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Abstract. We use 2019–2023 TROPOMI satellite observations of atmospheric methane to quantify global
methane emissions at monthly 2°× 2.5° resolution with a localized ensemble transform Kalman filter (LETKF)
inversion, deriving monthly posterior estimates of emissions and year-to-year evolution. We apply two alterna-
tive wetland inventories (WetCHARTs and LPJ-wsl) as prior estimates. Our best posterior estimate of global
emissions shows a surge from 560 Tg a−1 in 2019 to 587–592 Tg a−1 in 2020–2021 before declining to 572–
570 Tg a−1 in 2022–2023. Posterior emissions reproduce the observed 2019–2023 trends in methane concentra-
tions at NOAA surface sites and from TROPOMI with minimal regional bias. Consistent with previous studies,
we attribute the 2020–2021 methane surge to a 14 Tg a−1 increase in emissions from sub-Saharan Africa but find
that previous attribution of this surge to anthropogenic sources (livestock) reflects errors in the assumed wetland
spatial distribution. Correlation with GRACE-FO inundation data suggests that wetlands in South Sudan played
a major role in the 2020–2021 surge but are poorly represented in wetland models. By contrast, boreal wetland
emissions decreased over 2020–2023 consistent with drying measured by GRACE-FO. We find that the global
seasonality of methane emissions is driven by northern tropical wetlands and peaks in September, later than the
July wetland model peak and consistent with GRACE-FO. We find no global seasonality in oil/gas emissions,
but US fields show elevated cold season emissions that could reflect increased leakage.

1 Introduction

Methane is a strong greenhouse gas, contributing 0.6 °C of
warming from the pre-industrial baseline, with a relatively
short lifetime of about 9 years due principally to oxidation
by the hydroxyl (OH) radical in the troposphere (Prather et
al., 2012; Naik et al., 2021). Methane is emitted by natu-
ral sources, mostly wetlands, and by anthropogenic sources
including enteric fermentation and manure from livestock,
oil and gas, coal mining, rice, landfills, and wastewater
(Saunois et al., 2025). Decreasing methane emissions is an

effective way to mitigate climate change in the near-term
while also achieving air quality co-benefits from reduced
tropospheric ozone (West et al., 2006; Nisbet et al., 2020).
Bottom-up methane emission inventories link emissions to
processes (IPCC, 2019), but inventory construction typically
lags by several years behind real time and is subject to er-
rors. Satellite observations of atmospheric methane can help
improve and update inventories through inverse analyses us-
ing Bayesian optimization and can offer insights on recent
and rapid changes (Jacob et al., 2016, 2022; Houweling et
al., 2017). Here we apply a Localized Ensemble Transform
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Kalman Filter (LETKF) to TROPOspheric Monitoring In-
strument (TROPOMI) satellite observations of atmospheric
methane for 2018–2023 to quantify emissions on a monthly
basis and attribute the causes of the methane increase.

Global methane concentrations increased at a rate of 6–
10 ppb a−1 prior to 2019, surging to 13–18 ppb a−1 in 2020–
2022 before returning to 10 ppb a−1 in 2023 (NOAA, 2024).
The causes of the methane surge are uncertain and have been
variably attributed to wetlands or a decrease in OH (Qu et al.,
2022; Peng et al., 2022; Qu et al., 2024), with recent work
favoring a wetland surge (Drinkwater et al., 2023; Nisbet,
2023; Nisbet et al., 2023; Michel et al., 2024). Earlier in-
creases have been attributed to emissions increases from oil
and gas, livestock, and wetlands, with changes in the 13C–
CH4 isotopic abundance pointing towards a biogenic source
(Hausmann et al., 2016; Zhang et al., 2021; Basu et al., 2022;
Feng et al., 2023; Zhang et al., 2025). Global daily obser-
vations from TROPOMI, launched in 2017 (Lorente et al.,
2021), provide a unique dataset to attribute methane trends
including seasonal information.

LETKF (Hunt et al., 2007) uses an ensemble of chemi-
cal transport model (CTM) simulations of methane concen-
trations over short successive assimilation time windows to
relate emissions to atmospheric concentrations. This ensem-
ble approximates the background error covariance matrix
which represents the prior uncertainty in the system. LETKF
has been used previously to analyze methane emissions and
their trends (Feng et al., 2017; Bisht et al., 2023; Zhu et al.,
2022). It has advantages compared to other inverse methods
reviewed by Brasseur and Jacob (2017) in being far less com-
putationally expensive than analytical methods, not requiring
a model adjoint like 4D-Var methods, and not being restricted
dimensionally like Markov chain Monte Carlo methods. The
short assimilation time window reduces the effect of errors
in model transport (Yu et al., 2021) and in the seasonality of
the prior estimate (East et al., 2024).

Here we estimate global methane emissions at 2°× 2.5°
spatial resolution and monthly temporal resolution from May
2018 through December 2023. We use the CHEEREIO plat-
form (Pendergrass et al., 2023) to apply LETKF to the
TROPOMI data. CHEEREIO is a general user-friendly plat-
form for LETKF data assimilation powered by the GEOS-
Chem CTM. We use the results to analyze seasonal and
2019–2023 trends in methane emissions from different emis-
sion sectors.

2 Data assimilation system

We use methane observations from TROPOMI (Sect. 2.1)
to optimize global methane emissions at 2°× 2.5° resolution
(Sect. 2.2) with a LETKF algorithm (Sect. 2.3) implemented
through CHEEREIO (Sect. 2.4). We apply a downscaling ap-
proach to attribute emissions to different sectors at a finer
scale than the 2°× 2.5° resolution of the inversion (Sect. 2.5).

2.1 Observations

TROPOMI detects solar backscatter in the 2.3 µm methane
absorption band with global daily coverage at 5.5× 7 km2

nadir pixel resolution (7× 7 km2 before August 2019) and
13:30 local solar time. We use the operational retrieval of
dry-column methane mixing ratios (XCH4 ) from the Nether-
lands Institute for Space Research (SRON) (Lorente et
al., 2023), corrected for bias with a machine-learning al-
gorithm trained on collocated data from the more pre-
cise but much sparser GOSAT satellite instrument (Bala-
sus et al., 2023; obtained from https://registry.opendata.aws/
blended-tropomi-gosat-methane, last access: 27 February
2025).

We filter out retrievals over coastlines (fractional-water
pixels) and oceans (glint retrievals), which are subject to
residual artifacts (Balasus et al., 2023). We also account for
bias that could be introduced by extended periods of missing
TROPOMI data, caused by outages of the Visible Infrared
Imaging Radiometer Suite (VIIRS) which is used for cloud
clearing (Borsdorff et al., 2024). Full TROPOMI data records
are available for 2019–2021, but in 2022 no TROPOMI data
is available between 26 July and 23 August, and in 2023 re-
trievals begin to fail on 26 July and are fully missing between
10 and 30 August. This is the time of year when northern
hemispheric methane concentrations are at their minimum
but sharply rising because of wetland missions (East et al.,
2024). In the absence of observations, LETKF would persist
July emissions through the period of missing data and in-
crease emissions suddenly when observations resume to cor-
rect a global bias. We account for this artifact in our esti-
mates of interannual variability by scaling to the seasonality
of 2021 emissions as follows:

xyr = x2021 ·
xyr,valid

x2021,valid
(1)

Here xyr are annual posterior mean gridded emissions in
yr ∈ {2022,2023} after correction, xyr,valid are annual poste-
rior mean emissions excluding the period of missing data,
and x2021,valid are 2021 posterior emissions excluding the
same period. This assumes similar seasonal variations in
the three years. Observed methane concentrations from the
NOAA global surface network (NOAA, 2024) show highly
reproducible seasonality from year to year (East et al., 2024).
The global mean surface concentration in July/August 2021
was 6 ppb below the 2021 annual mean, as compared with
5 ppb in 2022 and 7 ppb in 2023. When analyzing seasonal-
ity, we show either 2021 results or the 2019–2021 detrended
mean seasonality to avoid bias due to missing observations.
We find that the LETKF corrects emissions for the periods
of missing data within two 5 d assimilation time windows af-
ter TROPOMI observations are available again. There is no
need for an extended “burn-in” period, which may be due
to our run-in-place methodology which efficiently makes use
of available observations (Sect. 2.4). Because we scale emis-
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sions gridcell by gridcell, we implicitly account for different
emission seasonalities in different regions and latitude bands.

2.2 GEOS-Chem, prior inventories, and prescribed
methane sinks

GEOS-Chem is a three-dimensional CTM driven by as-
similated meteorological data from the Modern-Era Retro-
spective analysis for Research and Applications, Version 2
(MERRA-2) of the NASA Global Modeling and Assimila-
tion Office (GMAO). We use the GEOS-Chem methane sim-
ulation (Maasakkers et al., 2019) at 2.0°× 2.5° resolution.
We initialize all ensemble members in 2018 with a 33-year
GEOS-Chem simulation in which the methane field is con-
trolled by time-varying gridded NOAA surface methane ob-
servations that are used as the simulation’s lower boundary
condition, thus properly initializing the stratosphere (Moor-
ing et al., 2024).

Prior methane emissions are listed in Table 1. Prior es-
timates of emissions and loss include no trends over the
study period (persisting 2019 values), so that any trends in
the posterior solution are due to observations. Anthropogenic
emissions are assumed to be aseasonal, except for manure
management and rice for which we apply seasonal scal-
ing factors (Maasakkers et al., 2016; Zhang et al., 2016a).
For wetland emissions, we conduct parallel inversions with
prior estimates based on two alternative inventories: the
mean of the nine-member high-performance subset of the
WetCHARTs v1.3.1 inventory ensemble (Bloom et al., 2021;
Ma et al., 2021), and the Lund–Potsdam–Jena Wald Schnee
und Landschaft (LPJ-wsl) dynamic global vegetation model
driven with assimilated meteorological data from MERRA-
2 (Zhang et al., 2016b). The latter inventory, which we de-
note LPJ-MERRA2 in what follows, was found by East et
al. (2024) to uniquely match the observed global methane
seasonality as compared to other wetland emission invento-
ries (East et al., 2024). As discussed later, many emission
sources are co-located making source attribution difficult, es-
pecially in eastern Africa where livestock and wetlands over-
lap substantially.

Loss of methane from oxidation by tropospheric OH is
computed with global 3-D monthly mean OH fields from
GEOS-Chem (Wecht et al., 2014), scaled so that methane’s
steady-state lifetime due to loss to tropospheric OH matches
the best estimate of 11.2 years derived from methyl chloro-
form observations (Prather et al., 2012; East et al., 2024). We
assume no interannual variability in tropospheric OH con-
centrations. Additional minor methane sinks in GEOS-Chem
include oxidation by tropospheric Cl (Wang et al., 2019), ox-
idation in the stratosphere (Mooring et al., 2024), and uptake
by soils (Murguia-Flores et al., 2018), resulting in an overall
methane lifetime of 9.4 years.

We do not optimize tropospheric OH concentrations (as
the main methane sink) because they do not imprint local gra-
dients of methane concentrations as needed for application of

Table 1. Global methane sources (Tg a−1) for 2023.

Prior Posterior best
estimatea estimateb

Total 529–574 570

Anthropogenic 348 392

Livestock 121c 151
Oil+Gas 50d 60
Coal 34d 26
Rice 39c 36
Waste 81c 92
Other 24c 26

Natural 181–226 178

Wetlands 148–193 141
Termites 12 18
Fires 19 17
Seeps 2 2

a Prior emissions include no trends over 2018–2023. Ranges
are defined by the two alternative prior estimates for
wetlands, both at 0.5°× 0.5° monthly resolution for 2019:
lower value is WetCHARTs v1.3.1 (Ma et al., 2021) higher
value is LPJ-wsl driven by MERRA-2 meteorology (Zhang et
al., 2016b). Prior non-fossil anthropogenic emissions are
from the 2018 EDGARv6 inventory (Olivier et al., 2021),
denoted c, and fossil anthropogenic emissions are from the
2010–2019 Global Fuel Exploitation Inventory (GFEI)
version 2.0 (Scarpelli et al., 2022), denoted d. All
anthropogenic emissions are at 0.1°× 0.1° resolution and are
overwritten by national gridded emissions for the contiguous
US (Maasakkers et al., 2016), Mexico (Scarpelli et al.,
2020a), and Canada (Scarpelli et al., 2021a). Termite
emissions (4°× 5°) are from Fung et al. (1991), fire
emissions (0.25°× 0.25°) are from the 2019 Global Fire
Emissions Database (GFED4) (van der Werf et al., 2017), and
geological seeps (1°× 1°) are from Etiope et al. (2019) with
global scaling to the annual total from Hmiel et al. (2020).
b Posterior emissions for 2023 from the LETKF with sources
attributed via downscaling. Best estimate represents the mean
of LPJ-MERRA2 and WetCHARTs posterior estimates both
with and without methane concentrations in the state vector.

LETKF. Global analytic inversions optimize OH concentra-
tions independently of emissions by exploiting knowledge of
the global OH distribution (Zhang et al., 2018; Maasakers et
al., 2019; Penn et al., 2025). Interannual variability of OH
concentrations may in fact contribute to interannual variabil-
ity of methane concentrations (Bouarar et al., 2021; Peng et
al., 2022; Morgenstern et al., 2025), but emission changes are
more important (Feng et al., 2023; Qu et al., 2024; He et al.,
2025).

2.3 The LETKF algorithm

The LETKF algorithm optimizes a state vector of emissions,
or of concatenated emissions and concentrations, to mini-
mize the Bayesian scalar cost function J (x) assuming Gaus-
sian error probability density functions (pdfs; Hunt et al.,
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2007; Brasseur and Jacob, 2017):

J (x)=
(
x− xb

)T
(Pb)−1

(
x− xb

)
+ γ (y−H (x))TR−1(y−H (x)) (2)

Here x is the state vector to be optimized, xb is the prior
estimate, Pb is the background (also called prior or fore-
cast) error covariance matrix of the model prediction, y is
the TROPOMI observations, H ( q) is an observation opera-
tor that transforms the state vector x from the state space to
the observation space, R is the observational error covari-
ance matrix, and γ is a regularization constant to account
for unresolved error correlation in the observations and is
taken to be 0.1 following Qu et al. (2024). x includes gridded
2°× 2.5° methane emission scaling factors over land exclud-
ing Antarctica (2737 state vector elements) to be applied to
the prior estimates. In additional inversion ensemble runs, we
simultaneously optimize methane concentrations along with
emissions scaling factors (concatenating both in the state
vector x) to avoid systematically attributing discrepancies
between observations and background concentrations to er-
rors in prior emissions.

In the LETKF, m ensemble members with different emis-
sions are initialized at time t0 and the forward model (GEOS-
Chem) is run in parallel for a user-specified time (termed
the assimilation window) for each of these ensemble mem-
bers. After the runs complete, we construct the state vectors
xb
i for each ensemble member (indexed by i). We localize

the calculation within a 1500 km radius of the grid cell be-
ing optimized, considering only observations within that ra-
dius; this converts a single intractable large matrix problem
into many embarrassingly parallel calculations for individual
grid cells involving much smaller matrices. We weight ob-
servations by their distance from the target grid cell with the
Gaspari-Cohn function, a piecewise polynomial resembling a
bell curve with a value of 1 at the grid cell and 0 at 1500 km
away (Gaspari and Cohn, 1999).

To optimize the methane emissions, or concatenated emis-
sions and concentrations of a given grid cell, we start from
the background state vector xb

i , and form the background per-
turbation matrix Xb from the m vector columns Xb

i :

Xb
i = xb

i − xb
; xb
=

1
m

m∑
i=1

xb
i (3)

Here Xb
i represents the ith column of the n×m matrix Xb

where n is the length of the state vector; each column of Xb

consists of the state vector from an ensemble member minus
the mean state vector. The model predictions made during
the assimilation window must be compared to observations.
Hence we construct background vectors of simulated obser-
vations yb

i and a corresponding simulated observation pertur-

bation matrix Yb formed from the m vector columns Yb
i :

Yb
i = yb

i − yb
; yb

i =H
(
xb
i

)
; yb

=
1
m

m∑
i=1

yb
i (4)

All simulated observations are timed to line up as close
as possible with actual observations (in this case, within one
hour).

The mean analysis (posterior) state vector in the original
space is then given by Hunt et al. (2007):

xa = xb
+ γXbP̃a

(
Yb
)T

R−1(y− yb) (5)

where y is the vector of observations. P̃a is an m×m matrix
computed as follows:

P̃a =
(

((m− 1) · I)+ γ
(

Yb
)T

R−1Yb
)−1

(6)

where I is the m×m identity matrix. The analysis perturba-
tion matrix is then given by

Xa = Xb
(

(m− 1) P̃a
) 1

2 (7)

From here, the new ensemble state vectors can be con-
structed by adding xa back to each column of Xa . With the
ensemble updated and errors characterized, the ensemble can
be evolved using GEOS-Chem for the next assimilation win-
dow.

2.4 The CHEEREIO platform and LETKF settings

CHEEREIO is a lightweight wrapper of GEOS-Chem writ-
ten in Python which allows users to conduct a range of
LETKF applications by editing a single configuration file
(Pendergrass et al., 2023). It takes advantage of GEOS-
Chem’s HEMCO emission module to update emissions with-
out modifying the source code (Lin et al., 2021). Here we
describe several new settings in the CHEEREIO v1.3.1 im-
plementation of LETKF (Pendergrass et al., 2024), which we
use in this work.

Figure 1 shows the LETKF workflow as implemented in
CHEEREIO v1.3.1. We apply the run-in-place (RIP) method
to the LETKF assimilation window (Kalnay and Yang, 2010;
Liu et al., 2019). With RIP, we calculate the LETKF assimi-
lation update using a long period of observations (15 d, called
the observation window), but then advance the assimilation
window forward for a shorter period (5 d). RIP thus main-
tains linear growth in posterior perturbations and allows the
system more time to assimilate information. Importantly, af-
ter advancing the assimilation window forward, we do not
reinitialize the ensemble for new runs. Instead, the assimi-
lated state of the previous observation window becomes the
initial background state of the next assimilation window.
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Figure 1. Flowchart of CHEEREIO v1.3.1 LETKF inversion procedure for assimilating TROPOMI methane data. We initialize a GEOS-
Chem CTM simulations with randomized multiplicative perturbations to the prior estimates, applied to each of the 32 ensemble members.
For assimilation period k, CHEEREIO runs GEOS-Chem for the observation window (15 d) for each ensemble member, then conducts the
LETKF inversion by comparing the ensemble of GEOS-Chem values to the TROPOMI observations. over the observation window. Posterior
emission scaling factors and concentrations are then inflated to reflect the prior spread using the RTPS procedure. The posterior emission
estimates and inflated concentrations then become the prior estimate for the k+ 1 assimilation period advancing by 5 d.

Because ensemble-based methods undersample the prior
probability space, they suffer from shrinking dispersion be-
tween ensemble members which can lead to artificially small
prior error estimation; an error inflation method is necessary
to prevent ensemble collapse (Hunt et al., 2007). Following
Bisht et al. (2023), we use the Relaxation to Prior Spread
(RTPS) inflation method (Whitaker and Hamill, 2012). RTPS
inflates the posterior ensemble standard deviation σ a (de-
fined as the standard deviation of each state vector element)
of such that it partially reflects the background ensemble
standard deviation σ b:

Xainfl =

(
αRTPSσ

b
+ (1−αRTPS)σ a

σ a

)
Xa (8)

Here αRTPS is a parameter between 0 and 1 which repre-
sents the weighted contribution of the background standard
deviation σ b in inflating the analysis ensemble to obtain the

final analysis perturbation matrix Xainfl. After sensitivity tests
to mitigate underdispersed ensemble spread (shown by de-
creasing fidelity to observations over time), we take αRTPS
to be 0.7, which is consistent with optimized values in Bisht
et al. (2023). In the runs where only methane emissions are
optimized, we additionally apply RTPS to 3D methane con-
centrations in the ensemble members even though we do not
formally include concentrations in the state vector.

We perform our emissions estimates with an assumption
of lognormal errors on the prior emission estimates, as is
commonly done for analytical inversions (Maasakkers et al.,
2019; Hancock et al., 2025) but to our knowledge has not
previously been applied in the LETKF formalism. A lognor-
mal error pdf better captures the upper tail of the methane
emissions distribution than normal errors (Duren et al., 2019;
Cusworth et al., 2022) and also prevents unphysical negative
posterior emission estimates (Miller et al., 2014) consider-
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ing that we do not optimize the soil sink. However, a log-
normal distribution across ensemble members violates the
assumptions of the LETKF equations (Hunt et al., 2007).
We solve this problem by sampling methane emissions scal-
ing factors for each ensemble member according to a log-
normal distribution centered on 1 (prior emission inventory)
and run GEOS-Chem for each ensemble member with these
scaling factors applied. When it is time for the LETKF cal-
culation, we apply a logarithmic transform to the methane
scaling factor distributions and thus obtain a normal distribu-
tion (centered on 0) for the construction of the background
perturbation matrix Xb. We perform the LETKF and once
it is complete we apply an exponential to transform back
to the original lognormal distribution, which is then used to
evolve GEOS-Chem once more. These transformations are
indicated as “log” and “exp” in Fig. 1. The posterior solution
is then the median of the LETKF ensemble.

Before ingesting the TROPOMI observations into the
LETKF, we aggregate the original observations into “super-
observations” by averaging them onto the 2.0°× 2.5° GEOS-
Chem grid (Eskes et al., 2003; Miyazaki et al., 2012; Pen-
dergrass et al., 2023; Chen et al., 2023). To model the re-
duction in observational error variance due to averaging and
obtain the super-observation error standard deviation σsuper,
we follow a two-component error variance equation which
separates contributions due to forward model transport error
variance (σ 2

transport) and error variance for a single retrieval
(σ 2
i ):

σsuper =

√√√√√
( 1

p

p∑
i=1

σi

)2

·

(
1− c
p
+ c

)+ σtransport (9)

Here p is the number of observations aggregated into a
super-observation and c is the error correlation between the
individual retrievals within a super-observation. The trans-
port error is fully correlated. We take σi = 17 ppb, σtransport =

6.1 ppb, and c = 0.28 based on an empirical residual error
method fit for TROPOMI methane (Chen et al., 2023; Pen-
dergrass et al., 2023).

2.5 Sub-grid source attribution

Our inversion optimizes emissions on a 2°× 2.5° grid but
the bottom-up inventories and TROPOMI data have much
finer resolution (0.1°× 0.1° for anthropogenic emissions,
0.5°× 0.5° for wetland emissions, 7× 7 km2 or 5.5× 7 km2

for TROPOMI observations at nadir). Here we exploit this
high-resolution data with the source attribution approach of
Yu et al. (2023), in which we conserve the overall posterior
emissions in a 2°× 2.5° grid cell but adjust relative source
contributions within it based on subgrid observational pat-
terns. If TROPOMI observations are persistently elevated in
a portion of the 2°× 2.5° grid cell associated with a partic-
ular sector, the Yu et al. (2023) methodology will attribute

a larger fraction of the correction to that sector. We neglect
subgrid prior error terms in Yu et al. (2023) to obtain a sub-
grid attribution based solely on the distribution of TROPOMI
observations and prior sources. For wetlands we update the
prior sources for individual years using LPJ-MERRA2.

Most grid cells are not affected significantly by this sub-
grid source attribution approach, but we find substantial ad-
justments in a few regions including Sudd wetlands in South
Sudan (where some livestock emissions are re-attributed to
wetlands) and in Bangladesh (where some rice emissions
are re-attributed to wetlands). Our global posterior wetlands
emission increases by 10 %, offset by decreases in the rice,
livestock, and waste sectors. In some regions, especially east-
ern Africa, estimates of livestock emissions are highly uncer-
tain, so we will make use of additional data sources in our
interpretation of results below.

3 Results and discussion

Figure 2 shows TROPOMI methane dry column mixing ra-
tios (XCH4) for the study period, along with the corre-
sponding GEOS-Chem model biases using prior and poste-
rior emissions with either WetCHARTs or LPJ-MERRA2 as
prior emissions for wetlands. The model with prior emis-
sions has a low bias due to a methane budget imbalance.
The posterior emissions eliminate this bias. Figure 3a shows
the growth in global annual mean methane concentrations
over the 2018–2023 study period. Trends in NOAA sur-
face methane concentrations (NOAA, 2024) are consistent
with TROPOMI trends as well as our posterior estimate.
Figure 3b shows the posterior emissions from our four in-
version ensemble members (driven with different wetlands
and either optimizing concentrations and emissions or emis-
sions alone), all predicting similar annual emissions (577 and
567 Tg a−1 for WetCHARTs and LPJ-MERRA2 respectively
in 2023). Seasonal CH4 variability and trends in both hemi-
spheres are also well-captured by the posterior (Fig. 3c, d).

Posterior emissions for 2023 are summarized in Table 1.
Our best posterior estimate of 560 Tg a−1 for 2019 is within
the 556–570 Tg a−1 range calculated for 2019 by Qu et
al. (2021) and the 553–586 Tg a−1 range from top-down in-
versions for 2010–2019 reviewed in Saunois et al. (2025). In
2020 and 2021 we find that global methane emissions surged
to 587 and 592 Tg a−1 before declining to 572 Tg a−1 in 2022
and 570 Tg a−1 in 2023, consistent with the 570–590 Tg a−1

range for 2020–2022 reported in Qu et al. (2024) and the
2020 estimate of 581–627 Tg a−1 from Saunois et al. (2025).
Our best estimate of fossil fuel emissions (oil, gas, and coal)
for 2019 is 88 Tg a−1, intermediate between the 80 Tg a−1

found in the 2019 analytical inversion of Qu et al. (2021) and
the 98 Tg a−1 estimate for 2018–2019 from 4D-Var inver-
sions done by Yu et al. (2023), but below the 100–124 Tg a−1

range for 2010–2019 in Saunois et al. (2025). Our 265 Tg a−1

estimate for agricultural and waste emissions for 2019 is
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Figure 2. TROPOMI observations of methane dry column mixing ratios (XCH4) and comparison to GEOS-Chem simulations using either
prior or posterior emissions. Values are averages for June 2018 through December 2023.1CH4 denotes the difference between the simulation
(with observation operators applied) and the observations. Global mean bias and spatial standard deviation are given inset. Results are shown
for wetlands prior estimates from either LPJ-MERRA2 or WetCHARTs.

Figure 3. Global methane trends, 2018–2023. Panel (a) shows global annual mean observations from NOAA background surface sites
(https://gml.noaa.gov/ccgg/trends_ch4/, last access: 24 October 2025), TROPOMI, and GEOS-Chem model simulations using prior emission
estimates (including either WetCHARTs or LPJ-MERRA2 wetlands) and posterior emission estimates. The posterior represents the mean of
the inversion ensemble. Panel (b) shows annual posterior methane emissions for the inversion ensemble, including either WetCHARTs or
LPJ-MERRA2 wetlands and either with or without optimization of concentrations. Panels (c) and (d) show mean TROPOMI and GEOS-
Chem results smoothed over monthly temporal resolution for the northern (c) and southern (d) hemispheres.
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correspondingly above the 213–242 Tg a−1 range for 2010–
2019 in Saunois et al. (2025), while our wetland posterior
estimate of 150 Tg a−1 falls within but at the low end of the
145–214 Tg a−1 range from Saunois et al. (2025) and is lower
than Qu et al. (2024). We do not account for interannual vari-
ability in tropospheric OH, the main methane sink; a chang-
ing sink would impact inferred emissions by mass balance.
In particular, if OH concentrations declined in 2020 due to
COVID-19 lockdowns and increased biomass burning emis-
sions, mass balance would imply a smaller methane emis-
sions surge than found here (Chen et al., 2025a). However,
we predict similar posterior emissions as previous studies
which do optimize OH (Qu et al., 2024; He et al., 2025).

To understand the drivers of our posterior emissions
trends, we disaggregate our results by region and sector
(Fig. 4). We find a negative trend in South American emis-
sions which we attribute to a decline in wetland emissions;
this is consistent in sign with other top-down work using
GOSAT and surface observations finding decreases in 2020
and 2021 relative to 2019 in the Orinoco, Pantanal, and Ama-
zon Basin wetlands (Lin et al., 2024). We attribute the 2020
methane surge to a 14 Tg a−1 increase in emissions from
sub-Saharan Africa, as in previous studies (Qu et al., 2022;
Feng et al., 2023), and we find that the elevated emissions
persist into later years. Consistent with Qu et al. (2024),
who find that wetland emissions are relatively constant over
2019–2022 and that anthropogenic emissions drive much of
the 2020–2021 surge, we find that a surge in wetland emis-
sions contributed to the 2020–2021 emissions peak but an-
thropogenic sectors including livestock and waste are more
important (Fig. 4b).

However, anthropogenic attribution of the African emis-
sion surge may be unreliable given uncertainty in tropical
wetland prior inventories. Figure 5 compares our posterior
emissions for the northern tropics and boreal latitudes with
water storage from inundation as measured by the Grav-
ity Recovery and Climate Experiment Follow-On (GRACE-
FO) twin satellites, where the distance between the satel-
lites is used to measure liquid water equivalent (LWE) thick-
ness anomalies (cm) relative to a time mean at monthly
0.5°× 0.5° resolution (Watkins et al., 2015; Wiese et al.,
2016, 2023). The northern tropics (0–30° N) explain much
of the 2020–2021 surge and this corresponds closely with in-
creases in water storage; consistently, the declining emission
trend in boreal regions (50–90° N) corresponds with drying.
Much of the northern tropics surge is associated with wet-
lands in South Sudan and southern Sudan, which account
for 9 % of prior emissions (mean of WetCHARTs and LPJ-
MERRA2) in the 0–30° N band but for our posterior 2021–
2023 estimate they surge to almost a third; indeed, we find
a 7.5 Tg a−1 increase from 2019 to 2021 in the region, ac-
counting for a quarter of the global emissions increase in the
same period. Our posterior solution predicts sharply increas-
ing emissions after 2019 in the Sudd, Machar, and Lotilla
wetlands in South Sudan, which experienced extensive flood-

ing in 2020 and in following years and have been identi-
fied in previous work as globally significant drivers of the
methane emissions trend (Pandey et al., 2021; Feng et al.,
2023; Hardy et al., 2023). Flooding of these areas is asso-
ciated with anomalous rainfall in the “short rains” season,
driven by a strongly positive Indian Ocean Dipole (IOD)
event, with warmer ocean surface temperatures in the west-
ern Indian ocean driving convection (Wainwright et al., 2021;
Lunt et al., 2021, Palmer et al., 2023). There is some consen-
sus in climate models that both precipitation during the short
rains and the frequency of extremely positive IOD events will
increase with climate change (Palmer et al., 2023), support-
ing the interpretation of this tropical methane emission surge
as a positive climate feedback. We attribute almost half of
the 7.5 Tg a−1 increase in Sudan and South Sudan to anthro-
pogenic sources (principally livestock) but this may reflect
an underestimate of wetland area in the prior inventories. Al-
though it is difficult to separate livestock and wetland emis-
sions in this region due to co-location and isotopic similari-
ties, additional data sources capturing changes in inundation
can offer evidence for wetland emissions over livestock.

Recent work indeed suggests that wetland extent in Africa
may be underestimated due to sparse observational data
(Dong et al., 2024), and methane emissions from vegetated
tropical wetlands may more generally be underestimated by
mechanistic models (France et al., 2022; Shaw et al., 2022).
Wetlands in South Sudan especially are prone to underesti-
mates from wetland models because emissions are driven by
inflows from the White Nile and Sobat rivers rather than lo-
cal precipitation (Pandey et al., 2021). The post-2020 period
corresponds with record high water levels in Lake Victoria
which feeds the White Nile, with the short rains at the end of
2019 driving a 1.5 m increase in lake water levels; water lev-
els rose at a downstream river station through 2022 even after
Lake Victoria water levels began to fall (Dong et al., 2024).
High water levels in the Blue Nile also slow White Nile dis-
charge, further contributing to sustained flooding (Smith et
al., 2025). Neither the WetCHARTs nor the LPJ-MERRA2
inventories capture the surge in these wetlands. As a result,
our inversion and the previous inversion of Qu et al. (2024)
attribute the 2019–2021 methane surge to a 40 % increase in
livestock emissions in sub-Saharan Africa, While livestock
populations have grown (Nisbet et al., 2025), such an in-
crease is inconsistent with Food and Agricultural Organiza-
tion (FAO) cattle population data, which shows only an in-
crease of 8 % in 2023 relative to 2019 in the region (https://
www.fao.org/faostat, last access: 7 February 2025). As Fig. 6
shows, total emissions for the region including the increase
after 2019 and seasonal emission peak are closely associ-
ated with GRACE-FO water storage data, while emissions
attributed to wetlands in WetCHARTs or LPJ-MERRA2 do
not reflect GRACE-FO trends. Our methodology is able to
detect methane surges in these wetlands in part because they
are river-fed and less obscured by cloud cover than other wet-
lands, such as the Congo and the Amazon, which are difficult
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Figure 4. Annual emission trends for 2019–2023 disaggregated by region and sector. Panels (a) and (b) show posterior emission changes
relative to 2019, disaggregated by region and sector respectively. Inset percentages show changes relative to 2019 values for selected re-
gions/sectors. Error bars show range of inversion ensemble for the global emission trend. Panel (c) shows 2019–2023 trends in posterior
emissions by region obtained from linear regression.

for solar backscatter retrievals to observe especially in the
rainy season (Fig. 2b).

We see from Fig. 6 that inundation as measured by
GRACE-FO is strongly correlated with the seasonality of
methane emissions in sub-Saharan Africa. Figure 7 shows
the global seasonal cycle of posterior methane emissions for
2021, avoiding missing TROPOMI observations in 2022-23.
The global seasonality of methane emissions is mainly driven
by the northern hemisphere. The seasonality of methane in
the southern hemisphere (Fig. 3) is largely driven by the OH
sink (East et al., 2024). Unlike the prior estimates includ-
ing WetCHARTs or LPJ-MERRA2 wetlands, which show
a July–August peak in the northern hemisphere (Fig. 7a)
in line with other wetland models (Zhang et al., 2025), we
find a sharp September peak driven by tropical emissions
which strongly influences global seasonality (Fig. 7b). Fig-
ure 7c shows that the peak of northern tropical emissions
corresponds with the peak of mean GRACE-FO water stor-
age data, and occurs later in the year than implied by prior
inventories. Livestock shows a seasonality in phase with wet-
lands, which as pointed out above could be due to misattribu-
tion in the tropics, though food availability for cattle in east-
ern Africa may be in phase with wetland extent. Rice emis-
sions in the northern hemisphere peak in July–September
corresponding to the dominant growing season (Chen et al.,

2025b) and may increase in importance as rice production
increases in Africa (Chen et al., 2024).

Fossil fuel emissions are generally considered to be asea-
sonal, with the possible exception of Russian pipelines
(Reshetnikov et al., 2000), but we observe seasonality in
some production basins especially in the US. Figure 8 shows
the difference in best-estimate posterior fossil fuel emissions
in cold months minus warm months, with many areas show-
ing elevated cold season emissions including several major
US basins, Hassi R’Mel field (Algeria), Sirte basin (Libya),
and West Karun basin (Iran). This phenomenon has been ob-
served before in the Permian (Vanselow et al., 2024; Hu et
al., 2025; Varon et al., 2025), but it is not seen worldwide
and may suggest processes specific to the industry in the US
and a few other regions. Possible causes include more fre-
quent equipment failures in winter or emissions from poorly
weatherized separator vessels, where more gas remains dis-
solved in liquid at cold temperatures and is vented later from
liquids storage tanks (Varon et al., 2025). We do not find oil
and gas seasonality in Russia or other boreal regions, but this
may be due to poor observational capacity in the winter.
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Figure 5. Inundation and posterior emission trends. Top panel com-
pares total posterior emission north of 50° N with mean GRACE-FO
liquid water equivalent (LWE) anomalies weighted by gridded total
posterior emissions. Bottom panel is the same but for the northern
tropics (0–30° N).

Figure 6. Inundation and posterior emissions trends in sub-Saharan
Africa (region defined in Fig. 4). The panel compares total and
wetlands posterior emissions with mean GRACE-FO liquid water
equivalent (LWE) anomalies. LWE is an average for the region,
weighted by gridded total posterior emissions.

4 Conclusions

We used the localized ensemble transform Kalman fil-
ter (LETKF) algorithm, deployed through the open-source
CHEEREIO platform, to infer global methane emission
trends and seasonalities by assimilation of TROPOMI satel-
lite observations of atmospheric methane from May 2018
through December 2023 over 5 d time windows. Our goal
was to understand the regions and source sectors driving the
rapid increase of methane over that period and its seasonal-
ity. We used the blended TROPOMI product of Balasus et
al. (2023) that corrects TROPOMI retrieval biases using ma-

chine learning applied to collocated observations from the
GOSAT satellite instrument.

Our posterior emissions from the assimilation of
TROPOMI data reproduce the observed 2019–2023 trends in
methane concentrations at surface sites and from TROPOMI,
with minimal regional bias. We estimate that emissions
surged from 560 Tg a−1 in 2019 to 587–592 Tg a−1 in 2020–
2021 before declining to 572–570 Tg a−1 in 2022–2023, not
accounting for possible changes in OH concentrations. Sub-
Saharan Africa contributed 14 Tg a−1 of the 27 Tg a−1 global
increase in 2020 and this contribution was sustained through
2023. Past attribution of this surge to anthropogenic sources
may be due to errors in the spatial distribution of wetlands, as
we find that the emission increases correspond closely with
inundation as measured by the GRACE-FO satellite instru-
ment. Wetlands in East Africa, particularly the Sudd, are in-
strumental in driving the methane trend but are poorly repre-
sented in current wetland emission models.

Methane emissions show a large seasonality and the high
temporal resolution of our LETKF implementation allows
us to probe its origin. We find that this seasonality is dom-
inated by northern hemisphere wetland emissions and peaks
in September, as opposed to July in wetland models. The
September peak in the tropics closely follows inundation pat-
terns. This finding is in line with previous work showing a
mismatch between field observations and tropical wetland
emissions predicted by models, and points towards the need
for improved modelling in this critical region. Oil and gas
emissions show little seasonality globally but we find that
production fields in the US have a distinct seasonal cycle of
elevated emissions during the cold season.

Limitations of this study include remaining uncertainties
regarding source attribution and possible variability in OH
concentrations. Eastern Africa is a key region driving the
methane emission trend, but the spatial and seasonal vari-
ability of livestock and wetland emissions in this region are
highly uncertain and local observations are lacking. While
GRACE-FO indicates wetland inundation as an emissions
driver, future work could improve source attribution by im-
proving prior emissions inventories, especially wetland mod-
els, Our approach also does not consider the effects of chang-
ing methane loss to OH over 2019–2023. If tropospheric OH
declined in 2020, it could imply a smaller methane emissions
surge than found here. Incorporation of oxidation products
like CO and formaldehyde may help constrain OH (Yin et
al., 2021).

Our CHEEREIO software toolkit is openly available
(https://doi.org/10.5281/zenodo.11534085, Pendergrass et
al., 2024) as a general user-friendly implementation of
LETKF for assimilating observations of atmospheric com-
position through the GEOS-Chem chemical transport model.
In this work we introduced a novel approach to specify log-
normal emissions errors within the LETKF framework, and
this is released as part of CHEEREIO version 1.3.1.
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Figure 7. Posterior emission seasonality in 2021. Panel (a) shows northern hemisphere posterior emissions disaggregated by source sector,
where the seasonal cycle is obtained by subtracting the 2021 mean. The prior seasonal cycle of total emissions is also shown in grey lines
for both LPJ-MERRA2 and WetCHARTs wetlands. Panel (b) is as in panel (a) but global and disaggregated by latitude. Error bars show
range of inversion ensemble. Panel (c) shows prior simulations driven by LPJ-MERRA2 and WetCHARTs wetlands with the posterior best
estimate in the northern tropics (0–30° N), compared to mean GRACE-FO liquid water equivalent (LWE) anomalies in the region, weighted
by gridded total posterior emissions.

Figure 8. Seasonality of oil and gas emissions for 2019–2021. Panel (a) shows northern hemisphere mean fossil fuel emissions in cold
months (December through April) minus warm months (June through September) in grid cells where fossil fuels account for at least 50 %
of emissions. Inset (b) is as in (a) but for the contiguous US (CONUS), with major sedimentary basins overlaid; inset (c) is as in (a) but for
Algeria and Libya, with oil and gas fields overlaid (Sabbatino et al., 2017).

https://doi.org/10.5194/acp-25-14353-2025 Atmos. Chem. Phys., 25, 14353–14369, 2025



14364 D. C. Pendergrass et al.: Trends and seasonality of 2019–2023 global methane emissions

Code and data availability. The CHEEREIO source
code is available at https://github.com/drewpendergrass/
CHEEREIO (last access: 30 October 2025); the version
of CHEEREIO used in this paper (1.3.1) is archived at
https://doi.org/10.5281/zenodo.11534085 (Pendergrass et al.,
2024). GEOS-Chem version 14.1.1 source code is archived
at https://doi.org/10.5281/zenodo.7696632 (Yantosca et al.,
2023). The blended TROPOMI-GOSAT product is available at
https://registry.opendata.aws/blended-tropomi-gosat-methane (last
access: 27 October 2025) (Balasus et al., 2023) and NOAA surface
data is available at (https://gml.noaa.gov/ccgg/trends_ch4/, last
access: 24 October 2025). Wetland emissions from WetCHARTs
v1.3.1 are available at https://doi.org/10.3334/ORNLDAAC/1915
(Ma et al., 2021) and from LPJ-wsl at https://gmao.gsfc.nasa.
gov/gmaoftp/lott/CH4/wetlands/ (last access: 27 October 2025).
Oil, gas, and coal emissions from the GFEIv2 inventory are
available at https://doi.org/10.7910/DVN/HH4EUM (Scarpelli
and Jacob, 2025) and other anthropogenic emissions are avail-
able from EDGARv6 at https://doi.org/10.2760/074804 (Olivier
et al., 2021). Regional anthropogenic emissions are available
for the contiguous US (https://www.epa.gov/ghgemissions/
gridded-2012-methane-emissions, last access: 27 October 2025),
Canada (https://doi.org/10.7910/DVN/CC3KLO, Scarpelli et al.,
2021b), and Mexico (https://doi.org/10.7910/DVN/5FUTWM,
Scarpelli et al., 2020b). GRACE-FO data are from
https://doi.org/10.5067/TEMSC-3JC634 (Wiese et al., 2023).
Scaled OH fields, the stratospheric-adjusted GEOS-Chem
restart file, stratospheric loss rates, CHEEREIO config-
uration files, and base HEMCO configuration file re-
quired to reproduce this work are permanently archived on
Zenodo at https://doi.org/10.5281/zenodo.15120761 (Pen-
dergrass et al., 2025). Monthly gridded posterior emis-
sions for the posterior best estimate is also provided at
https://doi.org/10.5281/zenodo.15120761 (Pendergrass et al.,
2025). Additional data related to this study can be obtained on
request.
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