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Abstract. Endotoxins, integral components of Gram-negative bacteria, are released into the atmosphere during
bacterial fragmentation and pose health risks. This study investigated 3-hydroxy fatty acids (3-OH-FAs, C8–C18)
in inhalable particles (PM10) from urban Tianjin, a coastal megacity in northern China, to estimate endotoxin lev-
els utilizing ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS). Results revealed
seasonal and altitudinal variations in 3-OH-FAs and endotoxin levels. Total endotoxin concentrations averaged
21.5 ng m−3 at near ground (2 m) and 16.1 ng m−3 at a higher altitude (220 m), corresponding to total 3-OH-
FAs (C10–C18) concentrations of 2.8 and 2.0 ng m−3, respectively. Maximum endotoxin level (26.5 ng m−3)
occurred near ground during winter, attributed to enhanced near-surface emissions. Bioactive endotoxins peaked
at 12.4 ng m−3 near ground in winter, exceeding the exposure threshold, while averaging 8.1 ng m−3 in other
seasons. Short- and mid-chain 3-OH-FAs (C8–C13) exhibited significant correlations with meteorological fac-
tors (e.g., temperature, humidity, and wind speed) at both altitudes, indicating regulation through microbial
growth dynamics and photochemical processes. Long-chain homologues (C14–C18) were affected by both me-
teorological conditions and particulate pollutants (e.g., organic carbon, K+, Ca2+), reflecting mixed influences
from natural sources (e.g., soils) and anthropogenic activities (e.g., combustion). These findings advance under-
standing of dynamic variations in airborne endotoxins within complex urban environments, providing critical
data for assessing health risks associated with particulate pollution and informing urban air quality management
strategies.
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1 Introduction

Inhalable particles with aerodynamic diameters less than
10 µm (PM10) may originate from both natural and anthro-
pogenic sources (Yin et al., 2022; Xue et al., 2024), and
could further result in various respiratory and cardiovascular
diseases (Makkonen et al., 2010; Mukherjee and Agrawal,
2017). Among the biological components of PM10, endotox-
ins are of extreme importance due to strong chronic health ef-
fects (Mahapatra et al., 2018; Mueller-Anneling et al., 2004).

Endotoxin, also known as lipopolysaccharide (LPS), is
an integral component of the outer membrane of Gram-
negative bacteria (GNB) (Rylander, 2002). An endotoxin
contains three regions, consisting of a core polysaccharide,
a long-chain polysaccharide, and a nonpolar lipid named
lipid A, with lipid A being the most associated with tox-
icity (Schneier et al., 2020; Rylander, 2002; Spaan et al.,
2006). Endotoxins may transport via adhering to the sur-
face of fine inorganic particles (Zhang et al., 2024; Hwang et
al., 2021). As a potent inflammagen, an endotoxin can cause
fever, shaking chills, septic shock, toxic pneumonitis and res-
piratory symptoms, through inhalation, dermal and/or eye
contact or ingestion (Rylander, 2002; Farokhi et al., 2018).
LPS can be oxidized by ozone and the resulting reactant
greatly enhanced inflammatory anemia (Liu et al., 2025).
The health risks of endotoxins to humans have been inves-
tigated (Farokhi et al., 2018; Laboha et al., 2023; Liebers et
al., 2008). Their harmful effects depend on both the com-
position of the inhaled particles and the degree and duration
of exposure (Liebers et al., 2020; Lundin and Checkoway,
2009). The quantification and characterization of LPS in en-
vironmental samples are critical to understanding the biolog-
ical effects of environmental endotoxin exposure (Park et al.,
2004).

Previous studies have investigated endotoxin levels in vari-
ous environments, including occupational settings (Heederik
and Douwes, 1997; Liebers et al., 2020, 2006), indoor en-
vironments (Amin et al., 2023; Gabriel et al., 2021; Phiri et
al., 2023), and ambient aerosols and dust (Cheng et al., 2012;
Hwang and Park, 2019; Lang-Yona et al., 2014; Hines et al.,
2003; Park et al., 2000). Airborne endotoxin levels exhib-
ited spatial and temporal variations, influenced by geograph-
ical location (Moretti et al., 2018), season (Makkonen et al.,
2010; Hwang and Park, 2019), emission source (Mueller-
Anneling et al., 2004; Mahapatra et al., 2018), meteorologi-
cal condition (Guan et al., 2014; Rolph et al., 2018), and pol-
lution level (Guo et al., 2018). These variations might reveal
the potential sources, atmospheric processes, and the survival
mechanisms of airborne microbes (Hu et al., 2020a). How-
ever, the factors influencing endotoxin levels are not fully un-
derstood (Hwang and Park, 2019; Mahapatra et al., 2018). To
gain further clarity, outdoor sampling coupled with simulta-
neous monitoring of meteorological and air quality parame-
ters is essential (Amin et al., 2023). Additionally, the sources
of endotoxins in ambient environment, whether from long-

range transport or local emissions, have yet to be definitively
identified.

Previous studies on endotoxins have primarily focused on
occupational exposure and the health effects of excessive en-
dotoxin exposure (Liebers et al., 2006; Amin et al., 2023).
However, research on endotoxin levels in the ambient atmo-
sphere remains limited. The vertical distribution, spatiotem-
poral patterns of airborne endotoxins in the urban boundary
layer, and their possible influencing factors have yet to be
reported.

Multiple factors including sample types (personal or sta-
tionary), sampling method (active or passive), extraction pro-
cedure, and storage condition, can affect the determination
of endotoxins (Liebers et al., 2020). One mainstream detec-
tion method of endotoxins is the Limulus amebocyte lysate
(LAL) test (Rylander, 2002). This enzyme activation-based
method provides direct information on bioactive endotoxins.
Despite its sensitivity, the LAL test may still underestimate
endotoxin levels, because many endotoxins, including bioac-
tive ones, may remain concealed within the intact bacterial
structure, making them unavailable to react with the Limu-
lus enzymes (Mattsby-Baltzer et al., 1991). False-negative
results may occur when endotoxins are masked by buffer
constituents, product formulation, cell culture medium com-
positions, and surfactants (Schwarz et al., 2017; Schneier et
al., 2020). Whilst, false-positive results can be caused by β-
1,3-glucan, which might as well trigger the enzymatic coag-
ulation of the blood (Cheng et al., 2012; Uhlig et al., 2016).

The alternative approach most commonly applied to de-
tect endotoxins in environmental samples is to measure 3-
hydroxy fatty acids (3-OH-FAs) with carbon chain lengths
from 10 to 18 as endotoxin biomarkers utilizing chemi-
cal analytical methods such as gas chromatography-mass
spectrometry (GC-MS) (Bikkina et al., 2021a; Cheng et al.,
2012). In contrast to the LAL test, 3-OH-FAs measured by
GC-MS do not reflect the biologically active endotoxin, but
rather total concentration (Liebers et al., 2008). In addition,
the sample pretreatment for GC-MS analysis with strong al-
kaline hydrolysis may result in 3-OH-FAs turning into unsat-
urated fatty acids while eliminating water during the derivati-
zation process (trifluoracetamide) (Binding et al., 2004; Wol-
lenweber and Rietschel, 1990). Liquid chromatography-mass
spectrometry (LC-MS) with its high sensitivity and selectiv-
ity, and broad adaptability, is regarded as a powerful analyti-
cal tool for small molecules (Zhang et al., 2019; Paba et al.,
2019). Recently, ultra-high-performance liquid chromatog-
raphy mass spectrometry (UHPLC-MS) combined with iso-
tope labeling has been used to effectively separate, iden-
tify and quantify positional isomers of hydroxy fatty acids,
demonstrating exceptional accuracy and precision in com-
plex environmental matrices including aerosols (Niu et al.,
2024; Zhu et al., 2020).

The coastal zone is a transition area between the ocean
and the land, which is affected by natural continental pro-
cesses (e.g., dust storms) and marine emissions, as well as in-
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tense human activities due to a large population. In addition,
sea-land breeze is one of the most common circulations over
coastal areas and has a great impact on the local meteorol-
ogy and atmospheric environment (Xiao et al., 2023). These
interactions make the atmospheric environment of coastal
zones more complex, providing unique conditions for inves-
tigating the effects of local emissions and regional or long-
distance transport on atmospheric environment. Meteorolog-
ical tower-based studies complement ground-based observa-
tions (Yang et al., 2023), offering new insights into the for-
mation, transformation, and transport of organic matter under
different atmospheric environments (Lei et al., 2021). Com-
prehensive vertical measurements of the physical and chemi-
cal properties of aerosol particles in the lower boundary layer
have been conducted to evaluate the roles of local emissions
and regional and long-distance transport in air pollution (Fan
et al., 2022; Li et al., 2022). However, the levels, sources,
and health impacts of airborne endotoxins in coastal zones
remain largely unknown.

Herein, diurnal PM10 samples were collected at two alti-
tudes using a 255 m meteorological tower in urban Tianjin,
the largest coastal megacity in North China, enabling the in-
vestigation of the vertical distribution of airborne endotoxins.
The UHPLC-MS system, combined with isotope labeling,
was applied for accurate determination of 3-OH-FAs (C8–
C18) in PM10. The amounts of endotoxins and GNB dry mass
in PM10 were estimated using the concentrations of 3-OH-
FAs (C10–C18) according to previous studies (Bikkina et al.,
2021a; Tyagi et al., 2015b, 2016). This study aims to pro-
vide: (1) the quantification and distribution patterns of the
bacterial marker 3-OH-FAs in ambient PM10 within the ur-
ban boundary layer in Tianjin; (2) insights into the vertical,
seasonal and diurnal variations in airborne endotoxins, along
with estimates of the bioactive portion of 3-OH-FAs and the
mass loading of GNB for assessing the potential allergenic
impact of airborne endotoxin levels, and (3) the preliminary
identification of influencing factors of endotoxin levels, in
combination with key environmental parameters, including
meteorological and air quality data.

2 Materials and methods

2.1 Samples collection

Tianjin is a coastal megacity located in northeast part of
the North China Plain (NCP), bordering the Bohai Sea
in the east, leaning against the Yanshan Mountain in the
north (Fig. S1 in the Supplement). It is 120 km from Bei-
jing, the capital of China, in the northwest. The sampling
was conducted by utilizing the 255 m meteorological tower
at the Tianjin Atmospheric Boundary Layer Observatory
of the China Meteorological Administration, located at the
southern area of urban Tianjin. Two automatic high-volume
aerosol samplers (DIGITEL DHA-80) were set at two floors
in the meteorological tower, i.e., the near-ground (2 m) and

a higher altitude (220 m), respectively. PM10 samples were
collected on pre-combusted (450 °C for 6 h) quartz fiber filter
(8 150 mm, Pall, USA) during the autumn (18–24 Septem-
ber) and winter (8–14 December) of 2020, and the spring
(26–31 May) and summer (2–8 August) of 2021. After col-
lection, the samples were stored at −20 °C in a freezer until
analysis.

2.2 Samples pretreatment

The extraction and detection methods of 3-OH-FAs are
available in our previous study (Niu et al., 2024). Briefly,
aliquots of aerosol samples (8 28 mm) were cut and placed
in a centrifuge tube, followed by adding 4 mL of ethyl
acetate (EtOAc), 1 min of vortex, and 15 min of soni-
cating at room temperature. Then, 4 mL of Milli-Q wa-
ter was added, and the resulting solution was vortexed
for remixing. Centrifugation was performed for 5 min at
5000 rpm, and the supernatant was extracted afterward, and
then dried under nitrogen. Subsequently, 100 µL of acetoni-
trile (ACN) was added to the dried centrifuge tube and
vortexed for 2 min, then derivatization reagents (10 µL of
20 µmol mL−1 2-chloro-1-methylpyridinium iodide (CMPI),
20 µL of 20 µmol mL−1 triethylamine (TEA), and 20 µL of
20 µmol mL−1 2-dimethylaminoethylamine (DMED)) were
added and vortexed for 2 min, and the mixture was incu-
bated for 1 h at 40 °C and 1500 rpm, then dried under nitro-
gen. Milli-Q water and internal standards (d4-DMED-labeled
hydroxy fatty acid standard) (v/v, 1/9) were added to each
dried centrifuge tube, vortexed to redissolve, and then cen-
trifuged for 5 min at 4 °C and 12 000 rpm to extract the su-
pernatant. Details of the chemicals, reagents and method val-
idation are described in Sect. S1 in the Supplement.

2.3 UHPLC-MS analysis

The UHPLC-MS system comprised an ACQUITY UPLC I-
Class LC from Waters (Milford, MA, USA) coupled with an
AB SCIEX 6500+ triple quadrupole MS (Framingham, MA,
USA). Separation of the target compounds was achieved us-
ing ACQUITY HPLC HSS T3 (1.8 µm, 2.1 mm× 50 mm)
column (Waters, Milford, MA, USA). The mobile phases
consisted of solvent A (0.1 % formic acid in water) and sol-
vent B (ACN), delivered at a flow rate of 0.4 mL min−1. The
gradient program was set as follows: 0–3 min at 5 % B, 3–
15 min from 22 % to 60 % B, 15–17 min at 60 % B, 17–
24 min at 95 % B, 24–40 min at 5 % B. Mass spectrometric
analysis was performed in positive ion mode using electro-
spray ionization (ESI) and operated in multiple reaction mon-
itoring (MRM) mode. The ESI conditions were set as fol-
lows: curtain gas, 35 L min−1; collision gas, 8 L min−1; ion
spray voltage, 5500 V; temperature, 500 °C; ion source gas
1, 50 L min−1; ion source gas 2, 45 L min−1. Data acquisi-
tion and quantification were conducted using SCIEX OS ver-
sion 2.0.1 software. The mass concentrations of 3-OH-FAs
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(C8–C18) were quantified using internal standard method,
employing d4-DMED-labeled 3-OH-FA standards as inter-
nal standards. The detailed analytical procedure is described
in Niu et al. (2024).

2.4 Endotoxin and GNB dry mass estimation

The amounts of endotoxins and GNB dry mass were esti-
mated using the following formulas:

Endotoxin (ngm−3)=∑[
3-OH-FAs(C10–C18) (nmolm−3)/4

]
× 8000 (gmol−1) (1)

where 4 means each lipid A carries 4 mol 3-OH-FAs (C10–
C18) (Laitinen et al., 2001; Rietschel et al., 1984), while the
multiplication factor 8000 represents the average molecular
weight of endotoxins (Laitinen et al., 2001).

GNB dry mass (mgm−3)=∑[
3-OH-FAs(C10–C18) (nmolm−3)

]
/15 (nmolmg−1) (2)

where 15 refers to the biomarker-to-microbial mass conver-
sion factor of 15 nmol of 3-OH-FAs per mg dry cell weight
(Lee et al., 2004; Balkwill et al., 1988).

2.5 Other measurements

The concentrations of organic carbon (OC) and elemental
carbon (EC) were determined using a Thermal/Optical Car-
bon Analyzer (Model RT-4, Sunset Laboratory Inc., Oregon,
USA). Analytical errors were controlled within ±10 % via a
duplicate analysis of each filter. The concentrations of water-
soluble organic carbon (WSOC) were measured using Total
Organic Carbon (TOC) Analyzer (Shimadzu 5000A, Japan).
Water-soluble inorganic anions and cations (Cl−, SO2−

4 ,
NO−3 , Na+, NH+4 , K+, Mg2+, Ca2+) were analyzed using an
Ion Chromatography system (Dionex Aquion, Thermo Sci-
entific, Waltham, MA, USA). Gradient meteorological pa-
rameters were continuously recorded by automatic weather
stations installed on the 255 m high meteorological tower,
while both gaseous and particulate pollutants were collected
simultaneously at the ground platform.

2.6 Concentration-weighted trajectory (CWT) analysis

Concentration-weighted trajectories (CWTs) were calculated
per hour, and starting height of 220 m, based on the 3 d (72 h)
backward trajectories of air masses with the Hybrid Single
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Stein et al., 2015) in conjunction with the measured concen-
trations of 3-OH-FAs as follows:

CWTij =
∑
lClnij l∑
lnij l

(3)

where l is the number of the trajectory; Cl is the average con-
centration of 3-OH-FAs, and nij l is the number of trajectory
endpoints that lie in the grid cell (i,j ). The CWT value in-
dicates the potential distant sources impacting the sampling
site. The analyses were performed for 1°× 1° grids covering
the area encompassed by 20–80° N and 60–150° E. A weight
function (Wij ) in Eq. (4) was applied in the CWT analysis to
increase statistical stability, and Nij is the number of trajec-
tory endpoints that lie in the grid cell (i,j ).

Wij =


0.1, Nij < 2
0.4, 2≤Nij < 4
0.7, 4≤Nij < 8
1.0, elsewhere

(4)

2.7 Positive matrix factorization (PMF)

Source apportionment of 3-OH-FAs was carried out with
U.S. EPA PMF 5.0. PMF solves X ≈GF by weighted least-
squares minimization of:

Q=

n∑
i=1

m∑
j=1

(
xij −

∑p

k=1gikfkj

uij

)2

(5)

where X is the observed concentration matrix, u the corre-
sponding uncertainty matrix, G the factor-contribution ma-
trix, and F the factor-profile matrix (Paatero and Tapper,
1994; Bhandari et al., 2022). Uncertainties (u) were calcu-
lated as recommended by the EPA guidance:

If the concentration is less than or equal to the species-
specific method detection limit (MDL) provided, the uncer-
tainty is calculated using a fixed fraction of the MDL (Eq.
6).

If the concentration is greater than the MDL provided, the
calculation is based on a user provided fraction of the con-
centration and MDL (Eq. 7).

if x ≤MDL, u=
5
6
×MDL (6)

if x >MDL, u= 2
√

(Error Fraction ×Concentration)2

+(0.5×MDL)2 (7)

An error fraction of 0.2 was adopted for most species; val-
ues up to 0.6 were assigned to constituents near the detection
limit.

A total of 19 measured species in 87 samples were used,
including bulk carbonaceous fractions (OC, EC), major inor-
ganic ions (K+, Na+, Ca2+, Mg2+, NH+4 , NO−3 , SO2−

4 , Cl−)
and nine 3-OH-FA homologues (C10–C18). Species selec-
tion followed three criteria: (1) Signal-to-noise ratio (S/N ) –
species with S/N ≤ 0.5 were excluded; 0.5< S/N ≤ 1 were
down-weighted (“weak”) (Paatero and Hopke, 2003). Ac-
cordingly, C12 3-OH-FA was removed. (2) Goodness-of-fit
(R2) – after trial runs, variables with persistently low R2 be-
tween modelled and observed concentrations were discarded.
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(3) Q evaluation – models with 4–9 factors (p) were ex-
plored; the lowest Q value at five factors when moving from
four to nine factors. The solution giving Qtrue /Qexp ratio
closest to 1 was selected (Bhandari et al., 2022). The final
configuration (five factors) yielded stable and physically in-
terpretable profiles.

2.8 Statistical analysis

Spearman rank analysis was conducted to evaluate the cor-
relation between airborne endotoxins and air pollutants.
Data were analyzed using unpaired t-tests, two-tailed for
single comparisons. Graphs were generated using RStu-
dio software version 2023.09.1+494, R version 4.3.2 and
Origin 2021. Mantel test was performed between 3-OH-
FA homologues and those of meteorological/pollution vari-
ables using Spearman’s correlation coefficient (Spearman’s
r) with 999 permutations, computed with the vegan pack-
age (v2.6-4) in R (v4.3.2). Significance was accepted at
p < 0.05. Hierarchical-cluster analysis was performed via
Ward’s minimum-variance method on Euclidean distance us-
ing OriginPro. The distribution characteristics of 3-OH-FAs
and airborne endotoxins were described in range (minimum–
maximum) and arithmetic mean.

3 Results and discussion

3.1 Molecular distribution of 3-hydroxy fatty acids

The molecular distribution of 3-OH-FAs with carbon num-
bers from 8 to 18 (C8–C18) is illustrated in Fig. 1. In terms
of diurnal variations, the mass concentrations of most 3-OH-
FAs were higher at night than during the daytime (Fig. 1a).
This feature, observed predominantly at ground level may be
partly due to the lower boundary layer height at night, which
contributes to the accumulation of pollutants (Li et al., 2017;
Qiu et al., 2019).

The molecular distribution of 3-OH-FAs also showed
apparent seasonal variations (Fig. 1b). Even-carbon ho-
mologues (C16, C18) were predominant in all seasons,
especially in winter, with average mass concentrations
of 1355.2± 737.6 pg m−3 (C16) and 855.4± 461.8 pg m−3

(C18) at near ground, 882.6± 523.2 pg m−3 (C16) and
467.7± 299.8 pg m−3 (C18) at 220 m. C11, C13, and C15 3-
OH-FAs were the predominant odd-carbon 3-OH-FAs, par-
ticularly in summer, with average mass concentrations of
367.4± 70.5 pg m−3 (C11), 412.7± 126.6 pg m−3 (C13), and
405.8± 143.8 pg m−3 (C15) at near ground, respectively. In
terms of 3-OH-FAs with different carbon numbers, most 3-
OH-FAs were more abundant at near ground, suggesting that
these homologues were mainly influenced by near-surface
emissions. In contrast, C9 at 220 m remained higher than at
2 m in autumn and summer, regardless of diurnal changes
(Fig. 1c, d). Other short-chain homologues (C8, C10, C11)
also presented higher concentrations at 220 m during sum-

mer, indicating that they were possibly contributed by re-
gional transport or photochemical oxidation processes (Lei
et al., 2021).

The result of concentration-weighted trajectory (CWT)
analysis revealed that the mass concentration of 3-OH-FAs
at 220 m was influenced by marine sources to varying ex-
tents in spring, autumn, and summer (Fig. 2). During autumn
and winter, the major source areas were the Beijing-Tianjin-
Hebei region, with transport pathways originating from the
northwest of Tianjin, including Mongolia, Inner Mongolia
and Beijing, before reaching the sampling site. In summer,
predominant origin areas included Beijing-Tianjin-Hebei re-
gion, Heilongjiang province, and the Bohai Sea in the north-
east. Photochemical oxidation of organic matter is prone to
occur in summer due to high temperatures and intense solar
radiation. The elevated concentrations of short-chain 3-OH-
FAs (C8–C11) at 220 m may result from secondary transfor-
mation processes during long-range transport or photochem-
ical oxidation of the local emissions. Bikkina et al. (2019) re-
ported that photochemical oxidation of marine organic mat-
ter likely accounts for the predominance of odd-carbon and
short-chain 3-OH-FAs in sea-spray aerosols.

3.2 Vertical-temporal patterns of airborne endotoxin
levels

Total mass concentrations of endotoxins in PM10 from urban
Tianjin during 2020–2021 were estimated based on the mea-
sured 3-OH-FAs (C10–C18) (Table 1, Fig. 3a). There was no
obvious diurnal difference in total endotoxin levels (Fig. 3a).
The endotoxin level was significantly higher (p < 0.05) at
2 m than at 220 m during each season (Fig. 4a), indicating
that endotoxin emissions were mainly dominated by near-
ground sources. It was suggested that the majority of airborne
endotoxins may originate from soils (Brooks et al., 2006),
as aliphatic 3-OH-FAs (<C20) originate from soil microor-
ganisms (Zelles, 1999; Bikkina et al., 2021a). 3-OH-FAs are
also detected in marine ultrafiltered dissolved organic mat-
ter (Wakeham et al., 2003), groundwater sediments and es-
tuarine sediments (Parker et al., 1982). Marine source could
also be a dominant contributor to elevated endotoxin levels
in coastal areas. Lang-Yona et al. (2014) observed high en-
dotoxins content correlated with cyanobacteria at a coastal
site of the eastern Mediterranean Sea, assumed that higher
wind speeds with low pressure system led to increased sea
spray and the consequent primary aerosol emission. There-
fore, the endotoxins at 220 m in urban Tianjin might originate
from the vertical transport of ground emissions, long-range
transport from northwest of Tianjin or from marine emissions
(e.g., Bohai Sea) as depicted in CWT results (refer to Sect.
3.1).

In the near-ground (2 m) air, the average endotoxin
mass concentrations were the highest (26.5± 13.0 ng m−3)
in winter, followed by 23.7± 6.1 ng m−3 in summer,
20.5± 7.1 ng m−3 in fall, and the lowest 14.0± 6.6 ng m−3
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Figure 1. The vertical, diurnal and seasonal variations in molecular distribution of 3-OH-FAs (C8–C18). (a–b) The mean values (indicated
by points) and standard deviations (error bars) of 3-OH-FAs concentrations. (c–d) The differences in 3-OH-FAs concentrations between 2 m
and 220 m. The short lines indicate the mean values of the differences. The small figures in (c) and (d) are the enlarged view of species with
low concentration differences (C8–C12). ∗ The difference is significant (p < 0.05).

Figure 2. Seasonal concentration-weighted trajectory (CWT) maps for 3-OH-FAs measured at the Atmospheric Boundary Layer Observatory
of Tianjin. This analysis is based on air mass backward trajectories during the observation periods.
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Figure 3. Time series of concentrations of total endotoxins (a), particulate matter (b), and gaseous pollutants (c, d) during the observation
periods.

Table 1. Seasonal variations in airborne endotoxin concentrations in PM10 from urban Tianjin at different attitudes during 2020–2021.

Sampling site Group Endotoxin concentration (ng m−3)

Average Standard Range
deviation

Meteorological Season Autumn (n= 12) 12.8 2.9 7.1–18.2
Tower (220 m) Winter (n= 13) 16.8 8.6 4.5–33.5

Spring (n= 0) / / /
Summer (n= 13) 18.3 5.3 12.1–32.7

Day/Night Day (n= 18) 16.8 6.6 4.5–33.5
Night (n= 20) 15.5 6.5 4.9–32.7

Total SUM (n= 38) 16.1 6.6 4.5–33.5

Near-ground Season Autumn (n= 12) 20.5 5.2 13.9–30.8
(2 m) Winter (n= 13) 26.5 13.0 5.0–42.2

Spring (n= 11) 14.0 6.6 6.1–25.6
Summer (n= 13) 23.6 6.1 16.1–39.0

Day/Night Day (n= 23) 19.7 9.8 5.0–41.8
Night (n= 26) 23.1 9.1 6.3–42.2

Total SUM (n= 49) 21.5 9.6 5.0–42.2
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Figure 4. Concentrations of total endotoxins and relative contributions of 3-OH-FAs in urban aerosols from Tianjin. (a) The vertical, diurnal
and seasonal variations in mass concentrations of endotoxins. The horizontal dashed line denotes the seasonally averaged PM10 endotoxin
level. Seasonal (b) and diurnal (c) variations in the relative contributions of 3-OH-FAs with different carbon number to total endotoxins at
different altitudes.

in spring (Table 1, Fig. 4a). While at a higher alti-
tude (220 m), the average endotoxin level was the high-
est in summer (18.3± 5.3 ng m−3), followed by winter
(16.8± 8.7 ng m−3) and fall (12.8± 2.9 ng m−3). The en-
dotoxin concentration ratio between 220 and 2 m during
summer was 0.8± 0.1, higher than those during autumn
(0.6± 0.2) and winter (0.7± 0.2), suggesting an increased
contribution of possible regional transport or photochemical
oxidation processes during summer. Most airborne bacteria
could not survive during long-range transport due to ultra-
violet radiation, which further lead to photodegradation of

proteinaceous matter and significant losses of microbial vi-
ability (Hu et al., 2021; Yin et al., 2021). LPS is then re-
leased into the air during cell death (Petsch and Anspach,
2000), cause the rising in higher endotoxin level. Moreover,
the ratio of endotoxin concentrations measured at 220 and
2 m was higher during the daytime (0.8± 0.1) than night-
time (0.6± 0.1). The average endotoxin mass concentra-
tion was slightly higher at night than during the daytime in
spring, summer and autumn, but lower at night during winter
(Fig. 4a). The increasing concentration of certain bacteria at
night may also attribute to the diurnal changes in endotox-
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ins. Hu et al. (2020b) observed richer operational taxonomic
units per PM2.5 sample in Hangzhou at night during spring,
with higher relative abundance of Thermomicrobia, a Gram-
negative bacterial class, generally distributed away from an-
thropogenic regions. Abdel Hameed et al. (2009) found the
diurnal variations in number concentration of airborne bacte-
ria peaked in the evening at Helwan, Egypt.

The relative contributions of different carbon-numbered
3-OH-FAs to total endotoxin mass concentrations in PM10
of Tianjin presented seasonal and altitudinal variations
(Fig. 4b). Overall, the even-carbon long-chain C16 and C18 3-
OH-FAs made up the largest proportion in all seasons, with
higher relative contributions (46.5± 10.1 %) to total endo-
toxins at near-ground level than at 220 m (39.7± 13.7 %),
suggesting their local emissions. The relative contribution
of the even-carbon C16 and C18 homologues were the high-
est in winter (56.0± 6.9 % at near ground and 53.3± 8.1 %
at 220 m), followed by autumn (49.1± 5.4 %, 38.6± 6.2 %),
and the lowest in summer (36.7± 7.4 %, 27.0± 9.8 %). This
finding is consistent with those obtained in suburban Tokyo
(Bikkina et al., 2021a), Chichijima island (Bikkina et al.,
2021b), and Jeju island (Tyagi et al., 2017), in which 3-OH-
FAs were also characterized by a strong even-carbon pre-
dominance. Hydroxy fatty acids exhibiting a strong even-
carbon preference are usually derived from biological path-
ways (Bikkina et al., 2019) or indicative of biogenic sources
(Tyagi et al., 2015a), such as the lipid fractions of microor-
ganisms (bacteria, algae, fungi, etc.) and vascular plant sur-
face waxes (Kawamura et al., 2003; Simoneit et al., 2004).

However, in this study, the odd-carbon homologues (C11,
C13 and C15) accounts for 36.7 % and 41.9 % of total endo-
toxins at near ground and at 220 m, respectively. Their rel-
ative contribution was maximum in summer (45.0 % at near
ground and 51.6 % at 220 m), followed by autumn (34.5 %
at near ground and 41.4 % at 220 m), and the lowest in win-
ter (30.2 % at near ground and 32.5 % at 220 m). Compared
with remote islands dominated by natural emissions such as
microorganisms and vegetation (Bikkina et al., 2021b; Tyagi
et al., 2015a, 2017), the urban aerosols in Tianjin are largely
affected by both anthropogenic emissions and secondary for-
mation (Li et al., 2022). These odd-carbon 3-OH-FAs (C11,
C13 and C15) may originate from various sources, such as an-
thropogenic activities (e.g., fossil fuel combustion, biomass
emissions), or from the photochemical oxidation of long-
chain fatty acids or hydroxy fatty acids during atmospheric
transport (Bikkina et al., 2019).

In addition, long-chain C16, C18 and odd-carbon homo-
logues (C11, C13 and C15) 3-OH-FAs exhibited similar varia-
tion trend at the two heights. Long-chain C16, C18 3-OH-FAs
contributed more at 2 m, while odd-carbon homologues (C11,
C13 and C15) 3-OH-FAs contributed more at 220 m, regard-
less of diurnal changes (Fig. 4c).

3.3 Comparison of the endotoxin level with literature
results

The airborne endotoxin level at near-ground observed in
Tianjin is compared with results in literatures (Fig. 5). Dif-
ferent sampling methods and endotoxin assay methodologies
may affect the results of the endotoxin assessment (de Rooij
et al., 2017). Herein only the endotoxin level in aerosol sam-
ples assessed by chemical analytical method with 3-OH-FAs
as biomarkers are compared.

During all seasons, the mean mass concentration of air-
borne endotoxins in Tianjin was much higher than that in
remote islands such as Gosan (except for spring) (Tyagi et
al., 2017), Chichijima (Bikkina et al., 2021b; Tyagi et al.,
2015a), but close to the endotoxin levels measured in devel-
oped areas such as Tokyo (Bikkina et al., 2021a), and the
Pearl River Delta in China (Cheng et al., 2012). These re-
sults imply that high endotoxin mass concentrations in urban
areas may be caused by enhanced human activities (Lee et
al., 2004). Guan et al. (2014) discovered a higher endotoxin
level in a high-traffic urban setting than in a low-traffic res-
idential area, and similarly Madsen (2006) reported that the
endotoxin concentrations on congested streets were higher
than in residential areas.

Different from higher endotoxin levels observed in winter
and summer in Tianjin, the endotoxin level was much higher
in spring at Gosan, Korea, which was probably due to the
enhanced mobilization of mineral dust through high altitu-
dinal long-range atmospheric transport (Tyagi et al., 2017).
Dutch Expert Committee on Occupational Safety (DECOS),
a Committee of the Health Council of the Netherlands stated
that exposure to endotoxin above 9 ng m−3 for 8 h or more in-
creases the risk of respiratory diseases (DECOS, 2010). The
endotoxin concentrations reported in this study and in pre-
vious studies exceeded this value, except for remote islands
such as Chichijima (Fig. 5), raising an environmental health
issue caused by airborne endotoxins.

It should be noted that the endotoxin concentration pro-
posed by DECOS refers to the mass concentration of bioac-
tive endotoxin rather than total mass concentration (DECOS,
2010). In light of the multiple studies, bioactive endotoxin
appears to be correlated with C10, C14, C16 3-OH-FAs in
coarse mode particles (PM2.5−10) in the Pearl River Delta re-
gion (Cheng et al., 2012); C10, C12, C14 3-OH-FAs in house
dust (Saraf et al., 1997, 1999; Park et al., 2004; Uhlig et al.,
2016); C14, C16 3-OH-FAs in airplane seat dust (Hines et al.,
2003); and C12, C14 3-OH-FAs in agricultural dust (Reynolds
et al., 2005). In this regard, C10, C12, C14, C16 3-OH-FAs
were selected to estimate the bioactive endotoxin potential
in this study. Correspondingly, the estimated concentrations
of bioactive endotoxins were substantially lower compared
to total endotoxins (Fig. 5). The level of bioactive endotox-
ins at 2 m was 6.6 ng m−3 in spring, 8.7 ng m−3 in autumn,
lower than the endotoxin exposure threshold (9.0 ng m−3).
While the level of bioactive endotoxins exceeded the thresh-
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Figure 5. Comparisons of average endotoxin concentrations in aerosols with various size ranges during different seasons. All data are esti-
mated from 3-OH-FAs measured as biomarkers by chemical analytical method. The error bars are the standard derivations. Note: (1) 1990–
1993; (2) 2001–2003; (3) total endotoxins in this study (at ground); (4) bioactive endotoxins in this study (at ground); (5) rural region,
Hongkong University of Science and Technology; (6) urban region, Hongkong Science Museum; (7) urban region, Hong Kong. TSP, total
suspended particle; DECOS, Dutch Expert Committee on Occupational Safety.

old in summer (9.1 ng m−3) and winter (12.4 ng m−3), imply-
ing possible health risks of airborne endotoxin exposure.

3.4 Mass loading of airborne Gram-negative bacteria

Based on the empirical equations, the dry mass load-
ing of airborne GNB was estimated from the endotoxin
mass concentration. The mass concentrations of airborne
GNB measured in this study and previous literatures
measured in urban, marine and alpine aerosols are listed
in Table 2. The dry mass concentration of airborne
GNB showed obvious regional variations. The airborne
GNB dry mass concentration in Tianjin was the highest
in winter (882.5± 167.4 ng m−3), followed by summer
(787.6± 538.0 ng m−3), autumn (684.2± 464.6 ng m−3),
and the lowest in spring (467.8± 220.4 ng m−3) at 2 m.
Dry-mass concentrations of GNB in Tianjin PM10 are
markedly higher than those reported for PM10 from Hong
Kong in 2002–2003 (Lee et al., 2004) and even exceed GNB
levels measured in TSP at Chichijima (Japan) (Bikkina et al.,
2021b), Tokyo (Japan) (Bikkina et al., 2021a), and Gosan
(Korea) (Tyagi et al., 2017). These findings underscore the
exceptionally heavy bioaerosol burden in urban Tianjin and
highlight the urgency of mitigating biological, as well as
chemical, particulate pollution.

Amato et al. (2007) reported that cultivable airborne GNB
in cloud water were more abundant in summer than in win-
ter. The phenomenon was further explained by the prefer-
ential development of microbial populations on vegetation in

summer, coupled with the relative resistance of GNB to ultra-
violet (UV) damage. Heavy biomass burning activities may
also result in higher GNB mass concentration. GNB mass
concentration measured at Mount Tai, China during the high
biomass burning events, were 5 times higher than that during
the low biomass burning period (Tyagi et al., 2016). During
biomass burning events (i.e., wildfires and prescribed fires),
microbes can be aerosolized from terrestrial sources into the
atmosphere (Bonfantine et al., 2024; Kobziar et al., 2024). It
was previously assumed that pyrogenic carbon or smoke pro-
duced by biomass burning provides temporary habitat for mi-
crobes aerosolized from soils and vegetations (Bonfantine et
al., 2024; Kobziar and Thompson, 2020). Meanwhile, partic-
ulate matter in smoke confers attenuation of UV-B and UV-
A radiation, further leading to increasing bioaerosol viability
and higher microbial cell concentration (Mims et al., 1997;
Moore et al., 2021). Thus, the high GNB dry mass loading
in Tianjin, extremely during summer and winter, could be
resulted from the contributions of specific strains of GNB
and/or microbial emissions during biomass burning. There
are few descriptions of the atmospheric GNB mass concen-
trations in Tianjin in the literatures, and the distribution of
different GNB community, namely the species distribution
and their effects on human health remain to be further inves-
tigated.
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Table 2. Dry mass concentrations of GNB estimated in this study and previous studies.

Sampling site Sample Time/ GNB (ng m−3) Reference
(period) type Location Mean±SD

Tianjin, China
(2020–2021)

PM10 Autumn
(2 m / 220 m)

684.2± 464.6/
427.4± 237.3

This study

Winter
(2 m / 220 m)

882.5± 167.4/
559.7± 149.4

Spring
(2 m)

467.8± 220.4

Summer
(2 m / 220 m)

787.6± 538.0/
611.4± 402.4

Hong Kong, China
(2002–2003)

PM2.5 HKUST 182 Lee et al. (2004)

HKSCM 313

PM2.5–10 HKUST 45

HKSCM 93

PM10 HKUST 228

HKSCM 408

Mount Tai,
China (2006)

TSP H-BEEs 390 Tyagi et al. (2016)

L-BEEs 75

Chichijima, Japan
(1990–1993;
2001–2003)

TSP Spring 66; 200 Bikkina et al. (2021b)

Summer 48; 100

Autumn 35; 58

Winter 50; 194

Tokyo, Japan
(1994)

TSP May 313 Bikkina et al. (2021a)

September 636

Gosan, Korea
(2001–2002)

TSP Spring 928 Tyagi et al. (2017)

Summer 118

Autumn 194

Winter 380

Note: TSP, total suspended particulate; SD, standard derivation; HKUST, Hongkong University of Science and Technology; HKSCM,
Hongkong Science Museum; H-BEEs, high biomass-burning samples; L-BEEs, low biomass-burning samples.

3.5 Influencing factors of airborne endotoxins

3.5.1 Effects of meteorological conditions and gaseous
pollutants

As components of GNB cell membranes, endotoxins are re-
leased during bacterial growth or death, meaning their mass
concentration is determined not only by the abundance of
GNB but also by factors such as GNB sources, meteorolog-
ical conditions, surface types, and gaseous pollutants (Guan
et al., 2014; Rolph et al., 2018).

Previous studies have demonstrated that air temperature
plays a more predominant role in influencing endotoxin lev-

els than other environmental factors (Traversi et al., 2010;
Carty et al., 2003). Higher endotoxin level was found in win-
ter and autumn in Korea, and a negative association was ob-
served between endotoxins and air temperature (Hwang and
Park, 2019). Guan et al. (2014) observed high endotoxin level
at 4–10 °C, and assumed this temperature range was suitable
for bacterial growth. The endotoxin concentration was higher
under very dry or wet conditions compared to relative humid-
ity (RH) was 40 %–80 %. Cheng et al. (2012) suggested the
differences in bacterial fauna and growth rates can cause dif-
ferent endotoxin level under similar climatic conditions. In
this study, during the winter period in Tianjin, the RH was the
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lowest (46 %) compared to other seasons, while wind speed
reached the highest at 220 m (4.8 m s−1) and the temperature
was −7 to 5 °C, which might be suitable for the survival of
specific GNB species, resulting the higher endotoxin level.
In winter when air pollution is frequent, pollutants and other
elements originating from anthropogenic sources act as tox-
ins to GNB, thereby increasing the concentration of endotox-
ins as a result of cell death level (Guan et al., 2014; Maha-
patra et al., 2018), providing a possible explanation for the
highest endotoxin level in winter. Moreover, meteorological
conditions characterized by stable weather patterns, such as
high atmospheric pressure (Ormanova et al., 2020), reduced
mixing layer height (MLH) and temperature inversions cre-
ate unfavorable conditions for pollutant dispersion (Li et al.,
2022; Yao et al., 2022). These conditions can lead to the ac-
cumulation of pollutants, exacerbating air pollution levels,
particularly during the winter season in Tianjin.

Hierarchical cluster analysis classified the mass concen-
tration of 3-OH-FAs (C8–C18) into 3 groups: short-chain
(C8, C9), mid-chain (C10–C13), and long-chain (C14–C18)
3-OH-FAs. Each group likely shares similar sources or in-
fluencing factors. Spearman correlation analysis (Fig. S2)
and Mantel test (Fig. 6) were used to evaluate the rela-
tionships between 3-OH-FAs, endotoxins, and environmental
factors (meteorological parameters, carbonaceous fraction,
anions and cations, air pollutants). Among meteorological
parameters, RH and air temperature mainly accounted for ob-
served variations in 3-OH-FAs concentrations (Fig. 6) (Man-
tel’s p < 0.01). Most short/mid-chain (C8–C13) 3-OH-FAs
are positively correlated with air temperature and relative
humidity, and negatively correlated with wind speed at both
ground level and 220 m (Fig. S2). Long-chain (C14–C18) 3-
OH-FAs were negatively correlated with air temperature and
wind speed at near ground. These findings align with previ-
ous study (Guan et al., 2014), which reported significant cor-
relations between endotoxin levels and air temperature and
RH. Moderate air temperature and RH are considered con-
ducive to bacterial growth (Allen et al., 2011; Guan et al.,
2014). During summer, the average air temperature (27.8 °C
at 2 m, 25.7 °C at 220 m) and relative humidity (72 % at 2 m,
81 % at 220 m) were the highest, with relatively intense so-
lar radiation (156 W m−2). These meteorological conditions
were favorable for photochemical reactions to occur (Huo et
al., 2024; Pavuluri et al., 2015). While the data alone can-
not prove a direct photochemical production route, the coin-
cidence between intense photochemistry and the increase in
these short/mid-chain (C8–C13) 3-OH-FAs may point to pho-
tochemically driven secondary pathways of fatty acids that
have been hypothesized in previous studies (Bikkina et al.,
2019; Wakeham, 1999; Tyagi et al., 2015a).

Previous studies have shown that gaseous pollutants (O3,
SO2, NO2, and CO) can affect bacterial diversity and rich-
ness (Yan et al., 2018; Qi et al., 2020; Dong et al., 2016),
potentially leading to varying distributions of 3-OH-FAs and
endotoxins. The endotoxin mass concentrations exhibited a

similar trend with PM2.5, PM10, NO2 and CO (Fig. 3). Spear-
man’s correlation analysis revealed significant positive corre-
lations (p < 0.01) between endotoxin mass concentrations,
NO2, and CO near the ground (2 m) (Figs. S2, 7c, d), along
with a significant negative correlation (p < 0.05) with O3
(Figs. S2, 7b). These results are consistent with previous
studies (Guan et al., 2014; Hwang and Park, 2019), sug-
gesting that gaseous pollutants, including SO2, NOx and O3,
may kill GNB, thereby increasing endotoxin levels as re-
sult of cell death. Exposure to high concentration of SO2
and NO2 significantly increases the fragility and disruption
of bioaerosols such as pollen, and may possibly increase the
incidence of allergic airway disease in sensitized individu-
als by facilitating the bioavailability of airborne bioaerosols
(Ouyang et al., 2016). When exposed to higher O3, oxida-
tion of the hydroxyl group in the 3-OH-FAs may turn fatty
acid chain into carbonyl group, thus cause the decrease in de-
tected 3-OH-FAs and estimated endotoxins (Liu et al., 2025).
Atmospheric photodegradation of proteinaceous matter may
also occur through reactions with O3, NO2, and the corre-
sponding radicals, causing the damage of the main compo-
nents of cell membranes (Green et al., 2013; Wang et al.,
2019b; Xu et al., 2020).

Additionally, the combined concentration of O3 and NO2,
defined as the total oxidants in previous studies, has been
used to estimate atmospheric oxidizing capacity (Hu et
al., 2016, 2017). Endotoxin mass concentrations were pos-
itively associated with total oxidants in winter but neg-
atively associated in spring (Fig. 7e, f). These opposite
signs most likely reflect season-specific controlling factors
rather than a single universal mechanism. During winter
the boundary layer experienced moderate oxidizing condi-
tions (Ox = 68–98 µg m−3); such environments have been
linked to oxidative stress and lysis of Gram-negative bacte-
ria, which could increase aerosol-phase lipopolysaccharide
(Hwang and Park, 2019; Mahapatra et al., 2018). In contrast,
springtime Ox levels were even higher (78–126 µg m−3), yet
endotoxin decreased. One plausible explanation is a shift
in microbial community composition: oxidant-tolerant taxa
may dominate, while overall richness declines (Yin et al.,
2021), leading to lower net release of endotoxin. No signif-
icant correlations were found between endotoxins and to-
tal oxidants in summer (Ox = 92–199 µg m−3) or autumn
(Ox = 69–140 µg m−3).

3.5.2 Effects of particulate pollutants

The endotoxin levels generally increased significantly un-
der high PM pollution, showing a strong correlation with
PM10 concentrations (Shen et al., 2019; Zhong et al., 2019).
Previous studies demonstrated that 60 % of biological ac-
tive endotoxins (measured by LAL method) were associated
with coarse-mode particles (PM2.5–10) emitted from natural
sources, including soil dust and vegetation. Meanwhile, 80 %
of total endotoxins (measured by GC-MS method) were as-
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Figure 6. Mantel test of 3-OH-FAs with meteorological conditions and chemical components of PM10. The square size scales with
|Spearman’s r|, and larger (smaller) squares indicate stronger (weaker) correlation.

Figure 7. Spearman’s correlation analyses between mass concentrations of endotoxins and air pollutants. (a) PM2.5 and PM2.5–10; (b) O3;
(c) NO2; (d) CO; (e–f) Total oxidants [O3+NO2] in winter and spring.
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sociated with fine particles (PM2.5) originating from anthro-
pogenic combustion processes (Cheng et al., 2012; Seinfeld
et al., 1998). The endotoxin mass concentrations measured
by LC-MS in this study showed a similar temporal trend to
PM2.5 and PM10 (Fig. 3a, b). Here, airborne endotoxin lev-
els were significantly and positively correlated with PM2.5
(p < 0.01), while no significant correlation with PM2.5–10
was observed (Fig. 7a). This result indicates that total air-
borne endotoxins are most likely related to anthropogenic
sources.

Spearman correlation analysis (Fig. S2) and Mantel test
(Fig. 6) revealed that short-chain 3-OH-FAs (C10–C13) at
220 m were mainly associated with meteorological condi-
tions, WSOC, and Mg2+, reflecting their emissions from
natural sources and secondary transformation during trans-
port. According to Fig. S2, endotoxins at the near ground
level (2 m) attributed by long-chain 3-OH-FAs (C15–C18)
are correlated (p ≤ 0.05) with chloride (Cl−) and sodium
(Na+). Na+ is generally used to characterize the impact
of marine aerosols, as their usual source is sea salt, with
Cl−/Na+ mass ratio of 1.8 (Martens et al., 1973; Wang
and Shooter, 2001). The mass ratio of Cl−/Na+ (2.9± 3.5)
at the near ground level was much higher than that of sea
salt aerosols. This result indicated the impact of anthro-
pogenic emissions, especially combustion emissions (Wang
et al., 2005, 2012), on those 3-OH-FAs. Moreover, the pos-
itive correlation (p ≤ 0.05) of endotoxins with secondary
inorganic species (SO2−

4 , NO−3 , NH+4 ) and crustal species
(Ca2+, Mg2+) separately, suggesting the possible sources of
3-OH-FAs (C10–C18) from atmospheric secondary processes
(Jung et al., 2009) and soil dust (Huang et al., 2006). This
finding suggests that the emissions of long-chain 3-OH-FAs
are influenced by multiple factors, including natural sources
such as soil and anthropogenic sources such as combustion
(Zhong et al., 2019). Composting facilities, intensive farming
(e.g., cattle, swine and poultry), and wastewater treatment fa-
cilities are all potential anthropogenic sources of airborne en-
dotoxins (Hu et al., 2020a; Rolph et al., 2018). According to
Mahapatra et al. (2018), certain species of GNB may release
more endotoxins when disrupted by anthropogenic contami-
nation, or the source of higher pollution may themselves be
significant sources of endotoxins.

3.6 Sources of 3-OH-FAs in Tianjin urban aerosols

Based on the PMF factor profiles, we identified 5 source fac-
tors (microorganisms, secondary nitrate formation process,
secondary sulfate formation process, biomass burning, and
dust) of PM10 from Tianjin.

Factor 1 was highly loaded on 3-OH-FAs, thus was mainly
identified as microbial sources. Factor 2 was characterized
by high loading of K+ and Cl−, which were mainly emitted
from biomass burning (Srivastava et al., 2021; Hays et al.,
2005). Factor 3 was heavily weighted by NH+4 and NO−3 ,
which was typical of secondary nitrate formation process

(Wang et al., 2019a). Factor 4 presented high loaded of two
crustal elements Ca2+ and Mg2+, mainly emitted from dust
sources (Huang et al., 2016). Factor 5 indicated secondary
sulfate formation process, which was identified by high con-
centrations of NH+4 and SO2−

4 .
The contributions of different sources to 3-OH-FAs in

PM10 were estimated (Fig. 8). Mid-chain 3-OH-FAs (C10,
C11, C13) were predominantly contributed by microorgan-
isms (42.6 %–54.4 %), and also associated with secondary
sulfate formation process (17.3 %–29.7 %) and dust sources
(20.6 %–27.7 %). This result indicates substantial inputs
from microorganisms associated with soil dust resuspen-
sion and aging of primary aerosols. Long-chain 3-OH-FAs
(C14–C18) were likewise primarily originated from microor-
ganisms (41.5 %–57.1 %), with notable contribution from
biomass burning (16.5 %–31.4 %) and associated with sec-
ondary nitrate formation process (5.2 %–23.2 %). Overall,
microorganisms represent the primary biological source of
both mid- and long-chain 3-OH-FAs (C10–C18), with addi-
tional contributions from secondary processes and biomass
burning.

The different behaviors of sulfate and nitrate further high-
light source-specific processes. Sulfate-related processes are
mainly driven by photochemical oxidation, aqueous phase
or cloud chemistry at a regional scale (Slowik et al., 2010;
Zheng et al., 2015), whereas nitrate-related processes are
typically controlled by gas-particle partitioning, rapid sec-
ondary photochemical formation at a local scale (Vispute et
al., 2025; Guo et al., 2010; Hu et al., 2016). Furthermore,
the higher relative contributions of mid-chain 3-OH-FAs at
220 m (Fig. 4b) support their attribution to regional trans-
port processes, similar to sulfate. Conversely, the enrichment
of long-chain homologues at 2 m (Fig. 4b), together with
their association with nitrate formation process, suggests a
stronger influence from local combustion and secondary for-
mation. In general, the PMF results, consistent with the re-
sults of Mantel test, indicate that mid-chain 3-OH-FAs are
mainly influenced by natural sources and secondary pro-
cesses, representing aged, regionally transported aerosols. In
contrast, long-chain homologues show stronger links to an-
thropogenic emissions, particularly biomass burning and lo-
cal secondary formation, reflecting fresher and more locally
derived contributions.

4 Conclusions

This study obtained the seasonal, altitudinal, and diurnal dy-
namics of airborne endotoxins in urban Tianjin through com-
prehensive quantification of 3-OH-FAs (C10–C18) in PM10.
Airborne endotoxins exhibited clear altitude-dependent gra-
dients (2 m vs. 220 m) and distinct temporal variability, with
winter maxima reflecting combined contributions of near-
ground natural emissions (e.g., soil microbial activity) and
anthropogenic inputs (e.g., biomass burning). Source appor-
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Figure 8. Source apportionment of 3-OH-FAs in Tianjin urban aerosols. (a) Factor profiles for the 5-factor solution from PMF analysis.
(b) Contribution of different sources to 3-OH-FAs.

tionment further revealed a chain-length-specific patterns:
mid-chain homologues (C10–C13) were primarily linked to
microorganisms and regional secondary formation, while
long-chain species (C14–C18) showed stronger associations
with biomass burning and local secondary processes. This
differentiation was consistent with the vertical distribution
of 3-OH-FAs, as the higher relative abundance of mid-chain
homologues at 220 m suggested regional transport, whereas
the enrichment of long-chain species at the ground level re-
flected stronger local influences.

Overall, total endotoxin levels in urban Tianjin were com-
parable to those reported in industrialized regions. The pro-
nounced vertical attenuation underscores the localized im-
pact of ground-level emissions. Bioactive endotoxin concen-
trations generally remained below DECOS thresholds, ex-
cept during winter peaks, indicating a seasonal pattern of
potential health risks. The opposing correlation between en-
dotoxin levels and total oxidants (O3+NO2) in winter and
spring highlights atmospheric oxidative capacity as a criti-
cal modulator of endotoxin activity. This study emphasizes
the dominant role of microbial and secondary sources for
mid-chain homologues, contrasted with the stronger influ-
ence of anthropogenic combustion on long-chain species. Fu-
ture work should focus on quantifying these contributions,
clarifying the dynamics between total and bioactive endotox-
ins, and identifying the bacterial taxa responsible for airborne
endotoxins in typical atmospheric environments.
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