validated EAC4 reanalysis are generally con-
sistent with previous model results in China. In the low-
elevation eastern China, surface O3S concentrations were
previously estimated to be in the range of 5-20 ppbv during
the SI events (Wang et al., 2020a; Zhang et al., 2022; Chang
et al., 2023). Our EAC4-based estimation agreed well with
this range, reflecting the typical magnitude of SI contribution
in the low-elevation eastern China. As for the high-elevation
Tibetan Plateau, a case-based model study (§kerlak et al.,
2019) revealed that stratospheric tracer concentrations at the
surface reach peak values of 20 % of the imposed strato-
spheric value, and a month-based model study (Yin et al.,
2023) suggested that 36.5 % of surface O3 in the hotspot of
the southern Tibetan Plateau was contributed by stratospheric
O3 intrusion. Our EAC4-based estimation was comparable
to these fractional contributions, corroborating the potential
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of SI to significantly influence surface O3 concentrations in
this highland region. Besides, ground-based chemical tracer
method had been developed to quantify the stratospheric in-
trusion contribution over China. While Chen et al. (2024)
identified the nationwide SI-induced O3 enhancement as a
west-low—east-high spatial distribution pattern based on sur-
face O3 and CO observations, Lin et al. (2021) determined a
west-high—east-low spatial distribution pattern of SI-induced
O3 contribution based on ground-based cosmogenic 33S ob-
servations at the Himalayas and beyond. Our result appears
to support the latter, which conforms to the common knowl-
edge that the highland regions are more susceptible to strato-
spheric intrusion because of their proximity to the strato-
sphere (§kerlak et al., 2019; Wang et al., 2020b; Lin et al.,
2021).

To the best of our knowledge, this study is the first to
utilize continuous and multi-site ozonesondes to investigate
stratospheric O3 intrusion. While we acknowledge that a
single case study may not be fully representative, it effec-
tively demonstrates the value of continuous and multi-site
ozonesonde measurements in enhancing our understanding
of stratospheric O3 intrusion phenomena. On the other hand,
these continuous and multi-site ozonesondes provide a valu-
able and unique benchmark for examining the capacity of
those commonly used O3 products (including AIRS satellite
observation, MERRA?2 and EAC4 O3 reanalysis) in charac-
terizing stratospheric O3 intrusion. Previous study indicated
that MERRAZ2 can be used in scientific studies to identify SIs
by both atmospheric dynamics and composition (Knowland
et al., 2017). Here, we demonstrate that EAC4, a publicly
available dataset from the European Centre for Medium-
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Range Weather Forecasts, performs better than MERRA?2 in
quantitatively characterizing stratospheric O3 intrusion via
comparative evaluation. Moreover, in contrast to MERRA?2,
EAC4 simulates full O3 chemistry in the troposphere (an ex-
tended version of the Carbon Bond 2005 (CB05) chemical
mechanism), allowing us to determine the influence of strato-
spheric O3 on surface concentrations separate from photo-
chemically produced Os. Therefore, this is a proof opening
the door to detailed multiyear analyses of stratospheric O3 in-
trusion and their quantitative contribution to surface O3 over
China and worldwide based on the publicly available EAC4
O3 reanalysis.

Data availability. All of the used data, excluding the ozonesonde
in Beijing and Changchun, are open source. ERAS atmospheric data
are available from the Copernicus Climate Change Service (C3S)
Climate Data Store accessible at https://cds.climate.copernicus.eu/
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