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Abstract. The oxidative potential (OP) of particulate matter is a key driver of PM10-induced adverse health ef-
fects, triggering oxidative stress and inflammatory responses that increase respiratory and cardiovascular disease
risks. To evaluate PM10 and its OP characteristics across China, samples were collected from twelve representa-
tive monitoring stations from June 2022 to May 2023. A deep learning model combining Convolutional Neural
Networks and Long Short-Term Memory networks (CNN-LSTM) was employed to reconstruct anomalous PM10
data, achieving R2 values of 0.8840 for test sets. Significant spatial variations in PM10 were observed, with high-
est concentrations in the northwestern regions (Xi’An: 98.20±52.92µgm−3, Dunhuang: 90.36±54.72µgm−3),
the lowest in the northeast (Longfengshan: 40.04± 24.04µgm−3, Dalian: 40.35± 15.66µgm−3), and ele-
vated levels in suburban areas (average: 85.43± 46.69µgm−3). Urban sites showed the highest OP values
(0.61± 0.21 nmolH2O2 m−3), with significantly higher PM10 concentrations in northern regions compared to
southern ones (p < 0.05). Most sites exhibited peak PM10 and OP levels in winter and lowest in summer. Source
apportionment using Positive Matrix Factorization (PMF) revealed dust (13.2 %–27.4 %), secondary aerosols
(6.9 %–36.2 %), traffic (16.6 %–21.4 %), and biomass burning (22 %–39.3 %) as main contributors to PM10.
Mass-normalized OP (OPm) analysis revealed traffic, biomass burning, and coal combustion sources showing
consistently high values (0.008–0.022 nmolH2O2 µg−1). These findings highlight the need to control traffic,
biomass burning, and coal combustion sources and other major sources to reduce OP and protect public health.

1 Introduction

Particulate matter (PM) is one of the main pollutants affect-
ing air quality and human health. Among these, PM10, which
refers to suspended particles with an aerodynamic diameter
of 10 µm or less, has received considerable attention due to its
complex sources, extensive environmental and health effects.
The sources of PM10 are both complex and diverse, includ-

ing anthropogenic activities such as fossil fuel combustion,
industrial production, traffic emissions and dust, as well as
natural sources such as dust storms and volcanic eruptions
(Xue et al., 2010). PM10 can remain suspended in the atmo-
sphere for extended periods of time, significantly affecting
atmospheric visibility while potentially exerting profound ef-
fects on regional and global climate change through both
direct and indirect mechanism (Slanina and Zhang, 2004).
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More critically, PM10 poses a serious threat to human health.
Upon entering the human body via the respiratory system, it
can be deposited in the airways and lungs, triggering respira-
tory diseases such as asthma, chronic obstructive pulmonary
disease (COPD) and even lung cancer (Cao et al., 2016). Fur-
thermore, PM10 can penetrate the alveolar barrier and enter
the circulatory system, inducing systemic diseases such as
cardiovascular disease and diabetes (Huang, 2023).

In the context of accelerating global industrialization and
urbanization, PM10 pollution has emerged as a critical envi-
ronmental concern. Research conducted by the World Health
Organization (WHO) indicates that air pollution is respon-
sible for millions of premature deaths worldwide each year,
with PM10 being a major contributor (Cohen et al., 2005).
The mechanisms by which PM10 affects human health are
diverse and complex, one of the primary mechanisms being
its ability to induce excessive production of reactive oxy-
gen species (ROS), subsequently triggering oxidative stress
(OS) effects. Components within PM10, such as transition
metals and polycyclic aromatic hydrocarbons (PAHs), can
directly or indirectly promote ROS generation, leading to
cell membrane lipid peroxidation, protein denaturation, and
DNA damage (Chirino et al., 2010). Furthermore, ROS can
activate inflammatory signaling pathways, including nuclear
factor κB (NF-κB), which amplify inflammatory responses
and further leading to cellular dysfunction and tissue damage
(Wang et al., 2017). This interplay between oxidative stress
and inflammatory responses is considered a critical patho-
physiological basis for various PM10-induced diseases. Sev-
eral studies suggest that oxidative potential (OP) may be a
more accurate indicator of PM health effects than its mass
concentration, providing a new perspective for assessing PM
health risks (Gao et al., 2020; Bates et al., 2019).

The OP of PM serves as a critical indicator for assess-
ing its toxicity and is closely related to the generation of
ROS. Research indicates that the OP of PM is strongly cor-
related with its physicochemical properties and sources (He
and Zhang, 2023). In particular, PM of smaller size typically
exhibits higher OP, possibly due to its larger specific surface
area and enhanced bioavailability (Saffari et al., 2014; Yao et
al., 2024). Water-soluble transition metals (e.g., iron and cop-
per) and organic carbon (e.g., PAHs) in PM are considered
to be the primary chemical components that influence OP.
These components can induce ROS generation either by cat-
alyzing Fenton reactions or by directly participating in redox
processes (Saffari et al., 2014; Guo et al., 2020). Sources of
OP in PM are varied and include primarily traffic emissions,
fossil fuel combustion, and secondary organic aerosol for-
mation (Bates et al., 2019; Saffari et al., 2014). Significantly,
photochemical aging of PM in the atmosphere further alters
its OP, possibly related to the formation of secondary organic
aerosols, changes in oxidation states of metallic components
during the aging process, and the oxidation degree of reac-
tive organic compounds (An et al., 2022; Ma et al., 2025). In
addition, the oxygen content in the fuel has been shown to

be a critical factor affecting OP, as exemplified by the typ-
ically high OP of PM generated from biomass combustion
(Hedayat et al., 2016).

However, an accurate assessment of the health risks asso-
ciated with PM10 requires an accurate analysis of its sources
and chemical compositions. High-quality, complete datasets
are essential for reliable source apportionment and subse-
quent risk assessment. Environmental monitoring data of-
ten contain missing values and anomalies due to instrument
malfunction, maintenance periods, or extreme weather con-
ditions, which can significantly affect the accuracy of subse-
quent analyses. In recent years, with the rapid development
of deep learning technology, its application in handling en-
vironmental data quality issues has received increasing at-
tention. Deep learning models, particularly the combination
of Convolutional Neural Networks (CNN) and Long Short-
Term Memory networks (LSTM), have demonstrated sig-
nificant advantages in identifying and correcting anomalies
and filling missing values in time series environmental data.
CNNs effectively extract spatial features, while LSTMs excel
at capturing long-term dependencies in time series (Huang
and Kuo, 2018; Li et al., 2020). This hybrid model not
only identifies anomalies, but also improves data complete-
ness and reliability by predicting and replacing anomalous
or missing values (Lee and Shin, 2019; Qin et al., 2019).
Compared with traditional machine learning methods, CNN-
LSTM models show superior performance in several eval-
uation metrics, such as Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) (Huang and Kuo, 2018; Yang et
al., 2020a; Li et al., 2020). CNN-LSTM models retain signif-
icant value in processing atmospheric particulate matter data
for data quality improvement. Their spatial feature extraction
capabilities effectively identify and correct anomalies caused
by instrument malfunction or local pollution events, thereby
improving data quality (Zhang and Zhou, 2023). Through
training and learning, CNN-LSTM models can effectively
predict and fill missing data, providing a high-quality data
foundation for subsequent source apportionment and risk as-
sessment analyses (Li et al., 2020; Yang et al., 2020a).

After data pre-processing, the Positive Matrix Factoriza-
tion (PMF) model was used to analyse PM10 sources in this
study. The PMF model can identify major pollution sources
and their contribution rates by decomposing the observation
data matrix without requiring prior information (Paatero and
Tapper, 1994). In recent years, PMF models have been ex-
tensively applied in PM10 and PM2.5 source apportionment,
often in combination with other techniques such as multiple
linear regression (MLR) (Weber et al., 2018). Based on the
source contribution results from PMF analysis, MLR mod-
els can further quantify the contributions of different sources
to the OP of PM, providing crucial evidence to reveal the
association between PM sources and their health effects. Re-
cent studies have innovatively introduced machine learning
methods, such as multilayer perceptron (MLP), to model OP
based on source contribution results from PMF analysis, sig-
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nificantly improving model predictive accuracy and explana-
tory power (Borlaza et al., 2022).

In this study, we adopted a comprehensive approach to
process PM10 data and evaluate its OP. First, we removed
anomalies from PM10 data and used a deep learning model
combining CNN and LSTM to predict and replace anoma-
lous values. This method effectively captures spatial and tem-
poral features in time-series data, thereby improving data
completeness and prediction accuracy. Then, we employed
the PMF model for PM10 source apportionment to identify
its major sources. Finally, based on the PMF results, we cal-
culated the OP per unit mass of PM10 (OPm) to investigate
the intrinsic toxicity of different emission sources. Through
this series of methods, this study aims to reveal the OP char-
acteristics and sources of PM10 in typical regions of China.

2 Materials and Methods

2.1 Sample Collections

Daily ambient PM10 samples were collected every three
days from June 2022 to May 2023 at the twelve stations
of the China Meteorological Administration Atmosphere
Watch Network (CAWNET), with their distribution shown
in Fig. 1 and detailed information provided in Table 1. Re-
mote sites were selected in areas far from anthropogenic pol-
lution sources to ensure the representativeness of the back-
ground monitoring data. Rural sites were selected in typical
areas, with sampling points located away from local pollu-
tion sources and elevated above the surrounding ground to
minimize local disturbances. At urban sites, sampling points
were typically located 50–100 m above the average urban el-
evation in order to collect mixed aerosol samples rather than
aerosols from single sources. Suburban sites were located
in transition zones between urban and rural areas to reflect
aerosol characteristics under different environmental condi-
tions. All aerosol samples were collected using MiniVol™air
samplers (Airmetrics, Oregon, USA) operating continuously
for 24 h from 09:00 to 09:00 BJT the following day (Beijing
time) at a flow rate of 5 Lmin−1. Whatman 47 mm quartz
fiber filters (QM/A) were used for sampling. To prevent con-
tamination from affecting the experimental results, all filters
were heated at 800 °C for 3 h prior to use to remove potential
organic contaminants.

2.2 Chemical and OP analysis

2.2.1 Chemical compositions analysis

Quantitative measurements of OC and EC were performed
using the DRI Model 2015A thermal/optical carbon analyzer
developed by the Desert Research Institute, USA. After OC
and EC analysis, ion chromatography (Dionex 600 series,
USA) was used to analyze and determine various ions, in-
cluding Na+, NH+4 , K+, Ca2+, Mg2+, F−, Cl−, NO−3 , and

SO2−
4 . This method has been widely used as a highly effi-

cient and sensitive analytical technique for the determination
of water-soluble ions in PM10 and PM2.5 (Domingos et al.,
2012; Song et al., 2006).

2.2.2 OP analysis

The 2′,7′-Dichlorodihydrofluorescein (DCFH) method is
widely used for detecting particle-bound ROS, mainly due to
its lack of specificity and selectivity for various ROS species
(Antonini et al., 1998; Cohn et al., 2008; Huang et al., 2016).
In this study, the 2′,7′-Dichlorodihydrofluorescein diacetate
(DCFH-DA) probe method was employed to measure ROS
levels induced by PM10. First, DCFH-DA (97 %, Sigma-
Aldrich, USA) was prepared as a 1 mmolmL−1 stock solu-
tion using anhydrous ethanol and mixed with 0.01 molL−1

NaOH solution in a 1 : 4 (v/v) ratio. The mixture was kept
at room temperature in the dark for 30 min to ensure com-
plete alkaline hydrolysis of DCFH-DA to DCFH. Phos-
phate buffer solution (PBS, 0.0067 molL−1, pH 7.2) was
then added to adjust the pH to 7.0–7.4. The hydrolyzed
DCFH solution was stored at 4 °C in the dark and used within
2 h. Horseradish peroxidase (HRP) was dissolved in phos-
phate buffer to prepare a 10 unitmL−1 HRP stock solution. It
was mixed with the DCFH solution prior to use to achieve fi-
nal concentrations of 10 µmolL−1 DCFH and 0.5 unitsmL−1

HRP in the reaction system. To generate a standard curve, a
1000 µgmL−1 H2O2 solution was diluted with ultrapure wa-
ter to generate H2O2 standard solutions at concentrations of
20, 40, 80, 160, 200, 240, 320, 400, and 800 nmolL−1. In
a 96-well plate, 20 µL standard solution and 60 µL DCFH-
HRP mixture were added, with three replicates for each con-
centration. After 15 min of dark incubation at 37 °C, fluo-
rescence intensity was measured using a multifunctional mi-
croplate reader (SynergyTMH1, BioTek America) at an ex-
citation wavelength of 485 nm and an emission wavelength
of 535 nm. Quantification was done through converting the
sample’s fluorescent intensity to the equivalent quantity of
H2O2 (nmolH2O2 m−3). Before sample analysis, PM10 sam-
ples were extracted in phosphate buffer solution by sonica-
tion for 30 min. After centrifugation, the supernatant was col-
lected for testing. In the 96-well plate, 20 µL of sample so-
lution and 60 µL of DCFH-HRP mixture were added, with
three replicates per sample. Water blanks, filter blanks, and
DCFH-HRP background blanks were included to eliminate
background interference. After 15 min of dark incubation at
37 °C, fluorescence intensity was measured and converted
to H2O2 equivalent concentrations using the H2O2 standard
curve to characterize PM10-induced ROS levels. Through-
out the experimental procedure, the microplate reader was
preheated for 30 min before measurement to ensure a stable
incubation temperature of 37 °C. Background fluorescence
values were subtracted from each measurement, and the rela-
tive standard deviation (RSD) of the replicates was controlled
within 5 % to ensure the accuracy and reliability of the data.
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Figure 1. Locations of 12 CAWNET stations. The map base is from the Ministry of Natural Resources’ Standard Map Service, review
number GS (2019)1822.

Table 1. Information for twelve CAWNET stations.

Station name Province Lat. and long. Elev. (m) Type

Changde (CHD) Hunan 29°10.2′ N, 111°42.6′ E 150.6 Rural
Chengdu (CD) Sichuan 30°39′ N, 104°2.4′ E 587.0 Urban
Dalian (DL) Liaoning 38°54′ N, 121°37.8′ E 91.5 Urban
Dunhuang (DH) Gansu 40°9′ N, 94°40.8′ E 1137.5 Suburban
Gucheng (GC) Hebei 39°7.8′ N, 115°48′ E 15.2 Rural
Jinsha (JS) Hubei 29°37.8′ N, 114°12′ E 751.4 Remote
Lhasa (LS) Tibet 29°40.2′ N, 91°7.8′ E 3660.0 Urban
Lin’An (LA) Zhejiang 30°18′ N, 119°44′ E 138.6 Remote
Longfengshan (LFS) Heilongjiang 44°43.8′ N, 127°36′ E 331.0 Remote
Nanning (NN) Guangxi 22°49.2′ N, 108°21′ E 159.0 Urban
Xi’An (XA) Shaanxi 34°25.8′ N, 108°58.2′ E 363.0 Urban
Zhengzhou (ZZ) Henan 34°46.8′ N, 113°40.8′ E 110.4 Suburban

2.3 Data analysis

2.3.1 CNN

One-dimensional convolutional neural networks (1D-CNN)
have significant theoretical advantages and practical value in
processing time series data. The core mechanism relies on

local connectivity and weight sharing, where each neuron
is connected only to a local region of the input data, while
the convolution kernel weights are shared across the entire
input sequence. This design significantly reduces the num-
ber of model parameters, improving computational efficiency
while effectively mitigating overfitting problems. Moreover,
1D-CNN achieves translational invariance through convo-
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Figure 2. The one-dimensional (1D) convolution operation pro-
cess.

lution and pooling operations, ensuring robustness to input
data translations and enabling stable capture of key patterns
in time-series data. Crucially, 1D-CNN possesses automatic
feature extraction capabilities, allowing the model to inde-
pendently learn and extract multi-level feature representa-
tions from raw data through end-to-end training, thus reduc-
ing dependence on manual feature engineering. As illustrated
in Fig. 2, the input sequence x1 ∼ x6 undergoes convolution
operations to generate feature mappings y1 ∼ y4, with pur-
ple, green, and yellow connections linking the input layer to
the convolution layer. Each connection maintains its distinct
weight value, with connections of the same color sharing
identical weights. By stacking multiple convolutional layers,
the model progressively learns higher-level feature represen-
tations, offering robust expressive capabilities for time-series
data modeling and prediction.

2.3.2 LSTM

Long Short-Term Memory (LSTM) networks are special-
ized recurrent neural networks that effectively address the
long-term dependency problems inherent in traditional RNN
(Hochreiter and Schmidhuber, 1997). LSTM introduces
memory cells and gating mechanisms that selectively re-
member or forget information, enabling the capture of long-
term dependencies in sequences (Okut, 2021). The network
uses three primary gating mechanisms: the forgetting gate,
the input gate, and the output gate. The operating principle
of the LSTM is illustrated in Fig. 3, where σ represents the
sigmoid function as shown in Eq. (1). Compared to tradi-
tional RNNs, LSTM networks exhibit superior handling of
the vanishing gradient problem and can learn dependencies
over longer time steps (Sherstinsky, 2020). These capabilities
have led to the widespread application of LSTM in various
domains, including time series prediction and natural lan-
guage processing (Vennerød et al., 2021). The specific math-

ematical formulations of LSTM are detailed in Eqs. (1)–(6):

ft = σ (Wf · [ht −1 ,xt ] + bf) (1)
it = σ (Wi · [ht −1 ,xt ] + bi) (2)
c̃t = tanh(Wc · [ht −1 ,xt ] + bc) (3)
ct = ft � ct−1+ it � c̃t (4)
ot = σ (Wo · [ht −1 ,xt ] + bo) (5)
ht = ot � tanh(ct ) (6)

where Wf represents the weight matrix of the forget gate,
and bf denotes its bias term. ht −1 is the previous hidden state
and xt is the current input. The sigmoid activation function σ
controls the proportion of information retention. it represents
the output of the input gate, while c̃t indicates the candidate
memory value. Wi and Wc represent the weight matrices for
the input gate and candidate memory respectively, while bi
and bc denote their corresponding bias terms. ct represents
the memory cell state at the current time step. � represents
the element-wise multiplication. Wo denotes the weight ma-
trix of the output gate, bo represents its bias term, and ot

indicates the output of the output gate.

2.3.3 CNN-LSTM

Several studies have shown that CNN-LSTM models have
excellent performance in PM prediction, with low error rates
and reduced training times (Li et al., 2020; Huang and Kuo,
2018). In this study, PM10 concentration data were prepro-
cessed for 11 chemical components: OM, EC, Na+, NH+4 ,
K+, Ca2+, Mg2+, F−, Cl−, NO−3 , and SO2−

4 . Specifically, if
the sum of the chemical components in a data set exceeded
the PM10 mass concentration or fell below 50 % of the PM10
mass concentration, the PM10 concentration in that data set
was considered anomalous and removed. After screening, the
remaining data were retained and included in the training set.
A hybrid model combining CNN and LSTM was used to pre-
dict PM10 concentrations based on the training set. As shown
in Fig.4, The model first extracts local features from the data
through two CNN layers: the first CNN layer uses 16 chan-
nels and a kernel size of 2, while the second CNN layer uses
32 channels and the same kernel size, capturing local feature
patterns through a sliding window with a stride of 1. Each
CNN layer is followed by a ReLU activation function to in-
troduce non-linearity, and a Dropout layer with a probability
of 0.2 to enhance generalization capability. Subsequently, a
2-layer LSTM network (with 64 hidden units) captures long-
term dependencies in the time series, with the LSTM lay-
ers also applying the same Dropout mechanism; finally, the
prediction results are output through a fully connected layer.
During the training process, Mean Squared Error (MSE) was
used as the loss function, and the Adam optimizer was em-
ployed for parameter optimization, with an initial learning
rate set to 0.0005. When training the model, a total of 3000
training epochs were set, while dynamically monitoring the
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Figure 3. The schematic diagram of the Long Short-Term Memory (LSTM).

loss value, with early stopping when the loss value fell be-
low a preset threshold of 0.0007. Upon completion of train-
ing, the model was evaluated on both training and test sets by
calculating MAE, RMSE, and Coefficient of Determination
(R2) to comprehensively evaluate the predictive performance
of the model.

2.4 Source apportionment

In this study, the US Environmental Protection Agency (US-
EPA) EPA PMF 5.0 software (US EPA, 2017) was used to
perform source apportionment of PM10. PMF is a multi-
variate statistical method based on factor analysis that has
been widely applied in source apportionment studies of at-
mospheric particulate matter (Paatero and Tapper, 1994). The
PMF model identifies pollution sources and their contribu-
tion rates by decomposing the observed data matrix into two
non-negative matrices – the factor contribution matrix (G)
and the factor profile matrix (F ). The mathematical model
can be expressed as:

X =GF +E (7)

where X is the observation data matrix (n×m),G is the fac-
tor contribution matrix (n×p), F is the factor profile ma-
trix (p×m), and E is the residual matrix. Here, n represents
the number of samples,m represents the number of chemical
species, and p represents the number of factors. The PMF
model optimizes the decomposition results by minimizing
the objective function Q:

Q=

n∑
i=1

m∑
j=1

(
xij −

∑p

k=1gikfkj

uij

)
(8)

where xij is the concentration of chemical component j in
sample i, uij is the corresponding uncertainty, gik is the

contribution of factor k in sample i, and fkj is the propor-
tion of chemical component j in factor k. By introducing
non-negative constraints, the PMF model can more reason-
ably explain the physical significance of pollution sources
(Paatero, 1997). The uncertainty (Unc) of the sample data is
calculated using Eqs. (9) and (10):

Unc=
5
6
×MDL

(
xij <MDL

)
(9)

Unc=
√(

EFij × xij
)2
+ (0.5×MDL)2 (xij ≥MDL

)
(10)

where MDL represents the method detection limit, and EFij
denotes the error fraction of component j in sample i. In this
study, the EF values for OPv were set as the standard devi-
ation during analysis (Verma et al., 2015), while the other
components were set at 10 %.

3 Results and discussion

3.1 CNN-LSTM prediction results

The CNN-LSTM model was trained using non-outlier
datasets consisting of PM10 concentration measurement and
their corresponding eleven chemical constituents, including
OM, EC, Na+, NH+4 , K+, Ca2+, Mg2+, F−, Cl−, NO−3 , and
SO2−

4 . To ensure the integrity of the data quality, outlier elim-
ination was performed based on the sum of the chemical
components. After the outlier screening process described
in Sect. 2.3.3, 471 non-outlier datasets meeting the qual-
ity criteria were retained for model training and evaluation,
with 85 % allocated to the training set and 15 % to the test
set. The trained CNN-LSTM model was then used to pre-
dict PM10 concentrations for the 766 outlier datasets by us-
ing their eleven chemical constituent concentrations as in-
put features, with the predicted values replacing the original
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Figure 4. The architecture of the CNN-LSTM in this study.

outlier measurements to maintain data completeness. Model
performance was evaluated independently on both the train-
ing and test sets using three metrics: MAE, RMSE, and R2.
These performance metrics are mathematically expressed in
Eqs. (11)–(13). In these equations, yi represents the actual
value, ŷi denotes the predicted value, n indicates the sample
size, and y represents the mean of the actual values.

MAE=
1
n

n∑
i=1

∣∣yi − ŷi∣∣ (11)

RMSE=

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (12)

R2
= 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1(yi − y)2 (13)

3.1.1 Comparison with conventional gap-filling
techniques

The model was evaluated on both the training and test sets
after completion of training, with results presented in Ta-
ble 2 and Fig. 5. As shown in Fig. 5a, the training pro-
cess converged effectively, with the loss function decreas-
ing steadily and stabilizing at approximately 0.0007, in-
dicating successful model optimization without overfitting.
For the training set, the CNN-LSTM model achieved a
MAE of 6.6614 µgm−3, a RMSE of 8.7162 µgm−3, and a
R2 of 0.9670. When evaluated on the test set, the model
demonstrated an MAE of 12.6705 µgm−3, a RMSE of
17.4965 µgm−3, and an R2 of 0.8840.

Traditional gap-filling techniques in air quality data re-
construction commonly include Linear Regression, Random
Forest (RF), and k-nearest neighbors (KNN) methods, which
have been widely applied in environmental data analysis
(Méndez et al., 2023). To evaluate the effectiveness of our
CNN-LSTM approach, we conducted a comprehensive com-
parison with these conventional methods and individual deep
learning components, with detailed results presented in Ta-
ble 2.

In the ranking of MAE performance, from low to
high, the results are: CNN-LSTM (12.6705 µgm−3), Lin-

https://doi.org/10.5194/acp-25-14643-2025 Atmos. Chem. Phys., 25, 14643–14668, 2025
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Figure 5. (a) LOSS trends for the training sets; comparison of predictions and observations for the (b) training and (c) test sets by the
CNN-LSTM.

Table 2. Comparison of MAE, RMSE, and R2 among different
models.

Model Type MAE RMSE R2

(µgm−3) (µgm−3)

Linear Regression 12.6852 17.8804 0.8028
RF 14.6494 20.0135 0.8482
KNN 15.6263 24.2398 0.8135
CNN-LSTM 12.6705 17.4935 0.8840

ear Regression (12.6852 µgm−3), RF (14.6494 µgm−3), and
KNN (15.6263 µg m−3). While in the ranking of RMSE,
from low to high, the performance follows: CNN-LSTM
(17.4935 µgm−3), Linear Regression (17.8804 µgm−3), RF
(20.0135 µgm−3), and KNN (24.2398 µgm−3). In terms of
R2, from high to low, the algorithms perform as follows:
CNN-LSTM (0.8840), RF (0.8482), KNN (0.8135), and Lin-
ear Regression (0.8028).

This study shows that the CNN-LSTM model proposed in
this paper demonstrates good performance across all eval-
uation metrics. Linear regression, despite achieving com-
petitive MAE values, shows limitations in capturing com-
plex non-linear relationships, as evidenced by its lower R2

value. This can be attributed to the linear model’s relative
inability to capture the complex non-linear relationships in-
herent in atmospheric particulate matter dynamics (Singh
et al., 2012; Dragomir and Oprea, 2014). RF demonstrated
moderate performance with balanced metrics across MAE,
RMSE, and R2. KNN showed the least effective overall per-
formance, particularly evident in its highest RMSE value of
24.2398 µgm−3.

Overall, CNN-LSTM is the strongest performer among all
tested models. This result confirms that the combination of
CNN and LSTM is quite effective for PM10 gap-filling ap-
plications. We conducted ablation experiments in Sect. S1 in
the Supplement. As shown in Table S1 in the Supplement, the

performances of CNN and LSTM are both good, but that of
CNN-LSTM is even more outstanding. It is indicated that for
PM10 data reconstruction, it is beneficial to first perform fea-
ture extraction using CNN, and then input the feature values
into the LSTM architecture for temporal pattern recognition.

3.1.2 Leave-one-site-out cross-validation

To validate the model’s generalization capability and ensure
it captures physically meaningful variability rather than site-
specific biases, we employed a site-type-based Leave-One-
Site-Out (LOSO) cross-validation strategy. The monitoring
sites within the study area were categorized into four types
based on their functional characteristics and geographical en-
vironment: urban sites, rural sites, suburban sites, and remote
sites. LOSO cross-validation was performed separately for
each site type. For each iteration, one site of a particular type
was withheld during model training. The model was then
trained using data from the remaining sites and tested on the
withheld site.

Table 3 presents the model performance metrics for differ-
ent site types in the LOSO cross-validation, including MAE,
RMSE, andR2. The cross-validation results demonstrate that
the established neural network model exhibits good predic-
tive performance across different site types, with R2 values
exceeding 0.78 for all site types. This confirms that the model
can effectively reproduce the physically meaningful variabil-
ity in pollutant concentrations rather than merely fitting site-
specific characteristics.

Remote stations exhibit the lowest MAE (7.8523 µgm−3)
and RMSE (9.3182 µgm−3), indicating minimal prediction
errors at these site types. This is primarily attributed to
remote stations being located far from major pollution
sources, resulting in relatively low pollutant concentrations
with gradual variations that reduce absolute prediction er-
rors. However, Remote stations show a relatively low R2

value (0.7892), which may be related to their smaller con-
centration variation range, making the correlation coeffi-
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Table 3. Results of Leave-One-Site-Out (LOSO) cross-validation
for different site types.

Site Type MAE (µgm−3) RMSE (µgm−3) R2

Urban 10.9436 15.2544 0.9235
Rural 12.5448 17.6598 0.8297
Suburban 14.5934 19.0105 0.8450
Remote 7.8523 9.3182 0.7892

cient more sensitive to minor prediction deviations. Urban
stations demonstrate the highest R2 value (0.9235), while
maintaining moderate MAE (10.9436 µgm−3) and RMSE
(15.2544 µgm−3) levels. This result indicates that the model
can effectively capture pollutant concentration trends in ur-
ban environments. Urban areas feature dense and diverse
pollution sources, including vehicle emissions and industrial
emissions, which increase prediction complexity but pro-
vide larger concentration variation ranges that facilitate the
establishment of robust predictive relationships. Rural sta-
tions show moderate performance across all metrics, with
MAE of 12.5448 µg m−3, RMSE of 17.6598 µgm−3, and R2

of 0.8297. Rural areas are primarily influenced by relatively
simple pollution sources such as regional transport and agri-
cultural activities, resulting in more regular spatiotemporal
variation patterns of pollutant concentrations that the model
can effectively learn. Suburban stations display the highest
MAE (14.5934 µg m−3) and RMSE (19.0105 µgm−3), but
with an R2 value (0.8450) similar to rural stations. As transi-
tional zones between urban and rural areas, suburban regions
are simultaneously influenced by urban pollution dispersion
and rural pollution sources, exhibiting distinct transitional
and complex pollution characteristics. This composite pollu-
tion environment increases the difficulty of model prediction
and may result in higher prediction errors.

3.2 PM10 mass and chemical composition
concentrations

3.2.1 Annual average

The analysis of PM10 concentrations across diverse loca-
tions in China shows a remarkable spatial variation in the
annual mean concentrations of PM10 and its chemical con-
stituents from June 2022 to May 2023, as shown in Ta-
ble 4. Significantly elevated PM10 levels were observed at
northwestern sites, with Xi’An (XA) and Dunhuang (DH)
recording concentrations of 98.20 and 90.36 µgm−3, respec-
tively, while other sites had concentrations ranging from 40
to 80 µgm−3. These spatial patterns suggest complex inter-
actions between natural and anthropogenic factors. The ele-
vated PM10 concentrations observed in XA, a major indus-
trial city and densely populated metropolitan area, are pri-
marily due to industrial emissions and substantial high traffic
volumes. Due to its location in an arid region, DH is likely

influenced by dust storm events, as evidenced by higher con-
centrations of crustal elements such as Ca2+ (Yu et al., 2020).
While Na+ is typically associated with sea salt spray, its pres-
ence at inland sites such as DH may indicate contributions
from crustal material or other local sources (Zhang et al.,
2014b).

In contrast, the lowest PM10 concentrations were observed
at Longfengshan (LFS) and Dalian (DL) in the northeast-
ern region, with values of 40.04 and 40.35 µgm−3, respec-
tively. These relatively lower concentrations may be due to
relatively less anthropogenic activities and better air quality
in these regions. LFS, located at the interface of agricultural
and forested landscapes, primarily receives PM10 contribu-
tions from natural sources, such as soil dust resuspension
and biomass burning reported in previous research (Yu et
al., 2012). Meanwhile, Dalian’s coastal location likely con-
tributes to its lower PM10 concentrations. The observed Na+

concentration of 2.36 µgm−3 in DL may reflect the influence
of marine aerosols (Shi et al., 2022). In addition, air qual-
ity in DL is likely modulated by meteorological conditions,
especially sea breezes, which facilitate the dispersion and di-
lution of pollutants, thereby reducing PM10 concentrations
(Wang et al., 2002).

In the densely populated regions of Gucheng (GC) and
Zhengzhou (ZZ), where anthropogenic pollution sources are
abundant, the annual mean PM10 concentrations were 79.18
and 80.50 µgm−3, respectively. These elevated PM10 levels
are strongly correlated with intensive anthropogenic sources
in these regions, including industrial activities, traffic emis-
sions, and construction dust. As major industrial and trans-
portation hubs, GC and ZZ have particularly high concentra-
tions of organic matter (OM= 1.2 ·OC) and elemental car-
bon (EC), specifically 19.67 and 4.89 µgm−3 in GC, 17.35
and 4.12 µgm−3 in ZZ. Additionally, the concentrations of
sulfate (SO2−

4 ) and nitrate (NO−3 ) concentrations in ZZ and
GC were measured to be 8.70, 13.71 and 6.00, 10.94 µgm−3,
respectively. These values, which are significantly higher
than in other regions, indicate particularly active secondary
aerosol formation processes in these areas (Yang et al.,
2020b).

In the southwestern region, Chengdu (CD), located in the
Sichuan Basin, recorded an annual mean PM10 concentration
of 59.56 µgm−3. This region is characterized by high aerosol
optical depth and reduced visibility, attributed to poor disper-
sion conditions and significant local industrial emissions (Li
et al., 2003; Zhang et al., 2012).

The central Chinese sites of Jinsha (JS), Changde
(CHD), and Lin’An (LA) showed relatively lower annual
mean concentrations of PM10 which are 47.17, 46.59, and
48.16 µgm−3, respectively. Despite these lower concentra-
tions, the chemical composition shows distinct regional char-
acteristics. Ca2+ concentrations of 2.48 and 2.19 µgm−3 in
JS and LA, respectively, likely reflect contributions from soil
dust resuspension (Shen et al., 2016). K+ concentration of

https://doi.org/10.5194/acp-25-14643-2025 Atmos. Chem. Phys., 25, 14643–14668, 2025



14652 Q. Cai et al.: Measurement Report: Unraveling PM10 sources and oxidative potential across Chinese regions

Table 4. Annual average concentrations (µgm−3) of PM10 and its chemical composition in different regions of China from June 2022 to
May 2023.

Station Type PM10 OM EC Na+ NH+4 K+ Mg2+ Ca2+ F− Cl− SO2−
4 NO−3

Chengdu Urban 59.56 17.09 3.97 2.18 2.11 0.30 0.23 2.67 0.15 0.58 6.29 9.36
Dalian Urban 40.35 9.35 2.30 2.36 0.74 0.25 0.25 1.89 0.04 0.69 3.19 5.00
Lhasa Urban 47.82 16.85 4.16 2.51 0.07 0.32 0.26 1.75 0.05 1.18 1.55 1.12
Nanning Urban 54.23 12.87 3.50 2.03 1.20 0.37 0.21 2.89 0.07 0.64 7.21 5.09
Xi’An Urban 98.20 19.13 4.87 2.50 2.64 0.76 0.37 4.97 0.15 1.67 8.67 12.82
Changde Rural 46.59 9.05 2.17 0.44 2.76 0.44 0.08 1.02 0.03 0.27 6.16 6.18
Gucheng Rural 79.18 19.67 4.89 2.08 1.78 0.35 0.46 4.01 0.09 1.21 6.00 10.94
Dunhuang Suburban 90.36 23.24 4.78 4.43 0.16 0.36 0.46 6.31 0.06 2.57 5.90 2.29
Zhengzhou Suburban 80.50 17.35 4.12 1.71 3.43 0.45 0.32 3.03 0.21 0.86 8.70 13.71
Jinsha Remote 47.17 12.14 2.07 1.52 1.45 0.40 0.20 2.48 0.08 0.58 5.82 6.89
Lin’An Remote 48.16 13.02 2.92 1.37 1.46 0.34 0.22 2.19 0.04 0.66 5.37 7.42
Longfengshan Remote 40.04 12.31 2.52 1.21 1.14 0.36 0.15 1.61 0.06 0.50 4.04 4.25

0.44 µgm−3 observed in CHD may be related to agricultural
activities in the region (Liu et al., 2016).

Lhasa (LS), located in the center of the Tibetan Plateau
at an elevation of 3663 m, has PM10 concentrations that
are primarily influenced by natural factors due to its rel-
atively sparse population and limited industrial emissions.
Nevertheless, LS maintained an average PM10 concentra-
tion of 47.82 µgm−3, mainly due to extensive dust resuspen-
sion from arid and exposed terrain, coupled with regional
dust storm events. The plateau’s climatic conditions, char-
acterized by particularly strong winds and low humidity, en-
hance the dispersal of soil dust and maintain relatively high
PM10 levels despite the absence of significant anthropogenic
sources.

The annual mean PM10 concentrations for urban, ru-
ral, suburban, and remote sites were 59.99± 29.38µgm−3,
62.88± 27.58µgm−3, 85.43± 39.43µgm−3, and 45.12±
14.67µgm−3, respectively. These data show that urban-rural
transition zones had the highest PM10 concentrations, which
may be due to the simultaneous influence of multiple pollu-
tion sources from both urban and rural areas, including in-
dustrial emissions, traffic pollution, and agricultural activi-
ties (Li et al., 2014). In contrast, remote sites had the low-
est PM10 concentrations, reflecting minimal anthropogenic
influence in these regions, with primary pollution sources
consisting of natural dust resuspension and long-range trans-
ported pollutants (Jiao et al., 2021).

3.2.2 Seasonal variation

Monthly variations in PM10 concentrations are shown in
Fig. 6. Overall, the study area shows a significant sea-
sonal differentiation of PM10 concentrations, characterized
by minimum levels in summer (June–August), maximum
levels in winter (December–February), and a secondary peak
in spring (March–May). Multiple studies have also identi-
fied distinct seasonal patterns in PM10 concentrations, with

minimal concentrations in summer and maximal concentra-
tions in winter (Yang, 2009; Qu et al., 2010; Li et al., 2009).
The lower PM10 concentrations observed in summer may be
attributed to increased precipitation, which effectively scav-
enges atmospheric particulate matter (Yang, 2009). In addi-
tion, research has shown significant negative correlations be-
tween PM10 concentrations and temperature, as well as posi-
tive correlations with atmospheric pressure (Han et al., 2015;
Li et al., 2019). Elevated PM10 concentrations in winter are
primarily associated with increased solid fuel consumption
during the heating season (Tsvetanova et al., 2018). Ad-
ditionally, unfavorable meteorological conditions in winter,
including high atmospheric stability, reduced atmospheric
boundary layer height, and frequent temperature inversions,
exacerbate the accumulation of pollutants (Zhao et al., 2014).
Five monitoring stations including GC, LFS, DH, LA, and
Nanning (NN) exhibited significantly elevated concentra-
tions during spring, which can be attributed to multiple fac-
tors. Firstly, the frequent occurrence of dust events during
spring increases atmospheric particulate matter concentra-
tions. Secondly, weak wind conditions and local circulation
patterns establish local emissions as the primary source of
PM10 (Park et al., 2019). Moreover, regional transport repre-
sents a significant influencing factor, with studies indicating
substantial contributions to PM10 concentrations from dust
transport from northwestern regions and pollutant transport
from surrounding urban agglomerations in spring (Ham et
al., 2017).

The results indicate significant seasonal variations in
monthly mean concentrations of OM and EC in urban, rural,
and suburban sites. All three functional site types showed the
lowest concentrations in summer and the highest in winter,
consistent with previous studies confirming the widespread
winter-high and summer-low seasonal pattern of carbona-
ceous components in PM10 across China (Tian et al., 2013).
The elevated concentrations of OM and EC in winter corre-
late primarily with increased fossil fuel and biomass combus-
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Figure 6. Stacked Representation of Monthly averaged PM10 Concentrations and Chemical Composition (µgm−3) across Chinese Regions,
Including Unknown Components from June 2022 to May 2023 (n. d.: Unknown Components). The map base is from the Ministry of Natural
Resources’ Standard Map Service, review number GS (2019)1822.

tion emissions during the heating season, coupled with un-
favorable meteorological dispersion conditions. Conversely,
the decrease concentrations in summer are attributed to in-
creased precipitation, increased mixing layer height, and re-
duced stationary source emissions due to higher tempera-
tures. However, remote sites showed different seasonal pat-
terns than other sites, with OM and EC concentration peaks
occurring in spring and fall. This phenomenon may be as-
sociated with regional-scale dust transport, biomass burning
activities, and increased open-source emissions, while also
reflecting minimal local anthropogenic influence at remote
sites, better representing regional background concentration
variations.

We observed generally higher concentrations of SO2−
4 and

NO−3 in winter compared to lower concentrations in summer.
This seasonal pattern is primarily due to increased SO2 and
NOx emissions from extensive fossil fuel combustion, espe-
cially coal, during the winter heating season, which provides
abundant precursors for the formation of sulfate and nitrate.

In addition, stable atmospheric stratification and frequent
temperature inversions in winter inhibit the dispersion of pol-
lutants, leading to near-surface accumulation of these sec-
ondary inorganic ions. Furthermore, the relatively lower tem-
peratures in winter facilitate the gas-to-particle conversion
of gaseous precursors, promoting the partitioning of semi-
volatiles such as ammonium sulfate and ammonium nitrate to
the particulate phase (Wang et al., 2020). In contrast, higher
summer temperatures favor the gaseous state of these semi-
volatile substances, while frequent convection and stronger
atmospheric dispersion conditions significantly reduce sul-
fate and nitrate concentrations in PM10 (Simonich and Hites,
1994). This seasonal pattern is consistent with observations
from other regional studies and reflects the close relation-
ship between secondary inorganic ion formation mechanisms
and meteorological conditions (Liu et al., 2017a; Wang et al.,
2023a).

https://doi.org/10.5194/acp-25-14643-2025 Atmos. Chem. Phys., 25, 14643–14668, 2025



14654 Q. Cai et al.: Measurement Report: Unraveling PM10 sources and oxidative potential across Chinese regions

Figure 7. Seasonal variations of (a) PM10 concentrations (µgm−3) and (b) OPv (nmolH2O2 m−3) across different regions of China. The
map bases are from the Ministry of Natural Resources’ Standard Map Service, review number GS (2019)1822.

3.3 OP concentrations

As shown in Fig. 7, OP measurements conducted at twelve
different sampling sites across China from June 2022 to May
2023 revealed significant temporal and spatial variability in
OPv. Further analysis revealed a strong correlation between
OPv and the degree of urbanization at the sampling sites. Ta-
ble 5 indicates that during the sampling period, the urban site
in Chengdu had significantly higher OPv levels compared to
the other sites, while the rural site in CHD had the lowest
OPv levels. However, the study revealed unexpectedly high
average OPv levels at the rural site in GC, ranking second
highest among all sites. This finding is consistent with the
high PM10 mass concentrations observed at this site, sug-
gesting a strong correlation between particulate matter load-
ing and OPv levels. GC, located in the Beijing-Tianjin-Hebei
region characterized by high population density and typi-
cal pollution concentration, experiences elevated OPv levels
likely due to the combined influence of high PM10 concentra-
tions, pollutant transport from surrounding urban areas, and
local emissions (Han et al., 2015). In contrast, the urban site
in DL demonstrated relatively low average OPv levels, rank-
ing second lowest. This phenomenon may be attributed to the
coastal location of DL, which benefits from strong marine air
mass modulation and favorable atmospheric dispersion con-
ditions (Meng et al., 2019), resulting in comparatively lower
OPv levels.

As shown in Fig. 7a and b, sites located in northern
China exhibited significantly elevated PM10 concentrations
and OPv levels during the autumn and winter seasons. This
phenomenon in northern Chinese sites can be attributed to
several factors unique to northern China’s regional charac-
teristics. Firstly, the widespread reliance on coal-based cen-

tral heating systems and biomass burning for residential heat-
ing in northern China during the heating season (typically
from November to March) (Liu et al., 2017b; Li et al., 2017)
sharply contrasts with southern China where heating de-
mand is minimal due to milder winter temperatures. In ad-
dition, northern China’s continental climate creates more se-
vere winter meteorological conditions, including prolonged
periods of low wind speeds, frequent temperature inver-
sions, and significantly reduced atmospheric boundary layer
heights compared to the more temperate conditions in south-
ern regions, which severely inhibited pollutant dispersion (Li
et al., 2017). Despite lower levels of urbanization in rural
areas, PM10 concentrations were comparable to urban areas
due to the widespread use of solid fuels (Li et al., 2014).
Figure 7b shows that nine of the twelve sites had lower OPv
values in summer. This may be due to more frequent rainfall,
which reduces PM10 concentrations and subsequently leads
to lower OPv levels. However, sites such as LS and CD main-
tained relatively high OPv levels during the summer. This
phenomenon may be related to the enhanced of photochem-
ical reactions during summer, especially under conditions of
high temperature and strong solar radiation, resulting in a
significant increase in secondary organic aerosol (SOA) for-
mation (Zhou et al., 2019; Saffari et al., 2014). In particular,
Lhasa’s high-altitude location, characterized by minimal pre-
cipitation and intense solar radiation, further promoted pho-
tochemical reactions, resulting in elevated OPv levels.

We observed elevated OPv levels at remote stations (such
as LFS, JS, and LA stations) in spring. This phenomenon
may be attributed to the minimal influence of anthropogenic
pollution sources at remote stations, which typically exhibit
more homogeneous mixing states and consequently have rel-
atively lower and more stable OPv levels during other sea-
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Table 5. Annual averaged OPv (nmolH2O2 m−3) for PM10 across
different regions of China from June 2022 to May 2023.

OPv

Station Average Median

Chengdu 0.85 0.57
Dalian 0.30 0.14
Lhasa 0.60 0.57
Nanning 0.56 0.50
Xi’An 0.73 0.74
Changde 0.22 0.21
Gucheng 0.83 0.75
Dunhuang 0.76 0.50
Zhengzhou 0.42 0.40
Jinsha 0.54 0.40
Lin’An 0.46 0.45
Longfengshan 0.57 0.52

sons. However, the frequent occurrence of dust storms and
increased temperature inversion events during spring can
lead to elevated particulate matter concentrations. In addi-
tion, the potential metal components carried by dust particles
and the formation of secondary aerosols further enhance OPv
levels (Saffari et al., 2014), resulting in significantly elevated
OPv levels during spring.

We conducted a discussion on the differences between
northern and southern sites across these 11 stations (exclud-
ing LS) in China. The geographical division corresponding
to the station is shown in Table S2. The distinction between
northern and southern sites and the specific analytical meth-
ods are detailed in S2. As shown in Fig. 8a, OPv concentra-
tions in northern regions exhibited higher levels during the
winter, primarily due to increased pollutant emissions asso-
ciated with coal-based heating activities. In contrast, south-
ern regions exhibited peak OPv concentrations in June, pos-
sibly due to enhanced photochemical reactions facilitated by
stronger solar radiation intensity. However, a significant de-
crease was observed in July and August, which may be at-
tributed to the increased frequency of precipitation events
leading to enhanced wet deposition and the removal of par-
ticulate matter. Figure 8b shows that the annual mean OPv
concentrations in northern regions were significantly higher
than those in southern regions (p < 0.05). This spatial varia-
tion can be attributed to several factors, including lower pre-
cipitation rates, frequent dust weather events, and emissions
of coal combustion emissions in northern regions.

3.4 Source apportionment

3.4.1 Source apportionment of PM10

This study employed the PMF model to conduct a detailed
analysis of PM10 sources at four representative sites selected
based on distinct geographical and environmental character-

istics. The selection criteria considered regional represen-
tativeness, pollution characteristics, and geographical diver-
sity across China. The selected sites include: NN, an urban
site in southern China with coastal proximity; Longfeng-
shan (LFS), a remote site located in the northeastern region
of Heilongjiang Province; ZZ, a suburban site serving as a
major transportation hub in central China; and GC, a rural
site situated in the heavily polluted Beijing-Tianjin-Hebei re-
gion. These four sites collectively represent different pollu-
tion source characteristics and regional environmental con-
ditions, enabling a comprehensive understanding of PM10
source apportionment across diverse geographical and cli-
matic zones in China. The optimal number of factors for
PMF analysis was determined based on Qtrue/Qrobust values
and BS mapping evaluation, as illustrated in Fig. S1 in the
Supplement. The PMF results in this study were subjected to
BS, DISP, and BS-DISP error estimation analyses. Summary
of error estimation diagnostics with PMF at NN, LFS, ZZ
and GC stations are shown in Table S3. Results indicate that
PM10 in NN likely originates primarily from biomass burn-
ing, dust, traffic, secondary aerosols, and sea salt emissions.
Sources of PM10 in LFS may include secondary aerosols,
traffic, dust, chloride-rich combustion, and agricultural activ-
ities. The ZZ site showed secondary aerosols, biomass burn-
ing, traffic, coal combustion, dust, and industry as the main
sources. PM10 sources in GC are agricultural activities, traf-
fic, biomass burning, secondary aerosols, chloride-rich com-
bustion, dust, and coal combustion. Figure 9 summarizes the
distribution of PM10 mass concentrations among the major
sources at the four sites.

As a typical urban site, the PM10 source apportionment
results at the NN site indicate that biomass burning, dust,
and traffic are likely the main contributors, accounting for
39.3 %, 27.4 %, and 21.4 % of total sources, respectively. As
shown in Fig. 10, the first factor contained high levels of
Cl− (76.9 %), Mg2+ (27.6 %), and Na+ (14.3 %), elements
typically associated with sea salt (Viana et al., 2008), con-
tributing approximately 5 % to PM10. Sea salt as a source
of PM10 in NN likely enters urban areas primarily through
coastal air mass transport. NN is about 110 kilometers from
the Beibu Gulf, and when prevailing southerly winds occur,
sea salt aerosols from the South China Sea may migrate to in-
land cities through atmospheric circulation. The second fac-
tor contained high levels of Na+ (66.7 %), Ca2+(48.1 %) and
Mg2+ (17.5 %), contributing approximately 26 % to PM10.
This likely represents dust sources (Sharma et al., 2016), in-
dicating that human activities such as urban construction may
have some impact on particulate emissions. The third fac-
tor had high levels of NH+4 (84.2 %), SO2−

4 (45.7 %), and
NO−3 (44.4 %), contributing approximately 6.9 % to PM10,
possibly representing secondary aerosols. This suggests that
the process of gaseous precursors (such as SO2, NOx ,
and VOCs) in the atmosphere forming secondary particles
through photochemical reactions may have a certain impact
on PM10 concentrations (Yue et al., 2015). The fourth factor
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Figure 8. Comparison of (a) monthly and (b) annual average OPv between sites in northern and southern China.

Figure 9. The contributions of Traffic, Biomass burning, Secondary aerosol, Dust, Coal combustion, Agricultural activities, Chloride-rich
combustion, Sea salt, and Industry to the atmospheric concentration of PM10 mass (%) as derived by PMF modelling at NN, LFS, ZZ, and
GC.

contained high levels of Mg2+ (54.8 %), EC (50.7 %) and OC
(38.2 %), contributing approximately 20.2 % to PM10, possi-
bly related to traffic. EC and OC have long been considered
the main tracer elements for traffic emission sources, par-
ticularly vehicle exhaust emissions (Saarikoski et al., 2008;

Sowlat et al., 2016; Esmaeilirad et al., 2020). Research has
shown that Mg is one of the elements present in high con-
centrations in brake pad materials. Mg is typically used as a
filler material in brake pads, and along with Fe, Ba and Cu,
serves as a characteristic element of brake wear (Mckenzie et
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al., 2009). At the NN urban site, which is heavily influenced
by traffic, brake wear is likely the primary source of these
elements. The fifth factor had high levels of K+ (74.9 %),
OC (37.2 %), and EC (35.1 %), substances typically associ-
ated with biomass burning (Stracquadanio et al., 2019). This
factor made a significant contribution to urban PM10 in NN,
approximately 39.3 %, indicating that biomass burning may
be one of the important sources of atmospheric particulate
pollution in NN. Although the observation point is located in
the urban area of NN, which may be at some distance from
areas where straw burning occurs, studies have shown that
particulate matter produced by biomass burning may undergo
long-distance transport (Uranishi et al., 2019).

The PM10 source apportionment results for LFS indicate
that secondary aerosols may be the main contributor, ac-
counting for 36.2 % of total sources. Source analysis iden-
tified five potential major factors: In the first factor, NH+4
(71.0 %), Mg2+ (26.5 %), and NO−3 (18.0 %) were present
in high concentrations. NH+4 and NO−3 are the main nitro-
gen components in agricultural fertilizers (Cao et al., 2018),
while Mg2+ is commonly added to fertilizers as a supple-
mentary element (Sun et al., 2018). This factor may be re-
lated to agricultural activities, particularly fertilizer applica-
tion processes. The second factor contained high levels of
Na+ (74.6 %), Mg2+ (46.2 %), and Ca2+ (50.8 %), elements
typically associated with dust sources (Zhang et al., 2014a;
Sharma et al., 2016), contributing approximately 16.9 % to
PM10. The third factor had high levels of EC (74.0 %) and
OC (38.3 %), components typically associated with traf-
fic (Esmaeilirad et al., 2020), contributing approximately
17.6 %. The fourth factor is dominated by Cl− (79.2 %)
with concentrations approximately one order of magnitude
higher than K+ (22.7 %), indicating a chloride-rich combus-
tion source. This pattern suggests combustion of chloride-
containing materials or waste burning, which can produce el-
evated chloride emissions. The fifth factor had high levels of
SO2−

4 (70.7 %) and NO−3 (71.9 %), with NH+4 (27.3 %) also
making a considerable contribution, these components are
typically associated with secondary aerosol formation pro-
cesses (Yue et al., 2015).

ZZ is located in a suburban area, and the diversity of its
PM10 sources may reflect the complex environmental char-
acteristics of this region. Source apportionment results sug-
gest that there may be six major pollution sources in this
area, with their respective contribution proportions as fol-
lows: The first factor had high contribution of K+ (21.7 %)
and Cl− (83.9 %), but low contribution of OC (4.6 %) and
EC (2.8 %), possibly indicating the influence of industrial
emissions, such as food manufacturing, cement manufactur-
ing, salt production, or industrial activities involving potas-
sium chloride compounds (Yin et al., 2019; Seo et al., 2019),
with a contribution proportion of approximately 9.5 %.The
second factor contained high levels of Na+ (77.6 %), Mg2+

(35.3 %), and Ca2+ (43.2 %), elements typically associated
with dust sources (Sharma et al., 2016), contributing approx-

imately 13.2 % to PM10. In the third factor, Mg2+ (42.1 %)
and SO2−

4 (46.9 %) had relatively high concentrations. Since
SO2−

4 primarily originates from fuel combustion (Schwartz,
1993), and Mg is specifically mentioned as an element en-
riched in the magnetic separation of coal fly ash (Strza-
łkowska, 2021), this factor is associated with emissions from
coal combustion when regional characteristics are consid-
ered. Coal combustion accounts for around 15.5 % of PM10
emissions and is likely to be associated with combined heat
and power facilities in the surrounding area. The fourth fac-
tor had high levels of EC (49.2 %) and OC (22.1 %), com-
ponents typically associated with traffic (Esmaeilirad et al.,
2020), contributing approximately 16.6 %. The fifth factor
contained high levels of NH+4 (80.1 %), SO2−

4 (33.0 %), and
NO−3 (52.6 %), components typically associated with sec-
ondary aerosol formation processes (Yue et al., 2015), ac-
counting for approximately 23.2 % of total PM10 sources.
The sixth factor had high levels of K+ (60.6 %), EC (39.3 %),
Ca2+ (38.4 %), and OC (28.8 %), contributing approximately
22 % to PM10. K+, EC, and OC are tracers for biomass burn-
ing emissions (Stracquadanio et al., 2019). Given ZZ’s lo-
cation in a suburban of Zhengzhou, this factor likely repre-
sents crop residue burning and residential biomass combus-
tion common in central China’s agricultural regions.

The PM10 source apportionment results for the GC
show that agricultural activities, traffic emissions, secondary
aerosols, and Chloride-rich combustion are the main con-
tributors, accounting for 20.5 %, 20 %, 18.5 %, and 18.1 %
of total sources, respectively. The factor with K+ (42.7 %),
NO−3 (38.4 %), and Ca2+ (29.2 %) as primary characteris-
tic species may be related to agricultural activities, account-
ing for 20.5 %. This likely reflects the contribution of corn,
wheat, and other farming activities around the site to PM10,
potentially associated with the agricultural-dominant eco-
nomic structure of this rural area. Ca2+ and NO−3 may origi-
nate from agricultural soil dust during tillage and other agri-
cultural processes, and NO−3 could be related to fertilizer ap-
plication (Yu and Cao, 2023; Cao et al., 2018). Similar to the
ZZ site, this agricultural source attribution is supported by
Jung et al., who found elevated K+ concentrations at schools
near corn farms (Jung et al., 2024). The factor characterized
by EC (65.1 %) and OC (48.1 %) likely comes from traf-
fic (Esmaeilirad et al., 2020), representing the second-largest
contributor to PM10 at 20 %. This indicates that transporta-
tion activities in rural areas may have a significant impact on
PM10 concentrations. The GC is relatively close to National
Highway 107, and traffic emissions from the highway may
contribute to the site’s PM10 concentration through trans-
port. Additionally, the increasing vehicle ownership in ru-
ral areas may be a contributing factor. Secondary aerosols,
characterized by NH+4 (93.0 %), SO2−

4 (45.6 %), and NO−3
(52.3 %), account for 18.5 %, indicating the important role
of atmospheric secondary transformation processes in PM10
formation in this region (Yue et al., 2015). The fourth factor
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Figure 10. Chemical profiles of the source factors identified at NN, LFS, ZZ and GC. The bars represent the chemical composition profiles
(left y axis) and the dots indicate the contribution values (right y axis).
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characterized by Cl− (76.2 %) represents chloride-rich com-
bustion, accounting for 18.1 %. Similar to LFS, this factor
is dominated by Cl− with concentrations, indicating a spe-
cific chloride-rich combustion source. The factor character-
ized by Na+ (75.2 %) and Ca2+ (44.6 %) may be related to
dust (Sharma et al., 2016), accounting for 14.7 %, potentially
reflecting the impact of agricultural cultivation and road dust
on PM10. The factor characterized by Mg2+ (43.0 %) and
SO2−

4 (47.8 %) may be related to coal combustion emissions,
accounting for 8.3 %. This suggests that industrial activities
and residential coal use in rural areas may have some impact
on PM10, especially during the winter heating season when
such emissions may become more prominent.

The contrasting OC/EC loadings in the agricultural ac-
tivities factor between the suburban ZZ site and rural GC
site reveal important insights into the spatial heterogeneity of
agricultural emissions. The suburban ZZ site, located in the
intensively cultivated Central Plains, experiences higher car-
bonaceous aerosol loadings from mechanized farming opera-
tions, which contribute significantly to EC emissions through
diesel exhaust from agricultural machinery (Liu et al., 2018).
In contrast, the rural GC site in Baoding represents areas with
traditional, less mechanized farming practices, resulting in
minimal EC contributions from agricultural activities.

A notable pattern observed among the two sites with agri-
cultural activities (LFS and GC) is the differential contri-
bution of NH+4 within agricultural emission factors, with
NH+4 being exclusively associated with agricultural activi-
ties at the LFS site. This spatial variation reflects the com-
plex interplay between regional meteorological conditions,
agricultural practices, and atmospheric chemistry processes.
At the LFS site in northeastern China, cooler climate con-
ditions favor the stability of particulate NH+4 , allowing its
direct retention within agricultural emission factors (Wang
et al., 2020). The concentrated fertilizer application during
the spring planting season, combined with lower ambient
temperatures that minimize NH+4 volatilization, preserves
the distinct agricultural source signature at this remote lo-
cation (Huo et al., 2025). Conversely, at the warmer GC
site in central and northern China, NH+4 undergoes more ex-
tensive atmospheric processing due to higher ambient tem-
peratures. These conditions promote the volatilization of
NH+4 to gaseous NH3, which subsequently undergoes sec-
ondary reactions with acidic species (SO2−

4 and NO−3 ) to
form ammonium-containing secondary aerosols (Stelson and
Seinfeld, 1982; Wang et al., 2015).

3.4.2 Source apportionment of OP in PM10

In this study, the PMF model was applied to identify the
sources of OPv in PM10 samples collected from four sites.
As indicated in Fig. 11, the comparison of OPm across dif-
ferent pollution sources offered insights into the differential
toxic efficiencies of these sources. Through comparison of

OPm across different pollution sources, insights into the dif-
ferential toxic efficiencies of various sources were obtained.

Traffic

Traffic emission is a common important contributing source
to OP at the four sites NN, LFS, ZZ and GC. The high OP
of traffic emissions is mainly attributed to the oxidative com-
ponents in their particulate matter emissions, including or-
ganic carbon as well as potentially present PAHs and transi-
tion metals (TMs) (Valavanidis et al., 2008). Traffic sources
showed high OPm (0.013–0.022 nmolH2O2 µg−1) at all mon-
itoring sites, indicating that the particulate matter they gen-
erate has significant toxic efficiency. The high oxidative ac-
tivity of traffic-emitted particulate matter may be related to
its complex chemical composition. PAHs emitted from traf-
fic sources can form quinone compounds and other oxygen-
containing organic compounds, which can promote reactive
oxygen species generation through redox reactions (Nielsen,
1996; Libalova et al., 2018).

Biomass burning

Biomass burning sources were highly detected to con-
tribute to OP at NN and ZZ sites, with OPm of 0.019 and
0.012 nmolH2O2 µg−1, respectively. This is closely related
to the frequent crop straw burning activities in the region.
Particulate matter emitted from biomass burning has com-
plex chemical compositions, and its OP primarily origi-
nates from various organic compounds produced during the
combustion process. Biomass burning produces substantial
amounts of PAHs, which can form quinone intermediates,
subsequently participating in ROS generation processes (Zhu
et al., 2024; Libalova et al., 2018). The biomass burning
process also releases water-soluble organic carbon (WSOC),
which contains humic-like substances (HULIS) with signifi-
cant oxidative activity (Yan et al., 2015; Salma et al., 2010).
These macromolecular organic compounds contain abundant
functional groups such as hydroxyl, carbonyl, and carboxyl
groups, which can generate reactive oxygen species like hy-
droxyl radicals and hydrogen peroxide through photochem-
ical reactions and metal-catalyzed reactions (Verma et al.,
2015; Lin and Yu, 2011).

Secondary aerosols

Secondary aerosols exhibited distinctly different patterns at
different sites. At the LFS and GC sites, OPm values of
secondary aerosols are 0.005 and 0.014 nmolH2O2 µg−1, re-
spectively, while the OP contributions of secondary aerosols
were completely absent at NN and ZZ sites. PMF analysis
revealed that OC at NN and ZZ sites was dominated by pri-
mary emissions with negligible SOA contributions, explain-
ing their zero OP values. The photochemical oxidation of
volatile organic compounds (VOCs) generates redox-active
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Figure 11. Comparison of OPm contributions from different emission sources across NN, LFS, ZZ and GC sites.

products (aldehydes, ketones, peroxides) that contribute to
aerosol OP through ROS generation (Kong et al., 2023; Chen
et al., 2022; Wei et al., 2022; Lin and Yu, 2011). The absence
of secondary aerosol OP at NN and ZZ sites reflects their
PMF-resolved source profiles: these sites were characterized
by primary sources with low oxidation states, indicating lim-
ited photochemical processing.

Dust

The minerals contained in dust can participate in the ROS
generation process (Nishita-Hara et al., 2019; Lodovici and
Bigagli, 2011). The OPm values of dust at NN, LFS, and
GC, are 0.004, 0.009, and 0.016 nmolH2O2 µg−1, respec-
tively. The dust source at the GC site exhibited the high-
est toxic efficiency, which may be attributed to its location
in the highly industrialized Beijing-Tianjin-Hebei region, re-
sulting in elevated TMs emissions (Li et al., 2022). Notably,
the dust source at the ZZ site contributed zero to the OP,
suggesting the possible presence of chemically inert mineral
phases in this region. This absence of oxidative activity may
be attributed to limited TMs content in the local soil and the
unique chemical characteristics of dust particles. The oxida-
tive activity of dust particles is primarily associated with their
complex mineral composition and surface chemical proper-
ties. Specifically, iron-containing minerals can catalyze ROS
formation through Fenton reactions, while clay minerals pro-
vide large specific surface areas that facilitate metal ion ad-
sorption and subsequent redox reactions (Saffari et al., 2014;
Guo et al., 2020; Liu et al., 2022). Due to differences in
geological background, dust from different regions exhibits

significant variations in mineral composition, leading to dif-
ferences in their oxidative activity (Gonçalves Ageitos et
al., 2023; Jeong, 2024; Nishita-Hara et al., 2023). Further-
more, quartz particles demonstrate certain oxidative activ-
ity through surface catalytic reactions, with surface silanol
groups and defect sites promoting the generation of qOH
(Konecny et al., 2001).

Coal combustion

PM emitted from coal combustion may contain numer-
ous TMs and PAHs, which can promote ROS generation
through pathways such as the Fenton reaction, thereby en-
hancing the OP of the particles (Pardo et al., 2020). No-
tably, coal combustion sources exhibit significant differ-
ences in OPm contributions at the ZZ and GC sites (0.008
and 0.017 nmolH2O2 µg−1, respectively). This disparity in
mass-specific toxicity may reflect variations in coal types or
pollution control technologies across different regions, ul-
timately influencing the chemical composition and toxico-
logical characteristics of the emitted particles. The organic
carbon fraction of coal combustion emissions contains sub-
stantial amounts of oxygenated organic compounds, such as
aldehydes and ketones, which can directly participate in ox-
idative stress reactions or act as precursors for generating
stronger oxidants (Wang et al., 2023b). Different coal types
produce particles with distinct oxidative properties. For in-
stance, lignite combustion, due to its higher volatile mat-
ter content, tends to generate more organic compounds, re-
sulting in relatively higher oxidative activity (Martens et al.,
2021). Combustion technologies and pollution control mea-
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sures also significantly influence the OP of coal-derived par-
ticles. Modern coal-fired power plants equipped with desul-
furization (FGD), denitrification (SCR/SNCR), and partic-
ulate removal systems can effectively reduce certain redox-
active components, thereby lowering the toxic efficiency of
the emitted particles (Tao et al., 2020; Asif et al., 2022). The
observed differences in oxidative activity between the ZZ
and GC sites may be closely linked to local coal quality, com-
bustion facility technologies, and the implementation level of
environmental protection measures.

Agricultural activity

The OP of agricultural activities was only detected at the GC
site, with OPm of 0.004 nmolH2O2 µg−1, while no OP con-
tribution from agricultural activities was observed at the LFS
site. PMF analysis showed contrasting patterns: agricultural
factors at LFS were dominated by NH+4 while GC showed
minimal NH+4 contributions. At LFS, the predominance of
NH+4 in agricultural factors likely forms stable ammonium
salts that neutralize particle acidity and reduce redox activ-
ity. In contrast, the lower NH+4 at GC may allow agricultural
particles to maintain higher acidity and preserve the redox
activity of trace metal components or organic matter (Tong
et al., 2017; Wei et al., 2022). The presence of NH+4 can al-
ter particle pH and ionic strength, affecting the solubility and
reactivity of redox-active species (Zhang et al., 2021, 2025).

Chloride-rich combustion

The OP of chloride-rich combustion was only detected at the
GC site, with an OPm of 0.006 nmolH2O2 µg−1, while no
OP was observed at the LFS site. This difference may be
mainly attributed to the different pollution source character-
istics and geographical locations of the two sites. The GC site
is located in the Beijing-Tianjin-Hebei atmospheric pollution
transport corridor and, as an industrial agglomeration area,
the chlorine-rich combustion processes may be accompanied
by co-emission or formation of more transition metals and
other catalytically active components (Li et al., 2022). These
metal ions can catalyze the generation of ROS through Fen-
ton reactions and other pathways, thereby possibly exhibiting
significant OP (Saffari et al., 2014; Guo et al., 2020). In con-
trast, LFS as a remote site may lack catalytically active metal
components, and therefore showed no detectable OP.

Sea salt

Although NN is located inland, it is influenced by air masses
originating from the South China Sea, enabling long-range
transport of sea salt aerosols that affect local atmospheric
OP. Halogen compounds (e.g., Cl−, Br−) in sea salt can cat-
alyze the generation of radicals such as qOH and Cl q, thereby
participating in atmospheric oxidation processes (Cao et al.,

2024; Knipping et al., 2000). At the NN site, the OPm of sea
salt aerosols was measured at 0.016 nmolH2O2 µg−1.

Industry

The PMF results revealed that industrial emissions at ZZ
were dominated by Cl− and K+ with negligible contribu-
tions from OC and EC. OC typically serves as the primary
contributor to particle oxidative activity through redox-active
organic species, including quinones and phenolic compounds
that can participate in electron transfer reactions and generate
ROS (Libalova et al., 2018; Jiang and Jang, 2018). The ab-
sence of organic carbon compounds provides a mechanistic
explanation for the zero OP observed in this source profile.

4 Conclusions

This study utilized a comprehensive approach to analyze the
characteristics and sources of PM10 and its OP at 12 repre-
sentative sites in China. The main findings are summarized
as follows:

1. Performance of CNN-LSTM deep learning model

The CNN-LSTM deep learning model exhibited robust
performance in reconstructing missing data for PM10
mass concentrations and outliers in chemical compo-
nents. The model achieved R2 values of 0.9670 and
0.8840 for the training and testing sets, respectively.
These results highlight the potential of the model to ad-
dress missing data issues in PM10 research.

2. Spatiotemporal variations in PM10 and OP levels

PM10 and OP concentrations showed remarkable spatial
and temporal variations:

– PM10 concentrations were relatively higher in XA
and DH in the northwestern region, while lower in
LFS and DL in the northeastern region.

– Suburban sites generally exhibited higher PM10
concentrations compared to other site types.

– OP levels were relatively higher in CD and GC,
with urban sites having higher OPv values than
other sites.

– Annual average PM10 concentrations in northern
regions were typically higher than in southern re-
gions.

– Seasonally, PM10 and OP levels were higher in win-
ter and lower in summer, suggesting the potential
benefits of implementing targeted control measures
during high-risk periods to mitigate adverse health
impacts.

3. PM10 source apportionment
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Source apportionment using PMF indicated that dust
(13.2 %–27.4 %), secondary aerosols (6.9 %–36.2 %),
traffic (16.6 %–21.4 %), and biomass burning (22 %–
39.3 %) were likely the main contributing sources to
PM10 mass concentrations at the study sites. Under-
standing the contributions of these sources is crucial for
developing more effective PM10 reduction strategies.

4. OP source analysis

OPm analysis revealed significant spatial variations
in toxic efficiency across different sources. Traffic
sources demonstrated consistently high OPm values
(0.013–0.022 nmolH2O2 µg−1) across all four sampling
sites, while biomass burning exhibited elevated OPm
at NN and ZZ sites (0.012 and 0.019 nmolH2O2 µg−1,
respectively). Coal combustion also showed high
OPm values at both ZZ and GC sites (0.008 and
0.017 nmolH2O2 µg−1, respectively), indicating the
substantial toxic efficiency of particulate matter from
these three major sources. Other sources displayed
notable regional variations. Secondary aerosols con-
tributed zero OP at NN and ZZ sites, likely due
to local VOC emission patterns and oxidation pro-
cesses. Dust sources showed zero contribution at
ZZ, potentially related to the inherent composition
of local dust particles. Agricultural activities exhib-
ited zero OP at LFS, possibly due to NH+4 neutral-
ization effects that reduced redox activity. At GC,
chloride-rich combustion demonstrated OP contribu-
tion (0.006 nmolH2O2 µg−1), likely attributed to ele-
vated TMs emissions in Beijing-Tianjin-Hebei region
that promote ROS formation. Sea salt aerosols at NN
showed an OPm of 0.016 nmolH2O2 µg−1, which was
attributed to the catalytic effect of halogen compounds
on ROS. In contrast, industrial emissions at ZZ exhib-
ited zero OP due to minimal organic carbon content.

The study results underscore the importance of identi-
fying and quantifying OP sources to assess and mitigate
health risks associated with PM10 exposure. The source
apportionment findings suggest that emission reduction
measures targeting traffic, biomass burning, and coal
combustion may help lower OP levels and protect pub-
lic health. This research employed deep learning tech-
niques to analyze the spatiotemporal distribution char-
acteristics, source apportionment, and influencing fac-
tors of PM10 and its OP in different typical regions of
China from multiple perspectives. The findings provide
a scientific basis for better understanding the causes of
PM10 pollution, formulating control strategies, and mit-
igating health risks. Future studies should focus on fur-
ther investigating the identification and health risk as-
sessment of toxic and harmful components in PM10, ex-
ploring the toxicological mechanisms of OP, and devel-
oping integrated indicators that combine chemical com-

ponents and toxicity for characterizing and evaluating
PM10 pollution.
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