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Abstract. Ammonia (NH3) is a key precursor of PM2.5, contributing to the formation of secondary inor-
ganic aerosols and playing a crucial role in haze events. However, current bottom-up emission inventories
in China often underestimate NH3 emissions, particularly with significant uncertainties in urban areas. This
study developed a “top-down” iterative algorithm that integrates the IASI satellite observations with the WRF-
Chem model to optimize bottom-up NH3 emissions, and further quantified the impacts of source-specific emis-
sion reductions on PM2.5 pollution. The result reveals that the updated NH3 emissions in Eastern China for
2016 amounted to 4.2 Tgyr−1, 27.3 % higher than prior estimations. The optimized NH3 emissions peak in
summer at 463.1 Gg month−1, with agricultural sources accounting for 85 %, while winter emissions drop to
217 Gg month−1 when the contribution from non-agricultural sources (e.g., industry, vehicle) significantly in-
creases. The optimized NH3 emission significantly improved the simulation of both total column and surface
NH3 concentrations, with improvements in magnitude (31 %–42 %) and variations (17 %–55 %). Sensitivity
simulations show that a 30 %–60 % reduction in NH3 emission led to decreases of 1.5–8.8 µgm−3 in city-
level PM2.5 concentrations and the potential effect of reducing non-agricultural emissions is comparable with
that from agricultural sources. Furthermore, the NH3 reduction positively impacts public health, resulting in a
6.5 %–10.3 % decrease in premature deaths attributed to PM2.5 exposure. Our study evaluated NH3 emissions
from various sources in Eastern China, emphasizing the impact of reducing non-agricultural ammonia emissions
on air quality and public health benefits.

1 Introduction

In recent years, China has continued to face significant chal-
lenges associated with PM2.5 pollution (Geng et al., 2024;
Lei et al., 2022). This issue adversely affects atmospheric
environment via reducing visibility (Hu et al., 2021; Yang
et al., 2022) and deteriorating air quality (Lei et al., 2024;
Song et al., 2025), impacts climate change by altering radi-

ation balance (Tang et al., 2025) and cloud formation (Gao
et al., 2023; Yang et al., 2021), and poses substantial threats
to human health (Du et al., 2024; Feng et al., 2016; Liu et al.,
2025; Xiao et al., 2022; Zhu et al., 2025). Ammonia (NH3),
a key precursor of PM2.5, neutralizes sulfuric acid (H2SO4)
and nitric acid (HNO3), leading to the formation of sec-
ondary inorganic aerosols (SIA), which contributes 19.4 %–
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55.0 % of the total PM2.5 (Huang et al., 2014; Liu et al.,
2022b; Wang et al., 2016; Wei et al., 2023; Zheng et al., 2015;
Zhou et al., 2022). Reducing NH3 emissions is a highly ef-
fective strategy for mitigation of PM2.5 pollution (Bessagnet
et al., 2014; Xu et al., 2022), particularly in light of the suc-
cessful control of sulfur dioxide (SO2) and nitrogen dioxide
(NO2) in China over the past decade (Li et al., 2023b; Wang
et al., 2017; Zhang et al., 2019; Zheng et al., 2018).

The anthropogenic sources of NH3 include agriculture, in-
dustry, power generation, transportation and residential ac-
tivities. Numerous studies have estimated NH3 emissions
using a bottom-up approach, reporting emissions in China
ranging from 9.7 to 13.2 Tgyr−1 (Chen et al., 2021; Huang
et al., 2012; Kang et al., 2016; Li et al., 2021; Ma, 2020).
Among these sources, the agricultural (AGR) sector is iden-
tified as the dominant contributor nationwide, accounting for
75.0 %–94.5 % of total NH3 emissions (Guo et al., 2020; Ma,
2020; Zhou et al., 2021). Additionally, some studies have
highlighted that in densely populated regions, NH3 from non-
agricultural (non-AGR) activities, such as industrial produc-
tion/slip, vehicles, and waste disposal, contributing up to
50 % of regional emissions and should not be overlooked
(Chang et al., 2015, 2016; Chen et al., 2022; Feng et al.,
2022; Pan et al., 2016, 2018b; Pu et al., 2020; Song et al.,
2021; Sun et al., 2017; Van Damme et al., 2018; Wu et al.,
2020). However, despite considerable progress, bottom-up
estimates still exhibit considerable discrepancies and are of-
ten outdated, with a time lag of 1–2 years, mainly due to the
lack of accurate and timely statistical data.

The uncertainty in the emission estimation further con-
tributes to significant discrepancies, reflecting the range of
results (1 %–50 %) reported in the literature, in assessing the
impacts of NH3 reduction on PM2.5 level (Guo et al., 2018,
2024; Li et al., 2024; Liu et al., 2019, 2021, 2023; Pan et al.,
2024; Zhang et al., 2022). Cheng et al. (2021) employed
WRF-Chem simulations to demonstrate a 24.6 % reduction
in PM2.5 from the removal of AGR NH3 emissions. Concur-
rently, Ti et al. (2022) determined that a 74 % decrease in
AGR NH3 resulted in a 34.9 % reduction in PM2.5 in China.

To enhance the accuracy and reliability of bottom-up emis-
sion estimations, air quality monitoring satellites are increas-
ingly regarded as valuable tools from a top-down perspec-
tive, offering advantages in both magnitude and timeliness
(Chen et al., 2025, 2021; Guo et al., 2020; Jin et al., 2023; Qi
et al., 2017; Xia et al., 2025; Zhou et al., 2021, 2017). Many
studies have estimated optimized NH3 emissions in China
to be between 10.0 and 18.9 Tgyr−1 by coupling chemi-
cal transport models, mass balance approaches, or machine
learning techniques with various NH3 measurements (satel-
lite retrieval or ground monitoring). Some studies have also
improved the description of the spatial and monthly varia-
tions of NH3 emissions (Kong et al., 2019; Liu et al., 2022a;
Paulot et al., 2014; Zhang et al., 2018, 2017). However, most
top-down studies lack further investigation into the source-
specific allocation of emissions based on the optimal total

emission assessment (Fu et al., 2015; Sun et al., 2017; Zhang
et al., 2024). Hence, a more comprehensive understanding
of NH3 emissions from diverse sources across varying sea-
sons is needed to improve existing top-down inventories and
enhance the scientific accuracy of NH3 emission reduction
assessments.

In this study, we used satellite and surface NH3 measure-
ments alongside the regional chemical model WRF-Chem to
constrain bottom-up and source-specific NH3 emission esti-
mates over Eastern China, with the aim of more accurately
assessing the impacts of NH3 emission reductions from dif-
ferent sources on PM2.5 concentrations. The paper is struc-
tured as follows: Sect. 2 describes the detailed methodol-
ogy, Sect. 3 presents the simulated NH3 with prior emis-
sion, Sect. 4 provides a top-down estimate of NH3 emis-
sions, and Sect. 5 demonstrates the direct correlation between
NH3 emission reductions and PM2.5 concentration levels, as
well as the associated health benefits. Our work differs from
previous studies in that we constrain NH3 emissions by sec-
tor, season, and region, and further assess the potential miti-
gation effects of NH3 based on the optimized NH3 inventory.

2 Methodology

2.1 Air Quality Model

In this study, the chemical transport model WRF-Chem
v3.9.1 (Grell et al., 2005) was utilized to constrain the
NH3 emissions and to assess the impact of reduced
NH3 emission on PM2.5 concentrations. Spatially, two nested
domains were configured with horizontal resolutions of
54 km× 54 km and 18 km× 18 km. The outer domain cov-
ered entire China and the inner domain focused on Eastern
China, characterized by intensive anthropogenic activities
and elevated pollution levels (Pendergrass et al., 2025; Peng
et al., 2025), including the Beijing-Tianjin-Hebei (BTH) re-
gion, Henan, Shandong, and the Yangtze River Delta (YRD)
region (Fig. 1). The initial and boundary conditions of me-
teorological parameters were derived from FNL reanalysis
datasets provided by the National Centers for Environmen-
tal Prediction (NCEP) of the United States (https://rda.ucar.
edu/datasets/, last access: 28 October 2025). The initial and
boundary conditions of chemical species were obtained from
the global chemical transport model MOZART (Emmons
et al., 2010). We conducted simulations for the entire year
of 2016. The physical and chemical parameterizations de-
scribing sub-grid processes, such as radiation, microphysics,
and gas-phase reaction schemes, are listed in Table S1 in the
Supplement.

We adopted the anthropogenic emissions from the Multi-
resolution Emission Inventory for China (MEIC, version 1.3)
developed by Tsinghua University (Li et al., 2017; Zheng
et al., 2018). Furthermore, biogenic emissions were calcu-
lated online using the Model of Emissions of Gases and
Aerosols from Nature (MEGAN, version 2.0.4) (Guenther
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Figure 1. Simulation domains of the WRF-Chem model used in this study (left). Right panel illustrates the four research regions in Eastern
China. Names and locations are labeled with different colors in this panel.

et al., 2006). Our numerical simulations also incorporated
offline biomass burning emissions of various air pollutants,
based on the wildfire model Fire Inventory from NCAR
(FINN, version 1.5) (Wiedinmyer et al., 2011).

2.2 Satellite retrievals and surface measurements

We obtained the total column density of NH3 from the pas-
sive satellite remote-sensing product of the Infrared Atmo-
spheric Sounding Interferometer (IASI) (version 3.0, https:
//iasi.aeris-data.fr/nh3/, last access: 28 October 2025) as the
observational constraint. The IASI is a Fourier transform
spectrometer on board the Metop series of meteorological
satellites, which circle the Earth in a polar Sun-synchronous
orbit (Van Damme et al., 2014). Consequently, the satellite-
based IASI instrument can cover the entire globe and pro-
vide measurements twice a day at 09:30 and 21:30 LST (lo-
cal solar time). The IASI instrument detects infrared radia-
tion in the spectral range from 645 to 2760 cm−1 emitted by
Earth’s surface and atmosphere with a 12 km circular foot-
print at nadir. This radiation absorption range includes the
NH3 signal near 950 cm−1.

The daily NH3 column concentrations are categorized
into level-2 satellite data and are developed based on the
ANNI-NH3 inversion algorithm without averaging kernels,
as presented by Van Damme et al. (2017). Specifically, their
retrieval algorithm derives hyperspectral radiation indexes
(HRI) from the direct satellite spectrum detection, which is
then converted into final NH3 column concentrations using
an artificial neural network technique (Whitburn et al., 2016).
For better data quality, the present study removed NH3 col-
umn concentrations associated with cloud cover of more
than 10 %. Furthermore, we preprocessed the IASI NH3 col-
umn concentration data through averaging all daily values
to obtain a monthly mean value. Spatially, we mapped the
original satellite product data to the grid cells of the WRF-
Chem model for further comparison with those simulated
NH3 columns.

In addition, surface in-situ NH3 measurements reported by
Pan et al. (2018a) were collected for model evaluation. These
ground-based measurements were summarized into the sea-
sonal mean concentrations of NH3 at 53 sites in China from
September 2015 to August 2016.

Additionally, surface meteorological data, including air
temperature, relative humidity and wind speed was obtained
from China Meteorological Administration website (https://
data.cma.cn/, last access: 28 October 2025) to assess the me-
teorological simulations over the study region. Air pollutant
concentrations associated with NH3 (such as PM2.5, NO2 and
SO2) from public website of the Ministry of Ecology and
Environment (MEE) of China (https://air.cnemc.cn:18007/,
last access: 28 October 2025) were also derived for eval-
uation. Furthermore, speciated inorganic aerosol data from
a representative site in Beijing were collected to evaluate
the model’s capacity in characterizing the formation of sec-
ondary inorganic aerosols (Tan et al., 2018). The complete
information of the in-situ measurements used in this study is
available in Tables S2–S4.

3 NH3 simulations with bottom-up emissions

We applied the bottom-up NH3 emissions from MEIC (Li
et al., 2017; Zheng et al., 2018) to drive the prior simula-
tion. As shown in Fig. 2, the prior NH3 emission amounted
to 3.3 Tgyr−1 in Eastern China, among which 93.0 % emis-
sion is from AGR sources and the other 7.0 % emission is
from non-AGR sources. The largest emissions are recorded
in July at 366.8 Gg month−1, while the smallest emissions
are recorded in January at 206.5 Gg month−1 (Fig. S1 in the
Supplement).

We compared the prior model results with IASI NH3 col-
umn concentration and surface NH3 volume concentration
observations. The detailed method for calculating NH3 to-
tal column concentrations and surface volume concentrations
from WRF-Chem is provided in Sect. S1 in the Supplement.
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Figure 2. Prior and posterior NH3 emissions from agricultural and non-agricultural sectors in the study region. The red numbers show the
total emissions.

To quantitatively describe model performance, we adopted
three statistical metrics, including root mean squared error
(RMSE, 0 to +∞), index of agreement (IOA, 0 to 1) and
mean fractional bias (MFB, −2 to 2) (Huang et al., 2021).
The IOA quantifies the overall model skill, where a value of 1
indicates a perfect match and 0 denotes complete disagree-
ment. The MFB diagnoses systematic model bias, where pos-
itive values indicate overestimation, negative values indicate
underestimation, and 0 signifies no average bias. The RMSE
represents the average model error in the same units as the
variable under evaluation, with lower values indicating better
performance. They were calculated following Eqs. (1)–(3),
where C represents the concentration of the target pollutant
(e.g., NH3 total column or surface concentrations), and sub-
scripts s, o and N represent simulations, observations, and
the number of samples, respectively.

RMSE=

√∑N
i=1(Cm−Co)2

N
(1)

IOA= 1−
∑N
i=1(Cs−Co)2∑N

i=1
(∣∣Cs−Co

∣∣+ ∣∣Co−Co
∣∣)2 (2)

MFB=
1
N

∑N

i=1

(Co−Cm)(
Co+Cm

2

) (3)

As shown in Table S5, the annual average of
NH3 total column concentrations is simulated to be
17.4× 1015 molec. cm−2 for Eastern China, with a 61 %
underestimation of MFB compared to the observations from
IASI satellite retrievals (29.0× 1015 molec. cm−2). The
IOA between observations versus simulations is 0.72. The
seasonal simulations of NH3 concentrations also exhibit

significant discrepancies with observations, especially in
spring. Specifically, the simulated NH3 total column concen-
tration in Eastern China is only 13.2× 1015 molec. cm−2 in
spring, with concentration in 67.5 % of the study region be-
ing underestimated by more than 50 %. These discrepancies
are evidently exhibited in Fig. 3. Most simulated NH3 total
column concentrations are underestimated by more than
30 % compared with the observed values by satellite with
the associated RMSE exceeding 10× 1015 molec. cm−2.

As illustrated in Fig. 6, satellite-based observations reveal
that the spatial high-value areas of NH3 column are located
at the junction of Henan, Shandong, and Hebei provinces. In
contrast, the prior modeling results show that NH3 column
densities are more concentrated in Henan. This indicates a
clear discrepancy in the spatial distribution of NH3 column
densities between the prior simulations and the observations.

Additionally, the comparison between the simulated and
observed surface NH3 volume concentrations also indicates
a notable underestimation (Fig. S2). The mean simulated
surface NH3 volume concentration over the study region
is 6.3 µgm−3, which is only half of the observation value
(12.7 µgm−3), with an IOA of 0.57 and an MFB of −61 %,
respectively (Table S5).

4 Top-down estimates of NH3 emissions

4.1 Iterative algorithm for NH3 emission estimation

We utilized an iterative algorithm (Fig. 4) to update the prior
NH3 emissions from different sources constrained by IASI
observations. This process was carried out in January, April,
July, and October in 2016 to represent four seasons. The
posterior emission inventory derived for each representative
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Figure 3. Scatter plots of the prior and posterior NH3 total column
data versus IASI retrievals. Each point represents prior (or poste-
rior) data for a specific season and a specific region. Circles, tri-
angles, rhombuses, and rectangles correspond to the BTH, Henan,
Shandong, and YRD regions, respectively. Orange and blue mark-
ers represent a prior and a posterior data, respectively. The red box
indicates the performance area, with a model error within ± 30 %
and an RMSE below 10 (× 1015 molec. cm−2).

month was then applied to all three months within its corre-
sponding season to generate the full 12 month posterior in-
ventory. This representative-month approach was adopted to
allow for a robust validation against the full 12 month period,
with the remaining eight months serving as an independent
dataset, and to manage the substantial computational cost of
the iterative process. We compared the prior simulation re-
sults with satellite retrievals and discussed the performance
of prior emissions in detail in Sect. 3. Furthermore, we con-
ducted a series of sensitivity simulations to obtain prior sim-
ulated NH3 from disparate sources and which were then fed
into the iterative algorithm along with satellite data for cal-
culation. In each iterative calculation, the monthly average
satellite-derived NH3 column concentration served as the tar-
get, and multiple linear regression (MLR) was applied to cal-
culate the corresponding regression factors for AGR and non-
AGR emissions (Fig. S3). This separation of sectors by MLR
is effective because their respective spatial distributions are
distinct and largely uncorrelated (r = 0.35). Here, we take the
i iteration in k month, j region as an example to calculate the
regression factors, and the formula is as follows:

TAj,ksatellite−SAj,ktransport = α
j,k
i ×SAagriculturej,ki−1

+β
j,k
i

×SAnon-agriculturej,ki−1
(4)

where, TAj,ksatellite denotes the monthly average of total
NH3 column density retrieved from the IASI satellite data,
and SAj,ktransport, SAagriculturej,ki−1

and SAnon-agriculturej,ki−1
stand

for the simulated total column concentration of NH3 con-
tributed by outside transport, AGR emissions, and non-AGR

Table 1. List of sensitivity tests for optimized iterative algorithm.

Case name AGR Non-AGR Emission outside
emission emission the domain

Atotal
√ √ √

Aagr
√

× ×

Anon-agr ×
√

×

Atransport × ×
√

Ablank × × ×

Figure 4. Visualization of the workflow in this study.

emissions, respectively. We clarified this NH3 concentrations
contributed by different pathways by conducting sensitivity
experiments with the WRF-Chem model (Table 1).

In each experiment, we zeroed out AGR emissions, non-
AGR emissions and regional external emissions to ob-
tain the corresponding NH3 column concentrations. The
SAagriculturej,ki−1

, SAnon-agriculturej,ki−1
, and SAj,ktransport are calcu-

lated by subtracting Ablank from Aagr, Anon-agr, and Atransport,
respectively. Here, symbols A represent the total simulated
NH3 column concentrations that result from each of the sen-
sitivity simulations listed in Table 1. Specifically, the mod-
eling case Ablank refers to a simulated NH3 total column in
which all anthropogenic emissions within the study domain
were zeroed out. The purpose of this simulation was to es-
tablish background concentrations, which represents the in-
fluence of the chemical boundary conditions provided to our
model domain.

Furthermore, the MLR approach provided regression co-
efficients αj,ki and βj,ki , which function as scaling factors, re-
spectively correspond to AGR and non-AGR NH3 emissions
in month j from region k, within the i iteration. To ensure
the statistical robustness of the regression equation, we need
to correct for this regression coefficient. The biases between
the model simulation and the satellite retrievals were calcu-
lated as Dj,ki . Specifically, it is the difference between the
mean simulated column and the mean satellite retrieval, di-
vided by the mean satellite retrieval. We considered the resid-
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uals of the MLR approach, the goodness of fit and Dj,ki , and
obtained the judgment coefficient Kj,k

i . The regression co-
efficients with excessive residuals, defined as cases where
the 95 % confidence interval of the residual does not contain
zero, are removed to increase credibility. Concurrently, the
goodness of fit of the regression is calculated as the coeffi-
cient of determination (R-square,R2). To maintain algorithm
stability, regressions with an R2 less than 0.3 are deemed
invalid and excluded from the emission update, as they ex-
hibit insufficient explanatory power (indicating > 70 % un-
explained variance) and introduce destabilizing noise into the
adjustments. We further use it to make a trade-off for the re-
gression coefficient. If a regression is valid, the adjustment
factors a and b are set to the new regression coefficients; if
invalid, the factors are kept unchanged from the previous it-
eration. The updated emissions for the next iteration are then
calculated by multiplying the emissions from the previous
step by these adjustment factors. Finally, the entire process
is iteratively repeated, a framework that captures the overall
non-linear atmospheric response by combining the dynamic
simulation of non-linear chemistry within each WRF-Chem
step with the collective behavior of multiple iterations. The
iteration concludes when the mean bias between the simu-
lated values and observations is less than 30 %, a criterion
chosen to represent a significant improvement over the large
prior bias while falling within the range of widely accepted
model performance benchmarks.

4.2 posterior NH3 emission estimates

The top-down constrained results (posterior) indicate that the
annual NH3 emission in Eastern China has been updated to
4.2 Tgyr−1, representing a 27.3 % increase compared to the
prior value (Fig. 2). The posterior AGR emissions increased
slightly, from 3.0 to 3.1 Tgyr−1, but the high-emission re-
gions shift from Henan to Shandong, Jiangsu and northern
Anhui (Ren et al., 2023). The posterior non-AGR emissions
show a significant increase, from 0.2 to 1.1 Tgyr−1, par-
ticularly in urban regions along the Yangtze River, as well
as in southern BTH, central Shandong and northern Henan
(Fig. S4). Analysis of emission inventories (An et al., 2021;
Hoesly et al., 2018; Li et al., 2021, 2017; Ma, 2020; Wu
et al., 2024) reveals that residential activities and waste dis-
posal are dominant sources of non-AGR NH3 emissions, par-
ticularly in densely populated regions (Fig. S5). In multiple
iterations, the framework optimizes the relative mix of the
two sources to better match the observed spatial patterns. For
instance, the spatial correlation between model and observa-
tion in Henan increased from 0.47–0.58 (prior simulations)
to 0.64–0.90 (posterior simulations).

In terms of seasonality, as shown in Fig. 5, the poste-
rior NH3 emissions are highest in summer, with a total of
463.1 Gg month−1, followed by spring (442.4 Gg month−1),
largely due to fertilizer application (Li et al., 2021; Lu
et al., 2025; Ren et al., 2025), and lowest in winter

Figure 5. Posterior emission characteristics. (a) Contribution from
regional emission sectors. (b) Comparison of the posteriori and
prior emissions (unit: Mg) in study region.

(217.4 Gg month−1). The seasonal variations in the poste-
rior emissions is the net result of complex adjustments in
both the AGR and non-AGR sectors. At the specific-source
scale (Fig. S6), AGR NH3 emissions show similar seasonal
patterns with the total NH3 emissions, higher in summer
and spring. In contrast, non-AGR NH3 are highest in win-
ter and fall because fossil fuel combustion-related emissions
are higher in cold season, while the lowest emissions oc-
cur in summer. In addition, the ratio of AGR and non-AGR
NH3 emissions significantly varies across different regions.
The contribution of non-AGR NH3 emissions range from
18.8 % to 35.8 %, which is higher than the proportion in the
prior inventory (Fig. 5a). This shift can be attributed to the in-
creased relative importance of fossil fuel combustion-related
emissions under high PM2.5 loadings, which in turn promote
higher NH3 emissions from these sources (Pan et al., 2018b).
Meanwhile, AGR NH3 emissions are relatively inactive in
winter due to unfavorable meteorological conditions. Similar
high fractions of non-AGR emissions have also been reported
in other studies (Feng et al., 2022; He et al., 2021).

Table 2 compares the results with related studies fo-
cused on NH3 emission estimates. Overall, the estimated
NH3 emission in this study is comparable to the estimates
of the other studies based on both “top-down” and “bottom-
up” approaches. In similar years and regions, the discrepancy
between the estimates of this study and other studies ranges
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Table 2. NH3 emission estimates in recent studies.

Region Sector Emission Period Method Reference

China / 12.4 Tgyr−1 2016 Bottom-up Ma (2020)

12.1 Tgyr−1 2016 Bottom-up Li et al. (2021)

11.9–12.0 Tgyr−1 2005–2015 Bottom-up Chen et al. (2021)

11.7 Tgyr−1 2008 Top-down Zhang et al. (2018)

8.4 TgNyr−1 2005-2008 Top-down Paulot et al. (2014)

0.74 Tg month−1 2008 Apr Top-down Xu et al. (2013)

13.0 Tgyr−1 2016 Top-down Kong et al. (2019)

18.9 Tgyr−1 2015 Top-down Zhang et al. (2017)

Eastern China Industry 274.5 Ggyr−1 2016 Bottom-up Chen et al. (2022)

BTH / 966.1 Ggyr−1 2016 Bottom-up Guo et al. (2020)

/ 28.8 Gg month−1 2015 Jan Top-down Huang et al. (2021)

82.5 Gg month−1 Apr 2015

102.9 Gg month−1 Jul 2015

50.2 Gg month−1 Oct 2015

Agriculture 505.85 Ggyr−1 2016 Top-down This study

Non-Agriculture 282.53 Ggyr−1

YRD Agriculture 848.8 Ggyr−1 2014 Bottom-up Yu et al. (2020)

Non-Agriculture 137.2 Ggyr−1

Agriculture 77 Gg month−1 Jan 2014 Bottom-up Zhao et al. (2020)

133 Gg month−1 Apr 2014

169 Gg month−1 Jul 2014

108 Gg month−1 Oct 2014

/ 24.42 Gg month−1 Jan 2015 Top-down Huang et al. (2021)

88.0 Gg month−1 Apr 2015

111.7 Gg month−1 Jul 2015

51.0 Gg month−1 Oct 2015

Agriculture 1280.41 Gg 2016 Top-down this study

Non-Agriculture 297.86 Gg

Henan / 1035 Ggyr−1 2013 Top-down Wang et al. (2018)

982 Ggyr−1 2016 Bottom-up Bai et al. (2020)

Agriculture 647.73 Ggyr−1 2016 Top-down this study

Non-Agriculture 206.20 Ggyr−1

Shandong / 1210 Ggyr−1 2017 Bottom-up Zhou et al. (2021)

Agriculture 715.29 Ggyr−1 2016 Top-down this study

Non-Agriculture 296.98 Ggyr−1
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from 1.0 % to 19.6 %. The slight discrepancy can be partially
explained by our estimate being a conservative lower bound,
a consequence of the residual gap remaining with satellite
retrieval. Additionally, uncertainties from the model’s chem-
ical mechanisms and the influence of nearby grid transport
also contribute to this gap, but the overall impact on the final
estimate is limited. Furthermore, the seasonal distribution of
NH3 emissions in this study aligns with the findings of previ-
ous studies (Kong et al., 2019; Liu et al., 2024; Zhang et al.,
2018; Zhao et al., 2020).

In terms of sectors, other studies have indicated that the
contribution of NH3 emissions from AGR sources is more
than 80 %, using the bottom-up approach (Chen et al., 2021;
Huang et al., 2012; Kang et al., 2016; Li et al., 2021).
The relatively small proportion of non-AGR emissions is
likely due to overlooked industrial (e.g., NH3 slip and in-
direct emissions) (Chen and Wang, 2025; Chen et al., 2022;
Wei et al., 2022) and residential sources (e.g., from waste)
(Shao et al., 2020), combined with unrepresentative trans-
portation emission factors (Sun et al., 2017; Zhang et al.,
2021). This study, however, reveals a proportion of 74.4 %
for AGR emissions, thereby emphasizing the contribution of
non-AGR emissions. Concurrently, the eastern developed in-
dustry is expected to exhibit an increase in the proportion
of NH3 emissions from non-AGR sources when compared to
the national average. Our work attempts to quantitatively dis-
entangle the emissions from AGR and non-AGR sectors di-
rectly within our top-down framework and facilitates a more
comprehensive capture of neglected non-AGR sources.

It is important to note that discrepancies in results be-
tween studies may be attributable to methodological differ-
ences (e.g. the sensitivity of the top-down approach to target
data selection) and uncertainty in the underlying data. For
instance, the NH3 emission estimated by Paulot et al. (2014)
using the mass balance method based on ammonium wet de-
position fluxes is significantly lower than that in other stud-
ies, which may be attributed to its fewer observation sites
in China. These discrepancies underscore the necessity to
enhance the reliability of NH3 observations in forthcoming
studies, with the objective of enhancing the precision of the
estimates.

4.3 Simulated NH3 with top-down emissions

Figure 6 compares the spatial distributions of NH3 to-
tal column density from satellite retrievals, prior simula-
tions and posterior simulations. The annual mean simu-
lated NH3 total column density improved from the prior
result of 17.4× 1015 molec. cm−2 to a posterior value of
23.7× 1015 molec. cm−2 , with an increase of 35.9 %, and
is closer to the observed value of 29.0× 1015 molec. cm−2.
IOA and MFB between the posterior simulations versus
measurements are 0.9 and −30.0 %, respectively. Figure 3
also shows the improvement in model performance. More
than 80 % of the points fall in the range where the simulation-

to-observation ratio is between 0.7 and 1.3 and the RMSE
is less than 10× 1015 molec. cm−2. A more consistent sea-
sonal distribution can be obtained in a posterior simulation,
with associated temporal MFB of NH3 column density on
the seasonal scale is reduced from −53 % (prior) to −24 %
(posterior). Simultaneously, the spatial distribution pattern of
posterior simulation is more identical to the characteristics
revealed by satellite-based observations (Fig. 6). The spa-
tial MFB is also decreased from −52 % (prior) to −20 %
(posterior), with an increase in spatial correlation coefficient
from 0.79 to 0.92. The improvement is especially notable in
the BTH region, where the simulated NH3 column densities
are doubled. In summary, the posterior simulation improves
the agreement between the simulated NH3 column concen-
trations and satellite observations in both overall magnitude
and spatial distribution, although some deviations remain,
particularly in the colder seasons. These can likely be at-
tributed to methodological limitations, such as the inherent
tolerance of our 30 % iterative stopping criterion and poten-
tial inconsistencies from aggregating monthly optimizations
to a seasonal scale.

A similar improvement is also witnessed in the modeling
of surface NH3 concentrations, which were evaluated against
in-situ measurements from 13 sites reported by Pan et al.
(2018a) for the 2015–2016 period (Table S2). The poste-
rior simulation significantly improves the annual mean, in-
creasing the surface concentration from 6.3 µgm−3 (prior) to
9.4 µgm−3 (posterior), much closer to the observed average
of 12.7 µgm−3 . As shown in the scatter plot in Fig. S7, the
posterior simulation alleviates the underestimation at most
sites, which is quantified by a 42 % reduction in the over-
all underestimation bias and a clear improvement in the IOA.
On a seasonal basis, the posterior emissions also alleviate the
large underestimation of the prior simulation across all sea-
sons, though the degree of improvement varies (Table S6).
The prior simulation showed significant underestimation in
all seasons, with the MFB ranging from −0.37 in winter
to −0.79 in spring. The posterior simulation demonstrates a
particularly evident improvement in spring, where the MFB
reduced from −0.79 to −0.24. While some underestimation
remains in summer, the posterior results still show improved
performance metrics (e.g., lower RMSE and higher IOA)
for all seasons, confirming a better capture of the seasonal
characteristics overall. The remaining discrepancy between
the posterior simulation and surface observations can be at-
tributed to several factors, such as the spatial representative-
ness of the surface sites and the accuracy of the secondary
inorganic aerosol simulation.

Furthermore, improving the NH3 simulation results in the
other simulated air pollutants being closer to observed lev-
els (Table 3). Specifically, we compare the annual mean
concentrations of PM2.5, SO2, and NO2 from the prior and
posterior simulations against surface observations averaged
from 80 monitoring sites across 9 major cities (Table S4).
It was found that posterior NH3 emissions effectively bridge
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Figure 6. Distributions of NH3 total column from prior simulation, posterior simulation and satellite retrieval in different seasons.

the gap between simulated and observed PM2.5. The aver-
age PM2.5 concentration increased from 65.7 to 67.3 µgm−3,
which is closer to the observed value of 67.1 µgm−3. To fur-
ther characterize the model’s chemical performance beyond
total PM2.5, we also evaluated the simulation of secondary
inorganic aerosol (SIA) components against in-situ measure-
ments from a representative site in Beijing (Table S7). The

evaluation shows that the posterior NH3 emissions improved
the simulation of ammonium and nitrate, reducing the bias
between simulated and observed concentrations. Although
the model underestimates sulfate, likely due to missing for-
mation mechanisms (Cai et al., 2024; Wang et al., 2021,
2020), the total SIA concentration is well reproduced with an
overall bias of only −11.0 %. A similar improvement is also
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Table 3. Simulated and observed air pollutant concentrations.

Prior Posterior Observation
simulation simulation

PM2.5 (µgm−3) 65.7 67.3 67.1
NO2 (ppb) 22.3 22.1 23.0
SO2 (ppb) 8.2 6.8 6.5

observed for SO2, where the posterior simulated concentra-
tion (6.8 ppbv) better matches the observed value (6.5 ppbv),
reducing the model’s previous overestimation by 27 %. This
improvement is most significant in autumn. The successful
capture of air pollutants highlights a significant improvement
in the NH3 emission inventory for Eastern China. The eval-
uation of routine air pollutants in each city is detailed in
Figs. S8–S10. The statistics of evaluation metrics for each
city’s meteorological simulations can also be found in Ta-
ble S8.

5 PM2.5 and its health burden response to
NH3 reduction

To investigate the response of PM2.5 to various NH3 emission
reduction scenarios, we conducted sensitivity experiments as
outlined in Table S9. We formulated emission reduction sce-
narios of 30 %–60 % for January and July of 2016, consider-
ing the severe particulate pollution in winter and the higher
NH3 concentrations in summer. Emission reductions from
both the AGR and non-AGR sectors were considered sepa-
rately.

Figure 7 illustrates that reducing NH3 emissions by 30 %–
60 % can decrease the seasonal PM2.5 concentrations by 1.5–
5.7 µgm−3 (2.0 %–7.2 %) averaged for Eastern China in win-
ter, mainly due to the reduction in SIA. Specifically, nitrate,
ammonium and sulfate are reduced by 0.9–3.3, 0.4–1.3 and
0.3–1.0 µgm−3, respectively. It is worth noting that the re-
duction in sulfate is smaller than that in nitrate because NH3
preferentially reacts with sulfuric acid during aerosol forma-
tion (Fig. S11). When ambient NH3 concentrations are lim-
ited, nitrate concentrations decrease more significantly than
sulfate concentrations. In summer, although aerosol pollution
is relatively lower, NH3 emissions and atmospheric reactiv-
ity are higher. Consequently, reducing emissions by the same
percent results in a decrease in PM2.5 concentration by 5.5–
8.8 µgm−3.

In terms of special sources, reducing non-AGR NH3 emis-
sions is just as crucial as reducing AGR NH3 emissions in
mitigating PM2.5. A 30 % to 60 % reduction in non-AGR
NH3 emissions during winter can lead to a decrease in PM2.5
by 0.9–1.5 µgm−3, which is comparable to the effect of re-
ducing AGR NH3 emissions (0.9–2.0 µgm−3). It should be
noted that the reduction in PM2.5 resulting from both AGR
and non-AGR NH3 emissions is not proportional to the emis-

sion reduction across all sectors. This is due to the non-linear
relationship between NH3 emissions and PM2.5 concentra-
tions.

This study utilized the integrated exposure–response
(IER) model to estimate premature mortality resulting from
PM2.5 exposure. Detailed methods and data can be found
in our previous work (Li et al., 2023a). In the base case,
PM2.5 exposure exhibits a significant impact on premature
mortality, leading to 698.4 thousand deaths in the study re-
gion. Specifically, premature deaths attributable to ischemic
heart disease (IHD), stroke, lung cancer (LC), and chronic
obstructive pulmonary disease (COPD) are 202.3, 347.9,
61.5, and 86.7 thousand, respectively. In other scenarios,
the overall premature mortality burden decreases by 45.6–
72.0 thousand instances (6.5 %–10.3 %) in Eastern China.
Notably, the decline in premature deaths, especially those re-
lated to stroke, plays a significant role in the overall reduc-
tion.

6 Conclusions

An accurate NH3 emission inventory is essential for devel-
oping effective air quality improvement policies. Numer-
ous studies have demonstrated that the current bottom-up
NH3 emission inventories in China often underestimate the
total NH3 emissions, with significant uncertainties in the es-
timation of emissions from various sources. In this study, we
used IASI satellite products and an iterative algorithm with
the WRF-Chem model to optimize the bottom-up NH3 emis-
sion inventory for Eastern China and further assessed the im-
pacts of NH3 emission reductions from different sources on
PM2.5 concentrations.

The posterior results indicate that the NH3 emission in
Eastern China for 2016 amounted to 4.2 Tg. The highest
emissions occurred in summer (463.1 Gg month−1), with
AGR sources contributing 86.5 % and non-AGR sources con-
tributing 13.5 %. In contrast, emissions were lowest in winter
(217.4 Gg month−1), and the proportion of emissions from
non-AGR sources were higher than that from AGR sources.
Spatially, the region with the highest NH3 emissions was
located at the intersection of Henan, Hebei, and Shandong
provinces. This is attributed to a combination of high emis-
sion intensity from dense agricultural and industrial activities
and topographical effects that hinder the dispersal of pol-
lutants. The optimization of the NH3 inventory further im-
proved the simulation underestimation of the NH3 total col-
umn (MFB from−61 % to−30 %) and surface concentration
(MFB from−61 % to−19 %). It also indirectly improved the
simulation of other air pollutants, such as PM2.5, NO2 and
SO2.

Based on the posterior emission inventory, we conducted
a series of sensitivity simulations to investigate the re-
sponse of PM2.5 concentrations to NH3 emission reduc-
tions. A 30 %–60 % reduction in NH3 emissions resulted
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Figure 7. Response of NH3 emission reduction in 30 %–60 % in (a, b) concentration of PM2.5 and (c) premature death caused by different
diseases. The IHD, Stroke, LC and COPD represent the premature death caused by ischemic heart disease, stroke, lung cancer, chronic
obstructive pulmonary disease.

in a 1.5–8.8 µgm−3 decrease in PM2.5 concentrations. In
terms of sectoral contributions, reductions in AGR emissions
led to a decrease in PM2.5 ranging from 0.9 to 7.4 µgm−3,
while the response to reductions in non-AGR NH3 emissions
ranged from 0.9 to 5.3 µgm−3. Furthermore, the reduction
in NH3 emissions had a beneficial impact on public health,
with a 6.5 %–10.3 % decrease in premature deaths attributed
to PM2.5 exposure.

This study obtained a high-resolution NH3 emission in-
ventory for Eastern China and highlights the significant role
of non-AGR NH3 emission reductions in further decreasing
PM2.5 levels. The findings provide robust data support for air
quality research and offer scientific insights for exploring the
potential air quality and public health benefits of NH3 emis-
sion reduction.
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