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Abstract. The regional lockdowns, implemented around the world over 2020-2022 to contain the rapid spread
of the novel coronavirus disease 2019 (COVID-19), inadvertently created a natural laboratory for investigating
the effect of reducing anthropogenic emissions on urban air quality at unprecedentedly large temporal and spatial
scales. In this study, we analyze multi-year surface PMj 5 observations in 21 cities around the globe to examine
an anomaly of PMj 5 (particulate matter with an aerodynamic diameter of less than 2.5 um) concentrations
during major COVID-19 lockdowns with respect to that measured in the pre-pandemic years. We then use a
set of Goddard Earth Observing System (GEOS) global aerosol transport modeling experiments to disentangle
the effect of the lockdown emission reductions from other non-lockdown effects. Our analysis shows that no
systematic reductions in PM> 5 are found in response to the lockdowns globally. In some locations, we find the
coincidences of an increasing stringency index and decreasing surface PM; 5, which often lead to the record
low of PM; 5 over extensive periods. These observations clearly suggest the positive impacts of COVID-19-
lockdown-induced anthropogenic emission reductions on air quality. In other stations, however, the lockdowns’
impacts could be masked by differing meteorology and the occurrence of dust and wildfire events. We also
found that current satellite remote sensing of aerosol optical depth cannot be used to reliably discern the change
of surface PM» 5 due to the COVID-19 lockdowns. The results of this study provide a preview of potential
mixed effects on urban air quality when implementing air pollution control regulations such as transitioning
from gasoline- and diesel-powered vehicles to electric vehicles.

ambient PM> 5 might have resulted in the premature deaths

PM, 5 — particulate matter (also referred to as aerosol in cli-
mate communities) with an aerodynamic diameter smaller
than 2.5 pm — is one of the major air pollutants that adversely
affect human health. Exposure to PM; 5 was ranked as the
fifth-largest contributing factor to global mortality (Cohen
et al., 2017). Currently, about 90 % of the global population
lives in unhealthy environments where annual PM; 5 concen-
trations are greater than the guideline of 5pgm™2 recently
issued by the World Health Organization (WHO; Yang et al.,
2022). Further, it is estimated that the long-term exposure to

of 2.9 (1.4—4.5) million in 2019, with more than two-thirds
occurring in Asia (Yang et al., 2022). Another study has es-
timated as many as 8.7 million premature deaths per year
that can be attributed to the exposure to PMj 5 (McDulffie et
al., 2021). Clearly, reducing the primary and precursor emis-
sions of PMj 5 is necessary to improve air quality and the
well-being of citizens. Moreover, emission reductions should
focus on anthropogenic sources because they are responsi-
ble for most of the mortality attributable to PMj 5 pollution,
whereas the natural sources, like dust storms, are estimated
to cause only about 22 % of such mortality (Yang et al., 2022)
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and are more difficult to control. Purposeful short-term pol-
icy interventions (e.g., the 2008 Beijing Olympics, the 2014
Asia-Pacific Economic Cooperation summit) have yielded an
improvement in air quality at local scales and during the tar-
geted events (W. Wang et al., 2009; X. Wang et al., 2009;
Chen et al., 2013; Liu and Ogunc, 2023). However, it is
also revealed that such local-scale emission controls could
be compensated by increases of emissions in surrounding ar-
eas, highlighting the importance of regional emission con-
trols in achieving improved air quality in a city (Wang et al.,
2010). Previous studies that carried out global model exper-
iments have shown potentially significant, albeit highly un-
certain, effects of a hypothetical and uniform 20 % reduc-
tion of global anthropogenic emissions on air quality, cli-
mate, and ecosystems at local, regional, and intercontinental
scales (e.g., Shindell et al., 2008; Yu et al., 2013; Collins et
al., 2013; Anenberg et al., 2014).

The novel coronavirus disease 2019 (COVID-19) lock-
downs created a natural laboratory for studying the effect of
reducing anthropogenic activities on urban air quality at a
global scale and during an extended period. Since the emer-
gence of COVID-19 in early 2020, governments around the
globe have enforced a variety of measures, including regional
and national lockdowns, to contain the rapid spread of the
virus and to protect the wellness of human beings. There is
no doubt that these lockdown measures reduced emissions
of various anthropogenic pollutants and greenhouse gases.
The science community promptly seized this opportunity to
investigate the changes in air pollution following the lock-
downs. Over a short period of less than 2 years since the lock-
downs, a large body of studies has already been published
(see reviews in Gkatzelis et al., 2021; Laughner et al., 2021;
Saha et al., 2022; Bakola et al., 2022). The examined atmo-
spheric pollutants included nitrogen dioxide (NO), PM3 s,
and ozone (O3), among others. In general, the effects of
the COVID-19 lockdown have been derived in the previous
studies by comparing concentrations of air pollutants during
the lockdown period against those immediately prior to the
lockdown (e.g., Shi and Brasseur, 2020) or against the cli-
matology during the same period in the pre-pandemic years
(e.g., Venter et al., 2020). Modeling studies driven by the re-
duced emissions caused by the COVID-19 lockdowns have
also been performed (Miyazaki et al., 2020; Le et al., 2020).
These studies have consistently shown reductions in NO;,
a short-lived pollutant with a major source from the trans-
portation sector that is considered as a good proxy for emis-
sions, during the lockdowns (Liu et al., 2020). However,
the change of surface ozone concentrations during the lock-
downs was reported to increase in many locations despite
the widespread reduction of its NO, precursor (e.g., Shi and
Brasseur, 2020; Venter et al., 2020; Shi et al., 2021; Le et
al., 2020), although one study found a global-scale decline
in ozone burden using satellite observations (Miyazaki et al.,
2020). For PM, s, the effects of the lockdown have shown
mixed results (Venter et al. 2020; Shi et al., 2021; Volta et
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al., 2022; Putaud et al., 2023), suggesting the challenge in
discerning and quantifying the effects induced by the reduc-
tions of anthropogenic emissions associated with lockdowns.
Accounting for the effects of variability of meteorological
conditions, anthropogenic emission trends, and contributions
of natural sources of PM> 5 that are not affected by the lock-
down is crucial to addressing the challenge and reliably as-
sessing the effect of lockdowns (Gkatzelis et al., 2021; Shi
etal., 2021; Le et al., 2020). Several empirical approaches of
de-weathering and de-trending have been used in some pre-
vious studies. For example, Volta et al. (2022) attempted to
account for meteorological impacts on air pollution by clas-
sifying favorable and unfavorable meteorological conditions
for air quality and comparing them to the pandemic and pre-
pandemic years. The linear regression of pre-pandemic air
quality data has been applied to account for the air pollu-
tion trend due to clean air policies (Volta et al., 2022). Multi-
variate regression analysis and machine learning approaches
have also been used to predict air quality in the pandemic
year in a no-lockdown scenario (Venter et al., 2020; Shi et
al., 2021; Anderson et al., 2021; Ghahremanloo et al., 2022).
The objective of this study is to improve the understand-
ing of the COVID-19 lockdowns’ effects on PM, 5 air qual-
ity through a synergistic analysis of observational data and
model simulations. Our study focuses on surface-level PM3 5
because it has the most detrimental effect on human health
among all the pollutants (Cohen et al., 2017). We hypothesize
that the overall reductions in anthropogenic emissions from
many sectors brought about by the COVID-19 lockdowns
would have improved the PM 5 air quality at a global scale.
However, such impacts might have been masked by other fac-
tors such as meteorological conditions and natural emissions
(e.g., dust storms, wildfires) in the observational datasets.
The impacts might also be determined by the relative con-
tributions of individual sectors because some sectors might
have increased the emissions during lockdowns. To test the
hypothesis, we analyze multi-year surface PM> s observa-
tions in urban areas around the globe to examine the potential
anomaly of PM> 5 concentrations during the major lockdown
periods with respect to that in the pre-pandemic years. Then
we use modeling experiments to disentangle the effect of the
lockdown emission reductions from non-lockdown effects.
We also investigate if satellite remote sensing observations
of aerosol optical depth (AOD) can be used to identify the
change of surface PMj 5 due to the COVID-19 lockdowns.
The rest of paper is organized as follows. In Sect. 2, we
provide a brief description of the observational and Goddard
Earth Observing System (GEOS) modeled datasets (such as
PM; 5, AOD) and an auxiliary stringency index for identi-
fying the dynamics of the lockdowns around the world. The
results of the data analysis are presented in Sect. 3, including
evidence of coincidence of declining PMj 5 with increasing
stringency index and comparisons of observed and modeled
changes in PM» 5 in 2020 in the context of climatology, as
well as the GEOS-based relative contributions of the lock-
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down emission reductions and non-lockdown factors in ex-
plaining the difference between 2020 and 2019. In Sect. 4,
we discuss some remaining issues associated with the anal-
ysis and an investigation of the feasibility of identifying the
lockdown effects on PMj 5 from the satellite AOD measure-
ments. Major conclusions are summarized in Sect. 5.

2 Descriptions of observational data and model
simulations

2.1 Observations of surface PM» 5 and aerosol optical
depth

For the surface PM, 5, we use observations collected from
the AirNow Department of State network, which include
sites at the USA diplomatic posts (i.e., embassies and con-
sulates) in major cities outside the USA (https://www.airnow.
gov/international/us-embassies-and-consulates/, last access:
15 June 2023). We selected 17 posts from around the world
with observations over a period of at least 5 years, which
include the pandemic years (2020-2022) and at least 2 pre-
pandemic years. The number of pre-pandemic years depends
on the diplomatic post, as the State Department has been
gradually extending the PMj 5 monitoring from the diplo-
matic posts in China to those in India and then other coun-
tries. Because most of the USA diplomatic posts equipped
with multi-year PM; 5 measurements are in East Asia, South
Asia, the Middle East, South America, and North Africa,
we also included PM, 5 observations in four additional cities
from other national air quality networks to extend the repre-
sentativeness of our analysis to North America and Europe.
Paris (France) and Milan (Italy) were selected to represent
Europe, while New York City (New York) and Los Angeles
(California) were chosen to represent North America. Fig-
ure 1 illustrates the geographical distribution of 21 urban
stations in 13 countries with PMj 5 observations, with de-
tailed information (including city and country names, longi-
tude, latitude, and years of data used in the analysis) listed in
the Supplement (Table S1).

These 21 stations are representative of distinct aerosol
characteristics, as shown in Fig. 2 for the fractional contribu-
tions to annual mean PM> s by an array of source sectors. The
source-sector partitions were based on the GEOS-Chem sec-
tor sensitivity simulations for the year 2017, as provided in
McDuffie et al. (2021). This modeling used a global anthro-
pogenic emission inventory for seven key pollutants (nitro-
gen oxides — NO,, sulfur dioxide — SO,, carbon monoxide —
CO, ammonia — NH3, non-methane volatile organic carbons
— NMVOCs, black carbon — BC, and organic carbon — OC)
from 11 anthropogenic sources and four fuel types, which
was developed from the Community Emissions Data System
(CEDS) with updates for the Global Burden of Disease — Ma-
jor Air Pollution Sources project (CEDS_GBD-MAPS; Mc-
Duffie et al., 2020, https://zenodo.org/records/3754964, last
access: 1 July 2023). Additional emission inputs to GEOS-
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Chem include those from fires, biogenic sources, and anthro-
pogenic and desert dust, as described in the supplementary
Table 2 of McDuffie et al. (2021) and references therein.
Figure 2 clearly displays the fact that sector contributions
to PM; 5 vary substantially from station to station. Among
the source sectors considered in the GEOS-Chem modeling,
emissions from the energy, industry, transportation, commer-
cial and other combustion sectors, international shipping, and
AFCID (anthropogenic fugitive, combustion, and industrial
dust) might have decreased during the lockdowns due to re-
duced human mobility, with magnitudes of decrease likely
depending on the specific sector. For brevity, we refer to
these six sectors collectively as potential lockdown emis-
sion reduction sectors (LERS). Presumably, the transporta-
tion sector had the largest reduction in emissions during lock-
down. On the other hand, emissions from the residential sec-
tor would have increased during the pandemic because of
the “work/study from home” scenario during the lockdown
period that should lead to more extended usage of electric-
ity, heating, and cooling in the home. Natural events like
desert dust storms and wildfires were likely unaffected by
the lockdowns, although anthropogenic emission reductions
associated with the lockdowns may have impacted dust and
fire weather to some unquantified extent. An occurrence of
such large episodic natural events could even mask the effect
of anthropogenic emission reductions associated with the
lockdowns on PM; s air quality. The modeling-based PM3 5
source characteristics, albeit inevitably subject to large un-
certainties (McDuffie et al., 2021), could facilitate a qualita-
tive interpretation of observed changes in PM» 5 in response
to the lockdowns discussed in Sect. 3. In general, when the
fractional contributions by the LERS are high and those by
residential sectors are low, the lockdowns’ impacts could be
more clearly shown in observed PM> 5 data. However, when
PM, 5 in a city is dominantly sourced from episodic events
such as desert dust and wildfires, the lockdown’s signals
might be masked by these events.

Even with the same emissions, the surface PM» 5 concen-
trations can vary greatly from day to day because of strong
regulation by rapidly evolving meteorological and chemical
processes. It is oftentimes formidable to discern any mean-
ingful changes in PM> 5 during the pandemic years relative
to the pre-pandemic years on a daily basis. In this study, we
calculate 5d running means of PMj; 5 to smooth out high-
frequency variations so that potential differences between the
pandemic years (2020, 2021, and 2022) and pre-pandemic
years (prior to 2020) could show up in the observations more
clearly. A sensitivity test of using 3d or 7d running means
suggests that the major conclusions of this study will not
change. To obtain quantitative estimates of PM; 5 changes
due to prolonged lockdowns, we also compute the monthly
average PMj 5 for both the pandemic years and pre-pandemic
years.

AOD observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Aqua satellite (Levy et
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1 - Beijing; 2 — Shenyang; 3 — Shanghai; 4 — Guangzhou; 5 — Hanot, 6 — Jakarta;
7 — Chennai; 8 — New Delhi; 9 — Mumbai; 10 — Kolkata; 11 — Hyderabad; 12 —
Addis Ababa; 13 — Dubai; 14 — Kuwait City; 15 — Manama, 16- Paris; 17 — Milan;
18 — Pristina; 19- New York City; 20 — Los Angeles; 21 - Lima

Figure 1. Geographical distributions of PM, 5 observational sta-
tions in 21 cities (open and solid circles, which are numbered from
1 to 21 with names listed below the figure) of 13 countries overlying
on the GEOS-simulated PM; 5 concentrations (colored contours,
with a unit of ug m~3) in March 2020. Solid black circles, corre-
sponding to site numbers 3, 8, 14, 16, 20, and 21, denote the six
cities being selected for in-depth analysis and are representative of
distinct aerosol characteristics. Detailed information about all these
cities is listed in Table S1 in the Supplement, including city and
country names, latitude, longitude, and the period of PM, 5 data
used in this study.

al., 2013) were also used in this study. Unlike surface PM; 5
that measures the concentration of air pollution at our nose
level, AOD measures the load of aerosol in the whole column
of the atmosphere. Because of the appealing nature of routine
satellite observations at a global scale, numerous studies have
explored the use of satellite AOD to derive surface PM> 5
concentrations (e.g., van Donkelaar et al., 2010; Wei et al.,
2021). However, the relationship between AOD and PM3 5 is
complicated by several factors, such as aerosol composition,
vertical profile of aerosol, relative humidity of ambient atmo-
sphere, and atmospheric long-range transport. In this study,
we examine if satellite AOD measurements can be used to
detect the change in PM> 5 due to the COVID lockdowns.

2.2 GEOS simulations of PM> 5 and AOD

Simulations from the NASA GEOS model are used for both
AOD and PM3 5 in this study. The modular GEOS model
is a global Earth system model that includes components
for atmospheric circulation and composition, ocean circula-
tion and biogeochemistry, and land surface processes (Rie-
necker et al., 2011; Molod et al., 2015). The coupled at-
mospheric constituent module within the GEOS architecture
most relevant to this project is an aerosol module based on
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the Goddard Chemistry Aerosol Radiation Transport (GO-
CART) model (Collow et al., 2024). GOCART simulates ma-
jor components of aerosols (with a diameter between 0.02
and 20 um) and several gaseous precursors, including dust,
sea salt, sulfate, nitrate, organic carbon, black carbon, SO,,
and dimethyl sulfide (Chin et al., 2002, 2007, 2009, 2014; Gi-
noux et al., 2001; Bian et al., 2017). The model considers the
atmospheric processes of chemistry, convection, advection,
boundary layer mixing, dry and wet deposition, and gravita-
tional settling (Chin et al., 2002, 2014). Aerosol particle sizes
are simulated with parameterized hygroscopic growth, which
is a function of ambient relative humidity. The total mass
of sulfate and carbonaceous aerosols are calculated, while
nitrate aerosol mass is calculated in three bins (Bian et al.,
2017). For dust and sea salt, the particle size distribution is
explicitly resolved across five size bins (Chin et al., 2002,
2009).

For this study, the GEOS model is run at a horizontal
resolution of 0.5° for 2019 (pre-pandemic year) and 2020
(the first year of the pandemic). The required meteorological
fields are taken from the Modern-Era Retrospective analysis
for Research and Applications version 2 (MERRA2, Gelaro
et al., 2017). For 2019, anthropogenic emissions were taken
from an updated version (V_2021_04_21) of the Commu-
nity Emission Data System (CEDS; Hoesly et al., 2018). For
2020, we carry out two modeling experiments, denoted as
2020-BAU and 2020-COVID, by using two anthropogenic
aerosol and precursor emissions. In the 2020-BAU scenario,
we used the anthropogenic emissions for 2019 to approxi-
mate the business-as-usual (BAU) anthropogenic emissions
for 2020. In the 2020-COVID scenario, the 2019 anthro-
pogenic emissions from different sectors were adjusted based
on daily mobility data gathered by Apple and Google to re-
flect the lockdowns’ effects on the anthropogenic emissions
(Forster et al., 2020). Note that in both the 2020-BAU and
2020-COVID runs, emissions from desert dust, sea sprays,
and wildfires are representative for 2020 conditions; specifi-
cally, emissions from wildfires are prescribed based on satel-
lite observations in 2020 (Darmenov and da Silva, 2015) and
dust and sea salt emissions are calculated online in the GEOS
model based on surface and meteorological fields in 2020
from the MERRA-2 analysis (Chin et al., 2014).

One of the advantages of using GEOS modeling is that it
provides not only total AOD and PMj 5 but also their compo-
sition. This allows for distinguishing anthropogenic sources
from natural sources (e.g., dust storms, wildfires, volcanic
eruptions or degassing, and sea sprays). In addition to pro-
viding the 10-year pre-pandemic climatology of PM; 5 and
AOD, the two experiments for the year 2020 (i.e., 2020-BAU
and 2020-COVID), together with the 2019 run, can be used
to distinguish the effects of anthropogenic emission reduc-
tions associated with the COVID-19 lockdowns from those
associated with differing meteorological conditions (through
affecting aerosol transport and removal processes) as well
as effects from emissions of natural aerosols, which are not
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Figure 2. Fractional contributions to PM 5 in 21 stations by source sectors, with a total percentage (%) of the six lockdown emission
reduction sectors (LERS, including energy, industry, transportation, commercial and other combustion, AFCID dust, and shipping) denoted in
the parenthesis immediately after the station name. The chart was made with the sector contributions derived from the GEOS-Chem sensitivity
simulations for 2017 and provided by the supplementary material of McDulffie et al. (2021) and https://zenodo.org/records/4739100 (last

access: 1 July 2023).

directly related to the lockdowns. For brevity, we refer to
the differences between 2020-COVID and 2020-BAU as the
“lockdown effect”, whereas the difference between 2020-
BAU and 2019 is referred to as the “non-lockdown effect”,
which is due to changes in meteorological conditions and
natural emissions. These experiments can be used to facili-
tate the interpretation of the observed PM; 5 difference be-
tween 2020 and 2019. In this study, it is assumed that the dif-
fering meteorology and natural emissions between 2020 and
2019 are not caused by the lockdown-induced anthropogenic
emissions.

2.3 Stringency index measuring the scope of lockdowns

The rapid spread of COVID-19 promoted a wide range of
government responses in containing the disease and pro-
tecting the wellness of human beings. The Oxford COVID-
19 Government Response Tracker (OxCGRT) project was
established to track the policy indicators of government
responses at national and even state/province levels. The

https://doi.org/10.5194/acp-25-14411-2025

project remained active for most of the nations tracked un-
til the end of 2022. The OxCGRT provided four compos-
ite indices by grouping different families of policy indica-
tors, namely the government response index, the stringency
index, the containment and health index, and the economic
support index (Hale et al., 2021). A stringency index, mea-
suring the severity of lockdown restrictions, was developed
by aggregating nine policy indicators, including school clo-
sures, workplace closures, public event cancelations, restric-
tions in gathering size, and travel bans, among others. The in-
dex is rescaled to a number between 0 and 100, with 100 be-
ing the most extreme lockdown situation (Hale et al., 2021).
In this study, we use the stringency index to identify ma-
jor lockdown periods to facilitate the analysis of change in
PMj; 5 air quality. Although for 11 stations in China, India,
and the USA the stringency indices were derived from lock-
down measures implemented at the state/province level, the
stringency indices for the other 10 stations were determined
based on national lockdown measures.

Atmos. Chem. Phys., 25, 14411-14434, 2025
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3 Results

In this section, we first present a detailed analysis of PM; 5
change in response to the lockdowns on the 5d running
mean and monthly mean basis in six populated major cities
(marked as filled black dots in Fig. 1), namely Shang-
hai (China), New Delhi (India), Los Angeles (USA), Paris
(France), Lima (Peru), and Kuwait City (Kuwait). These sta-
tions are selected to represent broad geographical regions
with different aerosol characteristics in terms of source sec-
tors (as shown in Fig. 2), which would determine how PM 5
levels responded to the COVID-19 lockdowns. Then we in-
terpret the observed changes in PMj; s in the context of
regional PM» s trends and attribute them to the COVID-
lockdown-induced anthropogenic emission reductions and
the interannual variability of meteorological conditions with
the aid of GEOS modeling experiments. Finally, we present
a general discussion of observed PM> 5 changes during the
major lockdown periods in the remaining 15 stations (open
circles in Fig. 1).

3.1 Observed changes in PMy 5 corresponding to
COVID lockdowns — case studies of selected
stations

Figures 3-8 display PM> s variations at the six stations on the
5d running mean and monthly mean basis. For each mon-
itoring station, shown in the top panel (a) is the time se-
ries of the stringency index during the 2020-2022 period,
which can be used to identify the lockdown periods and facil-
itate the interpretation of observed PM> 5 variations, whereas
shown in panels (b) and (c) are the observed time series of
the 5 d running mean and monthly average of PM» s, respec-
tively, in pre-pandemic years prior to 2020 (the number of
years depending on available observations at the station) and
during the pandemic years of 2020-2022. The pre-pandemic
(2019 and earlier) climatologies are represented by the aver-
age (black lines) and the range of observations (gray vertical
bars). We also display the time series in 2019, a year imme-
diately prior to the pandemic, laying the groundwork for a
focused analysis of 2020 and 2019 in the next section. Major
characteristics of the PM, 5 level in response to the COVID-
19 lockdowns are detailed in the following subsections. We
particularly focus on PM> 5 changes during relatively strin-
gent lockdown periods, defined in this study as periods with
a stringency index > 60.

3.1.1  Shanghai, China

Shanghai’s lockdowns began in late January 2020, when its
stringency index increased from almost 0 to more than 70
on 27 January (day of the year, or DOY,=27), as shown
by the red line in Fig. 3a. Moderately strict lockdown reg-
ulations continued through the rest of this year, seeing that
values for the stringency index remained above 45. The sta-
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tion’s observed 5 d moving average concentrations of PMj 5
in 2020 were generally lower than that in 2019 and other
pre-pandemic years. There was a sudden drop of the 2020
(red line) average from the pre-pandemic multi-year average
(black line) in Fig. 3b when DOY =27, and a clear disparity
between the two lines continues throughout the year except
a period of DOY = 196-265 (mid-July to late September).
Similarly, the monthly PM3 5 levels portrayed in Fig. 3¢ from
February to December 2020 were significantly lower than the
pre-pandemic averages except July—September when differ-
ences became smaller. The most evident pullback from the
years preceding the pandemic to 2020 seems to be in March,
which was a relative reduction of 55 % in comparison to the
pre-pandemic average. This matches with how Shanghai’s
stringency index was at its largest for that year from February
to May. Thus, it is reasonable to assume that Shanghai’s lock-
downs during this time contributed to lowering the PMj 5
levels.

Furthermore, Shanghai’s second major lockdown began
around April 2022, which was even stricter than the 2020
lockdown with the stringency index > 90. The blue line in
Fig. 3a reaches a peak of 97, an almost maximum stringency,
and only falls to approximately 60 at the start of June. During
these months of regulations triggered by the Chinese Gov-
ernment’s zero-COVID policy, rapid lockdowns and mass
testing would occur whenever positive cases emerged, and
Shanghai’s 26 million citizens were mostly confined in their
homes (Han et al., 2024). As indicated in Fig. 3c, Shang-
hai’s 2022 monthly PMj; 5 means during April, May, and
June 2022 reached record lows, staying well below the means
of all past years. In particular, the April 2022 average was
less than the 2012-2019 average by about 35 ugm™>. On a
monthly basis, the PM» 5 from March to May decreased from
the pre-pandemic means by 43 % to 56 %. In Fig. 3b, 5d
moving averages for 2022 also occasionally dipped to his-
torical minimums — once in late April and twice in May. It is
evident that Shanghai’s unyielding shutdown of 2022, which
practically locked its population indoors, had a pronounced
impact on PM» 5 levels. In summary, the above data analy-
sis shows that the COVID-19 lockdowns reduced the PM» 5
load, consistent with the fact that 60 % of PM» s in Shang-
hai came from those potential LERS (Fig. 2), as discussed in
Sect. 2.1.

3.1.2 New Delhi, India

In New Delhi, it is estimated that about 47 % of PM, 5 was
sourced from those potential LERS, while the residential sec-
tor accounted for about 27 % (Fig. 2). Based on the time se-
ries in Fig. 4a, New Delhi’s government started imposing
stricter shutdown measures in February of 2020 and went
into a full lockdown by mid-March, which lasted until the
end of May, when the stringency index hit 100. From June
to September 2020, the stringency index gradually decreased
yet was always above 60, meaning that New Delhi contin-
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ued with moderate COVID-19 regulations for most of the
year. Comparing these values with the 5 d running means of
PM; 5 in Fig. 4b, it is likely that the COVID-19 lockdowns
had at least some impact on air quality in New Delhi. The
red line of PMj 5 in 2020 falls under the black line of pre-
pandemic (2015-2019) averages from around DOY =90 to
DOY = 135, demonstrating lowered PM» s in April and part
of May, when lockdown measures were at maximum sever-
ity. The monthly PM; s levels for March to May 2020 in
Fig. 4c were also lower than the corresponding 2015-2019
monthly means by 29 % to 45 %. In the later months of 2020,
when shutdown restrictions lessened, monthly average PM; 5
concentrations became similar to those in past years.

In the spring of 2021, New Delhi experienced a second,
smaller-scale COVID-19 lockdown. According to the strin-
gency index graph, the yellow line representing the city’s in-
dex in 2021 increased to values of between 80 and 100 from
DOY =109 to DOY = 158. New Delhi’s PM; 5 levels, how-
ever, did not have any noticeable decrease or change in the
early stages of this time frame, as the March and April 2021
means were almost the same magnitude as or even higher
than the same means of pre-pandemic years. However, by
the end of the lockdown period, the monthly PM> 5 concen-
tration had dropped to a record low (October 2021). The May
2021 average PM» s dropped to as small as the May 2020
mean. Despite this occurrence, there is no strong indication
that the 2021 lockdown in New Delhi had much influence on
air pollution, because the amount of PM3 5 in its atmosphere
only decreased during less than half of the highly stringent
period.

3.1.3 Los Angeles, USA

For Los Angeles, 58 % of PM; 5 in pre-pandemic years were
sourced from potential LERS. The reductions in PMj 5 from
these LERS during the pandemic years might be compen-
sated by an increase associated with the residential sector,
which accounted for about 17 % of pre-pandemic PMj 5.
COVID-19 lockdown measures were strictest when the strin-
gency index quickly elevated to above 80 in mid-March
2020, specifically on DOY =79, from an initial value of
around 20 ten days earlier (Fig. 5a). The index plateaued in
the low 80s through April of 2020. In this time span, PM; 5
concentrations diminished to some extent, with the red line
of the 2020 means remaining under the black line of the
pre-pandemic means throughout March and the beginning of
April (Fig. 5b). Moreover, we show in Fig. 5c that the March
2020 and April 2020 PM; 5 averages were smaller than their
pre-pandemic counterparts by 47 % and 32 %, respectively.
Several steep spikes in the 5 d moving averages of PM> 5 lev-
els also occurred in the 2020 summer and autumn (Fig. 5b),
due to the extreme wildfires that struck California that year,
which burned about 4.3 million acres of land in total, a num-
ber twice the state’s previous record (Safford et al., 2022).
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3.1.4 Paris, France

Paris experienced lockdowns induced by COVID-19 in 2020
and 2021. In 2020, the city’s stringency index reached 88
at DOY =77 (mid-March) and stayed at a similar level un-
til around DOY = 131 (mid-May; see Fig. 6a). Interestingly,
the PM> 5 level hit a record low in many days in February,
prior to the lockdown (Fig. 6b). For the rest of the year,
the 5d moving average of the PM; 5 level stayed below the
2013-2019 mean for most days, although it became closer
to the 2019 level, starting from July after the lockdown mea-
sures were eased. For the monthly averages in Fig. 6¢, PM> 5
values in March and April 2020 decreased from the 2013—
2019 means by approximately 43 % and 13 %, respectively,
although it is noticed that the PM 5 in February (before lock-
down) was the lowest in the entire year. Unlike other sites
discussed earlier in this paper, the PM; 5 levels in Paris rarely
hit record lows during lockdowns, even though they are near
the bottom of the range from pre-pandemic years.

Another less rigid lockdown for Paris went into place dur-
ing January to mid-May of 2021, when the stringency in-
dex lay between 60 and 80. This time, the PM> 5 concentra-
tions were also lower than the pre-pandemic values (except
April) but higher than in 2020. This is more clearly seen in
the monthly means, as the PMj 5 in 2021 from January to
May are lower than the same months before the pandemic
but are higher than 2020 except May, apparently consistent
with the different degrees of stringency between 2020 and
2021, although such attribution might be ambiguous.

3.1.5 Lima, Peru

Lima’s most strict lockdown occurred from mid-March to
June of 2020, as seen in Fig. 7a. In these nearly 4 months, the
stringency index ranged from 90 to 97, a sign of extremely
tight lockdown measures. Evidently, in Fig. 7b, the PMj 5
levels for 2020 fell well below the 2016-2019 amounts dur-
ing the exact same period. The monthly averages of PMj 5
in Lima rendered in Fig. 7c were also significantly dimin-
ished in March to June of 2020, when concentrations con-
sistently were lower than pre-pandemic averages by 47 %
to 54 %. Since the timings of declines in PMj, s matched
with the timings of escalated stringency indices, it seems to
present a line of strong evidence that the reduction of human
activities had a direct impact on lowering the PM; 5 levels
in Lima. Such effects are more clearly seen in the monthly
mean PM s in Fig. 7c — that the 2020 values are lower than
the pre-pandemic years throughout the year, with the largest
reduction in the months with the highest stringency index.
In contrast, the lockdown measures in 2021 did not seem
to help in reducing the PM; 5 in Lima, despite the still high
stringency index (around 60) throughout the year. The PM> 5
levels in 2021 were very similar to the pre-pandemic values,
although they were noticeably lower by 6.5 and 10.3 uygm~3
(corresponding to 30 % and 41 %) in February and March of
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2021, respectively (Fig. 7b and c¢) when the stringency index
was higher (~ 70-75).

3.1.6 Kuwait City, Kuwait

During April, May, June, and July of 2020, Kuwait City’s
stringency index enlarged to values between 80 and nearly
100 (Fig. 8a). Despite this severe lockdown, there were
not many apparent signs of change in PM; s concentrations
in the spring and summer of 2020, which often surpassed
pre-pandemic concentrations and occasionally fell to record
lows. Figure 8b’s red line for PM» s 5d moving averages
in 2020 does reach minimums under the black line of pre-
pandemic averages at points in mid-April and early May, and
monthly means in Fig. 8c for March and April 2020 were
less than their complementary 2017-2019 means by 13 %
to 40 %. Nonetheless, the concentration of PM; 5 in 2020 in
general was well within the range of pre-pandemic years. In
2021, although the stringency index remained above 60 from
January to July, the PM3 5 levels did not respond to the strin-
gency measures (Fig. 8b and c). These levels hit the record
low in August—October despite the relaxed stringency.

It should be noted that Kuwait City is heavily influenced
by desert dust, which was not affected by the lockdown.
Therefore, it is expected that dust frequently plays a deter-
mining role in PM> 5 levels in Kuwait City. This is most evi-
dent in 2022 (blue lines in Fig. 8b and c¢) when the PM> 5 con-
centrations were pulsed and abnormally large, with the May
average being close to twice as high as the mean for May
from pre-pandemic years. The heavy dust storms that oc-
curred in late May across the Middle East in that year (Fran-
cis et al., 2023) are a probable explanation for this growth. It
is logical to assume then, that this event is proof of how the
presence of dust storms can have a magnified effect on the
overall levels of PM; 5 in Kuwait City, which would over-
whelm changes due to other influences like COVID-19 lock-
downs, in observational data.

3.2 Attribution of the observed changes in PMa 5
between the pandemic and pre-pandemic years

In this section, we attempt to interpret the observed changes
in PM» 5 by carrying out additional analyses of in situ PM> 5
observations and GEOS model simulations to address two
major questions: (1) are the observed changes in PM; 5 dur-
ing the lockdowns coincident with the regional PM s trends?
and (2) what are the relative contributions of the COVID-
lockdown-induced anthropogenic emission reductions, inter-
annual variability of meteorology, and natural emissions to
the PM> 5 changes during the pandemic?
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Figure 3. Time series of (a) the lockdown stringency index dur-
ing the pandemic years (2020 — red, 2021 — orange, and 2022 —
blue) and (b) the 5 d running mean PM; 5 concentration over years
for 4 individual years of 2019-2022 (with the brown, red, orange,
and blue lines denoting 2019, 2020, 2021, and 2022, respectively)
in Shanghai, China. The monthly average PM» 5 concentrations
(ug m73) are shown in (c¢). Also shown in (b) and (c) is the pre-
pandemic climatology, with the black line denoting the average and
gray shaded areas showing the range of observations during the pre-
pandemic period.

3.2.1 Inferring the lockdowns’ impacts in the context of
regional PM» 5 trends

The analysis in Sect. 3.1 showed that on a monthly basis,
PM; 5 in 2020 during the lockdown periods was systemati-
cally lower than the pre-pandemic averages in six cities, ex-
cept at locations significantly affected by wildfires and dust
storms. In some cities, the 2020 PM; s concentrations even
made it to record lows in the study periods. However, these
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Figure 4. Same as for Fig. 3, except for New Delhi, India.

reductions in PM; 5 during the pandemic may not be simply
credited to the effects of COVID-19 lockdowns. For instance,
if the PM s level in a city had been declining before the pan-
demic, an apparent decrease in PMj 5 observed in 2020 might
be just following the trend in a BAU scenario. It is thus nec-
essary to put them into the context of regional PM, 5 inter-
annual variations or trends to reduce ambiguity in attributing
the observed PM3 5 reductions to the lockdown impacts.
Here we investigate the March—April average PM» 5 con-
centrations in pre-pandemic years (black dots) and during the
pandemic years (red triangles) for all six cities, as shown in
Fig. 9. We restricted the period to March and April because
this was when the first wave of lockdowns occurred in most
of the cities in 2020. These plots also contain standard de-
viations and linear regression lines (black lines) of the data
for all years up until 2019 (i.e., excluding the pandemic years
of 2020-2022). The coefficients of determination, R2, of the
linear regressions for Shanghai and Paris is 0.739 and 0.785,
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Figure 5. Same as for Fig. 3 except for Los Angeles, USA.

respectively, which suggests that the pre-pandemic decreas-
ing trend is statistically significant, with p =0.01, based on
the Student ¢ test. Although R? for Lima and Kuwait City
are higher, the limited data points in the PM> 5 observations
make the R? values less meaningful in terms of statistical
significance of the decreasing trend. Contrary to the other
four locations, PM» s levels in New Delhi and Los Ange-
les contained no meaningful trends, as R? values for both
sets of data points are 0.1 or less. The linear regression lines
based on the pre-pandemic PM> 5 observations are then ex-
trapolated to later years as an estimation of PMj; 5 under a
BAU scenario in 2020-2022 without COVID-19 lockdown.
A deviation of observed PM 5 levels during the pandemic
years from the predicted values is compared with the pre-
pandemic standard deviation to assess the likelihood of influ-
ences by the COVID-19 lockdown. For Shanghai, the devia-
tion of observed PM> 5 from the predicted value is —13.73,
—7.07, and —9.94 nug m—3 for 2020, 2021, and 2022, respec-
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Figure 6. Same as for Fig. 3, except for Paris, France.

tively. For comparison, the pre-pandemic standard devia-
tion is 7.33 ug m~3. This suggests that the emission decrease
associated with Shanghai’s stringent pandemic restrictions
most likely caused significant reductions in PM» 5 in 2020
and 2022. Similarly, the deviation from the predicted value in
2020is —30.94, —5.44, and —6.38 ug m~2 in New Delhi, Los
Angeles, and Lima, respectively. These deviations are sig-
nificantly greater than the corresponding pre-pandemic stan-
dard deviations of 6.81, 2.58, and 3.89 ugm™>, most likely
suggesting that the COVID-19 lockdowns in 2020 caused a
significant reduction of PMj 5 in New Delhi, Los Angeles,
and Lima. On the other hand, 2020’s PM, 5 levels in Paris
and Kuwait City were above the regression line by 2.55 and
4.12 ugm™3, respectively, despite being lower than the pre-
pandemic averages. In these cases, external causes may have
offset any impacts of reduced anthropogenic emissions dur-
ing the COVID-19 lockdowns.
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Figure 7. Same as for Fig. 3, except for Lima, Peru.

Notably, in March—April of 2021 and 2022, all six cities
except for Shanghai demonstrated an increase in PM3 5 con-
centration to a level near or well above the BAU projection.
Shanghai’s PM> 5 increased in 2021 but decreased again in
2022 due to the second stringent lockdown discussed earlier.
The PM; 5 concentration in 2022 was even lower than that in
2020. The question of how much the loosening of COVID-19
pandemic regulations truly contributed to these increases in
PMj; 5 requires further investigation, but, so far, there is some
evidence of elements besides the lockdown stringency, such
as the dust storms in Kuwait City, playing a role as well.
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Figure 8. Same as in Fig. 3, except for Kuwait City, Kuwait.

3.2.2 Attributing the observed PM» 5 changes to the
lockdown-induced emission reductions with
GEOS modeling

In this section, we focus on an analysis of the observed and
modeled changes in the March—April average PM; 5 con-
centration between 2020 and 2019. This focused analysis
is done based on the three GEOS model experimental runs
(as described earlier) to provide insight into how the ob-
served PM» s changes are related to the anthropogenic emis-
sion reductions associated with the COVID lockdowns and
differing meteorology/natural emissions. The three GEOS
runs for 2019, 2020-BAU, and 2020-COVID are compared
against each other to distinguish a change associated with
the lockdowns (i.e., reductions in anthropogenic emissions)
from those non-lockdown effects (e.g., interannual variations
in meteorological conditions and natural emissions). Specif-
ically, the difference between 2020-BAU and 2019 indicates
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Table 1. Relative change (%) of March—April average anthro-
pogenic SO,, NH3, BC, and OC emissions averaged over a 3° x 3°
box around the cities due to COVID lockdowns. The negative value
indicates a decrease in emissions due to the lockdowns.

City, country SO, NH3 BC oC
Shanghai, China —-16.1 —-11.7 —-144 —-104
New Delhi, India —282 —123 -2.1 +1.5
Los Angeles, USA -263 —164 277 —19.2
Paris, France —34.3 —-6.8 -27.0 —5.3
Lima, Peru —459 —-11.1 -289 -10.5
Kuwait City, Kuwait -93 -8.1 =233 -=21.1

the effect of differing meteorology and natural emissions
between 2020 and 2019, as the same anthropogenic emis-
sions were applied in these two runs. On the other hand,
the difference between 2020-COVID and 2020-BAU mea-
sures the effect of reducing anthropogenic emissions by the
lockdown restrictions, as the two runs were driven by the
same meteorology and emissions of natural aerosols from
dust storms, sea sprays, biogenic/volcanic sources, and wild-
fires were largely the same. These simple attributions are in-
sightful, although the so-derived lockdown effects and those
by the differing meteorology and natural emissions (i.e., non-
lockdown effects) may not add up exactly to the reduction in
PMj; 5 due to the non-linearity of the aerosol system.

Table 1 lists the relative changes (%) of anthropogenic
SO,, NH3, BC, and OC emissions in the six cities due to
the implementation of the lockdowns, on the basis of the
March—April average (the annual cycles of BAU and COVID
emissions are shown in the Supplement, Figs. S3-8). We de-
rived these numbers by calculating differences of March—
April emissions around the six cities (averaged over a 3° x 3°
box around each city) between the 2020-COVID and 2020-
BAU scenarios of anthropogenic emissions that were used to
drive the GEOS simulations. As described in Sect. 2.2, for
the 2020-BAU scenario, anthropogenic emissions in 2019
were used to represent the baseline emissions of 2020, as-
suming the anthropogenic emissions would not have signifi-
cant changes from 2019 to 2020 in a BAU scenario. For the
2020-COVID scenario, the 2019 anthropogenic emissions in
individual sectors were adjusted (decreased or increased, de-
pending on sectors) based on daily mobility data gathered
by Apple and Google to reflect the COVID lockdowns’ im-
pacts on anthropogenic emissions, which was developed by
Forster et al. (2020). While the anthropogenic emissions gen-
erally decreased because of the lockdowns by a large range
of magnitudes (—2.1 % to —45.9 %), depending on locations
and species, OC in New Delhi increased slightly by +1.5 %.
Our analysis shows that the increase of OC in New Delhi
(and in other cities in India) came from the increase in OC
in the residential sector, presumably due to the large share
of biofuel uses in residential cooking that increased signifi-
cantly during the lockdowns.
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Figure 9. Interannual variations of the March—April average PM> 5 (ug m_3) in (a) Shanghai, (b) New Delhi, (¢) Los Angeles, (d) Paris,
(e) Lima, and (f) Kuwait City. Black dots indicate pre-pandemic years, and red dots indicate the pandemic years. The black line represents a
linear regression of PM» 5 for pre-pandemic years only (excluding data points in the pandemic years), which is used to predict the business-
as-usual (BAU) PM; 5 during the pandemic years. The R? and pre-pandemic standard deviation (o) are noted in the box. Red triangles

indicate average PM; 5 in the pandemic years.

Figure 10 shows the observed and modeled PM; s changes
(2020-2019) as well as the GEOS attributions of bulk PM; 5
changes in different aerosol components and in the lockdown
and meteorological/natural effects. For brevity, we group the
GEOS aerosol components into four broad groups, namely
inorganic aerosols (including sulfate, ammonia, and nitrate),
carbonaceous aerosols (including organic matter, black car-
bon, and brown carbon), dust, and sea salt. Relative changes
in total PMj 5 between 2020 and 2019 derived from both the
observations and GEOS simulations are listed in Table 2. To
facilitate the discussion of potential effects of the differing
meteorology and natural emissions on PM; s, we also de-
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rived the March—April averages of the planetary boundary
layer height (PBLH), the wind speed at 10 m, total precipi-
tation rate, and OC emissions associated with fires from the
GEOS simulation, as listed in Table 3. While PBLH affects
PM, 5 through vertical mixing, wind speed at 10 m repre-
sents local ventilation conditions and affects dust emissions
as well. The precipitation rate determines wet removals of
aerosol. Major features for the individual stations are sum-
marized in the following:

Shanghai, China. The observations show that PMj 5 in
2020 was 19.5ugm™> or 41.4 % lower than that observed
in 2019. In comparison, the GEOS model shows a smaller

https://doi.org/10.5194/acp-25-14411-2025



C. M. Yu et al.: Assessing COVID-19 lockdowns’ impacts

reduction of PMj5 in 2020, i.e., 12.2pug m~3 or 18.4%
(with respect to the modeled value), of which 7.5 % is due
to the lockdown-induced reduction in anthropogenic emis-
sions and 11.8 % is due to the differing meteorology and
natural emissions. Analysis of aerosol composition further
shows that carbonaceous PM; 5 made a larger contribution
to the reduction of PM» 5 than inorganic PM; 5 did for both
the lockdown-induced emission reduction and the differ-
ing meteorology and natural emissions. In comparison to
March—-April 2019, the PBLH and precipitation rate during
the 2020 COVID lockdowns increased by 90 m (18.2 %) and
0.42mmd~"! (16.9 %), respectively, both contributing to the
decrease in surface PMj 5. Although fire emissions increased
by 83.3 % from 2019 to 2020, the amount of fire emissions
was relatively small and did not contribute significantly to
PM; 5.

New Delhi, India. The observed PM> 5 in 2020 was about
27 ugm™3 or 36.2 % smaller than that in 2019. The GEOS
model predicted a much smaller reduction of 4 ugm=> or
7.7% in 2020. The model also suggests that the differing
meteorology (e.g., an increase of 115.5 % in the precipitation
rate) and natural emissions (e.g., a dust reduction associated
with a 30.4 % decrease of near-surface wind speed) consti-
tute about a 4.6 % reduction in PMj s, while the lockdown-
induced reduction in anthropogenic inorganic emissions has
a 3.2 % reduction in PM> 5.

Los Angeles, USA. Observed PM» s in 2020 was lower
than that in 2019 by 2.4ugm™3 or 18.4%. In compari-
son, the GEOS predicted a much smaller reduction of only
0.2 ugm=3 or 3 %. However, the 3 % reduction in PM, 5 is a
balance of the 8.2 % reduction in both inorganic and carbona-
ceous aerosols associated with the lockdown and the 5.7 %
increase in inorganic aerosol and sea salt due to differing me-
teorology. Dust and carbonaceous aerosol had much smaller
increases compared to inorganic aerosol and sea salt.

Faris, France. Although observed PMj 5 decreased by
2.7ugm™3 or 17.5 % from 2019 to 2020, the GEOS model
only predicted a reduction of 0.8 ug m~> or 8 %. Further anal-
ysis of GEOS modeling experiments shows that the reduction
of anthropogenic emissions due to the lockdowns contributed
to a 5.1 % reduction in PM3 s, which is evenly contributed by
inorganic and carbonaceous PM> 5. Due to the differing me-
teorology between 2020 and 2019, dust PM; s increased by
0.2ugm™3, while sea salt PM, 5 decreased by 0.5 ugm™3.
An increase of 0.3 ug m~3 in carbonaceous PM, 5 was asso-
ciated with a 167.5 % increase in wildfire emissions. How-
ever, differing meteorology reduced the formation of inor-
ganic PM> 5 by 0.3 ugm™3 in 2020.

Lima, Peru. PM, 5 was observed to decrease by 7.5 ugm—3
or 36.3 % in 2020. In comparison, the GEOS modeling pre-
dicted a relatively smaller reduction of 26.7 % in PMjs.
Further analysis shows that the lockdown-induced anthro-
pogenic emission reduction yielded a 16.7 % reduction in
PM3; 5, with more reduction in inorganic than carbonaceous
aerosol. The differing meteorology (e.g., about a 10 % in-
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crease in PBLH) reduced inorganic and carbonaceous PM3 5
by a similar amount, which collectively contributed to the
12.7 % reduction in total PMj> 5.

Kuwait City, Kuwait. Different from the five cities dis-
cussed above, the observed reduction of 1.4 ugm~3 in PM, s
in 2020 is smaller than the GEOS-simulated reduction of
4.7ugm™3 by more than a factor of 3. However, due to the
GEOS model overestimating PMj; 5 in 2019 by more than a
factor of 2, the relative reduction is 3.8 % and 5.6 % for the
observation and GEOS model, respectively. Furthermore, the
GEOS model suggests that the reduction of 2.0 % associated
with the lockdowns is smaller than the 3.7 % reduction due to
the differing meteorology. The lockdown-induced reduction
in inorganic PMj 5 is more than a factor of 2 larger than that
in carbonaceous PM> 5. One can also notice that dust PM> 5
had a small reduction caused by the lockdown-induced an-
thropogenic emission reduction, which might be attributed
to the dynamic aerosol-radiation interactions accounted for
in the GEOS simulations that affected both emissions and the
transport of dust. The differing meteorology had influenced
PM; 5 components differently. On one hand, the reduction
in dust PMy 5 by 6.5ugm™3 is consistent with the 56.3 %
decrease in near-surface wind speed. On the other hand, an
increase of 2.6 ug m~3 in inorganic PMj 5 and an increase
of 0.4 ug m™3 in carbonaceous PM; 5 are consistent with the
32.8 % reduction in precipitation rate.

In summary, the GEOS modeling experiments show that
both the lockdowns and the differing meteorology as well as
natural emissions contribute to the PM, 5 reduction in 2020,
in comparison to that in 2019. In Shanghai, New Delhi, and
Kuwait City, the differing meteorology and natural emissions
made a larger contribution to the PM> 5 reduction than the
lockdowns did. On the other hand, the lockdown effects on
PM, 5 were greater than that resulting from the difference
in meteorology and natural emissions in Los Angeles, Paris,
and Lima. Clearly, for all stations, the effects of the differ-
ing meteorology and natural emissions need to be consid-
ered when interpreting and attributing the observed PMj 5
reduction in 2020 to the lockdown-induced reductions in an-
thropogenic emissions. We also want to point out that large
differences exist between the observed and modeled PMj 5
for most of these stations. Although it is difficult to pinpoint
these large discrepancies in a quantitative way, sources of er-
rors would include several aspects of uncertainty in GEOS
modeling. First, the relative contributions to emissions from
different sources or sectors in CEDS may have large uncer-
tainties (Hoesly et al., 2018). Natural emissions from wild-
fires and dust would also be very uncertain. As documented
in a recent paper (Collow et al., 2024), GEOS-simulated
aerosol components have large discrepancies against surface
observations. Second, the sector-dependent adjusting factors
for COVID lockdowns based on the mobility data may be
subjected to large uncertainties due to assumptions of re-
lationships between anthropogenic emissions and mobility
(Forster et al., 2020). Third, GEOS modeling of meteoro-
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Table 2. The March—April average PM, 5 in 2019 and relative change (%) of PMj 5 between 2020 and 2019 derived from the observations
and GEOS simulations. Negative values indicate that PM»> 5 was smaller in 2020 than 2019. The relative changes of 2020-COVID vs.
2020-BAU and 2020-BAU vs. 2019 represent contributions of the lockdown-induced anthropogenic emission reductions and the differing
meteorology, respectively.

City, country Observed PMj 5 ‘ GEOS-simulated PM; 5
2019 2020 vs. 2019 2019  2020-COVID vs. 2019 2020-COVID vs. 2020-BAU  2020-BAU vs. 2019
(ngm~) (%) | (ngm=) (%) (%) (%)
Shanghai, China 472 —41.4 66.3 —18.4 =75 —11.8
New Delhi, India 73.6 —36.2 48.3 =77 —-32 —4.6
Los Angeles, USA 12.9 —18.4 7.2 -3.0 —8.2 +5.7
Paris, France 15.5 —17.5 9.8 —-8.0 —=5.1 -3.0
Lima, Peru 21.2 —-36.3 15.5 —26.7 —16.7 —12.1
Kuwait City, Kuwait 34.7 -3.8 83.3 -5.6 -2.0 -3.7

Table 3. Comparisons of some major meteorological variables and fire-emitted OC between 2020 and 2019 on the basis of the March—April
average. The data are derived from GEOS simulations by averaging over a 3° x 3° box around the cities. Numbers in parentheses represent

the percentage change with respect to 2019.

PBLH 10m wind speed Precipitation OC emissions from fires
(m) (ms~h (mmd~") (gm~2d™h

Shanghai
2019 493 1.19 2.53 53x107
2020 583 1.20 2.95 9.7 x 1073
2020 vs. 2019 +90 (+18.2%)  40.01 (4-0.8 %) +0.42 (+16.9%)  +4.4x 1073 (+83.3%)
New Delhi
2019 1073 1.59 0.51 1.8x 1074
2020 980 1.11 1.09 47 %1072
2020 vs. 2019 —93(—87%) —0.48(—304%) +0.58 (+115.5%) —13x 1074 (=74.4 %)
Los Angeles
2019 622 1.65 0.65 48x107
2020 633 1.48 2.64 1.7x 1074
2020 vs. 2019 +11 (+1.8%) —0.17(—101%) +1.99 (+304.3%) +1.2x 10~* (+247.5%)
Paris
2019 728 1.94 1.61 4.1x107°
2020 655 0.67 1.78 1.1x1073
2020 vs. 2019 =73 (—=10.0%) —1.27 (—65.7 %) +0.17 (4106 %)  +7.0 x 1076 (+167.5 %)
Lima
2019 322 1.91 297 1.7 x 1073
2020 354 2.08 243 2.8x 107
2020 vs. 2019 +32 (9.9 %) +0.17 (+8.7 %) —0.54 (—18.1 %) +1.1 x 1075 (+63.2 %)
Kuwait City
2019 732 1.41 0.53 2.1x1073
2020 746 0.61 0.36 2.0x1073
2020 vs. 2019 +14(19%) —0.80 (—56.3 %) —0.17 (—32.8 %) —1.0x 1074 (=53 %)
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Figure 10. Absolute differences (ug m™3) in the March-April average PM» 5 between 2020 and 2019 (a negative value indicating that PM 5
was smaller in 2020 than 2019) in Shanghai, China (a), New Delhi, India (b), Los Angeles, USA (c), Paris, France (d), Lima, Peru (e), and
Kuwait City, Kuwait (f). Shown here are the observed (yellow bars) and GEOS-simulated (blue bars) changes in total PM, 5. The GEOS
simulations are further classified into dust, inorganic aerosol, carbonaceous aerosol, and sea salt, shown below the total PMj 5 change. For
both total and component PM» 5, GEOS simulation is partitioned into GEOS PM, 5 change due to anthropogenic emission change (orange)
and GEOS PMj; 5 change due to differing meteorology (gray). Relative changes in PM» 5 are listed in Table 2.

logical effects on PM; s concentration may be also biased,
due to uncertainties associated with meteorological fields
themselves and/or parameterizations of aerosol removal pro-

Ccesses.
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3.3 Observed changes in PMy 5 during the major
lockdown period in other stations

In previous sections, we have presented a detailed analysis
of the six representative stations on the responses of sur-
face PM s to the lockdowns marked by the stringency index
as well as the meteorological conditions and natural aerosol
events. Although similar analysis has been performed for all
the stations, for the sake of brevity, here we only present
monthly PM; 5 during and prior to the pandemic years for

Atmos. Chem. Phys., 25, 14411-14434, 2025
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Figure 11. Monthly variations of PM, 5 concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the pre-pandemic
climatology (with the black line denoting the average and gray shaded areas the range of observations during the pre-pandemic period) in
Beijing (a), Shenyang (b), Guangzhou (c), Chennai (d), Hyderabad (e), Kolkata (f), Mumbai (g), and New York City (h). The time series of

the stringency index for these cities are shown in Fig. S1.

the other 16 stations in 15 cities (Jakarta south and central
sites are presented separately), as shown in Figs. 11 and 12.
When examining these plots along with the stringency in-
dex of lockdowns (Figs. S1 and S2), we observe that eight
stations in Fig. 11 show the reduced monthly PM; 5 corre-
sponding to the elevation of the stringency index. These sta-
tions are located in China, India, and the USA. For those
in China, the high stringency index was recorded not only
in early 2020 (February—April) but also in March—October
of 2022. On the contrary, the stations in Fig. 12 generally
do not show a clear decrease in monthly PM» 5 correspond-
ing to the lockdowns. When further looking into the source
attributions of PMj 5 in individual stations (Fig. 2), we no-
tice that those stations showing the reduced PM, s corre-

Atmos. Chem. Phys., 25, 14411-14434, 2025

sponding to the lockdowns generally have a higher contribu-
tion (e.g., > 47 %) from the LERS, a much smaller fraction
(16 %—27 %) for residential sources, and no significant con-
tribution (< 6 %) from episodic events such as dust storms.
On the contrary, those stations without displaying a decrease
in PM» 5 corresponding to the high stringency index have
a lower LERS contribution (e.g., <40 %) and a relatively
higher contribution (20 %—50 %) by the residential sector
(Jakarta and Hanoi, in particular) or the predominance of
desert dust (e.g., Dubai, Manama, and Addis Ababa). It is
necessary to note that extremely high PM s in the spring and
summer of 2022 in Dubai may suggest a potential problem
associated with the measurements in this station. Although
high dust events occurred frequently in the region in 2022

https://doi.org/10.5194/acp-25-14411-2025
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Figure 12. Monthly variations of PMj 5 concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the pre-pandemic
climatology (with the black line denoting the average and gray shaded areas the range of observations during the pre-pandemic period) in
Milan (a), Pristina (b), Hanoi (c), Jakarta (central and south) (d, e), Addis Ababa (f), Dubai (g), and Manama (h). The time series of the

stringency index for these cities are shown in Fig. S2.

(Francis et al., 2023), Manama and Kuwait City in the region
did not record as high PM» 5 as that in Dubai. Further anal-
ysis of AERONET monthly AOD in Dubai (see Fig. S9 in
the Supplement) shows that AOD in May 2022 had a similar
magnitude to that in May 2019, contrary to the large differ-
ence in the observed surface PM, s.

In summary, our analysis shows that there were no sys-
tematic reductions in PM» 5 in response to the reduced hu-
man mobility due to the implementation of lockdown mea-
sures. In some urban areas, the coincidences of decreasing
PM; 5 and the increasing stringency index strongly suggest
the impact of COVID lockdowns on improving air quality.
In fact, the lockdowns yielded a historic low PM> 5 level in
several cities. In other urban areas, there was no reduction

https://doi.org/10.5194/acp-25-14411-2025

in PM; 5 in response to the lockdown, suggesting that the
impact of lockdowns could have been compounded by other
factors such as meteorological conditions and natural emis-
sions (desert dust and wildfire smoke) to some extent. Our
analysis also illustrates the importance of PMj 5 source at-
tributions in determining how the level of PM, 5 responds
to the lockdowns, When the energy, industry, transportation,
commercial and other combustion sectors, AFCID (anthro-
pogenic fugitive, combustion, and industrial dust), and inter-
national shipping sectors are major attributors of PMy s, it
would be easier to detect the PM» 5 reduction in response to
the lockdowns. On the other hand, when residential sector
and/or natural emissions such as dust or wildfires are major
contributors of PM; 5, the response of PM» 5 to the lock-

Atmos. Chem. Phys., 25, 14411-14434, 2025
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downs might be masked out, and even an increase in PM; 5
could occur during the lockdown periods. Finally, it is im-
portant to bear in mind that even for those cities with the
lowest level of PM» s in the recent decade occurred during
the COVID-19 lockdowns, the observed PM; 5 reductions
should not be attributed fully to the lockdowns. The variabil-
ity in meteorological conditions and natural emissions might
have made sizable contributions.

4 Discussion

4.1 Can satellite observations of AOD be used to detect
surface PM2 5 changes in response to the
lockdowns?

The ground-based observations of PMj 5 are inherently lim-
ited in spatial coverage. Numerous studies have explored the
use of satellite observations of AOD to estimate the surface
PM, 5 that can fill the spatial gaps of surface-based PM; 5
measurements (van Donkelaar et al., 2010; Wei et al., 2021).
Satellite remote sensing is appealing in this regard because it
provides routine observations of AOD at a global scale and
over a multi-year or even multi-decade timescale. Can such
satellite remote sensing observations be used to discern the
lockdowns’ impacts on surface PMj 5? To answer this ques-
tion, we sample MODIS/Aqua AOD over the 21 cities in
2019 (a pre-pandemic year) and 2020 (the pandemic year).
We then calculate the relative changes of the March—April
average AOD values between 2020 and 2019 as follows:

AODjp20 — AOD2g19

AOD change (%) = 20D
2019

x 100 %. (1)

The relative changes of observed March—April average
PMj; 5 at the location of the same sites are calculated with
similar methodology. From the modeling perspective, we
compute the relative changes in AOD and PM; s based on
GEOS simulations for 2019 and 2020 (for the COVID sce-
nario, namely 2020-COVID, as discussed earlier).

Figure 13 compares the relative changes of AOD and
PM3 5 in March—April from 2019 to 2020 over the 21 cites
from both observational (left panel) and modeling (right
panel) perspectives. The observations show in half (10) of
those 20 cities (excluding Hanoi because of the lack of PM; 5
data in March and April of 2019), where AOD and PMj; 5
change in the same direction. In the other half, the changes
are opposite. On the other hand, the GEOS model shows a
majority (17) of the 20 cities having the same directions of
AOD and PM; 5 changes. Quantitatively, AOD and PM; 5
changes can differ substantially for both observations and
modeling, depending on cities. This presumably reflects the
complexity of local/regional aerosol sources including both
anthropogenic and natural, the transported amount, and their
dependance on altitudes. Our analysis suggests that satel-
lite AOD, despite its great advantage in spatial and tempo-
ral sampling, cannot always be used to detect changes in sur-
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face PM; 5 quantitatively (e.g., percentage of change) or even
qualitatively (e.g., direction of change). Previous studies us-
ing satellite AOD measurements for detecting or inferring the
COVID lockdowns’ impacts on PM 5 air quality may need
to be reassessed. There is also a possibility that MODIS AOD
is subject to large uncertainties (e.g., 15 %—-20% at least),
particularly in urban areas where the surface is bright and
highly heterogeneous (Levy et al., 2013). It is understandable
that when the AOD uncertainty in satellite remote sensing is
comparable to or larger than the interannual variability, the
value of using satellite remote sensing products for discern-
ing the changes is greatly reduced.

4.2 Discrepancies in PM2 5 changes between
observations and GEOS simulations

To use the GEOS modeling for attributing the observed
changes in PM, 5 to different factors, it requires that the
GEOS simulations and observational data are at least con-
sistent in the direction of PMj 5 changes. This fundamen-
tal requirement was met for the six stations discussed in
Sect. 3.2.2, albeit the magnitude of the changes in the GEOS
results was smaller than the observed. Here we examine ob-
servation model discrepancies in the PMj 5 changes for 20
stations, as shown in Fig. 14, both for absolute (left panel)
and relative (right panel) changes in the March—April av-
erage PM» s concentration (i.e., 2020 minus 2019). Note
again that the Hanoi/Vietnam station was excluded because
it did not have PM; 5 observations in March—April 2019. We
found that 17 out of 20 stations show consistent directional
changes in PM> 5 concentration between observations and
GEOS simulations. Of these, 13 stations had negative dif-
ferences (2020 lower than 2019) and four stations had pos-
itive differences (2020 higher than 2019). Opposite changes
in PM3 5 between the observations and GEOS modeling were
found in the remaining three stations, namely Guangzhou
(China), Chennai (India), and Jakarta (Indonesia). Quantita-
tively, the observation model disparity can be substantial, de-
pending on stations. For all the stations, the relative changes
in the observed PMj; 5 between 2020 and 2019 range from
—41.4 % to +21.0 %, while the GEOS modeling gives a rel-
atively smaller range of —25.2 % to 4+10.6 %.

The opposite changes in PM; 5 between the observation
and GEOS modeling warrant further analysis of the GEOS
modeling experiments. Figure 15 shows the GEOS attribu-
tions of simulated bulk PM; 5 changes in different aerosol
components and in the lockdown and meteorological/natu-
ral effects for Guangzhou in China and Jakarta in Indonesia.
Chennai in India has a pattern of change similar to Jakarta
but with a much smaller magnitude, which is shown along
with other 11 stations in the Supplement (Fig. S10). We
also include changes in major meteorological variables and
OC emissions associated with wildfires in Table S2 in the
Supplement for all the stations not included in Table 3. In
Guangzhou, the observation shows a decrease of 1.3 ugm™3
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Figure 13. Relative changes (%) of the March—April average PM; 5 and AOD between 2020 and 2019 in 20 stations based on the observa-
tions (a) and GEOS simulations (b).
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Figure 14. Changes in PM, 5 concentration (March—April average, 2020 minus 2019) from the observations (orange bars) and GEOS
simulations (blue bars) in 20 stations. Left panel (a) is for absolute change in PMj 5 (ug m~3) and right panel (b) for relative change (%).
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in PM; 5. However, GEOS simulations suggest that the ef-
fect of anthropogenic emission reduction associated with the
lockdown is overcompensated by an increase in PM3 5 due to
the differing meteorology (e.g., a 38 % decrease in precipita-
tion rate, see Table S2) and natural emissions (e.g., a 215 %
increase in wildfire emissions, see Table S2), leading to an
overall increase of 5.7ugm™> in PMys. It is possible that
the precipitation rate was too low and the wildfire emissions
were too high in 2020 in the GEOS modeling. An opposite
pattern of changes is displayed in Jakarta. While the observa-
tion shows an increase of 6.0 ug m~3 in PM, 5, GEOS mod-
eling gives a decrease of 6.6 ugm™3 in PM, 5 — a result of
the reduced anthropogenic emissions and the differing me-
teorology/natural emissions (e.g., a 30.9 % increase in pre-
cipitation rate and a 12.6 % decrease in wildfire emissions,
see Table S2). It is possible that the sources of PM» 5 used in
GEOS simulations may have significant biases in Jakarta.
To better explain the observed PM» s changes with the
model simulations, future research is clearly needed to im-
prove the model’s performance. One such endeavor is to im-
prove the accuracy of emission inventories, particularly the
relative importance of individual source sectors. The esti-
mated emission reduction used in the GEOS model simula-
tion was obtained by applying the adjustment factors to the
2019 emission based on preliminary incomplete information
from the Apple/Google mobility data, which could have large
uncertainties. The newly released CEDS emissions that cover
the emission inventory during the COVID years is expected
to be more accurate for use in the model for future studies.

5 Conclusions

Our analysis of multi-year surface PM; 5 observations in 21
cities around the globe shows that reductions in PMj, 5 (par-
ticulate matter with an aerodynamic diameter of less than
2.5um) did not occur systematically in all the cities in re-
sponse to the reduced human activities due to the implemen-
tation of COVID-19 lockdown measures. In some cities, the
decreasing PM» s was coincident with the increasing strin-
gency index and yielded a historic record of low PM3 5 levels,
strongly suggesting the impact of COVID lockdowns on im-
proving the air quality. On the contrary, in other cities there
was no reduction in PM, 5 in response to the lockdown, sug-
gesting that the positive impact of lockdown-induced emis-
sion reductions on air quality could have been compounded
by other factors such as meteorological conditions and the
emissions/transport of desert dust and wildfire smoke. Our
analysis also suggests that the PM, 5 source attributions de-
termine how the level of PM; 5 responds to the lockdowns.
When the potential lockdown emission reduction sectors
(LERS) — such as the energy, industry, transportation and
combustion sectors, AFCID (anthropogenic fugitive, com-
bustion, and industrial dust), and shipping — predominate
over the residential sector, it was easier to detect the PM; 5
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Figure 15. Absolute differences (ug m~—3) in the March—April aver-
age PM 5 between 2020 and 2019 (a negative value indicating that
PM; 5 was smaller in 2020 than 2019) in Guangzhou, China (a),
and Jakarta, Indonesia (b). Shown here are the observed (yellow
bars) and GEOS simulated (blue bars) changes in total and compo-
nent PM; 5. For both total and component PM» 5, GEOS simula-
tion is partitioned into GEOS PM; 5 change due to anthropogenic
emission change (orange) and GEOS PM; 5 change due to differing
meteorology (gray).

reduction in response to the lockdowns. On the other hand,
when the residential sector and/or natural emissions such as
dust storms and wildfires were more important contributors
of PMj 5 than those potential LERS, the response of PM3 5
to the lockdown-induced anthropogenic emission reductions
might be masked out, and even an increase in PM» 5 could
occur during the lockdown. This manifests the importance of
PM; 5 source attributions in developing effective pollution
control strategies for improving the air quality. The results
of this study provide a preview of potential mixed effects
on urban air quality when transitioning from gasoline- and
diesel-powered vehicles to electric vehicles.

Even for those cities with the lowest level of PM5 5 in the
recent decade that were coincident with the elevation of the
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stringency index, the observed PM> 5 reductions should not
be fully attributed to the lockdowns. The non-lockdown ef-
fect resulting from variabilities in meteorological conditions
and natural emissions might have made sizable contribu-
tions. The analysis of the Goddard Earth Observing System
(GEOS) modeling experiments suggests that effects other
than anthropogenic emissions were significant and could
well exceed the lockdown effect in some cases.

Our analysis also suggests that the GEOS model is still
subject to large uncertainties and may not be used to reli-
ably attribute the observed PM; 5 changes to changes in an-
thropogenic emissions, natural emissions, and meteorologi-
cal conditions. The model and observations show disparities
in the quantitative change in PM3 5. In some cases, the direc-
tion of change in PM» 5 can be opposite between the model
and observations, which makes it impossible to use the model
to interpret the observations. This manifests the importance
of continuous efforts on improving modeling performance in
general and the source apportionments of PM s in particular.
The change of anthropogenic emissions in each sector dur-
ing COVID is subject to large uncertainties, and the model
results shown here should be considered more as a “sensi-
tivity” study. When the gridded Community Emission Data
System (CEDS) 2024 release is prepared, we could re-run the
model for a more systematic assessment. Despite the advan-
tage of satellite remote sensing in terms of routine daily sam-
pling over decadal time spans, using aerosol optical depth
(AOD) observations from satellites cannot always detect the
impacts of COVID-19 lockdowns on the PMj 5 air quality
and even the columnar aerosol loading. This is a result of
the complex and non-proportional relationship between AOD
and surface PM» s, as well as the large uncertainty in AOD
retrievals from the Moderate Resolution Imaging Spectrom-
eter (MODIS).

Data availability. Observational and modeling PM, 5 data used
in this study are archived in Tan et al. (2025). The stringency
index of the Oxford Covid-19 Government Response Tracker
(OxCGRT) was downloaded from https://github.com/OxCGRT/
covid-policy-dataset (last access: 13 July 2023). MODIS/Aqua
AOD (Collection 6.1) data were downloaded from https://giovanni.
gsfc.nasa.gov/giovanni/ (last access: 15 July 2023).
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