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Abstract. Wildfire smoke often aggravates the ozone (O3) pollution and negatively affect crop yields. To date,
the global impact of fire-sourced O3 exposure on crop yields still remained unknown. To address this issue, a
multi-stage model was developed to quantify the global wildfire-induced ambient O3 concentrations in the future
scenarios. The results suggested that the relationship between observed K+ and levoglucosan levels with sim-
ulated fire-sourced maximum daily average 8 h (MDAS) O3 concentration reached 0.67 and 0.73, respectively,
indicating the robustness of fire-sourced O3 estimate. In both of historical and future scenarios, Sub-Sahara
Africa (SS: 14.9 4 8.4 (historical) and 18.3 +9.6 (mean of the future scenarios)ugm™) and South America
(SA:4.0£2.5 and 4.7+ 3.2 uygm~3) showed the highest fire-sourced MDAS8 O3 concentrations among all of the
regions. However, the crop production losses (CPL) caused by O3 exposure reached the highest values in China
due to very high total crop yields and relatively high wildfire-induced MDAS O3 levels. Moreover, CPL in China
was sensitive to emission scenario, indicating the effective emission control could largely decrease fire-sourced
O3 damage to crop. In contrast, both of SS and SA even showed the higher CPL in low-carbon scenario (SSP1-
2.6), suggesting more stringent control measures are required to offset the wildfire contribution. Our findings
call for attention on the threat to future global food security from the absence of pollution mitigation and the

persistence of global warming.

1 Introduction

Along with the warming climate, large-scale wildfire events
have experienced dramatic increases in frequency and inten-
sity in the past decades, and the wildfire seasons have been
significantly prolonged in many regions such as the western
part of the United States and Australia (Jones et al., 2022;
Richardson et al., 2022; Wang et al., 2022). Wildfire often
released a large number of gaseous precursors such as car-
bon monoxide (CO), nitrogen dioxides (NO,), and volatile
organic compounds (VOC) (Anderson et al., 2024; Xu et al.,
2022), which could significantly enhance the ozone (O3) lev-
els through photochemical reactions (Jaffe et al., 2013). Re-

cent studies have revealed that wildfire contributed to 3.6 %
of ambient all-source O3 level globally (Xu et al., 2023). The
aggravation of O3 pollution not only poses detrimental ef-
fects on human health (Liu et al., 2018), but also reduced
the crop yields because the excessive O3 exposure could af-
fect plant photosynthesis via stomatal uptake (Karmakar et
al., 2022; Zhao et al., 2020). Thus, quantifying the negative
impacts of fire-sourced O3 pollution on crop yields was ben-
eficial to propose optimal strategy to ensure agricultural pro-
duction.

Notably, warming climate in the future not only would in-
crease wildfire burned areas, but also intensified the sever-
ity of fire weather (Richardson et al., 2022; Wasserman and
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Mueller, 2023). Moreover, wildfire and heatwave have gen-
erated the positive feedback and the mechanism would be
further enhanced in the future (Senande-Rivera et al., 2022;
Zhao et al., 2024). Meanwhile, the ambient O3 concentra-
tion was very sensitive to air temperature, and the continu-
ous increase of air temperature inevitably aggravate wildfire-
related O3 pollution in the future (Bloomer et al., 2009; Li
et al., 2024a; Selin et al., 2009). Therefore, it is necessary to
analyze the spatiotemporal characteristics of global wildfire-
induced O3 concentrations especially in the future scenarios,
which was favorable to accurately identify the hotspots for
wildfire-induced O3 pollution and to propose effective con-
trol measures targeting different future scenarios.

A growing body of studies have focused on the wild-
fire contribution to O3 pollution. Lee and Jaffe (2024) em-
ployed the generalized additive model (GAM) to predict
the wildfire-related O3 concentration in the United States
and found wildfire increased maximum daily average 8 h
(MDAS) O3 concentration across the entire country (Lee and
Jaffe, 2024). Besides, Xu et al. (2023) have quantified that the
wildfire led to average 3.2 ugm ™~ increase of O3 concentra-
tion globally using the GEOS-Chem model. Unfortunately,
most of the current studies assessed the contribution of his-
torical wildfire to ambient O3 level, and the estimates showed
large uncertainties associated with the burned areas, fuel con-
sumption, and fuel types. Moreover, most of these studies
only focused on the historical estimates, while only two stud-
ies explored the wildfire contribution to O3 pollution in the
future scenarios (Yang et al., 2022; Yue et al., 2015). Both
of these studies only focused on wildfire in North America,
whereas the future wildfire contribution to O3 pollution in
other regions are still unknown. Moreover, their negative im-
pacts on crop yields are also not clear. In fact, the global
wheat yield losses reached 0.95% (around 20tkm™2) per
ppb O3 increase (Guarin et al., 2019). Although the current
contribution ratio of wildfire to all-source O3 level is not
high, the higher wildfire risk and total crop yields in the fu-
ture scenarios highlights the seriousness of crop yield losses.

Here, our study developed an ensemble machine-learning
model to predict fire-sourced MDAS O3 levels under four
future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5). Then, the spatiotemporal variations of these concen-
trations and the key drivers behind them were further re-
vealed. Finally, a crop yield loss assessment framework was
applied to quantify the negative impacts (crop yield losses)
of wildfire-induced O3 exposure on global crop yield. The
hotspots of crop yield losses in different scenarios should be
determined and the appropriate control measures should be
proposed to reduce the economic losses.
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2 Materials and methods

2.1 Data preparation

Most ground-level MDAS8 O3 observations focused on
East Asia, India, Western Europe, and the contiguous
United States. Daily MDAS O3 data during 2015-2019
over China were collected from the Ministry of Ecology
and Environment of China. The observation network
comprises of 2000 monitoring sites distributed across
various land-use types (Fig. S1 in the Supplement).
Quality assurance for the ground-level observations in
China was performed based on the HJ 630-2011 speci-
fications. The dataset of daily MDAS8 O3 concentrations
from 2015 to 2019 in India were collected from the
Central Pollution Control Board (CPCB) online database
(https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/
caagm-landing/caagm-comparison-data, last access: 5 Au-
gust 2025). The detailed data quality assurance/control
has been introduced by Gurjar et al. (2016). Ground-level
observation dataset for member countries of the European
Economic Area were collected from the European Envi-
ronment Agency. The data quality control of European
Environment Agency was explained by Keller et al. (2021).
The dataset of daily MDAS8 O3 levels in more than 200
monitoring sites across the United States were downloaded
from the website of https://www.epa.gov/ (last access:
7 August 2025) (Fig. S1). The quality control of these
observations in EPA was carefully introduced by (Lamsal
et al.,, 2015). Observation data in other countries and
territories were downloaded from the website of OpenAQ
(https://openaq.org/, last access: 12 July 2025). After the
data cleaning and quality control, more than 300000 daily
MDAS8 O3 measurements in 3015 sites were collected to
simulate the global O3 concentrations. For O3, 1 part per
billion (ppb) was approximated as 1.96ugm™> based on
the standard air pressure and temperature (25.5°C and
101.325kPa). The Unite of O3 was changed into ugm—3
unified.

GEOS-Chem (v13.4.0) model was utilized to estimate
atmospheric MDAS8 O3 concentrations during 1 January—
31 December during 2015-2019, 2045-2049, and 2095-
2099 periods. In our study, the years of 2015-2019 was
regarded as the historical period, whereas the years of 2045—
2049 and 2095-2099 were regarded as the future period.
This model comprises of a complex chemistry mechanism
of tropospheric NO,-VOC-Osz-aerosol (Geddes et al., 2016;
Zhao et al., 2017). This model for O3 estimates during his-
torical period and future scenario were driven by MERRA2
and GCAP2_CMIP6 reanalysis meteorological factors,
respectively (Bali et al., 2021; Zhang, 2016). The future
scenario includes SSP1-2.6 (low-carbon emission scenario),
SSP2-4.5 (middle-carbon emission scenario), SSP3-7.0
(traditional energy scenario), and SS5-8.5 (high energy
consumption scenario). A global simulation was performed
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at a spatial resolution of 2 x 2.5° resolution (Bindle et al.,
2021; Wainwright et al., 2012). The historical anthropogenic
emission inventory during 2015-2019 was downloaded from
Community Emissions Data System (CEDS) (Hoesly et al.,
2018). The anthropogenic and wildfire emissions during
2045-2049 and 2095-2099 were collected from the website
of https://esgf-node.llnl.gov/search/input4mips/ (last access:
20 July 2025). Wildfire emission during 2015-2019 was
obtained from GFED (Chen et al., 2023; Pan et al., 2020;
Peiro et al., 2022; van Wees et al.,, 2022). Some other
natural emission such as the lightning NO, emission was
collected from http://geoschemdata.wustl.edu/ExtData/
HEMCO/OFFLINE_LIGHTNING/v2020-03/MERRA?2/
(last access: 22 July 2025) (Li et al., 2022; Nault et al.,
2017; Verma et al., 2021). The whole simulation processes
included four steps. Firstly, we run the GEOS-Chem model
with all emissions (including wildfires) to establish refer-
ence O3 concentrations (Baseline simulation). Second, we
repeated the simulation while excluding wildfire emissions
with the same meteorological conditions (MERRA2 and
GCAP2_CMIP6) and anthropogenic emission inventory
(CEDS). Third, we computed the wildfire-induced O3 by
subtracting zero-out results from the baseline. At last, we
compare modeled O3 concentrations with observational data
(e.g., ground-based measurements) to assess uncertainty.

Meteorological factors including 2 m dewpoint tempera-
ture (D2m), surface pressure (Sp), 2 m temperature (T2m),
and total precipitation (Tp), 10m wind component (Ujg
and Vjp) during 2015-2019 were collected from the fifth-
generation European Centre for Medium-Range Weather
Forecasts Reanalysis (ERA-5). All of these meteorological
data showed the same spatial resolution of 0.25° x 0.25°.
For the estimates in the future scenarios, the CMIP6 dataset
in four scenarios (e.g., SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5) were also applied to predict MDAS O3 concen-
trations during 2015-2019, 2045-2049, and 2095-2099. The
dataset includes simulated O3 concentrations, 2 m air temper-
atures, wind speed at 850 and 500 hPa, total cloud cover, pre-
cipitation, relative humidity, and short-wave radiation. The
modelled meteorological parameters and chemical composi-
tions derived from multiple earth system models were inte-
grated into the machine-learning model. The detailed models
are introduced in our previous studies (Li et al., 2024b). The
elevation was collected from ETOPO at a spatial resolution
of 1. Additionally, the land use type data were downloaded
from the reference of Liu et al. (2020).

2.2 Model development

A multi-stage model was developed to estimate the global
fire-sourced MDAS8 O3 concentrations (Fig. S2). In the first
stage, the ground-level MDAS O3 levels, meteorological fac-
tors, land use types, and simulated O3 levels derived from
GEOS-Chem model were integrated into XGBoost model to
simulate the full-coverage MDAS8 O3 levels during 2015—
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2019. In the second stage, the simulated O3z concentra-
tions and meteorological parameters in four scenarios (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2019,
2045-2049, and 2095-2099 were collected from CMIP6
dataset including 16 earth system models. Then, the data in
the future scenarios were integrated into the XGBoost model
to further calibrate the CMIP6 modeling results based on
historical dataset (2015-2019) derived from the first stage
model. This stage could obtain the calibrated MDAS8 O3 con-
centrations in different scenarios during 2015-2019, 2045-
2049, and 2095-2099. The detailed equations of XGBoost
model are summarized as follows:

n
F® = Z[l()’i» YD)+ 800 1y, v ) £
i=1

1
+ anz*(u)l(}’iv yA(t_l))ftz(xi)] +Q(f1) (D

where F) represents the cost function at the ¢th period; 9
denotes the derivative of the function; Byz(,_l) means the sec-
ond derivative of the function; [ refers to the differentiable
convex loss function that reveals the difference of the pre-
dicted O3 level (y2) of the ith instance at the ¢th period and
the target value (y;); f;(x) is the increment; Q( f;) reflects the
regularizer. Maximum tree depth and learning rate are 20 and
0.1, respectively.

All of the independent variables obtained from various
sources were resampled to 0.25° grids using Kriging interpo-
lation. For the machine-learning model development, it was
necessary to eliminate some redundant independent variables
and then determine the optimal variable group. The redun-
dant variables were identified based on the fact that the over-
all predictive accuracy could degrade after the removal of
these variables. 10-fold cross-validation method was applied
to examine the predictive accuracy of XGBoost model.

In the third/final stage, the calibrated MDAS O3 concentra-
tions based on previous two-stage models were utilized to op-
timize the fire-sourced MDA O3 concentrations. Due to un-
certainties in the GFED and anthropogenic emission inven-
tories, as well as in the chemical mechanisms, the simulated
total and fire-sourced MDAS8 O3 concentrations often devi-
ate substantially from ground-based observations. Therefore,
it is essential to use the calibrated MDAS8 O3 concentrations
from the previous two stages rather than the originally simu-
lated values to adjust the fire-sourced O3 levels. However, the
magnitude of the error between the simulated fire-sourced O3
concentrations and the actual values cannot be directly quan-
tified. Based on previous studies (McDuffie et al., 2021), we
assumed that the ratio of simulated fire-sourced O3 concen-
tration to simulated total O3 concentration from the GEOS-
Chem model was equivalent to the ratio of optimized fire-
sourced O3 concentration to calibrated total O3 concentra-
tion. The detailed equations are summarized as follows:

O3_0pt_ﬁre = O3_cal_total X (03_chem_ﬁre/ O3_chem_total) (2)
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where O3_gpt_fire is optimized wildfire-induced MDAS8 O3
concentration in the final stage. O3 _cal total 18 calibrated total
MDAS O3 concentration. O3 chem_fire 1S sSimulated wildfire-
induced MDAS8 O3 concentration using GEOS-Chem model.
O3_chem_total 18 simulated total MDAS8 O3 concentrations us-
ing GEOS-Chem model.

In future simulations of fire-sourced MDAS8 O3 concen-
trations, we did not apply the historical ratio of fire-sourced
O3 to total O3 concentrations to future scenarios directly, but
used the GEOS-Chem model to calculate the ratios of fire-
sourced O3 to total O3 concentrations under four future cli-
mate scenarios.

The modelling accuracy of fire-induced MDAS O3 cannot
be evaluated directly, whereas the modelling performance of
total MDAS8 O3 concentrations could be assessed. Some typ-
ical statistical indices (Supplement) were applied to evalu-
ate the modelling accuracy of this model on the basis of the
ground-level observations. For the accuracy of fire-sourced
MDAS O3 estimate, we used some fire fingerprints (K* and
levoglucosan) to assess their relationships with fire-sourced
O3 concentrations. This method could also examine whether
the assumption of in the stage 3 was right and suitable to our
study.

2.3 The crop yield loss estimate

Maize, rice, spring wheat, and winter wheat were major food
crops globally, and they were sensitive to O3 stress. A typ-
ical AOT40 exposure index was defined to assess the nega-
tive impact of O3 exposure on crop yields. The AOT40 index
was calculated by summing the hourly mean O3 levels above
40 ppb during the 8 h over the crop growing season.

AOTyo (ppbh) = Y "([CO3]; —40)[CO3] > 40ppb 3)

i=1

where [CO3]; is the hourly O3 (ppb), and n denotes the num-
ber of hours over the growing season. This growing sea-
son was determined by the University of Wisconsin Center
for Sustainability and the Global Environment (UW SAGE)
global crop calendar containing the planting and harvest
dates by crop species and variety (Sacks et al., 2010; Schiferl
and Heald, 2018). To date, some OTC/FACE experiments
have been applied to assess the adverse effects of elevated
O3 concentrations on maize, rice, spring wheat, and winter
wheat. The relationships between AOT40 and the relative
yields (RY) for major crops have also been developed in re-
cent years. The detailed equations are shown in Table S1 in
the Supplement. The relative yield loss (RYL) of crop is de-
fined as

RYL=1-RY 4)

The estimated yield and economic losses are not only related
to the RYL, while also associated with the grain yield in each
grid. The detail equations are shown as follows:

Atmos. Chem. Phys., 25, 14501-14511, 2025

R. Li et al.: Heterogeneous impacts of fire-sourced O3 pollution on global crop yields

CPL; =RYL; x CP; /(1 —RYL;) 5)

where CPL; is the estimated crop production loss and CP;
is the actual crop production in each grid during the study
period.

The data about actual crop production in each grid were
collected from The Agricultural Model Intercomparison and
Improvement Project (AgMIP). The average value of sim-
ulated crop yields based on four models including DSSAT-
Pythia, pDSSAT, LPJ-GUESS, and LPJ-ML were applied to
estimate the actual crop production in each grid during 2015-
2019, 2045-2049, and 2095-2099. We selected the simulate
results of these models because they showed the better accu-
racy.

3 Results and discussions

3.1 Model evaluation

Multi-source information data were integrated into the multi-
stage model to predict fire-sourced MDAS O3 concentrations
globally. At first, the global MDAS8 O3 simulation was eval-
uated. As illustrated in Fig. S3, the 10-fold cross-validation
(CV) results suggested that the R? value for MDAS O3 es-
timate reached 0.72. The root mean square error (RMSE)
and mean absolute error (MAE) for MDAS8 O3 were 18.1
and 13.2ugm™3, respectively (Fig. S3). The CV R? value
in our study reached 0.72, which was higher than that es-
timated by Liu et al. (2020) (0.64), indicating the satisfied
predictive accuracy of O3 estimates. However, the result was
slightly lower than that (R?: 0.80 and 0.81) estimated by Xu
et al. (2023) and DeLang et al. (2021). It was supposed that
the training samples in our study was much less than those
used by Xu et al. (2023) (2000-2019 simulation) and DeLang
et al. (2021) (1990-2019 simulation). It was well known that
the predictive accuracy was strongly dependent on the sam-
ple size (Li et al., 2020a, b). Overall, the predictive perfor-
mance of ambient O3 pollution was robust.

Although the prediction capability of this model has been
well validated, the accuracy for the fire-sourced MDAS O3
estimates could not be directly tested. It is well-known
that potassium (K¥) is often considered to be a fingerprint
of wildfire, and thus we employ the relationship between
ground-level Kt observations and wildfire-induced MDAS
O3 concentrations to examine the modelling accuracy. As
shown in Fig. S3, the correlation (R value) between observed
K™ levels and fire-sourced MDAS8 O3 concentrations reached
0.67 (146 training samples), which was above 0.5 (p < 0.01).
The results have confirmed that the wildfire-induced O3 esti-
mate showed the satisfied predictive performance. Although
K™ has been often applied to reflect the wildfire contribu-
tion, the K+ could be also derived from anthropogenic emis-
sion and dust resuspension. To further validate the mod-
elling performance of wildfire-related MDAS O3, the strong
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fire fingerprint (levoglucosan) was employed to construct
the relationship with fire-sourced MDAS8 O3 concentrations.
The results suggested that the R value (R = 0.73) was even
higher than that between observed K™ levels and fire-sourced
MDAS O3 concentrations. Overall, the predictive perfor-
mance was close to some previous studies (Childs et al.,
2022; O’Dell et al., 2019; Xu et al., 2023), and thus we could
use the result to further perform the data analysis.

3.2 Spatiotemporal trends of fire-sourced O3
concentrations

Global variations of fire-sourced MDAS8 O3 concentrations
in historical and future scenarios are shown in Figs. 1
and 2. From 2015 to 2019, the fire-sourced MDAS O3
level was in the order of Sub-Saharan Africa (SS) (14.9 +
8.4ugm~3) > South Asia (SA) (4.0 £2.5ugm™3) > China
(1.6+0.7 ugm~3) > United States (US) (1.3+0.9 uygm=3) >
Europe (1.2 £ 0.4 ugm™3). In future scenarios, fire-sourced
MDAS O3 levels display marked spatial variability across
different Shared Socioeconomic Pathways (SSPs). MDAS
O3 showed the higher concentrations in some regions such
as SS, SA, and US. Among all of the scenarios, fire-sourced
O3 levels displayed the highest concentrations in SS. It was
assumed that this region possessed extensive burned area
(52 %) and higher biomass fuel consumption (5200 g C m_z)
compared with other regions (van Wees et al., 2022). Fol-
lowing SS, SA also exhibited the higher wildfire-related
MDAS8 O3 concentrations. The elevated concentrations of
fire-sourced O3 levels in SA were closely associated with
exceptionally high fuel consumption (8600 g C m~2) (Chen
et al., 2023; van Wees et al., 2022) though the burned ar-
eas were not very high among all of the regions. In addi-
tion, it should be noted that many previous studies have con-
firmed US showed the higher wildfire-induced PM5 5 or other
aerosol components compared with many other regions (e.g.,
East Asia and South America) (Park et al., 2024; Xu et al.,
2023). However, it did not show the higher O3 concentrations
in nearly all of the scenarios in our study. It was assumed that
the MDAS8 O3 concentration exhibited significant latitudinal
distribution (decreasing with the increase of latitude) glob-
ally. Both of China and Europe showed very low burned ar-
eas (0.2 %) and fuel consumption (950 gC m~2), and thus the
fire-sourced MDAS8 O3 concentrations were relatively lower
compared with SS and SA.

Besides, the fire-sourced MDAS O3 levels exhibited sig-
nificant inter-annual trends and large discrepancy between
different scenarios. The global average fire-sourced MDAS
O3 concentrations showed overall increase from 2010s (1.3+
0.7 ugm™3) to 2090s (SSP1-2.6, SSP3-7.0, and SSP5-8.5:
1.9+009, 1.6+0.8, and 1.4£0.7 ug m_3) for nearly all of
the scenarios. The global average wildfire-related MDAS
O3 concentrations (the average of 2040s and 2090s) fol-
lowed the order of SSP3-7.0 (1.6 £0.9 ugm™—3) > SSP5-8.5
(1.540.8 ugm™3) > SSP1-2.6 (1.4+0.8 uygm—>). The high-
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est wildfire-related MDAS O3 levels in SSP3-7.0 (air tem-
perature: about 1.8 °C higher than SSP1-2.6) and SSP5-8.5
(air temperature: about 2.3 °C higher than SSP1-2.6) scenar-
ios were contributed by the increased fuel consumption and
the warmer condition because O3 level was more sensitive to
air temperature increase (Wang et al., 2021; Wu et al., 2021).

Nevertheless, different regions showed distinct long-term
trends. Wildfire-related MDAS O3 levels in nearly all of the
regions in SSP3-7.0 scenario (air temperature: about 1.1 °C
higher than historical period) showed remarkable increases
compared with the historical period because the warmer con-
dition facilitated the rapid increase of O3 level (Zhao et
al., 2020). For low-carbon scenario (SSP1-2.6), the wildfire-
related MDAS8 O3 concentrations in China, Europe, and US
showed the relatively lower O3 levels, whereas SA and SS
still increased by 40 % and 64 %, respectively. The results
suggested that the low-carbon pathway cannot effectively re-
duce the wildfire-induced O3 pollution in both of SA and SS.

3.3 The crop yield losses caused by O3 exposures

As shown in Figs. 3 and 4, the global crop yield losses
caused by fire-sourced O3z exposure have been quantified
based on the Eqgs. (3)—(5). During historical period, the
global fire-sourced O3 caused 3.1 (2.4-3.8), 1.7 (1.5-1.9),
24 (21-27), and 43 (39—47)tkm_2 crop losses for maize,
rice, spring wheat, and winter wheat, respectively. Com-
pared with the historical period, CPL values in different fu-
ture scenarios displayed large discrepancy. In SSP1-2.6 sce-
nario, CPL of maize, rice, spring wheat, and winter wheat
associated with fire-sourced O3 exposure were 1.1 (0.9—
1.3), 0.5 (0.4-0.6), 4.6 (4.1-5.4), and 4.6 (3.5-5.2)tkm~2,
respectively (Figs. S4-S11). However, CPL for maize (2.1
(1.9-2.3) and 2.4 (2.1-3.0) tkm~2), rice (1.1 (0.9-1.3) and
1.3 (1.1-1.5) tkm™2), spring wheat (557 (486-628) and 184
(154-218) tkm—2), and winter wheat (258 (208-308) and 19
(14—22)tkm_2) caused by fire-sourced O3 exposure expe-
rienced dramatic increases in SSP3-7.0 and SSP5-8.5 sce-
narios (Figs. S4-S11). There are two reasons accounting
for the fact. First of all, the wildfire-related O3 exposures
showed marked increase in high-emission scenarios (Yang
et al., 2022; Yue et al., 2017). Moreover, the crop yields also
displayed substantial increases in both of these scenarios be-
cause rapid increase of fertilizer consumption (Brunelle et
al., 2015; Randive et al., 2021).

In addition, CPL caused by fire-sourced O3 exposure also
suffered significant spatial difference. During the historical
period, the total CPL for four major foods caused by fire-
sourced O3 exposure in China, Europe, US, SA, and SS were
1451 (1302-1650), 65 (54-82), 61 (48-70), 56 (52-59), and
404 (372-425)tkm~2, respectively. In the future scenario
(SSP1-2.6, SSP3-7.0, and SSP5-8.5), the total CPL for four
major foods caused by fire-sourced O3 exposure in China,
Europe, US, SA, and SS were 23 (19-28) (711 (630-802)
and 339 (299-375)), 14 (12-16) (684 (596-768) and 32 (28—
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34)), 11 (8-12) (19 (17-22) and 21 (18-23)), 14 (12-15) (35
(30-39) and 21 (18-24)), 298 (272-320) 160 (145-179) and
745 (641-840) tkm 2, respectively. In both of historical and
future scenarios, SS, SA, and China showed the higher CPL
compared with other regions. The higher CPL in SS and SA
might be attributable to the higher fire-sourced O3 concen-
trations and crop yields. The higher CPL in China might be
associated with exceptionally high crop yields though the
wildfire-induced O3 level was not very high. For most re-
gions, CPL showed the higher values in high-emission sce-
narios (SSP3-7.0 and SSP5-8.5). Although SS and SA also
showed the higher CPL in high-emission scenarios (SSP5-
8.5), the CPL values of SS and SA in SSP1-2.6 scenario were
still very high. The results suggested that the low-carbon pol-
icy still cannot effectively weaken local agricultural damage
of fire-sourced O3 exposure.

Atmos. Chem. Phys., 25, 14501-14511, 2025

3.4 Implications and limitations

Our study developed a multi-stage machine-learning model
based on the multi-source information data to predict the fire-
sourced MDAS O3 concentrations at the global scale. It is the
first study to use the ground-level observations as the con-
straint to improve the O3 estimates in the future scenarios.
The results confirmed that the model showed the better pre-
dictive accuracy and transferability.

Our assessment highlighted the severity and scale of the
fire-sourced MDAS O3 level and a notable increasing trend
in the future scenarios. Especially in high-emission scenar-
ios (SSP3-7.0 and SSP5-8.5), the fire-sourced MDAS O3
showed the higher concentrations compared with the low-
carbon scenario. Therefore, the global mean temperature in-
crease should be limited to 2.0 or 1.5 °C above pre-industrial
levels. In addition, both of SS and SA showed the high-
est wildfire-induced MDAS8 O3 concentration compared with
other regions, indicating these hotspots should be determined
to propose some control measures. For instance, wildfires
could be partially controlled via effective evidence-based fire
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management and appropriate planning (Gonzilez-Mathiesen
and March, 2021; Gonzalez-Mathiesen et al., 2021). Some
prevention policy should be proposed to reduce agricultural
waste incineration and some prescribed fires (Koul et al.,
2022; Lange and Gillespie, 2023). Some wildlands could be
also changed into agricultural or commercial lands to reduce
the occurrence frequency of forest wildfire (Mansoor et al.,
2022).

Besides, the impacts of fire-sourced O3 pollution on crop
yields were also quantified. The results confirmed China was
faced of serious crop production losses, which was even
higher than those in SS and SA because the higher crop pro-
duction and increasing O3 pollution risk in the future sce-
narios. Overall, crop yield losses of China showed signifi-
cantly higher values in high-emission scenario (SSP3-7.0 and
SSP5-8.5) compared with low-emission scenario (SSP1-2.6).
The results suggested that low-carbon policy not only largely
weaken Oz pollution derived from anthropogenic emission
in China, but also decrease wildfire-induced O3 damages to
crop yields effectively. The results also confirm that the car-
bon neutrality policy implemented in China possess suffi-
cient agricultural benefits. In contrast, crop yield losses of SS
and SA in low-carbon scenario still showed very high risks.
It requires more stringent control measures to further reduce
local anthropogenic emission in order to offset the wildfire-
induced O3 contribution.

Atmos. Chem. Phys., 25, 14501-14511, 2025

It should be noted that our study is still subject to some
limitations. Firstly, the future wildfire emission inventory
still shows some uncertainties because the accuracy of land
use types and burned areas in the future scenarios cannot
be examined directly. Furthermore, in the historical esti-
mates, we only used a chemical transport model (GEOS-
Chem model) to simulate the fire-sourced O3 concentrations
though the ground-level observations were assimilated. How-
ever, only one model could increase the uncertainties be-
cause the O3 background might be overestimated. Second,
the chemical transport model used in our study did not ac-
count for plume rise, which could overestimate the contribu-
tion of wildfire emissions to O3 pollution. Third, the ground-
level observations of ambient O3 are unevenly distributed
around the world, which could limit the predictive accuracy
of O3 levels especially in some regions (e.g., SS and SA) lack
of monitoring sites. In the future, it is highly necessary to add
sufficient ground-level O3 observations to further improve
the accuracy of O3 estimates. Finally, the zero-out method
might suffer from some limitations because O3 chemistry
is highly nonlinear. More other methods such as air pollu-
tant tracing method should be applied to quantify the fire-
sourced O3 concentrations combined with zero-out method.
In the GEOS-Chem model, wildfire-emitted precursors (e.g.,
NO,, VOCs) could be assigned unique “tags” as separate
tracers. These tagged species undergo the same transport,
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chemistry, and deposition processes as regular emissions but
are tracked independently. For ozone (Os3) attribution, the
model calculates the fraction of O3 produced from wildfire-
tagged NO,/VOCs oxidation pathways. The tagged O3 con-
centrations are then extracted to quantify the wildfire contri-
bution, while accounting for nonlinear chemical interactions
(e.g., NO, saturation effects). The combination of multiple
methods could increase the robustness of fire-sourced O3 es-
timates.
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