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S1 Modifications to CVTRANS

S1.1 Adaptation of the closure

Following Tiedtke (1989), the detrainment and the entrainment are given by an organised and a turbulent driven
component. This is equally valid for the downdraft and the updraft. In the Tiedtke-Nordeng scheme, the same
approach is made (Nordeng, 1994).

In the former versions of CVTRANS by Tost et al. (2010) and Ouwersloot et al. (2015), it could happen in some
cases that the formulation of the closure eliminated the turbulent entrainment and detrainment. To fulfil Eq. (1a)
and (1b), it could occur that the entrainment had to be set to zero to close the mass balance. However, this would
also erroneously eliminate the turbulent entrainment, which is always active in rapidly ascending or descending air
masses. The entrainment rate is given by

Ek
u = F k

u − F k+1
u +Dk

u, (S1)

as long as the updraft mass flux leaving the box at its top is larger than the incoming updraft mass flux from below.
All quantities are positive by definition.
If the incoming updraft mass flux is larger than the mass flux leaving the box at the top, the detrainment will be
recalculated with the help of the closure as follows

Dk
u = F k+1

u − F k
u + Ek

u . (S2)

If both equations for entrainment and detrainment are properly solved, the detrainment or entrainment will not be
accidentally set to zero. The same approach is taken for the downdraft.

As turbulent mixing is always present according to Tiedtke (1989), the existence of a minimal turbulent entrain-
ment and detrainment is ensured and the closure corrects potentially erroneous zero turbulent events.
The adaptive time stepping by Ouwersloot et al. (2015) must be applied. Otherwise, the calculation of the air mass
transport can lead to negative values or a reduction of the strength of the mass fluxes.

S1.2 Detrainment of entrained air in the downdraft

In CVTRANS, the parameter fdet gives the portion of material that is detrained directly after the entrainment
in the same box as described by Ouwersloot et al. (2015). fdet is only computed and applied for the calculations
concerning the updraft detrainment. Taking turbulence into account, we need to adapt Eq. (2) from Ouwersloot
et al. (2015) also for the downdraft:
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k
d + fdetE

k
dC

k
env

Dk
d

. (S3)

Thereby, C denotes the concentration of a tracer.

S2 Example of a convective exchange matrix for one specific event

Figure S1(b) shows the convective exchange matrix for a snapshot of a deep convective event over continental
Western Australia in austral summer. The levels of origin are given on the horizontal axes (where the air comes
from), and the vertical axes denote the destination level (where the air is transported to). The model levels are
shown alongside the corresponding pressure levels. Level 31 is closest to the surface and is associated with a
pressure of 938 hPa. The main diagonal is strongly pronounced, indicating that a great portion is not affected by
the convection. About 34% of the air mass stays at least within its origin level. The diagonals at higher destination
pressures than the main diagonal show the impact of the mass-balancing subsidence. Up to 38% of the air mass is
descending from its origin level directly to the level below. In the mid troposphere, the mass portion in the diagonal
closest to the main diagonal is higher than the one in the main diagonal. The diagonals closer to the surface have
much smaller values, i.e., in those levels the mass balancing subsidence is weaker, as also usually the updrafts below
the cloud base are weaker than within the cloud.

1



10111233397593801938
Pressure level of origin in hPa

10

111

233

397

593

801

938

Pr
es

su
re

 le
ve

l o
f d

es
tin

at
io

n 
in

 h
Pa

31 26 21 16 11 6 1
Model level of origin

31

26

21

16

11

6

1

M
od

el
 le

ve
l o

f d
es

tin
at

io
n

(a) CVTRANSold
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(b) CVTRANSnew
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Figure S1: Convective exchange matrix for one snapshot of one specific event. The convective event was located
over Western Australia in the austral summer (23.316°S, 120.000°E on 1st January 1979 at 5 UTC). The convec-
tive exchange matrix is displayed for one time step. (a) shows the convective exchange matrix calculated with
CVTRANSold, (b) the convective exchange matrix calculated with CVTRANS v3.0 (CVTRANSnew), and (c) the
convective exchange matrix as (b) but with enhanced turbulent mixing (CVTRANSturb).

The downdraft is visible in the lower left corner of Fig. S1(b). At 719 hPa (level 24), the impact of the downdraft
is strongest. Starting at 719 hPa, nearly 6% of the air mass is transported to 873 hPa (level 28) and close to 5%
to 903 hPa (level 29). The downdraft and the subsidence partially overlap. The transport effect by subsidence
becomes weaker with larger vertical distances (the more levels are overcome). The transport from level 719 hPa to
839 hPa (level 27) is weaker than the transport to 873 hPa (level 26). Therefore, the mass transport to 873 hPa
can be mainly attributed to the downdraft.

The deep upward transport reaches up to 90 hPa. The main outflow level is located at 111 hPa. That can be
seen by the lighter colours in the upper part of Fig. S1(b) compared to the darker colours of the other destination
levels. About 3% originating at 938 hPa to 873 hPa (level 31 to 28) reaches the main outflow level. Less than 1%
of the air mass from starting at 801 hPa (level 26) and levels with lower pressures is transported upward to 90 hPa.
These seem to be rather small portions; however, only 69% of the original air mass stays within the main outflow
level. This highlights the impact of convection on the atmospheric composition.

Figure S1(a) shows the convective exchange matrix for the same event as (b) but with using the old CVTRANS
(CVTRANSold) and without applying adaptive time stepping. The latter leads to only one diagonal below the
main diagonal as the subsidence can not reach further than one model level. The ”missing values” in the lower left
and upper right part of the convective exchange matrix (Fig. S1(a)) is related to the incorrectly missing turbulent
entrainment and turbulent detrainment which is fixed in CVTRANS v3.0 as described in Sec. S1. If turbulent mixing
is considered as strong as suggested by Tiedtke (1989), the convective exchange matrix is given by Fig. S1(c). This
leads to a largely reduced direct upward transport from the boundary layer to the upper troposphere, which does
not match observations. CVTRANS v3.0 is physically more consistent than CVTRANSold but does not deviate
from CVTRANSold as hugely as CVTRANSturb in terms of the intrusion of boundary layer air into the upper
troposphere.
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S3 EMAC Submodels

Table S1: Used submodels.
Submodel Reference
SWITCH Jöckel et al. (2005)
CHANNEL Jöckel et al. (2010)
TRACER Jöckel et al. (2008)
TIMER Jöckel et al. (2010)
QTIMER Jöckel et al. (2010)
IMPORT Kerkweg and Jöckel (2015)
GRID Kerkweg et al. (2018)
RND Jöckel et al. (2010)

TENDENCY Eichinger and Jöckel (2014)
AEROPT Dietmüller et al. (2016)
ALBEDO Nützel et al. (2024)

CH4 Winterstein and Jöckel (2021)
CLOUD Lohmann and Roeckner (1996)

CLOUDOPT Dietmüller et al. (2016)
CONVECT Tost et al. (2006)
CVTRANS Tost et al. (2010)

JVAL Sander et al. (2014), Landgraf and Crutzen (1998)
ORBIT Dietmüller et al. (2016)
PTRAC Jöckel et al. (2008)
QBO Jöckel et al. (2006), Giorgetta and Bengtsson (1999)
RAD Dietmüller et al. (2016)

E5VDIFF Roeckner et al. (2006)
SURFACE Roeckner et al. (2006), Hagemann (2002)
TNUDGE Kerkweg et al. (2006)
TROPOP Jöckel et al. (2006)
VISO Jöckel et al. (2010)
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S4 Corresponding reference values for the tropopause height and the
boundary layer height

Table S2: Reference values for the tropopause and the boundary layer height. In this table information is provided
which model and approximate pressure levels correspond to the simulated tropopause. Additionally, the approximate
reference model level and heights in meters are shown for the boundary layer height. In this study, we relate the
tropics to the area between 30°N and 30°S and the extra-tropics to the area between 30°N/S and 60°N/S. We do
not claim that this table is exact nor includes all possible model levels, pressures and heights of the tropopause and
the boundary layer. The given values should be considered as rough guidance only.

Reference Model level tropics Pressure tropics Model level extra-tropics Pressure extra-tropics
Tropopause 15 to 4 340 to 60 hPa (130 to 100 hPa) 19 to 6 410 to 110 hPa (390 to 170 hPa)
Reference Model level tropics Height tropics Model level extra-tropics Height extra-tropics

Boundary layer 31 to 22 0 to 3000 m 31 to 19 0 to 4400 m
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S5 Convective exchange matrix changes from 1990 to 1999 and from
2000 to 2009 compared with 1980 to 1989
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Figure S2: Changes in the convective mean transport between 60°S and 60°N. The difference is shown between
the temporal (ten year) and global (area weighted) convective exchange matrix form 1990 to 1999 and the one
from 1980 to 1989. Red colours denote that the values were higher in the period 1990 to 1999 and blue boxes
show that the entry in the convective exchange matrix was higher from 1980 to 1989. A dot in a box indicates
statistical significance. A two sided student t-test was used with a significance threshold of 1% for every side of the
t-distribution.
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Figure S3: Changes in the convective mean transport between 60°S and 60°N. The difference is shown between
the temporal (ten year) and global (area weighted) convective exchange matrix form 2000 to 2009 and the one
from 1980 to 1989. Red colours denote that the values were higher in the period 2000 to 2009 and blue boxes
show that the entry in the convective exchange matrix was higher from 1980 to 1989. A dot in a box indicates
statistical significance. A two sided student t-test was used with a significance threshold of 1% for every side of the
t-distribution.
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S6 El Niño and La Niña

The La Niña event (Fig. S4) has similar patterns as the ten year mean. That was to be expected because La Niña
is characterised by a strongly pronounced Walker circulation. In contrast, the direction of the circulation changes
in the El Niño case leading to changes in the convective transport patterns (Fig. S5). These are especially large
over the central Pacific. In the La Niña case, almost no deep convective transport was active at the equator in the
considered time period. In contrast, BL to UT transport is specifically pronounced during the El Niño event in
exactly this region.

Figure S4: La Niña event 1988/89 convective mean transport from the planetary boundary layer height to upper
troposphere within 12 min. The upper troposphere is defined as the region between the tropopause and the pressure
height of tropopause plus 150 hPa.
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Figure S5: El Niño event 1982/83 convective mean transport from the planetary boundary layer height to upper
troposphere within 12 min. The upper troposphere is defined as the region between the tropopause and the pressure
height of tropopause plus 150 hPa.

8



References
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P. Jöckel, R. Sander, A. Kerkweg, H. Tost, and J. Lelieveld. Technical note: The modular earth submodel system
(messy) - a new approach towards earth system modeling. Atmospheric Chemistry and Physics, 5(2):433–444,
2005. doi: 10.5194/acp-5-433-2005. URL https://acp.copernicus.org/articles/5/433/2005/.
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