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Abstract. The climate-altering potential of wildfires through their emissions into the stratosphere has only
recently been realized following the major wildfire outbreaks in Canada and Australia. The 2023 Canadian
wildfire season stood out for its extended burned area and duration, by far exceeded the previous record-breaking
events, including the Australian “Black Summer” in terms of the emitted power and pyroCb count with a total
number of 142 Canadian pyroCb events over the season. The incessant fire activity all across Canada produced
a succession of smoke injections into the lower stratosphere. Here, we use various satellite data sets, airborne
and ground-based observations together with chemistry-transport model simulations to show that despite the
exceptional vigor of the 2023 Canadian wildfires, the depth of their stratospheric impact was surprisingly shallow
and limited to the lowermost stratosphere. Conversely, the incessant fire activity featuring a long succession of
moderate-strength pyroCb events, combined with numerous episodes of synoptic-scale smoke uplift through the
warm conveyor belt, led to unparalleled levels of pollution at commercial aircraft cruising altitudes throughout
the season.

burning emissions into the stratosphere. Intense wildfires re-

The severity of wildfires has remarkably increased in the
twenty-first century in response to the regional and global
warming trends (Cunningham et al., 2024; Jones et al., 2020;
Virgilio et al., 2019) and there is an emerging awareness
of their impact on climate and ozone layer (Bernath et al.,
2022; Chang, 2021; Hirsch and Koren, 2021; Khaykin et al.,
2020; Ma et al., 2024; Salawitch and McBride, 2022; Sellitto
et al., 2022; Solomon et al., 2023) via injection of biomass

lease tremendous amounts of heat into the atmosphere, which
gives rise to extreme thunderstorms termed pyrocumulonim-
bus (pyroCb). These storms, augmented by the energy of
combustion, can generate vigorous convective updrafts in-
jecting smoke into the stratosphere, where the residence time
of aerosols is not limited by cloud scavenging and precipita-
tion (Fromm et al., 2010; Peterson et al., 2018). A number of
recent studies have put in evidence that the effects of strong
pyroCb events on the global stratosphere rival those of mod-
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erate volcanic eruptions in terms of magnitude and duration
(e.g. Peterson et al., 2021, 2018) whilst exceeding them in
terms of radiative forcing (D’ Angelo et al., 2022; Das et al.,
2021; Yu et al., 2021).

In contrast to explosive volcanic eruptions injecting ash
and sulphuric aerosol precursors, the pyroCb storms lift car-
bonaceous aerosol, including organic, brown and black car-
bon. Due to absorption of solar radiation by the black carbon,
the smoke plumes can be propelled higher into the strato-
sphere by radiative heating (Allen et al., 2024, 2020; Kablick
et al., 2020; Khaykin et al., 2020, 2018), which prolongs their
stratospheric residence time (Yu et al., 2019).

While direct stratospheric injections by pyroCb activity
have been demonstrated to be the primary source of combus-
tion products entering the stratosphere (Allen et al., 2024;
Fromm et al., 2010; Kablick et al., 2020; Katich et al.,
2023; Peterson et al., 2021, 2018; Schwartz et al., 2020),
other troposphere-stratosphere pathways of smoke, such as
synoptic-scale uplift of warm air and radiatively driven as-
cent from the lower and middle troposphere, have also
been invoked (Hirsch and Koren, 2021; Magaritz-Ronen and
Raveh-Rubin, 2021; Ohneiser et al., 2023), however the im-
pact of these secondary vertical transport pathways on strato-
spheric composition remains highly uncertain.

The 2023 wildfire season in Canada was marked by an
unprecedented burned area exceeding ~ 18.2 x 10° ha, ren-
dering it the most destructive ever recorded (Byrne et al.,
2024; Jain et al., 2024). The anomalously early onset and du-
ration of raging wildfires all across Canada, spanning early
May through late September, can be paralleled with the ex-
pected rise of the fire season duration and frequency of dry
years. The sustained extreme fire weather conditions were
enabled in part by a warm temperature anomaly of +2.2 °C
over Canada as compared to the 1991-2020 average (Jain et
al., 2024), which resulted from persistent blocking features
that affected the synoptic weather patterns (Peterson et al.,
2025).

In terms of burned area, the 2023 Canadian wild-
fires greatly exceeded previous record-breaking wildfire
events worldwide including the Australian “Black Summer”,
which burned ~ 7.4 x 10° ha (Australian Government, 2020)
and generated the Australian New Year Super Outbreak
(ANYSO) of pyroCb activity. The ANYSO event caused a
substantial large-scale perturbation of stratospheric aerosol
and gaseous composition within a deep stratospheric layer
(e.g. Khaykin et al., 2020; Peterson et al., 2021). Consider-
ing the exceptional vigor of the 2023 Canadian wildfires, one
is led to expect a proportionally larger impact on the strato-
sphere, however, as reported by Zhang et al. (2024) the ver-
tical extent of stratospheric perturbation was shallow. This
study explores the nature, character and magnitude of the
stratospheric perturbations induced by the anomalous 2023
Canadian wildfires.
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2 Data sets and methods

2.1 GFAS fire radiative power

The Global Fire Assimilation System (GFAS) Fire Radiative
Power (FRP) product is a satellite-derived dataset that quan-
tifies the energy emitted by active fires globally. FRP is a key
parameter for estimating fire intensity and biomass burning
emissions. GFAS assimilates FRP observations from mul-
tiple satellite missions, including the Moderate Resolution
Imaging Spectroradiometer (MODIS) (Justice et al., 2002)
aboard the Terra and Aqua satellites, and the Visible Infrared
Imaging Radiometer Suite (VIIRS) (Polonsky et al., 2014) on
the Suomi National Polar-orbiting Partnership (Suomi NPP)
satellite and NOAA-20. These satellite instruments provide
a comprehensive and near-real-time representation of fire ac-
tivity. GFAS provides daily gridded fire emission estimates
at a spatial resolution of 0.1° x 0.1° (CAMS, 2022). To com-
pute the cumulative energy released by fires, the original FRP
data provided in W m~? units are spatially integrated over the
respective area to obtain the total energy in units of TW.

2.2 PyroCb detection and inventory

All pyroCb event location and time information for 2013—
2023 were obtained from a global inventory of 761 events de-
scribed in (Peterson et al., 2025), which builds from an earlier
version of the inventory for 2013-2021 used by Fromm et al.
(2022). A brief summary of this effort is provided here. This
dataset is based in part on a growing community effort to
inventory all observed pyroCb activity worldwide (analyst-
in-the-loop), called The Worldwide PyroCb Information Ex-
change (https://groups.io/g/pyrocb, last access: 29 October
2025), which requires constant attention to fires and pyroCb
activity in all regions worldwide. The inventory also lever-
ages a previously-developed automatic pyroCb-detection al-
gorithm that has been applied to geostationary weather satel-
lite observations (Peterson et al., 2017b, a). Data from this
effort provide, to our knowledge, the only multi-year inven-
tory of all known pyroCb activity worldwide.

All pyroCb detections require a convective cloud that re-
mains anchored to a wildfire, as evidenced by a cluster of
active fire pixels detected by satellite. Manual and automatic
detections are based on the distinctive cloud microphysics of
pyroCb activity when compared with traditional convection
(Fromm et al., 2010; Peterson et al., 2017a; Rosenfeld et al.,
2007). A pyroCb must exhibit a minimum 11 pm brightness
temperature less than an approximated homogeneous liquid-
water freezing threshold of —35 to —40 °C (Peterson et al.,
2017a). During daytime, pyroCb detection takes advantage
of unusually small particles in the pyroCb cloud tops (Chang
et al., 2015; Reutter et al., 2014; Rosenfeld et al., 2007). Dif-
ferences in 3.9 and 11.0 um brightness temperature become
unusually large (near and greater than 50 K) in the presence
of such smaller particles (Fromm et al., 2010; Peterson et al.,
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2017a), allowing pyroCbs to be separated from other deep
convection.

Other criteria for pyroCb detection include an optically
thick (opaque) cloud core (Peterson et al., 2017a) and re-
duced visible reflectance when compared with traditional
thunderstorm cloud tops (Rosenfeld et al., 2007). Weather
radar echo-tops are employed to characterize pyroCb injec-
tion altitude when and where data are available (e.g., Fromm
et al., 2021; Peterson et al., 2021). The confidence of each
pyroCb detection is augmented with ultra-violet absorbing
aerosol index (UV AAI) (Guan et al., 2010; Torres et al.,
1998), lidar backscatter profiles, and backward trajectory cal-
culations. All entries in the inventory are listed at the pyroCb
“event” level, defined as an individual pyroCb pulse or chain
of several pulses (and resulting smoke injections) linked to a
specific fire or segment of a large fire front (Peterson et al.,
2021).

2.3 TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI),
aboard the Sentinel 5 Precursor mission, is a nadir-viewing
shortwave spectrometer developed by the Netherlands Space
Office and the European Space Agency. Among its mea-
surements, the Absorbing Aerosol Index (AAI) is a key pa-
rameter derived from ultraviolet (UV) spectral bands (340—
380nm) (Veefkind et al., 2012; European Space Agency,
2021). AAl is calculated using the spectral contrast between
a pair of UV wavelengths, based on the ratio of the observed
top-of-atmosphere reflectance and a pre-calculated theoret-
ical reflectance for a Rayleigh-scattering-only atmosphere
(Torres et al., 1998). Positive AAI values indicate the pres-
ence of UV-absorbing aerosols, such as dust and smoke. Al is
influenced by aerosol properties, including optical thickness,
single scattering albedo, as well as the aerosol layer height.
TROPOMI provides global coverage and a high spatial reso-
lution of 7 x 3.5km? at nadir.

2.4 OMPS Nadir Mapper

The Ozone Mapping and Profiler Suite Nadir Mapper
(OMPS-NM) is a spectrometer designed to provide global
observations of atmospheric ozone and other trace gases.
Aboard the Suomi National Polar-orbiting Partnership
(SNPP) satellite, operational since 2012, OMPS-NM mea-
sures backscattered solar radiation in the ultraviolet (UV
spectral region (300-380nm) (Flynn et al., 2014)). This
spectral range enables retrievals of total column ozone and
the absorbing aerosol index (AAI), a key parameter for de-
tecting UV-absorbing aerosols such as smoke and dust (Tor-
res et al., 1998). OMPS-NM offers a spatial resolution of ap-
proximately 50 km x 50 km at nadir, allowing detailed map-
ping of ozone distributions and aerosol features on a global
scale (Jaross, 2014). Its cross-track scanning capability en-
sures near-global coverage in a single day, making it a valu-
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able tool for monitoring atmospheric composition and detect-
ing events like volcanic eruptions and large-scale biomass
burning.

2.5 OMPS Limb Profiler

The Ozone Mapping and Profiler Suite Limb Profiler
(OMPS-LP) on the Suomi National Polar-orbiting Partner-
ship (Suomi-NPP) satellite, operational since April 2012, ob-
serves limb scattered sunlight in the 290-1000 nm spectral
range (Jaross, 2014). The sensor employs three vertical slits
separated horizontally to provide near-global coverage in 3—
4d and > 7000 profiles a day. The instrument achieves a ver-
tical resolution of approximately 1.5 km, whereas the accu-
racy of extinction profiles is 10 %—20 % depending on the al-
titude. Here we use OMPS-LP NASA V2.1 cloud-unfiltered
aerosol extinction profiles at 869 nm (Taha et al., 2021) and
layer cloud/aerosol flagging data for analysis of extinction ra-
tio profiles, spatiotemporal tracking of aerosol plumes. The
869 nm channel is chosen because it showed the best agree-
ment with SAGE III data (Taha et al., 2021). Extinction ratio
is computed as the ratio between aerosol and molecular ex-
tinction.

2.6 Stratospheric Aerosol Layer Detection (SALD)

OMPS-LP V2.0 data include information on the cloud height
and type derived from the ratio of measured to calculated
radiances ratio. Cloud type classifies the identified cloud as
tropospheric cloud, enhanced aerosol or polar stratospheric
cloud (PSC). The enhanced aerosol definition requires the
cloud altitude to be at least 1.5km above the tropopause
(Taha et al., 2021). We combine these data with OMPS-
LP Stratospheric Aerosol Optical Depth (SAOD) and Ex-
tinction Ratio (ER) to introduce the Stratospheric Aerosol
Layer Detection (SALD), which is used to track the strato-
spheric aerosol plumes in time and space. SALD is defined
as an event flagged as enhanced aerosol. In order to minimize
false detections, we apply additional filtering using the em-
pirically determined minimum thresholds of 0.01 for SAOD
and 8 for ER, roughly corresponding to seven standard devi-
ations of the zonal-mean values in the non-perturbed condi-
tions. The SALDs contain the information on the plume top
altitude (derived directly from the original cloud height field
and plume peak altitude defined as the altitude of the maxi-
mum ER). Note that while the plume top altitude of SALD
is always above the local tropopause, the plume peak altitude
may be below the tropopause.

2.7 Estimation of mass of injected smoke aerosols

Mass of smoke aerosols injected into the stratosphere was es-
timated using OMPS-LP extinction profiling data and the ab-
solute mass difference method (Khaykin et al., 2020) with the

assumed particle mass extinction coefficient of 4.5m? g~!
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(Peterson et al., 2018). The daily mass of aerosols is com-
puted by integrating the aerosol extinction in horizontal
and vertical dimensions within the latitude band affected
by wildfires (40-82°N) and within the altitude layer where
smoke aerosols were detected i.e., between the tropopause
and 16km (Fig. S10 in the Supplement). After converting
the integrated extinction to mass, the resulting daily time se-
ries of aerosol mass are smoothed using 7 d boxcar. To com-
pute the injected mass corresponding to specific event, the
aerosol mass on the day before the event is compared with
the local maximum of mass following the event (Fig. S10).
This difference is considered to be due to the smoke up-
lifted into the stratosphere. The error bar on the aerosol mass
takes also into account the uncertainty on the particle mass
extinction coefficient (1.5 m? g_l). The main limitation of
this method is linked with the variability of stratospheric
aerosol load modulated by volcanic eruptions and meridional
transport of aerosols. In Summer 2023, the global strato-
sphere was affected by the Hunga eruption in January 2022
(Tonga) (Khaykin et al., 2024). A gradual removal of vol-
canic aerosols from the extratropical stratosphere by sedi-
mentation and horizontal transport resulted in a progressive
decay of its SAOD throughout the wildfire season (Fig. S10),
which reduced the difference between the pre-event and
post-event stratospheric aerosol mass. The obtained injected
masses represent thus a lower-bound estimate.

2.8 SAGE llI/ISS stratospheric aerosol extinction

The Stratospheric Aerosol and Gas Experiment (SAGE) III
provides stratospheric aerosol extinction coefficient profiles
using solar occultation observations from the International
Space Station (ISS) (Cisewski et al., 2014). These measure-
ments, available since February 2017, are provided for nine
wavelength bands from 385 to 1550 nm and have a vertical
resolution of ~ (.7 km and are characterized by high preci-
sion (< 5 %). We use version V5.3 of SAGE III solar occul-
tation aerosol extinction data at 869 nm. Only the data above
the local thermal tropopause (derived from MERRA-2 re-
analysis) are used for plotting.

2.9 MOCAGE Chemistry-transport model simulation

MOCAGE (Modele de Chimie Atmosphérique de Grande
Echelle) is the chemistry-transport model developed by
Météo-France (Cussac et al., 2020; Guth et al., 2016; Josse
et al., 2004). It is used for a large number of research studies
into atmospheric composition (gases and aerosols) on global
and regional scales. It is also used routinely on a daily ba-
sis, both to forecast global composition and over an extended
Europe at higher resolution. The model describes the gaseous
chemical composition of the troposphere and stratosphere by
merging the RACM (Stockwell et al., 1997) and REPROBUS
(Lefevre et al., 1994) schemes, including 110 species and 394
reactions. The primary aerosols taken into account are desert
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dust, sea salts, soot and organic carbons. Secondary inorganic
aerosols follow the representation of Guth et al. (2018, 2016)
and secondary organic aerosols a simplified representation
(Descheemaecker et al., 2019). Each of the aerosols is repre-
sented on 6 bins.

The 60 vertical levels follow a sigma-pressure coordi-
nate, and extend from the ground up to 0.1 hPa, or about
60 km. Furthermore, in this study, the horizontal resolution
of the model is set at 0.5° longitude x 0.5° latitude on the
globe. As MOCAGE is a CTM, meteorological variables are
provided as inputs. In this study, the operational numerical
weather prediction model ARPEGE (Déqué et al., 1994) is
used. Large-scale transport is based on a semi-Lagrangian
scheme (Williamson and Rasch, 1989), and turbulent convec-
tion and diffusion are parameterised according to Bechtold et
al. (2001) and (Louis, 1979) respectively. It is important for
this study to emphasise that no parameterisation of pyrocon-
vection is implemented in the model.

Emissions are for the most part derived from static in-
ventories, in this case the CAMS inventory (CAMS, 2020).
However, desert dust and sea salt emissions are calculated
dynamically, in particular as a function of wind. Carbona-
ceous aerosols come from two sources: anthropogenic emis-
sions, which are listed in the inventories, and emissions from
biomass fires. For the latter, we use hourly data provided by
GFAS. The information used is the quantities injected. How-
ever, in this study, the use of plume height as provided by
GFAS was not activated: all biomass burning emissions were
injected from the surface to an altitude of 2 km. This avoids
any suspicion of pseudo-parametrisation of pyroconvection.

Finally, MOCAGE has an observation assimilation mod-
ule. Here, we use the model’s ability to assimilate Aerosol
Optical Depth (AOD) from MODIS (Moderate-Resolution
Imaging Spectroradiometer), as described by El Amraoui et
al. (2022) and Si¢ et al. (2015). It is important to note that
these AOD observations correspond to vertically integrated
content. Therefore, assimilation will be able to modify the
total amount of aerosols represented by the model, but in no
case the vertical distribution.

2.10 IAGOS airborne observations of CO and O3

TAGOS (In-service Aircraft for a Global Observing System;
http://www.iagos.org, last access: 29 October 2025) is a Eu-
ropean Research Infrastructure for global observations of at-
mospheric composition from commercial aircraft. The ob-
jective is to provide essential data on climate change and air
quality at a global scale (Petzold et al., 2017; Thouret et al.,
2022). Indeed, the use of commercial aircraft (10 in opera-
tions in 2024) allows the collection of highly relevant obser-
vations on a scale and in numbers impossible to achieve us-
ing research aircraft, and where other measurement methods
(e.g., satellites) have technical limitations. IAGOS provides
a database for users in science and policy, including near
real time data provision for weather prediction and air qual-
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ity forecasting. IAGOS data are being used by researchers
world-wide for process studies, trend analysis, validation of
climate and air quality models, and the validation of space
borne data retrievals. Among the various atmospheric com-
pounds recorded by IAGOS equipped aircraft, the one used
in this analysis is the CO dataset. CO measurements are per-
formed by an Infra-Red correlation automatic analyser as de-
scribed in detail by Nédélec et al. (2015). The assessment of
the quality and long-term stability of this data set is further
described by Blot et al. (2021).

2.11 LILAS lidar

LILAS is a multi-wavelength lidar system operated at
ATOLL observatory (50.6°N, 3.1°E, 60m) in northern
France. LILAS utilizes an Nd:YAG laser emitting at three
wavelengths: 355, 532 and 1064 nm, with a repetition rate of
20 Hz. The backscattered light is collected with a 40 cm tele-
scope. The optical reception module includes detection chan-
nels for the three elastic scattering wavelengths and three Ra-
man scattering wavelengths — 387 nm (vibrational Raman of
N2), 408 nm (vib-rotational Raman H,O vapor) and 530 nm
(rotational Raman of N, and O;). In addition, a broadband
fluorescence channel centered at 466 nm has been integrated
to LILAS, providing high sensitivity to bioaerosols. The li-
dar signals are recorded with Licel transient recorders with a
range resolution of 7.5m and a time resolution of 1minute.
The configuration of LILAS allows the acquisition of ver-
tical profiles of the extinction and backscatter coefficients,
linear particle depolarization ratios, water vapor mixing ra-
tio and relative humidity, fluorescence backscattering coeffi-
cient and fluorescence capacity. The operation and calibra-
tion of LILAS are conducted following the guidance and
standards of EARLINET (European Aerosol Research Li-
dar Network), one of the remote sensing component of the
ACTRIS (Aerosol Cloud Trace gas Research Infra Structure)
infrastructure. Further details in the LILAS instrument are
provided in Hu et al. (2019) and references therein.

2.12 OHP LTA lidar

The Observatoire de Haute-Provence (OHP) located in
southern France (43.9°N, 5.7°E, 670m) is equipped with
several lidar systems for atmospheric sounding at a wide
range of altitudes. The aerosol measurements are provided
by LTA (Lidar Température, Aérosol) instrument operating
at 532 nm since 1991 on a regular basis with a mean mea-
surement rate of 10—12 acquisition nights per month. For re-
trieving vertical profiles of stratospheric aerosol, we apply
Fernald-Klett inversion method, which provides backscatter
and extinction coefficients. The scattering ratio is then com-
puted as a ratio of total (molecular plus aerosol) to molecu-
lar backscattering, where the latter is derived from ECMWF
meteorological analysis. The resulting vertical profiles of
aerosol parameters are reported at 150 m vertical resolution.
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A more detailed description of the instruments, aerosol re-
trieval and error budget are provided in Khaykin et al. (2017)
and references therein.

2.13 Integration of data sources

In this study, pyroCb detections from the global inventory
were combined with satellite observations from OMPS-NM,
TROPOMI, and OMPS-LP to track smoke injection and
transport. The stratospheric extinction profiles from OMPS-
LP and SAGE III/ISS were used to constrain the large-scale
aerosol perturbation. Ground-based lidar (LILAS, OHP) and
radiosonde profiles provided high-resolution vertical struc-
ture, while TAGOS in situ aircraft data supplied CO and O3
measurements for characterization of plume chemical com-
position. These observational datasets were combined with
fire emissions from GFAS and compared against MOCAGE
chemistry-transport simulations (with MODIS AOD assim-
ilation) to evaluate injection heights, aerosol loading, and
plume dispersion. This integrated workflow provides a con-
sistent observational-model framework for analyzing the
evolution of wildfire smoke in the lower stratosphere.

3 Results

3.1 The anomalous 2023 Canadian wildfire season

The 2023 Canadian wildfire season can be characterized by
incessant flaming fires from early May through late Septem-
ber. Figure 1a shows the cumulative energy generated by the
wildfires as derived from the fire radiative power (W m~2)
provided by the Global Fire Assimilation System (GFAS).
The cumulative energy was steadily increasing throughout
the season and surpassed the Australian “Black Summer”
benchmark (135 TW h), as well as all previous North Amer-
ican records already by early July. By the end of the wild-
fire season, the cumulative fire energy has reached 200 TW h
(0.7 EJ), which is more than a factor of two larger than the an-
nual energy production by Canadian nuclear plants (Statistics
Canada, 2024).

In terms of pyroCb activity, the 2023 Canadian wildfires
have surpassed all previous benchmarks worldwide with a to-
tal number of 142 Canadian pyroCb events over the season.
The average frequency of pyroCbs across Canada amounted
to 1d~! during May-June, increasing to more than 2d~!
in July and decreasing to only a few events in August-
September (Fig. 1b).

A convenient first-order proxy for the amount of smoke
emitted into the upper troposphere and lower stratosphere
(UTLS) is the UV Absorbing Aerosol Index (AAI, dimen-
sionless) measured by a number of satellite nadir sensors.
AAI is sensitive to both the amount and the altitude of ab-
sorbing particles, such as brown and black carbon (Torres
et al., 2007), and the values exceeding 15 are convention-
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Figure 1. General metrics of the 2023 Canadian wildfires in perspective. (a) Cumulative energy (in TWh) released by wildfires Canada from
May through October for different years since 2003 from GFAS data. (b) Cumulative number of PyroCb events in Canada since 2013. (c)
Seasonal variation (May through October) of the maximum Absorbing Aerosol Index (AAlnax) over Canada from OMPS-NM observations
since 2012. Black circles mark the events with AAlmax > 15 associated with stratospheric injection of smoke.

ally associated with injection of smoke into the stratosphere
(Fromm et al., 2010, 2008, 2021; Peterson et al., 2021, 2018).

To put the 2023 wildfires in perspective, Fig. 1c shows
the seasonal variation of the maximum AAI (AAlax) over
North America since 2012 from Ozone Mapping and Pro-
filer Suite Nadir Mapper (OMPS-NM) (Flynn et al., 2014)
observations. The black circles indicate the events with
AAI . exceeding 15, which are expected to represent strato-
spheric injections (Peterson et al., 2018). These include the
well documented Pacific Northwest Event (PNE) in Au-
gust 2017 (Fromm et al., 2021; Khaykin et al., 2018; Pe-
terson et al., 2018), the Californian Creek fire in September
2020 (Hu et al., 2022; Lareau et al., 2022) as well as other
events. The 2023 Canadian wildfires produced five cases
with AAlpax > 15. Surprisingly, four of them occurred dur-
ing August-September, when the pyroCb frequency was rel-
atively low (cf. Fig. 1b).

3.2 Succession of wildfire and pyroCb events

In order to describe the succession of wildfire events and
characterize their impact on the stratosphere, we combine
the pyroCb inventory derived from geostationary imaging
(Peterson et al., 2025), AAI measurements by OMPS-NM
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and aerosol extinction profiling by OMPS-LP (Limb Pro-
filer) (Jaross, 2014). The NASA OMPS-LP retrieval algo-
rithm (Taha et al., 2021) provides the top height of the de-
tected cloud/aerosol layers, which are classified as strato-
spheric aerosol if the layer’s top exceeds the tropopause
height by 1.5 km. We apply additional filtering to these data
to minimize false detections (Sect. 2.6) and refer to the re-
sulting product as Stratospheric Aerosol Layer Detections
(SALD). Considering the westerly zonal flow in the summer-
time midlatitude stratosphere, SALD data enable tracking
of the stratospheric plumes from a given high-AAI event in
the time-longitude dimension and evaluate the stratospheric
plume lifetime.

Seven events during May—September 2023 with a measur-
able stratospheric impact have been identified, of which six
began in Canada and one in eastern Siberia, as summarized
in Table 1. Figure 2a displays the zonal evolution of AAlnyax
within the 40-90° N latitude band with the AAl.x > 15
cases encircled. Individual pyroCb events are marked by
small triangles, whereas the pyroCb cluster events (involving
3 or more individual pyroCbs occurring within a 3° x 3° deg.
domain and 24 h) are displayed as large triangles. PyroCb
clusters were previously associated with the largest strato-
spheric injections (Peterson et al., 2021).

https://doi.org/10.5194/acp-25-14551-2025
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Figure 2. Spatiotemporal evolution of smoke plumes during the 2023 wildfire season. (a) Longitude-time variation of AAlpax within 40—
90° N. Black circles mark the events with AAlmax > 15. Small open and large filled triangles indicate respectively the individual and cluster
PyroCb events. (b) Longitude-time variation of OMPS-LP SALD (Stratospheric Aerosol Layer Detection) within 40-90° N displayed as
circles color-coded by the top altitude of aerosol layer. The underlying image shows AAlpax (same as b). (¢, d) As in (a) and (b) but in

latitude-time space with full zonal coverage.
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Table 1. List of 2023 wildfire events producing smoke plumes at and above the tropopause, including event number; date; source location
(pyroCb or AAlmax > 10); uplift mechanism (pyroCb or WCB — Warm Conveyor Belt); AAlmax value; altitude range of stratospheric aerosol
layer detections (SALD) by OMPS-LP; SALD temporal extent derived from Hovmoller analysis in Fig. 2; estimated aerosol mass uplifted
into the stratosphere (Gg). The injected masses were estimated using OMPS-LP extinction data and the absolute mass difference method
(Khaykin et al., 2020). Estimates for the events #1, #2 and #4 could not be obtained due to limitations of the method and small magnitude of

stratospheric impact of these events.

Event# Date UTC Source Uplift mechanism AAlmax SALD SALD Injected
Location altitude (km) lifetime (d) mass (Gg)

1 5 May Alberta PyroCb cluster 18.1 9-13  >21

2 30 June Eastern Siberia  PyroCb twin 11.5 12-15 17

3 14 August NWT, Canada  WCB 19.8 9-12 28 165

4 26 August BC, Canada WCB 13.6 9-10  Uncertain

5 2 September BC, Canada WCB 19.2 9-11 >21 7£2

6 15 September  BC/Alberta PyroCb + WCB 20.2 9-12 31 17 + 6*

7 22 September  Alberta/BC PyroCb cluster + WCB 18.6 9-12 13

* The injected mass for the event #6 should be considered as the sum of masses injected by #6 and #7 events that occurred close in time. See Sect. 2.7 for details on the

injected mass estimation.

Canada’s 2023 pyroCb record begins with 3 events in Al-
berta on 4 May and a cluster of 4 pyroCbs on 5 May, pro-
ducing an AAlp,x value of 18.1 on 6 May. The enhanced
AALI values, propagating eastward as two separate plumes,
can be tracked until 20 May (Fig. 2a). The corresponding
stratospheric aerosol plume, represented by SALD (altitude
color-coded circles) in Fig. 2b, circumnavigated the globe
more than twice at a persistent altitude range between 11 and
13 km, which can be followed until early June.

The subsequent pyroCb clusters occurring during the
May-July period did not produce AAlyx greater than 15
nor the continuous stratospheric plumes. The presence of
stratospheric aerosol layers between 12—16 km altitude dur-
ing the first half of July can be sourced to a twin py-
roCb event in eastern Siberia (Magadan region) on 30 June,
which despite relatively low AAlnax value (11.5) produced
a continuous stratospheric plume that was detected by li-
dars over France on 14 July at 13-15km altitude (Fig. S1).
Further support for the attribution of stratospheric plumes
to specific wildfires is available as a sequence of daily AAI
maps with SALD and pyroCb locations in the video supple-
ment (https://doi.org/10.5281/zenodo.17214459, Khaykin,
2025a).

The second AAlnax > 15 event occurred on 14 August and
produced an intense stratospheric plume at altitudes between
10-13 km. Surprisingly, this event was not associated with
pyroCb activity, as can be inferred from Fig. 2a and c. The
absence of pyroCb was equally the case for the successive
AAlp.x > 15 event on 2 September that produced persis-
tent stratospheric aerosol plume. The later two AAlp.x > 15
events were linked respectively to an individual pyroCb event
on 15 September and to a pyroCb cluster on 22 September.
Both events occurred near the border between Alberta and
British Columbia.

Atmos. Chem. Phys., 25, 14551-14571, 2025

The widespread stratospheric impact of the August-
September events is evident in Fig. 2b and d. The succession
of wildfires producing stratospheric plumes resulted in nearly
complete zonal spread of smoke throughout the 40-90° N
latitude band in late September—early October. The signifi-
cant stratospheric impact of the wildfire events that did not
involve pyroCb injections led us to explore the non-pyroCb
mechanisms of smoke uplift.

3.3 Pathways for vertical smoke transport

Self-lofting of wildfire smoke in the stratosphere has been
reported by a number of studies focusing on 2009 Aus-
tralian “Black Saturday” (Allen et al., 2024), 2017 Cana-
dian PNE (Khaykin et al., 2018; Lestrelin et al., 2021; Yu
et al., 2019) and the 2019/2020 Australian “Black Summer”
ANYSO events (Kablick et al., 2020; Khaykin et al., 2020).
In each case, the self-lofting of the biomass burning plume
was associated with a persistent stratospheric anticyclone
(SCV-Smoke-Charged Vortex, or SWIRL-Smoke with In-
duced Rotation and Lofting) that provided dynamical con-
finement to the plume thereby maintaining light-absorbing
aerosols at high concentration and high degree of their in-
ternal heating. A few studies have invoked radiatively-driven
ascent of smoke from the lower/middle troposphere to the
stratosphere (de Laat et al., 2012; Ohneiser et al., 2023), how-
ever their analysis did not rule out direct pyroCb injections
as the source of observed stratospheric smoke.

Another mechanism of air uplift from the lower tropo-
sphere is the warm conveyor belt (WCB), a synoptic pro-
cess capable of lofting air into the upper troposphere within
the warm sector of a mid-latitude cyclone on a scale of a
few days (Eckhardt et al., 2004). This WCB pathway for
stratospheric smoke injection is explored using MOCAGE
chemistry-transport model is constrained by daily GFAS
emissions with injection height set to 2 km (Sect. 2.9). The

https://doi.org/10.5194/acp-25-14551-2025
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simulation does not assimilate vertically-resolved observa-
tions, nor the pyroCb information.

The 14 August WCB event that produced a persistent
stratospheric plume (AAly,x > 15) in the absence of a py-
roCb source is examined in Fig. 3 for the period of 13—
17 August 2023. True color satellite imagery corresponding
with time periods in Fig. 3 is provided in Fig. S2. These fig-
ures reveal that a large mid-latitude cyclone was located over
northern Canada for the duration of this period. Its eastward
progress was restricted by the development of a blocking pat-
tern in the middle and upper troposphere (omega block) that
became especially evident by 16 August. The cyclone was
not tilted with height (i.e., vertically-stacked), with an oc-
cluded area of low pressure at the surface directly underneath
the upper-level low (Fig. S3).

On 13 August 2023, many wildfires were burning in-
tensely in northwestern Canada as can be inferred from
a large cluster of GFAS thermal anomalies (red circles in
Fig. 3a). The smoke released by these fires (blue shading)
was transported to the east within the developing warm sector
of the surface low pressure (Fig. S3). By 14 August (Fig. 3b),
the surface low began to occlude, while the smoke plume en-
tered a region of strong upward motion within the WCB near
Hudson Bay (pink contours and grey shading). MOCAGE
simulations show that smoke reached altitudes of 8—9 km on
15 August (Fig. 3c, green shading) as the smoke exited the
WCB over northern Canada, corresponding with smoke visi-
ble above the cloud tops in Fig. S2. This region of upper-level
diffluent winds (geostrophic flow) caused a portion of the
lofted smoke plume to be transported to the northwest around
the upper level low, while another portion of the plume trav-
elled to the northeast over the high-pressure ridge of the
omega block pattern at altitudes of §—10km during 16-17
August (Fig. 3d, e).

The highest-altitude plumes above the regional-average
dynamical tropopause (10.3 km) are coincident with OMPS-
LP SALDs, shown as altitude-coded circles in Fig. 3f. By
16-17 August (Fig. 3e, f), SALDs resulting from this uplift
event were widespread across the Canadian Arctic and North
Atlantic, well downwind of the stationary cyclone. Backward
trajectories initialized from a cluster of SALDs on 16 Au-
gust west of Greenland generally intersect the boundary layer
above the wildfires observed on 13—-14 August (Fig. S4), fur-
ther supporting WCB uplift. A qualitative comparison of the
simulated and observed smoke plume on 17 August, i.e. 3d
after the AAlnax > 15 event, is provided in Fig. 3e and f.
The model successfully reproduces the complex shape of the
plume, characteristic of WCB pattern after its frontal occlu-
sion (Schultz and Vaughan, 2011).

Figure 4 provides a height-resolved time series of the max-
imum wildfire aerosol concentration from MOCAGE for the
primary WCB-affected region, extending from Alaska to Eu-
rope. It reveals five successive episodes of smoke injection
into the UTLS during August and September that involved
the WCB mechanism (see Table 1). The 14 August event

https://doi.org/10.5194/acp-25-14551-2025
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analysed in Fig. 3 stands out as the largest uplift of smoke
from 4 to 11 km, extending above the dynamical tropopause
(i.e., 3.5 PVU). Stratospheric injection is confirmed by satel-
lite observations (OMPS-LP SALDs, red circles in Fig. 4).
This event and the next two WCB uplift episodes occurred in
the absence of pyroCb activity in Canada, which diminished
substantially during the 9 August—13 September period.

PyroCb activity resumed on 15 September, with two py-
roCbs in British Columbia. However, the role of this py-
roCb events in cross-tropopause smoke transport is unclear.
The first post-event stratospheric detections of smoke asso-
ciated with the AAI plume, emerged only on 18 Septem-
ber, which is three days after pyroCb cessation (Khaykin,
2025a). MOCAGE simulations show gradual uplift of the
smoke plume over several days preceding new detections of
stratospheric smoke up to 12.5 km. The sloped dashed arrows
in Fig. 4 illustrate the timescale of WCB uplift episodes.

The last AAlLax > 15 event in the 2023 season was linked
to a pyroCb cluster event on 22 September with the max-
imum cloud top height reaching 12.5km, as inferred from
satellite-derived brightness temperature and a nearby ra-
diosonde (see Sect. 2.2). A careful examination of the daily
AAI and SALD maps (Khaykin, 2025a) suggests that the
bulk of the high AAI plume remained below the tropopause
and exhibited indications of WCB-driven uplift limited to the
upper troposphere, which is corroborated by MOCAGE sim-
ulation.

A basic meteorological analysis of these additional smoke
uplift events involving the WCB or combined WCB and py-
roCb pathways is provided in Khaykin (2025b) and Figs. S5
to S8. Each of these cases generally corresponds with mete-
orology that is similar to the 14 August WCB event. How-
ever, differences do exist, such as the progression of the
synoptic weather features and magnitude of the injected
smoke plumes. The strength and position of the upper-level
(500 hPa) disturbance, surface low pressure, and WCB ver-
tical motion also vary between these cases, all of which can
have an impact on potential smoke uplift and transport. Fu-
ture work is required to examine the remainder of these
smoke uplift events in more detail, including isolating the
relative impact of WCB uplift and direct pyroCb injection
for the cases on 15 and 22 September.

3.4 Evolution of plumes injected by pyroCb and WCB

The timescale of pyroCb stratospheric injection is typically
a few hours, which owes to the fast convective uplift (Peter-
son et al., 2022; Rodriguez et al., 2020). An intense cloud of
smoke and ice at stratospheric altitudes can be observed al-
ready on the next day after the event (Khaykin et al., 2020;
Peterson et al., 2021, 2018). In contrast, a synoptic-scale up-
lift through the WCB mechanism requires about 2d to climb
to the tropopause (Eckhardt et al., 2004). As was inferred
from MOCAGE simulation (Fig. 4), the WCB uplift rate
from the middle troposphere to the lowermost stratosphere

Atmos. Chem. Phys., 25, 14551-14571, 2025
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with ERAS 500 hPa geopotential and OMPS-LP SALDs.

lies between 0.5-1.2kmd~!. This is faster than radiatively-
driven uplift of intense smoke plumes in the stratosphere,
which barely reaches 0.5km d-! (Khaykin et al., 2020;
Lestrelin et al., 2021; Ohneiser et al., 2023). It should be
noted that while the simulation does not account for the so-
lar heating of absorbing aerosols, the simulated timescale
of cross-tropopause uplift is confirmed by OMPS-LP ob-

Atmos. Chem. Phys., 25, 14551-14571, 2025

servations, reporting the occurrence of aerosol layers above
the tropopause in time with the simulated uplift across the
tropopause.

The question that arises is whether the mechanism and
timescale of the smoke uplift can affect the habits of the
stratospheric plumes. Figure 5 compares the vertical profiles
of OMPS-LP Extinction Ratio (ER, ratio between aerosol

https://doi.org/10.5194/acp-25-14551-2025
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Figure 4. Succession of WCB-driven uplift episodes during August—September 2023 from MOCAGE simulation. Color map shows height-
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and molecular extinction) within the pyroCb- and WCB-
generated aerosol plumes over the course of two weeks fol-
lowing the respective event. The pyroCb plumes from a clus-
ter pyroCb event on 5 May in Alberta (Fig. 5a) as well as
from a twin pyroCb event on 30 June in Eastern Siberia
(Fig. 5b) can be characterized by a strong variability of the
peak ER value and its potential temperature level over time.
In contrast, the WCB plumes from two uplift episodes in Au-
gust and September (Fig. Sc, d) do not show significant vari-
ability either in the peak ER values or in their vertical struc-
ture.

Unlike the highly variable pyroCb-generated smoke lay-
ers, the WCB plumes in the UTLS appear homogeneous in
time and space and feature relatively low aerosol concen-
trations with the maximum ER around 12 (Fig. 5c, d). This
may be attributed to the longer timescale of smoke uplift to
the tropopause through WCB process (2—4 d), in which the
aerosols enter the stratosphere already well mixed and di-
luted. The low concentration of aerosols in the WCB plumes
limits the degree of internal heating and thereby does not en-
able diabatic self-lofting in the stratosphere. Indeed, radiative
transfer simulations by Ohneiser et al. (2023) showed that the
lofting rate strongly depends on the smoke plume’s AOD.

The differences between the pyroCb and WCB plumes can
be explained using the following considerations. First, the
pyroCb plumes are produced by a localized convective injec-
tion and the core of the stratospheric cloud of smoke and ice
tends to remain compact (Allen et al., 2024, 2020; Kablick et
al., 2020; Khaykin et al., 2020), which leads to high aerosol
concentration in the young plume. The compact size may
also lead to satellite undersampling of the core plume, which
could partly explain the strong variability of the observed
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peak ER values. Apart from that, the intense stratospheric
plumes produced by pyroCb injections are typically subject
to diabatic self-lofting due to absorption of solar radiation
by black carbon (e.g. Yu et al., 2019). Such self-lofting is
reflected in the temporal evolution of the Siberian pyroCb
plume in terms of its potential temperature level (Fig. 5b). In-
terestingly, the plume produced by the cluster pyroCb event
in Alberta (Fig. 5a) does not show diabatic self-lofting, and
appears to be settling downward. A possible explanation for
such behavior is the relatively low concentrations of absorb-
ing aerosols in the plume (peak ER of 21 for Alberta plume
compared to 41 for the Siberian plume) and hence the lack of
internal heating. For comparison, the peak ER values of the
young PNE plumes reached 74.

3.5 Airborne and ground-based observations of
Canadian smoke

The lack of self-lofting of Canadian wildfire plumes has
limited their vertical extent to the so-called Extratropical
Tropopause Layer (ExTL) (Gettelman et al., 2011) and more
specifically to commercial aircraft cruising altitudes (~ 10—
12 km). Here, we exploit in situ airborne measurements pro-
vided by the In-service Aircraft for a Global Observing Sys-
tem (IAGOS) (Thouret et al., 2022). The IAGOS fleet of 10
commercial aircrafts carries various in situ sensor packages
onboard, including carbon monoxide and ozone sensors.
During the active wildfire season in 2023, May through
September, the IAGOS flights covered a total travel distance
of 4.3 million km at cruising altitudes within the outflow re-
gion of Canadian wildfires (40-90° N, 130° W=30° E), out of
which 8244 km (0.19 %), that is ~34h of flight time, was
spent in conditions with CO concentration exceeding +30

Atmos. Chem. Phys., 25, 14551-14571, 2025
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Hovmoller analysis (Fig. 2).

limit (195 ppbv, computed from the ensemble of cruise data).
The percentage of transatlantic IAGOS flights affected by en-
hanced CO concentration amounts to 0.19 %, which is a fac-
tor of 3 higher than the 21-year average percentage of 0.06 %
(Fig. S9).

Figure 6 shows two examples of transatlantic flights sam-
pling intense smoke plumes from high-resolution Sentinel 5P
TROPOMI AALI observations. The first case of 11 May 2023
corresponds to a flight from Montreal that crossed a 6d old
plume originating from the cluster pyroCb event in Alberta
on 5 May (#1 in Table 1). The flight track across the high-
AAI plume over Nova Scotia is shown in Fig. 6a, whereas
the time series of GPS altitude, CO and O3 mixing ratio
along the A-B flight segment are shown in Fig. 6b. Shortly
after reaching the cruise altitudes and crossing the dynam-
ical tropopause (2PVU), the aircraft was exposed to high

Atmos. Chem. Phys., 25, 14551-14571, 2025

CO mixing ratios reaching 601 = 39 ppbv. The CO enhance-
ments are correlated with substantial dips in ozone mixing
ratio, depleted by a factor of 4 with respect to the extra-
plume environment. The ozone depletion within the smoke
plumes has been reported by Bernath et al. (2022), Solomon
et al. (2023), Ohneiser et al. (2021) and can be associated
with transport and/or chemical processes.

Another CO enhancement up to 300 ppbv, also featuring a
dip in ozone, was detected 1.5 h later (just before 03:30 UTC)
corresponding with a long filament stemming from the south-
ern flank of the core plume (Fig. 6a). A similar filament can
also be observed near the plume’s northern flank. The com-
pact shape of the plume and the counterclockwise filamen-
tation is indicative of the anticyclonic rotation of the plume
(Khaykin et al., 2022), and suggests a SCV-like self-confined

https://doi.org/10.5194/acp-25-14551-2025
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Figure 6. Satellite and airborne observations of Canadian smoke plumes. (a) TROPOMI Absorbing Aerosol Index (AAI) on 11 May 2023,
showing smoke plume from the 5 May cluster PyroCb event in Alberta, and IAGOS flight segment A to B color-coded by CO mixing ratio.
(b) Time series of flight altitude (color coded by potential vorticity), CO and O3 mixing ratio measured during the A to B IAGOS flight
segment. (c) As in (a) but for 29 August 2023 (WCB uplift episode from 26 August). LILAS lidar location is indicated as violet circle.
Radiosonding station location near Paris is shown as black circle. (d) As in (b) but for the flight in 29 August. Ozone was not measured in

this flight.

structure, usually associated with massive pyroCb injections
(Allen et al., 2020; Khaykin et al., 2020).

The second case of 29 August (Fig. 6¢, d) corresponds
to a flight from Frankfurt sampling a dense plume from a
WCB event in British Columbia on 26 August (#4 in Ta-
ble 1). The plume was subject to a very rapid transatlantic
transport and approached Europe in under 3d. Figure 6d
shows CO enhancement reaching 736 42 ppbv, that is a
factor of 7 higher than the background level. This is the sec-
ond highest value observed during the 2023 wildfire season;
the 2023 maximum of 793 445 ppbv was measured inside
the WCB/pyroCb plume from the 15 September (#6) event.
The dense smoke plume above northwest France on 29 Au-
gust was also sampled by LILAS lidar (Hu et al., 2019)
at ATOLL observatory in northern France (violet circle in
Fig. 6¢) several hours after its sampling by the IAGOS flight
from Frankfurt. The TROPOMI image taken at 13:00 UTC
(Fig. 6¢) shows the plume at the very time of its approach to
the LILAS lidar position from northwest.

https://doi.org/10.5194/acp-25-14551-2025

Figure 7 displays lidar time curtains of backscatter co-
efficient (Fig. 7a) and volume depolarization ratio (VDR)
(Fig. 7¢) acquired during the time of plume’s transit over the
lidar station. The lidar curtains reveal multiple smoke lay-
ers throughout the free troposphere with the primary layer
extending between 8 and 12km i.e., across the dynamical
tropopause (10.9 km, Fig. 6¢), which is aligned with the first
thermal tropopause (Fig. 7b). The cloud-free aerosol optical
depth (AOD) at 532 nm, computed from lidar extinction be-
low 12 km, varies between 0.9 and 1.2 during the time period
15:15-19:30 UTC. This is in close agreement with the col-
located AERONET (AEROsol RObotic NETwork) sun pho-
tometer reporting the columnar AOD between 1.1-1.3. The
small difference between AOD measured by LILAS and sun
photometer result from incomplete overlap of the lidar sys-
tem. Due to this issue, extinction coefficient from LILAS was
assumed to be constant below 800 m, which may lead to un-
derestimation of AOD. The lidar-derived AOD of the primary
smoke layer itself amounts to approximately 1 at 19:00 UTC.
For comparison, the highest AOD value within a smoke layer
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observed over Europe after the PNE wildfire outbreak in Au-
gust 2017 amounted to 0.6 (Ansmann et al., 2018).

As can be inferred from the black curve in Fig. 7a, the
lidar-derived AOD increases further to 2 after 19:30 UTC,
however this can be attributed to nucleation and growth
of ice cloud particles, as suggested by the sudden increase
of backscatter and depolarization within the smoke plume
(Fig. 7a, c). The nucleated cirrus appear as wave-like struc-
tures, which points to the gravity waves as a trigger for ice
nucleation in the smoke-polluted air as has been argued on
the bases of a similar lidar observation of cirrus formation
inside a smoke plume (Mamouri et al., 2023).

The nucleation of ice particles inside the upper tropo-
spheric smoke plumes may be facilitated by enhanced hu-
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midity of the plumes uplifted from the lower troposphere
(regardless of the uplift mechanism). We examined high-
resolution meteorological profiles from radiosounding data
at 23:00UTC at Trappes station near Paris, which was
aligned with the LILAS lidar in terms of its position with
respect to the smoke plume front (cf. Fig. 6¢). Figure 7d
reports a strong enhancement in relative humidity over ice
(RHj¢e) above the vapour saturation within the 8—11km al-
titude layer. The extent of the hydrated layer correlates well
with that of the VDR profile, suggesting that the lidar and the
radiosonde have sampled the plume coherently. It is notewor-
thy that the upper part of the plume (11-12km) is subsat-
urated (RHjce of 40 %—60 %), which does not enable cloud
particle nucleation and scavenging of smoke aerosols.
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3.6 Large-scale impact on the stratosphere

In order to quantify and put in perspective the large-scale
stratospheric impact of the 2023 wildfire season, we use
stratospheric aerosol extinction profiling by Stratospheric
Aerosol and Gas Experiment (SAGE) III and OMPS-LP
instruments. Figure 8a shows a seasonally- and zonally-
averaged aerosol extinction section from SAGE III solar
occultation profiles above the local tropopause. The 2023
wildfire stratospheric signal emerges vividly throughout the
northern mid- and high latitudes, however its vertical ex-
tent is largely limited to the extratropical tropopause layer
(ExTL), between 7—-12km. The SAGE III latitude-altitude
pattern with an enhancement in the EXTL is corroborated
by OMPS-LP extinction data (Fig. 8c), however the OMPS-
LP wildfire perturbation magnitude is a factor of 2.2 smaller
compared to that of SAGE III. This is most likely due to
the NASA OMPS-LP retrieval assumptions regarding the
aerosol microphysical parameters and a related altitude-
dependent bias (Chen et al., 2020).

A 7-year perspective of the 2023 wildfire perturbation is
provided in Fig. 8b and d, showing height-resolved time se-
ries of SAGE III and OMPS-LP aerosol extinction at the
northern midlatitudes. The 2023 wildfire signal in the ExXTL
stands out for its duration and magnitude, being comparable
to the perturbation by the Raikoke volcanic eruption in June
2019 (Khaykin et al., 2022; Kloss et al., 2021). However, un-
like the Canadian 2017 PNE wildfire outbreak that produced
a persistent, confined and self-lofting smoke bubble rising up
to 23 km altitude (Lestrelin et al., 2021), the 2023 wildfire-
induced stratospheric perturbation is shallow and restricted
to altitudes below 12—13 km. As can be inferred from Fig. 8b
and d, smoke pollution of the Northern Summer lower strato-
sphere is a recurring feature with a variable vertical extent
of stratospheric perturbation — up to 21 km for PNE out-
break in 2017 and lower for other wildfire seasons. The 2023
stratospheric perturbation, although restricted to the ExTL,
is the largest in magnitude and in seasonal extent, spanning
6 months i.e., May through October 2023.

In order to estimate the mass of smoke aerosols uplifted
into the stratosphere during the 2023 wildfire season we use
the mass difference method (Khaykin et al., 2020) applied to
the global OMPS-LP extinction profiling (see Methods and
Fig. S10). Out of the 7 events listed in Table 1, only the three
largest ones that occurred during the sequence of WCB up-
lift episodes (#3, #5 and #6) allowed for a robust estimate
of stratospheric aerosol mass perturbation. Their cumulative
impact is estimated at 30-60 Gg of wildfire aerosol uplifted
across the tropopause, which is a lower bound estimate con-
sidering the limitations of the mass difference method (see
Sect. 2.7). Taking into account the factor of 2.2 underestima-
tion of the EXTL AOD by OMPS-LP as compared to that of
SAGE 111, the injected masses scale to 0.07-0.13 Tg, which
is comparable to the largest documented wildfire-induced
perturbations, namely the 2009 Black Saturday event (0.05—
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0.1Tg); the 2017 PNE event (0.1-0.3Tg) and the 2019
ANYSO Phase 1 event (0.2-0.8 Tg) as estimated by Peter-
son et al. (2018, 2021).

3.7 Discussion and summary

The 2023 Canadian wildfires have by far exceeded the previ-
ous record-breaking events, including the Australian “Black
Summer” in terms of the emitted energy (200 TW h) and py-
roCb count with a total number of 142 Canadian pyroCb
events over the season. The incessant fire activity all across
Canada produced a succession of smoke injections into the
lower stratosphere.

The pyroCb activity was exceptionally high during the
May-July period with an average frequency of 1.4d~!. Nev-
ertheless, only the first cluster pyroCb event in Alberta #1 (5
May) has caused measurable stratospheric smoke pollution,
whereas the impact of the other pyroCb events in Canada
was limited to the middle and upper troposphere. Peterson et
al. (2025) establish that most pyroCbs do not inject material
directly into the lowermost stratosphere. Evidence from the
2023 wildfire season supports this, showing that despite the
large number of pyroCbs, only a few produced measurable
stratospheric injections. Conversely, Peterson et al. (2025)
also demonstrate that a season with relatively few pyroCbs
can still yield a major injection, as in the 2017 PNE case. The
critical factor is the coincidence of favourable meteorological
conditions with a sufficiently intense heat flux from the fires.
The precise combination of atmospheric dynamics and fire
characteristics that enable such major pyroCb-driven strato-
spheric injections remains poorly understood, underscoring
the need for targeted field measurements.

While the pyroCb activity decreased substantially by mid-
August, several episodes of significant injections of smoke
into the lowermost stratosphere, mostly unrelated to pyroCb
activity, could be identified. Using MOCAGE CTM simula-
tions, we showed that the non-pyroCb uplift of smoke from
the lower troposphere to the tropopause and above in 2023
owed to the warm conveyor belt (WCB) process. The simu-
lated evolution of the smoke plumes in horizontal and ver-
tical dimensions, as well as its timescale is confirmed by
observational data. In contrast to the fast convective uplift
by pyroCb events, the WCB process requires 2—4 d for the
smoke-laden air masses to rise to the tropopause level.

The vertical pathway and its timescale determine the prop-
erties and further evolution of stratospheric plumes. The py-
roCb development occurs on a scale of a few hours and
can drive a volcano-like injection of smoke-icy cloud at the
tropopause level (Peterson et al., 2018). With the WCB, the
aerosols enter the stratosphere already well mixed and di-
luted. The low concentration of aerosols in the WCB plumes
transported across the tropopause limits the degree of internal
heating and thereby does not favor their diabatic self-lofting
in the stratosphere, typical for intense pyroCb plumes dy-
namically confined through the persistent stratospheric an-
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ticyclones (SCV or SWIRL). An interesting exception to
the SCV self-lofting paradigm is the 5 May pyroCb event
in Alberta that produced a compact smoke plume persist-
ing for more than 3 weeks and exhibiting various indications
for anticyclonic confinement, but without any signs of self-
lofting. A possible reason for the absence of diabatic rise is
the relatively low aerosol concentrations in the plume and
hence the lack of internal heating. Our results are consis-
tent with cross-tropopause smoke transport in WCBs being
predominantly meteorologically driven, while diabatic self-
lofting likely plays only a secondary role under the rela-
tively low aerosol concentrations observed in the upper tro-
posphere. Differences in smoke radiative properties may in-
fluence lofting efficiency; however, radiative transfer simula-
tions (Ohneiser et al., 2023) suggest that the absolute concen-
tration of absorbing aerosols is the primary factor. That said,
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the role of radiatively-driven diabatic self-lofting of smoke
in the troposphere requires further investigation.

The lack of diabatic plume rise of the plumes uplifted by
WCB events constrained the impact of wildfire emissions to
the so-called Extratropical Tropopause Layer (ExTL). The
succession of WCB episodes, some of them accompanied
by pyroCb activity during the second part of the season, re-
sulted in nearly complete zonal spread of smoke throughout
the ExTL north of 40° N in late September- early October.

The bulk of 2023 wildfire smoke pollution was bounded
within 9-12km layer, that is at commercial aircraft cruis-
ing altitudes. Indeed, the percentage of IAGOS transatlantic
flights affected by enhanced CO concentration was a factor
of 3 higher than the 20-year average percentage in the IA-
GOS CO record since 2003. Some of the IAGOS transat-
lantic flights sampled extreme CO concentrations exceeding
the background levels by a factor of seven. Ground-based

https://doi.org/10.5194/acp-25-14551-2025



S. Khaykin et al.: Stratospheric impact of the anomalous 2023 Canadian wildfires

lidar measurements in Northern France captured the tran-
sit of a dense smoke plume with an extreme AOD of ~ 1.
Such dense smoke layers may present a hazard to commer-
cial aircraft by clogging air filters and coating engine compo-
nents (Scarbrough, 2023; Veillette, 2021). In addition, flying
through thick smoke can affect air quality inside the cabin,
posing potential health risks to passengers and crew (Gleim,
2023).

In summary, the extreme 2023 Canadian wildfire season
was very different from the previous record-breaking wildfire
and pyroCb outbreaks such as PNE and ANYSO that pro-
duced long-lived SCVs that self-lofted to the middle strato-
sphere. PyroCb activity linked to the 2023 wildfires did not
produce these self-lofting smoke plumes. However, the in-
cessant fire activity May through September with a succes-
sion of WCB episodes during August—September period led
to a massive amount of smoke pollution across the Northern
Hemisphere extratropical tropopause layer. Smoke aerosols
injected at these altitudes can have both direct and indirect
radiative effects, which must be examined in future studies to
determine the potential impacts on regional and hemispheric
radiative balance and weather.

Data availability. OMPS-LP data are available at
https://snpp-omps.gesdisc.eosdis.nasa.gov/data/SNPP_OMPS _
Level2/OMPS_NPP_LP 12 AER _DAILY.2/2023/  (last  ac-
cess: 29 October 2025). OMPS-NM data are available at
https://snpp-omps.gesdisc.eosdis.nasa.gov/data//SNPP_OMPS _
Level3/OMPS_NPP_NMTO3_L3_DAILY.2/2023/  (last  ac-
cess: 29 October 2025). SAGE III data are available at
https://doi.org/10.5067/ISS/SAGEIII/SOLAR_HDF5_L2-V5.3
(NASA/LARC/SD/ASDC, 2017). TROPOMI data are available
at https://doi.org/10.5270/S5P-Owafvaf (Copernicus Sentinel-
5P, 2018). Meteorological radiosounding data are available
at https://donneespubliques.meteofrance.fr/?fond=produit&id_
produit=97&id_rubrique=33 (last access: 29 October 2025).
OHP lidar data are available at https:/ndacc.larc.nasa.gov/
(last access: 29 October 2025). LILAS lidar data are avail-
able at https://www.icare.univ-lille.fr/asd-content/archive?dir=
GROUND-BASED/LOA_Lille/LIDAR-LILAS/GARRLIC_L2
(last access: 29 October 2025) (login required). ERAS5
data are available at https://doi.org/10.24381/cds.bd0915¢c6
(Hersbach et al.,, 2023). GFAS data are available at
https://doi.org/10.24381/a05253¢7 (Copernicus Atmosphere Mon-
itoring Service, 2022). IAGOS data at https://iagos.aeris-data.fr/
(last access: 29 October 2025). MOCAGE simulation data are
available through PyroStrat data center upon request. The World-
wide PyroCb Inventory data file used in this study is available as a
supplementary data file in Peterson et al. (2025), which has been
accepted for publication by npj Climate and Atmospheric Science.
Requests for these pyroCb data prior to release by npj Climate and
Atmospheric Science should be submitted to: David A. Peterson at
david.a.peterson204.civ@us.navy.mil.
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Video supplement. An animated sequence of daily maps
of TROPOMI absorbing aerosol index (AAI), OMPS-LP
stratospheric  aerosol layer detections (SALD) and py-
roCb events during May—October 2023 is available at
https://doi.org/10.5281/zenodo.17214459  (Khaykin,  2025a).
An animated MOCAGE simulation of wildfire plume transport is
available at https://doi.org/10.5281/zenodo.17214480 (Khaykin,
2025b).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-14551-2025-supplement.
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