Supplement of Atmos. Chem. Phys., 25, 14513–14533, 2025 https://doi.org/10.5194/acp-25-14513-2025-supplement © Author(s) 2025. CC BY 4.0 License.

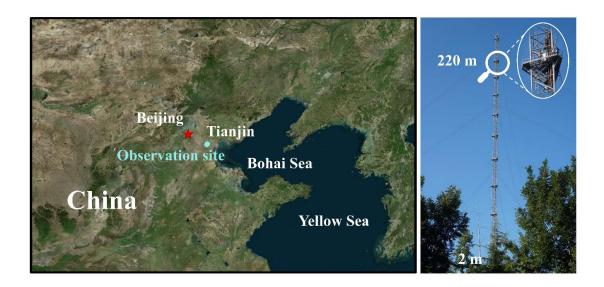
Supplement of

Vertical and seasonal variations in airborne endotoxins in a coastal megacity of North China: insights from 3-hydroxy fatty acids

Wenxin Zhang et al.

Correspondence to: Wei Hu (huwei@tju.edu.cn) and Pingqing Fu (fupingqing@tju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.


S1. Chemicals and reagents. The 3-OH-FA standards (C_8 , C_9 , C_{10} , C_{12} , C_{14} , C_{16} and C_{18}) were purchased from J&K Chemical (Beijing, China), while the rest of the 3-OH-FA standards (C_{11} , C_{13} , C_{15} and C_{17}) were purchased from Shanghai SCR-Biotech Co., Ltd. The information on 3-OH-FAs standards and the method validation is presented in Table S1 and Table S2. 2-chloro-1-methylpyridinium iodide (CMPI), triethylamine (TEA), 2-dimethylaminoethylamine (DMED), formic acid (FA), HPLC-grade acetonitrile (ACN), ethyl acetate (EtOAc), dichloromethane (DCM), methyl tert-butyl ether (MTBE), and HPLC-grade methanol (MeOH) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China). The isotope-labeling reagent d_4 -DMED, the d_4 -DMED-labled saturated fatty acids ($C_8 - C_{18}$), and the d_4 -DMED-labled 3-OH-FA standards (C_8 , C_9 , C_{10} , C_{12} , C_{14} , C_{16} and C_{18}) were synthesized according to the previous report (Hao et al., 2015).

Analyte	Molecular Formula	CAS No.	Abbreviation	M.W.a
3-hydroxyoctanoic acid	$C_8H_{16}O_3$	14292-27-4	3-OH-C ₈	160.2
3-hydroxynonanoic acid	$C_9H_{18}O_3$	40165-87-5	3-OH-C ₉	174.2
3-hydroxydecanoic acid	$C_{10}H_{20}O_3$	14292-26-3	3-OH-C_{10}	188.3
3-hydroxyundecanoic acid	$C_{11}H_{22}O_3$	40165-88-6	3-OH-C ₁₁	202.3
3-hydroxydodecanoic acid	$C_{12}H_{24}O_3$	1883-13-2	3-OH-C ₁₂	216.3
3-hydroxytridecanoic acid	$C_{13}H_{26}O_3$	32602-69-0	3-OH-C_{13}	230.4
3-hydroxytetradecanoic acid	$C_{14}H_{28}O_3$	28715-21-1	3-OH-C ₁₄	244.4
3-hydroxypentadecanoic acid	$C_{15}H_{30}O_3$	32602-70-3	3-OH-C ₁₅	258.4
3-hydroxyhexadecanoic acid	$C_{16}H_{32}O_3$	928-17-6	3-OH-C ₁₆	272.4
2-hydroxyhexadecanoic acid	$C_{16}H_{32}O_3$	764-67-0	2-OH-C ₁₆	272.4
3-hydroxyheptadecanoic acid	$C_{17}H_{34}O_3$	40165-89-7	3-OH-C ₁₇	286.4
3-hydroxyoctadecanoic acid	$C_{18}H_{36}O_3$	45261-96-9	3-OH-C_{18}	300.5

Note: ^a Molecular weight

Table S2. Method validation for target 3-OH-FAs.

Analyte	MRM parameter	Retention time (min)	R^2
3-OH-C ₈	231.2→186.2	3.19	0.9995
3-OH-C ₉	245.2→200.2	4.14	0.9972
3-OH-C_{10}	259.2→214.2	5.20	0.9986
3-OH-C_{11}	$273.2 \rightarrow 228.2$	6.42	0.9901
3-OH-C_{12}	287.2→242.2	7.63	0.9956
3-OH-C_{13}	$301.2 \rightarrow 238.2$	7.65	0.9947
3-OH-C_{14}	$315.2 \rightarrow 270.2$	9.89	0.9958
3-OH-C ₁₅	$329.2 \rightarrow 284.2$	8.84	0.9888
3-OH-C_{16}	$343.2 \rightarrow 298.2$	12.06	0.9931
3-OH-C ₁₇	357.2→294.2	13.18	0.9912
3-OH-C ₁₈	371.2→326.2	14.10	0.9949

Figure S1. Geographical location of the observation site at the Tianjin Atmospheric Boundary Layer Observatory of the China Meteorological Administration, located at the southern area of urban Tianjin, China (39°08'N; 117°22'E) and sampler setting on the 255-m meteorological tower. The background map is sourced from MeteoInfo (Wang, 2019), and the tower photograph was taken by Libin Wu.

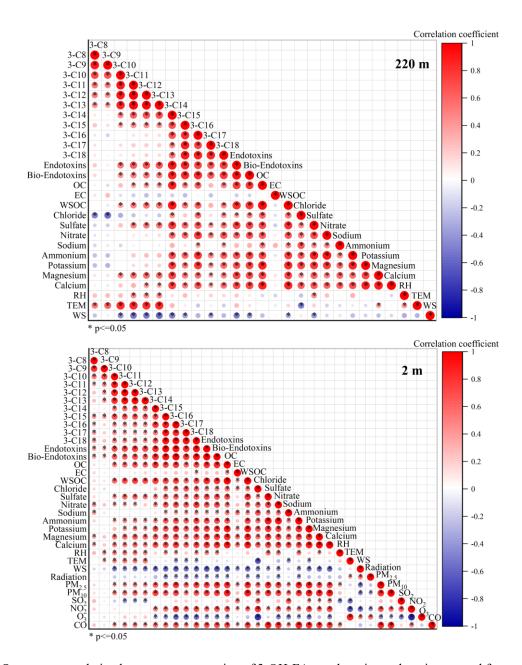


Figure S2. Spearman correlation between concentration of 3-OH-FAs, endotoxins and environmental factors (meteorological parameters, carbonaceous fraction, anions and cations, air pollutants) at different heights. The circle diameter is proportional to correlation coefficient and that asterisks mark significant correlations at $p \le 0.05$. TEM, temperature; WS, wind speed; RH, relative humidity.

30 References

- Hao, Y. H., Zhang, Z., Wang, L., Liu, C., Lei, A. W., Yuan, B. F., and Feng, Y. Q.: Stable isotope labeling assisted liquid chromatography-electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins, Talanta, 144, 341-348, https://doi.org/10.1016/j.talanta.2015.06.056, 2015.
- Wang, Y. Q.: An Open Source Software Suite for Multi-Dimensional Meteorological Data Computation and Visualisation, Journal of Open Research Software, 7, 21, https://doi.org/10.5334/jors.267., 2019.