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Abstract. Station observations of surface Arctic aerosol have long shown a pronounced seasonal cycle, with
burdens characteristically peaking in the late winter/early spring. Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) aerosol optical depth (AOD) products replicate this seasonality, but passive sensor and reanalysis
data products do not. We find that the sub- and low-Arctic seasonality of gridded AOD products from six pas-
sive sensors diverges from that of CALIOP data products during the months of September–April, even when
controlling for sampling biases. Using colocated CALIOP and Moderate Resolution Imaging Spectroradiometer
(MODIS) (Aqua) retrievals, we find that for colocations characterized by low-quality MODIS retrievals, the bias
between MODIS and CALIOP strongly depends on the solar zenith angle (SZA), with MODIS AODs show-
ing a 132 % reduction relative to the instrument-mean over a theoretical 0–90° SZA domain. As the fraction
of MODIS retrievals flagged as “low-quality” increases with higher SZAs, retrieval quality mediates the rela-
tionship between the SZA and dataset biases in gridded products. The dependency may be the result of cloud
adjacency effects, and likely also affects midlatitude AOD seasonality. Though additional sources of uncertainty
in high latitude retrievals remain, the observed dependency impacts passive sensor data products’ representations
of (sub-)Arctic aerosol burdens in boreal spring and autumn, which are important for understanding aerosol pro-
cesses in a highly sensitive yet understudied region. This work also contributes to improved understanding and
quantification of the effects of viewing geometry on satellite AOD retrievals, which can help constrain aerosol
observations and associated forcings, globally.

1 Introduction

Aerosol optical depth (AOD) is a column-integrated measure
of aerosol-driven light attenuation, and it is closely related
to the “direct” aerosol radiative effect. As AOD can be re-
trieved from spaceborne observations, it is a useful metric to
assess aerosol burdens over vast and remote geographical ar-
eas. In particular, AOD can be inferred from passive sensors
that observe reflected solar radiation in one or more spectral
bands. Many of these passive sensors observe broad swaths,
allowing them to sample most of the Earth on near-daily
timescales. However, deriving AOD from passive sensors is
currently difficult or impossible under many conditions (e.g.

at night, under cloudy skies, or over very high surface albe-
dos of ice and snow). As such, their picture of global aerosol
burden is still incomplete, and AOD information from pas-
sive sensors is particularly limited in the high latitudes.

In contrast to passive sensors, lidar instruments provide
their own light source, deriving AOD from wavelength-
specific backscatter and an inferred lidar ratio. As a result,
they can process retrievals at night. Lidar products also pro-
vide vertically resolved extinction coefficient (σext) profiles,
representing local light attenuation along the vertical column.
At night, surface reflectance affects only the lowest-altitude
retrievals, allowing spaceborne lidar to retrieve over high-
albedo surfaces. Retrievals through optically thin clouds, and
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above optically thick clouds are also possible (Winker et al.,
2009). However, the narrow footprint of the lidar makes cov-
erage much sparser, and small-scale, transient aerosol events
are less commonly detected (Smith et al., 2022; Mölders and
Friberg, 2023). Still, the ability to retrieve in multiple light-
ing conditions and over high albedo surfaces makes lidar in-
struments particularly valuable in the Arctic, where extended
winter darkness and widespread ice cover limit passive sen-
sor retrievals in both winter and the shoulder seasons.

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) aboard the Cloud-Aerosol lidar and Infrared
Pathfinder Satellite Observations (Calipso) satellite came on-
line in June of 2006, and was retired in August of 2023.
CALIOP was the first long-term spaceborne lidar specifically
designed to assess atmospheric aerosols and clouds (Winker
et al., 2009). The EarthCARE satellite carrying ATmospheric
lidar (ATLID) was launched in May 2024, and will continue
the work of CALIOP (Haas et al., 2023). CALIOP processes
retrievals by identifying and classifying optically homoge-
neous layers from a backscatter profile as either clean air,
cloud, or aerosol; in the version 4 algorithm, aerosol layers
are subsequently classified as one of seven aerosol subtypes
(dust, polluted dust, dusty marine, marine, polluted conti-
nental, elevated smoke, clean continental), with each subtype
corresponding to an attendant lidar ratio (Winker et al., 2009;
Kim et al., 2018). This lidar ratio (S) relates the observed
backscatter (β) to an extinction coefficient (σext):

S =
σext

β
(1)

where S is given in steradians [sr], σext in km−1, and β in
km−1 sr−1. Accordingly, accurate representation of AODs
depends on selecting the correct lidar ratio, and so poten-
tial errors in aerosol subtyping are a source of uncertainty
(Kim et al., 2018). Globally, CALIOP AODs are biased low
relative to MODIS, a result of CALIOP’s categorization of
optically thin layers as clean air, when vertically integrated
measures from the passive sensors detect statistically signifi-
cant aerosol reflectance (Kim et al., 2017; Toth et al., 2018).

CALIOP AODs are flagged as occurring either during the
night or day, with attendant, slight differences in processing
algorithms (Kittaka et al., 2011). Daytime AODs show sys-
tematically lower values than nighttime AODs, a result of the
lower signal-to-noise ratio (SNR) from solar irradiance dur-
ing the day (Kittaka et al., 2011). Such biases make exami-
nations of the seasonality of high latitude AODs challenging
– above 60° N, daytime AODs are infrequent during winter,
while nighttime AODs are absent in midsummer (Di Pierro et
al., 2013). Using the version 3 CALIOP data, Di Pierro et al.
(2013) find that a linear scaling factor can be used to calcu-
late a “nighttime-equivalent” AOD value for monthly mean
Arctic AODs, though differences in the high latitude subtyp-
ing schemes between versions 3 and 4 bring into question
whether the relationship remains consistent between versions
(Kim et al., 2018). In the L3 version 4 CALIOP data, year-

Figure 1. Area-weighted monthly median AOD from 65–72° N
for Level 3 CALIOP day (yellow) and night (blue) datasets, for
both cloudfree (dashed) and all-sky products (solid), and MERRA-
2 (pink) and CAMSRA (purple) reanalysis products from Jan-
uary 2007–December 2021.

round monthly mean AODs are available up to 72° N, allow-
ing for characterization of low (but not high) Arctic season-
ality with just the CALIOP day data.

In situ observations of surface-level Arctic aerosol gener-
ally show a pronounced seasonal cycle, with burdens char-
acteristically peaking in the late winter/early spring (the so-
called “Arctic haze”) and reaching a minimum in early to
mid-summer (e.g., Mitchell et al., 1956; Rahn et al., 1977;
Shaw et al., 1995). Long-term reductions in European, and
more recently East Asian emissions, along with recent in-
creases in boreal wildfire in late summer, have likely damp-
ened the amplitude of the seasonal cycle in recent years
(Quinn et al., 2007; Yang et al., 2020; Tao et al., 2020; Mc-
Carty et al., 2021; Schmale et al., 2021; Smith et al., 2022).
Still, Schmeisser et al. (2018) found that in four of six Arc-
tic stations examined (2012–2014), both absorption and scat-
tering coefficients (550 nm) peaked in the late winter/early
spring and exhibited minima in summer, with the peak an or-
der of magnitude greater than the minima in all such cases.
Concentrations of sulfate (SO4) and equivalent black carbon
(eBC) at the same stations showed similar seasonality when
considered through 2020 (Schmale et al., 2022).

In the Arctic, where daily solar insolation varies substan-
tially from season-to-season, constraining aerosol direct and
indirect radiative effects depends on properly constraining
aerosol seasonality (Quinn et al., 2008; AMAP, 2015; Zhao
et al., 2015). Historically, models have largely failed to rep-
resent the seasonality of observations at monitoring stations,
though in the last decade refined parameterizations of black
carbon (BC) aging have improved model representations of
BC seasonality, specifically (Huang et al., 2010; Eckhardt
et al., 2015; Shen et al., 2017). Reanalysis AOD products
assimilate observations from passive sensors with modeled
transport, offering the promise of widespread coverage even
where direct observations are not available. Yet, comparison
of low-Arctic (65–72° N) AOD from CALIOP night and day
data products, with the Modern-Era Retrospective analysis
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Figure 2. A schematic illustration of insolation and reflectance at
low (left) and high (right) solar zenith angles (θ ), where ’s’ shows
an idealized path through the aerosol. Aerosol Optical Depth (AOD)
relates to the light attenuation that would occur along a vertical path
through an aerosol, and is inferred from measured reflectance (pas-
sive sensors, shown) or backscatter (active sensors).

for Research and Applications, Version 2 (MERRA-2) and
Copernicus Atmosphere Monitoring Service (CAMSRA) re-
analysis AODs, shows nearly opposite seasonality (Fig. 1).
This is true for both the all-sky CALIOP data and the cloud-
free data. Given the sensitivity of Arctic temperatures to sea-
sonal variations in radiative forcing, understanding and con-
straining the seasonality of Arctic AOD is necessary for im-
proved constraints on Arctic warming under various emis-
sions scenarios (Bintanja and Krikken, 2016).

It is yet unclear the extent to which dataset differences in
Arctic AOD seasonality are propagated from assimilated pas-
sive sensor retrievals, or are primarily the result of transport
processes in models. Kittaka et al. (2011) found that biases
between CALIOP version 2 and MODIS (Aqua) Collection 5
AODs show notable spatiotemporal variability, with seasonal
differences in the bias particularly evident in the Southern
Ocean (the authors attribute this to seasonal differences in
cloudiness and wind speeds, the latter affecting ocean wave
glint). Retrieval geometry has also been shown to affect pas-
sive sensor retrievals of cloud optical depth; Maddux et al.
(2010) found that MODIS cloud optical depth decreased
at more oblique sensor zenith angles, while Grosvenor and
Wood (2014) found that MODIS liquid cloud optical depth
increases with the solar zenith angle (SZA).

At high solar angles, a longer path through the atmosphere
results in increased attenuation when aerosol is present
(Fig. 2), as well as more diffuse scattering from neigh-
boring clouds. Passive sensor retrievals could be affected
by reduced sensitivity to higher levels of attenuation (a 1-
dimensional radiative effect), or biases resulting from scat-
tering within or between clouds and other reflective surfaces
(a 3-dimensional radiative effect). Cloud contamination is a
well-known source of uncertainty in aerosol remote sensing,
and disentangling cloud artifacts from physical changes to
cloud-adjacent aerosols remains an ongoing challenge (e.g.,
Remer et al., 2020). For retrievals over land, the radiative
transfer module for the MODIS Dark Target product as-
sumes a plane-parallel atmosphere, which can cause faulty

retrievals at very high SZAs (Vermote and Vermeulen, 1999).
Alternatively, SZA-related differences in the CALIOP SNR
could also affect the active sensor’s retrieval biases, as could
seasonal differences in Arctic aerosol lidar ratios if not ac-
curately selected by the CALIOP subtyping algorithm. Of
course, a combination of the above factors may also explain
any observed SZA-related dependencies in the bias between
CALIOP and passive sensors.

In this paper we consider three main questions in two sec-
tions. In the first section, we examine differences between
CALIOP and passive sensor AOD seasonality in the sub- and
low Arctic, and determine the spatial extent of differences
between CALIOP and reanalysis seasonality. Second, after
finding that CALIOP and passive sensors show divergent sea-
sonality in the mid-to-high latitudes, we test the hypothesis
that the bias between CALIOP and MODIS retrievals de-
pends on the SZA. Finally, we examine the correlation be-
tween instruments as a function of the SZA, considering the
utility of passive sensor data products under different SZA
conditions.

2 Data

For part 1 of this analysis, we consider Level 3 (L3) data
from CALIOP night and day data products as well as from
multiple passive sensors. L3 products are aggregated from
Level 2 (L2) data, onto a regular spatial and temporal grid;
L2 products are processed retrievals derived from the sen-
sors’ observations. We also compare CALIOP L3 AODs to
reanalysis products from MERRA-2 and CAMSRA. For part
2 of the analysis, we compare L2 CALIOP daytime AODs
from 2010 to colocated AODs from MODIS Deep Blue Dark
Target combined L2 products.

2.1 CALIOP data

CALIOP retrieves backscatter with depolarization at 532
and 1064 nm. Subsequent processing derives aerosol subtype
classifications, σext profiles, and AOD at 532 nm, which are
available in both the L2 and L3 aerosol products. For com-
parisons of monthly mean gridded CALIOP versus passive
sensor and reanalysis AODs, we acquired the L3 version 4.2
all-sky (CAL_LID_L3_Tropospheric_APro_AllSky-
Standard-V4-20/21, 2°× 5°× 60 m) and cloudfree
(CAL_LID_L3_Tropospheric_APro_CloudFree-Standard-
V4-20/21, 2°× 5°× 60 m) data products. Aerosol layers
over opaque clouds are, on average, optically thinner than
those extending through the whole column, and as a result
the AllSky CALIOP data products (which include retrievals
over optically thick clouds) have a low bias relative to
cloudfree CALIOP data products. The 70 m footprint of the
lidar makes for less frequent sampling than passive sensors,
with sampling frequencies of ∼ 16 d (Winker et al., 2009).
In this analysis we consider the night and day datasets
separately.
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For colocations with MODIS L2 data, we acquired the
CALIOP L2 profile product (CAL_LID_L2_05kmAPro-
Standard-V4-20/21). As the L2 CALIOP AODs were colo-
cated with MODIS retrievals, only the daytime products were
used. During level 2 processing, backscatter and depolariza-
tion ratios from each retrieval are processed using four algo-
rithms: the Selective Iterated BoundarY Locator (SIBYL),
which identifies optically homogeneous layers within the
profile; the cloud aerosol discrimination algorithm (CAD)
which determines whether a layer is aerosol, cloud, or clear
sky; the Scene Classification Algorithm (SCA) which classi-
fies aerosol layers into aerosol subtypes; and the Hybrid Ex-
tinction Retrieval Algorithms (HERA), which uses the mea-
sured backscatter and the lidar ratios assigned to each sub-
type to calculate extinction within an aerosol layer (Winker
et al., 2009).

Errors can occur at any level in the processing. However,
classification of optically thin aerosol layers as clear sky by
the CAD is a well-known source of bias, particularly for
daytime CALIOP AODs; CALIOP aerosol extinction coef-
ficients are calculated only for layers in which backscat-
ter is detected over a noise threshold, and which are not
otherwise flagged as cloud (Kim et al., 2017; Toth et al.,
2018). CALIOP profile bins corresponding to layers in which
backscatter falls below the noise threshold are assigned a “re-
trieval fill value” (RFV), and do not contribute to column in-
tegrated AODs (Toth et al., 2018). Thus, a profile in which
all layers are assigned an RFV will result in an AOD of zero,
even if some aerosol is present below detection thresholds
(Kim et al., 2017; Toth et al., 2018). Scattering from sunlight
increases background reflectance, making the noise thresh-
old higher for daytime versus nighttime CALIOP retrievals,
and resulting in systematically lower daytime AODs.

Using the version 3 CALIOP data, Toth et al. (2018) found
that 71 % of all daytime profiles, and 45 % of cloudfree day-
time profiles, consisted of so-called “all-RFV” profiles, in
which an AOD of zero was detected. MODIS Dark Target
retrievals colocated with CALIOP all-RFV profiles showed a
mean value of 0.06 (0.08 for AERONET colocations), indi-
cating that column-integrated measures detect non-negligible
AOD in cases where the noise threshold for CALIOP aerosol
layer detection is not surpassed.

Misidentification of aerosol subtypes, leading to incor-
rect lidar ratios, are additional sources of uncertainty (Kim
et al., 2018). Globally, CALIOP AODs have been vali-
dated against AERONET, with a low bias (mean absolute
error of −0.051± 0.08) (Kim et al., 2018). Biases at Arctic
AERONET sites all fell within this range. However, because
AERONET retrievals are less frequent during low-light con-
ditions, the validation may not reflect the seasonality-related
biases examined here.

2.2 AVHRR data

The first in a series of Advanced Very High Resolu-
tion Radiometers (AVHRR) was launched in 1981, mak-
ing AVHRR data products the longest-running satellite AOD
datasets. AVHRR retrievals over ocean are processed us-
ing the Satellite Ocean Aerosol Retrieval (SOAR) algo-
rithm (Hsu et al., 2017), and have been validated against
MODIS and SeaWiFS AOD data products (Sayer et al.,
2017). We use the Monthly AVHRR Aerosol Optical Thick-
ness (650 nm) over Global Oceans version 4.0 dataset
(AOT_AVHRR_v04r00_monthly-avg), at 0.1°× 0.1° resolu-
tion.

2.3 MISR data

The Multi-angle Imaging SpectroRadiometer (MISR), which
flies aboard Terra, measures reflectance from nine distinct
viewing angles, allowing for improved constraints on surface
reflectance and differentiation between particle types (Diner
et al., 1998). We use the 555 nm optical depth from all parti-
cle types in the MISR L3 Component Global Aerosol prod-
uct, version 4 (MIL3MAEN_4), at 0.5°× 0.5° resolution.

2.4 MODIS data

We use L2 and L3 MODIS (Aqua) AODs, from Collec-
tion 6.1 (MYD04_L2 and MYD08_M3 1°× 1°, respec-
tively), with AODs at 550 nm. MODIS (Aqua) has been in
use since 2002, and retrieves reflectance in 36 spectral bands
(Levy et al., 2013). A viewing swath width of 2330 km al-
lows for near-daily observations over most of the Earth (Levy
et al., 2013). For both the L3 and L2 products, we use the
combined Deep Blue–Dark Target (DBDT) aerosol prod-
uct, which utilizes outputs from both the Deep Blue (DB)
and Dark Target (DT) algorithm depending on surface char-
acteristics and the expected retrieval accuracy for a given
scene (Sayer et al., 2014). Both constituent and the merged
products have been extensively validated, with DBDT AODs
in MODIS Collection 6.1 showing a high bias relative to
AERONET observations (mean absolute errors of 0.067,
globally) (Wei et al., 2019). The radiative transfer for the
DT algorithm assumes a pseudospherical atmosphere over
ocean, but plane-parallel over land, while the DB algorithm
uses a pseudospherical atmosphere for all retrievals.

2.4.1 “Negative” AODs

Since Collection 5, MODIS processing algorithms have al-
lowed retrievals of negative AODs (values as low as −0.05)
(Levy et al., 2007). MODIS optical depth retrievals de-
pend on correct calibration of surface reflectance and aerosol
properties, which can be both overestimated and underesti-
mated. Without including negative AOD values, the dataset
would selectively exclude the effects of overestimating–but
not underestimating–noise in the MODIS dataset, biasing the
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dataset high (Levy et al., 2007). Thus, while negative optical
depths are physically meaningless, low magnitude, negative
AODs in the MODIS dataset are included in the L2 retrievals,
and are considered functionally similar to an AOD of zero
(Levy et al., 2007).

2.4.2 Quality flags

Both the DB and DT algorithms operate on the same NxN
boxes of native-resolution pixels, with similarities and differ-
ences in their logic and selection of appropriate wavelength
band channels. Each algorithm performs similar types of data
filtering, including cloud masking, snow masking, and other
forms of pixel screening; however they are performed inde-
pendently, defined according to algorithm-specific criteria.
For DT, the remaining valid pixels are sorted so that a por-
tion of the brightest and darkest pixels are discarded to re-
duce the influence of outliers; if a sufficient number of valid
pixels remain, the algorithm computes a single representa-
tive top-of-atmosphere spectral reflectance vector (Levy et
al., 2024). For DB, the spectral reflectance vector for each
unscreened pixel is retained (Hsu et al., 2013a). Both algo-
rithms then perform inversions by comparing these observed
reflectances to values in look-up tables (LUTs), which pro-
vide expected reflectances under a range of retrieval scenar-
ios. The AOD corresponding to the closest match between
observed and LUT-based reflectances is selected as the re-
trieved value. Finally, while DT has already operated on a
single vector to retrieve a single retrieval result in the NxN
box, DB averages the multiple retrievals to provide a final
result for that NxN box.

During the process for either algorithm, various indicators
may arise suggesting that the retrieval may be more or less
robust. These indicators are then used to assign to the re-
trieval a Quality Assurance and Control (QAC) flag, which
conveys the algorithm’s assessment of retrieval reliability.
QAC values range from 0 (“no confidence”) to 3 (“high con-
fidence” or “high quality”). To receive a QAC flag of “3”,
several retrieval conditions must be met, depending on the al-
gorithm and whether the retrieval occurs over land or ocean.
Over ocean, high-quality MODIS retrievals require success-
ful use of all relevant spectral channels (including 1.65 and
2.13 µm), low reflectance variability across the retrieval win-
dow, low fitting errors with LUTs, and minimal contamina-
tion from ocean glint (Hubanks , 2021). Over land, DT and
DB QAC scores depend on the number of pixels remaining
within a scene after masking and outlier removal; DB also
accounts for the standard deviation of AOD within the scene
(Hsu et al., 2013a; Hubanks , 2021). None of the QAC flag
assignments depend explicitly on retrieval geometry, though
retrieval geometry may influence the conditions used to as-
sign QAC values. More detail on the thresholds used to as-
sign each QAC score is provided in Table S1.

QAC flags of “1” or “2” are assigned when retrievals
meet minimum quality thresholds but are affected by sub-

Figure 3. From MODIS (Aqua) L2 AODs, the ratio of 2010
MODIS QA flags of 3 (high-quality) to 1 (low-quality), binned by
month and latitude. White areas indicate latitudes/months in which
neither “1” nor “3” QAC flagged retrievals were available.

optimal conditions – such as a low number of valid pix-
els, moderate glint contamination, missing data in a short-
wave infrared (SWIR) channel, elevated LUT fitting errors,
or high reflectance or AOD variability. While these issues
degrade retrieval confidence, they are not severe enough to
warrant exclusion (QAC= 0). These lower-quality retrievals
(QAC= 1 or 2) often reflect scene complexity or subopti-
mal viewing conditions, factors that increase the likelihood
of 3-dimensional (3D) artifacts. For example, scenes con-
taining clouds lead to a higher number of cloud-masked pix-
els, resulting in lower QAC scores. Cloud adjacency and
other 3D effects can affect neighboring pixels by shadow-
ing or illuminating features in ways not captured by the 1-
dimensional (1D) inversion. These effects represent a persis-
tent and poorly quantified source of uncertainty in aerosol
remote sensing.

The frequency of low-quality to high-quality retrievals is
not uniform in space and time, with low-quality retrievals
more common above 60° N from the months of October to
March (Fig. 3). Similarly, retrievals over the Southern Ocean
are more likely to be characterized by low QAC flags, likely
the result of the glint over the area. Various L3 products uti-
lize different averaging schemes to produce monthly mean
gridded products. The DBDT product became available with
Collection 6 and introduced an improved synthesis of re-
trievals, offering more complete spatial coverage and opti-
mized algorithm selection. Both L2 and L3 DBDT products
exclude all retrievals assigned a QAC flag of 0, while the
L3 product averages the remaining retrievals without further
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regards to retrieval quality. We are particularly interested in
understanding biases in the L3 AOD products in areas char-
acterized by an increased reliance on low-quality retrievals.
As such, our analysis in part two is applied to valid L2 re-
trievals with QAC flags ranging from 1–3 (we exclude re-
trievals with a QAC flag of 0 from the analysis, consistent
with L3 processing).

2.5 POLDER data

The third iteration of the Polarization and Directionality
of the Earth’s Reflectances (POLDER) instrument, aboard
the Polarization & Anisotropy of Reflectances for Atmo-
spheric Sciences coupled with Observations from a lidar
(Parasol) Satellite, flew in the A-train from 2005–2013.
POLDER collects reflectance from 12 different viewing an-
gles across eight spectral bands, three of which provide po-
larized reflectances (Deschamps et al., 1994). The retrievals
are processed using the Generalized Retrieval of Atmosphere
and Surface Properties (GRASP) “Models” algorithm, ver-
sion 2.1, with L3 products gridded to 1× 1° resolution
(GRASP_POLDER_L3) (Dubovik et al., 2011, 2014, 2021).
We use POLDER AODs at 565 nm in this analysis. Glob-
ally, the PARASOL/GRASP (Models) algorithm provides
the greatest agreement with AERONET of the three POLD-
ER/GRASP algorithms assessed in Chen et al. (2020), with
R = 0.920 and 0.950 and root mean square errors (RMSEs)
of 0.120 and 0.048 for 565 nm over land and ocean, respec-
tively.

2.6 SeaWiFS data

We use the L3 Deep Blue AOD Angstrom Exponent prod-
uct from Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS), version 004 (SWDB_L3M10, 1×1°) at 550 nm. The in-
strument was active from 1997–2010, and detects reflectance
over eight spectral channels (Sayer et al., 2012b). The Deep
Blue algorithm, which is also used in processing MODIS and
VIIRS AODs, was applied to the SeaWiFS ocean and land
retrievals (Sayer et al., 2012b; Hsu et al., 2013a). Valida-
tion against Maritime Aerosol Network (MAN) AODs show
that 0.63 to 0.78 of SeaWiFS ocean retrievals fall within ex-
pected errors, depending on colocation selection criteria used
(Sayer et al., 2012b). When validated against AERONET,
land-based retrievals show considerable regional heterogene-
ity, with the fraction of retrievals falling within expected
errors ranging from 0.46 (Southern Africa) to 0.84 (East-
ern North America); however, land regions overlapping with
the (sub-)Arctic region all showed acceptable performance
(≥ 0.72 falling within expected errors) (Sayer et al., 2012a).

2.7 VIIRS data

The Visible Infrared Imaging Radiometer Suite (VI-
IRS) aboard Suomi National Polar-orbiting Partnership

(Suomi NPP) is the most-recently launched instrument
in this analysis, with datasets beginning in late 2011
(Wolfe et al., 2013). We use the Deep Blue L3 AOT
product at 550 nm (AERDB_M3_VIIRS_SNPP, 1× 1°,
Aerosol_Optical_Thickness_550_Land_Ocean_Mean). Rel-
ative to MODIS, VIIRS has fewer (36 vs. 22) spectral bands,
finer maximum horizontal resolution, and the AERDB prod-
uct enjoys slightly improved (R = 0.848 vs. R = 0.811)
correlations with AERONET, globally (Wolfe et al., 2013;
Schueler et al., 2013; Li et al., 2022).

2.8 MERRA-2 data

The Modern-Era Retrospective Analysis for Research and
Applications, version 2 MERRA-2 aerosol reanalysis prod-
uct is derived from the Goddard Earth Observing System,
version 5 (GEOS-5) Earth System Model, and the Goddard
Chemistry, Aerosol, Radiation, and Transport (GOCART)
aerosol module, which contains aerosol emissions, chem-
istry, and loss processes (Randles et al., 2017). AODs from
MODIS, MISR, AVHRR and AERONET products are as-
similated using the Goddard Aerosol Assimilation System
(GAAS) (Randles et al., 2017).

Potential sources of error in the MERRA-2 product in-
clude inaccuracies in emissions estimates, model assump-
tions about the relationship between aerosol mass and op-
tical properties (including aerosol hygroscopicity), and pa-
rameterization of wet deposition (Buchard et al., 2017). Val-
idation of MERRA-2 AODs against MAN and US-based air-
borne high spectral resolution lidar observations showed high
correlations (R = 0.93 and R = 0.85, respectively) (Randles
et al., 2017). However, control simulations in which satel-
lite retrievals were not assimilated resulted in lower correla-
tions (R = 0.84 and R = 0.81, respectively) (Randles et al.,
2017). Similarly, MERRA-2 source region extinction coeffi-
cient profiles showed greater agreement with CALIOP than
the assimilation-free control run (Buchard et al., 2017). As
such, it is plausible that the product may be less reliable in the
Arctic, where little data is available for assimilation. Here,
we use the monthly mean instantaneous single-level assim-
ilation aerosol optical depth analysis, for AODs at 550 nm
(instM_2d_gas_Nx).

2.9 CAMSRA data

The Copernicus Atmosphere Monitoring Service reanaly-
sis product (CAMSRA) is generated by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), with
aerosol emissions and chemistry from the Integrated Fore-
casting System (IFS) chemistry and aerosol module (Inness
et al., 2019). The reanalysis product assimilates 550 nm
AODs from MODIS Terra and Aqua, and from 2003 to 2012
the Advanced Along-Track Scanning Radiometer (AATSR)
(Inness et al., 2019). Here we use the CAMSRA aerosol com-
position product total AOD at 550 nm.
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Gueymard et al. (2020) found slightly greater RMSEs
for CAMSRA versus MERRA-2 when validated against
AERONET (0.126 vs. 0.144), globally; at polar sites,
the RMSE was more than double for CAMSRA versus
MERRA-2 (0.105 versus 0.048). As MERRA-2 assimilates
AERONET, but CAMSRA does not, the extent to which re-
ductions in RMSE reflect improved aerosol processes, rather
than varying sources of assimilation, is unclear; understand-
ing reanalysis products’ capabilities and limitations away
from sources of assimilation can provide better insight into
the products’ capabilities in the Arctic, especially in months
where AERONET observations and other sources of assimi-
lation are sparse or non-existent.

3 Methods

3.1 Comparison of gridded Arctic AOD seasonality

We obtained the above-mentioned L3 and reanalysis AOD
datasets. Wavelengths of the AOD products range from 532
to 565 nm, with the exception of the 650 nm AVHRR prod-
uct. Slight differences in AOD wavelength are unlikely to
contribute substantially to differences in seasonality. How-
ever, in months characterized by an abundance of small parti-
cles (such as smoke), differences between AVHRR and other
products may be expected. The gridded AODs were given
at different horizontal resolutions. For each comparison, the
coarser CALIOP AODs were regridded to the finer passive
sensor and reanalysis grids, without interpolation.

3.2 Colocations

From June 2006 to September 2018, Calipso and Aqua flew
together in the A-train, with Calipso trailing Aqua by approx-
imately 2 min. We obtained the above-mentioned MODIS
and CALIOP L2 data products for 2010, as 2010 exhibited
few gaps in data availability for either instrument. Due to the
high-frequency, near-simultaneous retrievals from MODIS
and CALIOP, we were able to amass 138 866 strictly-defined
colocations over a 1-year sampling period.

Colocations were defined as instances in which both in-
struments returned valid (non-NaN) AODs, and in which
the midpoints of retrievals from each instrument were no
more than 1 km haversine distance and occurred no more
than 3 min from one another. Colocations were selected with-
out replacement, such that a single retrieval could not ap-
pear more than once in the analysis; in cases where multiple
matches were possible, the closest possible colocated pairing
was selected. Prior studies have used radii of 25–50 km and
temporal windows of 30–60 min when comparing satellite
observations to retrievals from AERONET and DRAGON
sites (e.g., Levy et al., 2013; Munchak et al., 2013; Virtanen
et al., 2018). The stricter criteria made possible by the A-
train configuration makes it extremely likely that colocated
retrievals are sampling the same airmass.

A similar fraction of the colocations were characterized
by low (“1”) and high (“3”) MODIS QAC flags – 45.8 %
(n= 63598) and 52.8 % (n= 73302), respectively – while
colocations characterized by medium (“2”) MODIS QAC
flags contributed just over 1 % (n= 1966) to the sample. As
MODIS retrieves only under low cloud-fraction conditions,
colocated CALIOP AODs were therefore assumed to reflect
clear or nearly-clear sky conditions. Because MODIS only
retrieves during the day, all colocated CALIOP retrievals
were processed using the daytime algorithm.

SZAs vary with latitude, season, and time of day. Ascend-
ing passes of the polar-orbiting A-train constellation cross
the equator at approximately 13:30 local time, and SZAs for
colocated retrievals therefore range from 8.58 to 80.04°. Due
to the configuration of the MODIS swath, the viewing angle
for colocated MODIS retrievals was near-nadir, ranging from
0.17 to 19.22°; the relatively low range for the viewing zenith
angle (VZA) makes this variable well-controlled relative to
the SZA. Fewer than 0.5 % of the valid CALIOP day and
0.05 % of valid near-nadir (< 20°) VZA MODIS retrievals
were selected.

4 Results

4.1 Arctic AOD seasonality

Above the Arctic circle, most passive sensors have limited
wintertime data. However, reanalysis AODs in the Arctic
may be influenced by assimilated passive sensor AODs just
outside the region, so in this analysis we consider season-
ality within a 60–72° N domain, from January 2007 to De-
cember 2021. Direct comparison of the seasonality of Arctic
AODs from passive and lidar sensors is made challenging
by the fact that there is considerable spatiotemporal variabil-
ity in passive sensor data availability in the high latitudes.
Figure 4 shows the spatial distribution of data availabil-
ity above 60° N by instrument and season. In boreal spring
(MAM), AVHRR, MISR, MODIS, and VIIRS monthly mean
AODs primarily capture North Atlantic AODs, while in sum-
mer (JJA) most instruments show more uniform coverage;
for MISR, MODIS, and VIIRS, autumn (SON) is charac-
terized by a considerable latitudinal gradient in data avail-
ability, such that regionally-averaged autumnal Arctic AODs
will primarily reflect sub-Arctic and low-Arctic values. As a
result, characterizing Arctic AOD seasonality from the het-
erogeneous sampling of passive sensors is inherently chal-
lenging, and comparisons between active and passive sensors
need to control for sampling biases.

To control for sampling biases, for each passive sensor we
subsampled the CALIOP day datasets (both cloudfree and
all-sky) to only months and gridcells where the passive sen-
sor data were available. From each passive sensor and their
corresponding subset of CALIOP AODs, we calculated area-
weighted monthly mean 60–72° N AODs for each month,
then found monthly medians from the 2007–2021 regionally-
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Figure 4. From 2007–2021, the number of valid L3 monthly mean samples above 60° N by season, for six passive sensor data products.

averaged AODs (Fig. 5). As this analysis is not a comparison
of colocated retrievals, we also noted the number of months
in the sampling period from which each monthly median
value was calculated (blue numbers atop each subplot).

For MISR, MODIS, and VIIRS, the number of years with
January samples is comparable to that with June samples.
While AVHRR, POLDER, and SeaWiFS lack full year-round
coverage, each (except AVHRR in February) has a similar
number of sampled years in the low-light months as in mid-
year. Given the relatively stable sampling across months,
wintertime median AODs are as representative of the dataset
as summertime values.

In each instance, pronounced differences in seasonality
between CALIOP and passive sensors were evident despite
controlling for sampling biases. All passive sensors (except
SeaWiFS, which has no winter AODs) show substantially
lower winter versus summer AODs; for MODIS, January
AODs are nearly a fourth of July values. CALIOP, in con-

trast, exhibits the highest AODs in winter in every subsam-
pling, for both the all-sky and cloudfree data products.

MODIS, SeaWiFS, and VIIRS (which all make use of
the Deep Blue algorithm–SeaWiFS and VIIRS exclusively)
show seasonal maxima in July, with secondary peaks in
April. AVHRR also shows a July peak, but with little addi-
tional seasonal structure besides an abrupt decline in AOD in
February. MISR and POLDER are the only passive sensor in-
struments in which AOD peaks in spring rather than summer,
with instruments showing maxima in April and May, respec-
tively. Both instruments provide additional constraints on the
direction of scattering through multiple viewing angles, and
as a result may better control for differences between high
latitude spring versus summer viewing geometries.

As passive sensors do not retrieve over clouds, the cloud-
free (yellow, dashed) CALIOP data are the most apt com-
parison to passive sensors. In the 65–72° N comparison of
CALIOP and reanalysis AOD seasonality (Fig. 1), the struc-
ture of Arctic CALIOP cloudfree AODs shows little agree-
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Figure 5. Median 60–72° N area-weighted L3 AOD from six passive sensors (assorted colors) versus CALIOP (day) all-sky (solid, yellow)
and clearsky (dashed, yellow) products, subsampled to only gridcells and months in which the respective passive sensor data are available.
The number of months in the sampling period (July 2007–December 2021) in which at least one gridcell was available for comparison are
noted in blue above each subplot, and correspond to the monthly markers on the x axis below.

ment with reanalysis AODs, even during summer. In contrast,
from April to September the structure of the subsampled 60–
72° N CALIOP cloudfree datasets resembles its passive sen-
sor counterpart, particularly for MODIS, VIIRS, and SeaW-
iFS. Specifically, a local maximum from mid- to late summer
is substantially reduced from the assessment of region-wide
CALIOP monthly median AODs (Fig. 1), but is pronounced
in the cloudfree datasets subsampled to MISR, MODIS,
POLDER, SeaWiFS and VIIRS data availability (Fig. 5).
Such differences in the structure of the CALIOP summer-
time Arctic AODs when sampling from the different domains
suggest that sampling biases are likely to impact region-wide
assessments of summertime Arctic AODs, and likely result
in an overestimate of the magnitude of the late-summer peak
at the regional level. However, the decoupling of the seasonal
structure from early autumn through mid-spring shows that
sampling biases are not sufficient to explain overall differ-
ences in seasonality.

In the midlatitudes, reanalysis AODs are constrained by
passive sensor products throughout the year, so differences
in reanalysis and CALIOP seasonality likely reflects differ-
ences between passive and active sensor retrievals at these
latitudes. In Fig. 5, the bias between passive and active sen-
sor seasonality was evident down to 60° N. It is yet un-
clear whether the bias between the seasonality of CALIOP
and other gridded datasets extends beyond the high latitudes.
To assess the latitudinal extent of the bias, and to separate
the bias in seasonality from a bias in magnitude, for both
CALIOP night and day datasets we found the monthly me-
dian zonal mean AODs, then normalized the monthly medi-
ans to their seasonal cycle. We do the same for MERRA-2
and CAMSRA AODs, then subtract the normalized reanal-
ysis from the normalized CALIOP AODs (Fig. 6). With this

approach, we examine the bias in seasonality without regards
to the magnitude of the seasonal cycle.

In each pair of reanalysis-CALIOP dataset comparisons,
a bias in seasonality is evident in both hemispheres, extend-
ing from the high latitudes to approximately 40°. The bias
is evident in comparisons with both the daytime and night-
time CALIOP products, but is slightly more pronounced in
comparisons with the daytime product.

These findings suggest that the mechanisms responsible
for the bias in Arctic AOD seasonality between active and
passive sensors may in fact be evident throughout much
of the globe. Equally important, while CALIOP daytime
AODs may be influenced by seasonal differences in insola-
tion, CALIOP nighttime AODs are not. As such, differences
in seasonality between reanalysis and CALIOP nighttime
AODs are not driven by seasonal differences in the SNR, and
another explanation for the difference must exist. More direct
comparisons between colocated retrievals are necessary to
provide further information about the mechanisms and pre-
cise magnitude of the bias.

4.2 A solar zenith angle dependency

We hypothesized that the bias between CALIOP and passive
sensor AODs may depend on the SZA, which in turn may
contribute to differences in Arctic AOD seasonality. To test
this hypothesis, we compare the biases between colocated
CALIOP and MODIS (Aqua) L2 AODs at different SZAs
for the year of 2010.

As noted in Sect. 2.1, CALIOP returns AODs of zero when
an entire profile is populated with RFVs. Toth et al. (2018)
quantified the effects of all-RFV profiles on CALIOP average
AODs, by comparing them to colocated MODIS retrievals.
However, no studies have considered whether the frequency
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Figure 6. For each latitudinal band, monthly median zonal mean CALIOP (night and day) and reanalysis (MERRA-2 and CAMSRA) AODs
were each normalized to their respective seasonal cycles. The difference between the normalized AODs (τReanalysis,normed−τCALIOP,normed)
with regards to latitude and month is shown, for each CALIOP (day and night) and reanalysis (MERRA-2 and CAMSRA) pair.

or magnitude of the effect of the all-RFV profiles varies with
the SZA.

A-train overpasses during lower SZAs occur in the low
and midlatitudes, making an examination of the absolute dif-
ference in AOD unhelpful–absolute differences are likely to
be greatest at latitudes where baseline AODs are also highest
(e.g. midlatitude source regions). Thus, we expect that the
greatest absolute differences in AOD would occur at SZAs
observed during source region overpasses, regardless of any
retrieval artifacts. Accordingly, for our analysis we consider
a measure of relative difference, rather than an absolute dif-
ference in AOD, where the relative difference index (RDI) is
defined:

RDI=
τMOD− τCAL

τMOD+ τCAL
(2)

This index is the difference between the instruments rela-
tive to the instrument-mean, normalized to a range of ±1.
For colocations in which MODIS is greater, the index will
be positive, while in instances in which CALIOP is greater
the sign will be negative. As neither instrument serves as a
ground-truth reference, we normalize to the mean of the two
instruments rather than to either individually.

However, the RDI should only be applied to colocations
in which both instruments retrieve positive values of AOD.
In CALIOP all-RFV profiles (which Toth et al., 2018, found
account for 71 % of daytime AODs), the relative difference
index will always return a value of−1 for any positive valued
MODIS colocation, regardless of its magnitude. Meanwhile,
negative or zero-valued MODIS AODs could result in a rel-
ative difference that is undefined, or outside the ±1 range.
Accordingly, we consider two different cases:

1. the all-positives case, in which both instruments retrieve
positive values of AOD

2. the zeroes case, in which one instrument retrieves an
AOD of zero or less, and the other instrument retrieves
some positive value of AOD

This approach has the additional benefit of allowing us to
consider whether the impact of CALIOP all-RFV retrievals
vary with the SZA, which can provide insight into whether
this well-known mechanism by which CALIOP underre-
ports AOD exhibits an SZA dependency. Finally, we consider
whether the correlation between the colocated CALIOP and
MODIS AODs depends on the SZA, which offers data users
insight into the utility of different datasets under different
SZA conditions.
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4.2.1 The all-positives case

We found that in 105 873 of the 138 866 colocations (76.2 %)
identified in Sect. 3.2, both instruments returned positive val-
ues of AOD. Figure 7 shows kernel density estimates (KDEs)
of the RDI with respect to the cosine of the SZA, for all non-
zero colocations (Fig. 7a), as well as for subsets in which
MODIS retrievals are assigned high-quality (“3”) and low-
quality (“1”) QAC flags (Fig. 7b and c, respectively). A linear
regression of the form:

RDI=m · cos(θ )+ b (3)

is overlaid on each subplot, where the slope (m) describes
the sensitivity of the RDI to the SZA (θ ). As the RDI is
1/2 the bias divided by the mean of both instruments, mul-
tiplying the slope by 200 (i.e., 2× 100) yields the percent
change (%1) in bias relative to the instrument-mean over a
unit change in cos(θ ) – equivalent to a shift from 0 to 90°
SZA. To calculate the percent change over a specific SZA
range (%1θ0→θ1 ), this value can be further multiplied by the
difference in cos(θ ) between the lower and upper bounds of
that range, as described below:

%1θ0→θ1 =m · [cos(θ0)− cos(θ1)] · 200 (4)

Both m and (%10→90) are shown in Table 1. Across all all-
positives cases, a substantial decrease in the RDI with in-
creasing SZAs is evident (Fig. 7a). The dependency accounts
for a %10→90 of −97 %. This negative %10→90 indicates
that MODIS AODs are declining as the SZA increases, with-
out a commensurate reduction in CALIOP AODs, or that
CALIOP AODs are increasing with higher SZAs, without a
similar effect on MODIS retrievals (a combination of both
reduced MODIS and increased CALIOP AODs is also pos-
sible).

Subsets characterized by high- and low-quality MODIS
retrievals (Fig. 7b and c, respectively) also show signifi-
cant negative dependencies on the SZA, though the depen-
dency for the subset characterized by low-quality MODIS re-
trievals is far more substantial, accounting for a %10→90 of
−132 %, as opposed to just −33 % for the high-quality sub-
set (Table 1). In addition, standard errors from the calculated
dependency are less for colocations characterized by low-
(SE= 0.0074) versus high- (SE= 0.011) quality MODIS re-
trievals (Table 1), which is apparent in the greater concentra-
tion of the KDE around the regression line in Fig. 7c. The
dependency also explains substantially more variance (R2,
Table 1) among the subset of low- (nearly 14 %) versus high-
(less than 0.5 %) quality MODIS retrievals, as well as the set
of all retrievals (u 6%).

In our set of all-positive colocations, most (85 %) occurred
over the ocean. No over-land MODIS retrievals were as-
signed a low-quality flag, and few occurred at > 60° SZA
(Fig. S1). Colocations with high-quality MODIS retrievals
that occurred over the ocean (Fig. S2) showed slight nega-
tive dependencies with the SZA, while those that occurred

Figure 7. (a) A kernel density estimate (KDE) of the relative differ-
ence index [(MODIS-CALIOP)/(MODIS+CALIOP)] between all
non-zero MODIS and CALIOP retrievals as a function of the co-
sine of the SZA; a linear regression to the cosine of the SZA is also
shown (red). (b) Same as a, except for only colocations with high
(“3”) MODIS QAC flags. (c) Same as (a), except for only coloca-
tions with low (“1”) MODIS QAC flags.

over land were slightly positive, though in both cases the
dependency was low in magnitude, and with much greater
SEs than we observe in the low-quality MODIS subset. The
low-quality MODIS subset (Fig. 7c) is therefore character-
ized exclusively by retrievals over the ocean. That the depen-
dency is substantially more robust within this subset of colo-
cations indicates that MODIS retrieval quality plays a con-
siderable role in mediating the observed dependency. Con-
versely, the relatively minimal effect in the subset with high-
quality MODIS retrievals suggests that both CALIOP and
high-quality MODIS retrievals are affected relatively little
by the SZA, and points instead to the low-quality MODIS
retrievals being primarily sensitive to changes in the SZA.

The KDE corresponding to the set of all all-positive colo-
cations (Fig. 7a) contains roughly equal contributions from
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Table 1. The slope (m), p value (p), variance explained (R2), stan-
dard error (SE), number of colocations (n), and percent difference
in AOD (relative to the instrument-mean) over a 0 to 90° SZA range
for linear regressions corresponding to KDEs shown in Fig. 7. Val-
ues are shown for all all-positive colocations (Fig. 7a), and for sub-
sets characterized by high and low MODIS QAC flags (Fig. 7b and
c, respectively). Indications of p = 0 occur when p-values were less
than could be calculated with a 64-bit float.

All High QAC Low QAC

m −0.48619 −0.16467 −0.66154
p 0 5.863× 10−53 0
R2 0.05670 0.00421 0.13828
SE 0.00627 0.01074 0.00747
n 105 873 55 568 48 915
%10→90 −97 % −33 % −132 %

the low (48 915) and high (55 568) quality MODIS retrievals.
However, as seen in Fig. 3, MODIS retrieval quality shows
distinct patterns of spatiotemporal variability, with lower
(higher) quality retrievals more prevalent in months and lati-
tudes characterized by higher (lower) SZAs. Thus, the KDE
corresponding to the set of all colocations (Fig. 7a) better re-
sembles the high-quality MODIS subset (Fig. 7b) at lower
SZAs, and the low-quality MODIS subset (Fig. 7c) at higher
SZAs.

In the low-quality MODIS subset (Fig. 7c), the depen-
dency is apparent even at low SZAs. This finding suggests
that the mechanism by which the dependency occurs is not
simply an artifact of increasingly poor data quality at very
high SZAs. Rather, it is evident at all SZAs when data qual-
ity is low, but masked by the higher fraction of high-quality
retrievals at low SZAs. Thus, in the L3 gridded product, av-
eraging schemes likely dampen the effect of the dependency
until the fraction of high-quality retrievals is substantially di-
minished.

Like other passive sensor data sets, the MODIS L3 AOD
product shows divergent seasonality from CALIOP in the
high latitudes (> 60° N) (Fig. 5). Using the equation for
%1θ0→θ1 described above, we predict a ∼ 78 % decline in
low-quality MODIS Arctic retrievals in winter versus sum-
mer, relative to the instrument-mean, using summer and win-
ter SZAs of 40 and 80°, respectively (consistent with av-
erage June and January SZAs at 60° N at 13:00, near the
A-train overpass time). Given the high prevalence of low-
quality retrievals in this season, this relationship offers a
compelling explanation for the observed differences in sea-
sonality, though CALIOP sensitivity must still be considered
and data quality across SZAs more precisely characterized.

4.2.2 The zeroes case

In 25 226 of the 138 866 colocations (18 %), one instrument
retrieved an AOD of zero (or less) and another retrieved a

positive value of AOD. A tendency for the CAD in CALIOP
processing to classify optically thin aerosol layers as clean
air drives the low bias in CALIOP AODs relative to MODIS,
globally; a lower SNR for CALIOP retrievals during the day
results in an enhancement of this bias (Kim et al., 2017; Toth
et al., 2018). Thus, one hypothetical mechanism by which
active versus passive sensor AOD biases may depend on the
SZA is that the active sensor SNR may decrease with higher
SZAs, resulting in a reduction in the incidence of “undetected
layers”, and, accordingly, all-RFV profiles. To date, no stud-
ies have examined the frequency of CALIOP all-RFV pro-
files against the SZA. Cases in which CALIOP retrieves an
AOD of zero, but MODIS retrieves a positive value of AOD,
indicate that the column is subject to one or more such unde-
tected layers. By examining the frequency of such cases, we
can also determine whether this well-known source of bias
depends on the SZA.

Accordingly, we define the “zeroes case” as colocations
in which one instrument retrieves an AOD of zero or less,
while the other instrument retrieves some positive value. For
brevity, we refer to instances in which CALIOP retrieves an
AOD of zero, and MODIS retrieves a positive value of AOD,
as the “CALIOP-zero” case, and instances in which MODIS
returns a value of zero or less and CALIOP returns a positive
value as the “MODIS-zero” case. CALIOP-zero cases will
contribute to relatively higher average MODIS AODs, while
MODIS-zero cases will contribute towards relatively higher
average CALIOP AODs.

Figure 8 shows the fraction of colocations within 5°
SZA bins characterized by MODIS-zero (yellow bars) and
CALIOP-zero (blue bars) cases; the MODIS-zero fractions
are assigned a positive value, while the CALIOP-zero frac-
tions are assigned a negative value, in accordance with the
sign of their contributions to the bias (defined as τMODIS−

τCALIOP) (left y axis). To assess the contribution of each case
to SZA-averaged AODs, we calculate the mean difference
with the colocated positive-valued AODs within each bin and
for each instrument. We then multiply these values by the
corresponding fraction of zeroes-biased retrievals, for both
MODIS- and CALIOP-zero cases; these calculations give the
contribution of each case to the bias, while their sum gives
the effect of all zeroes cases in total, within each SZA bin.

For SZAs bins between 20 and 80°, CALIOP-zero cases
occur in 9 %–23 % of colocations, a substantial fraction of
the total number of colocations. However, the incidence of
the CALIOP-zero cases shows no monotonic relationship
with the SZA. In contrast, from 20–50° SZA MODIS-zero
cases consistently make up fewer than 2 % of colocations.
However, beginning at 50–55° SZA, the incidence of the
MODIS-zero case rises exponentially, from 1.7 % at 50–55°
to 13 % at 75–80° SZA. The exceptionally high (67 %) frac-
tion of MODIS-zero cases in the 80–85° SZA bin was cal-
culated from only three total colocations, all of which were
retrieved at less than 81° SZA.
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Figure 8. The fraction (left y axis) of colocations corresponding to CALIOP-zero (blue bars) or MODIS-zero (yellow bars) cases, and the
contribution (right y axis) of MODIS-zero (yellow, dashed line) and CALIOP-zero (blue, dashed line) cases to the bias within each 5° solar
zenith angle bin. The sum of the contributions from both instruments (black, dashed line) is shown in black, and shows the total contribution
from all zeroes cases to the bias between instruments within each 5° solar zenith angle bin.

These findings indicate that MODIS is susceptible to
falsely retrieving AODs of zero or less as the SZA increases
above moderately high (50–55°) angles. CALIOP is also sus-
ceptible to falsely retrieving AODs of zero, and does so more
frequently than MODIS in all SZA bins below 80°. However,
the frequencies of CALIOP-zero cases do not depend on the
SZA, while those of the MODIS-zero cases do.

From 20–80° SZAs, CALIOP-zero cases consistently con-
tribute between 0.0135 and 0.0208 to the bias, which is
slightly less than the bias from undetected layers (0.031±
0.052) found by Kim et al. (2017). As our analysis considers
only the contribution of undetected layers resulting in a total
column AOD of zero, we expect the CALIOP-zero contribu-
tion to be slightly less than the Kim et al. (2017) estimate.

Below 55° SZA, the impact of MODIS-zero cases is
small when compared to the contributions from CALIOP-
zero cases (Fig. 8). From 60–65° SZA, MODIS-zero cases
contribute −0.00352 to the bias, offsetting 26 % of the con-
tribution (0.0135) from CALIOP-zero cases; from 70–75°
SZA MODIS-zero cases offsets more than a third (36 %)
of the bias from CALIOP-zero cases, while from 75–80°
SZA it offsets 55 %. Thus, as the SZA increases above
50–55°, MODIS-zero cases increasingly offset the effects
of CALIOP-zero cases. Our analysis indicates that the fre-
quency of CALIOP all-RFV profiles does not vary substan-
tially with the SZA, but conditions leading to MODIS re-
trievals of zero or less do. Thus, differences in the frequency
of undetected layers likely contribute little to observed dif-
ferences in CALIOP versus MODIS Arctic AOD seasonal-
ity; instead, MODIS increasingly fails to detect positive AOD
values as the SZA increases over 50°.

As mentioned in Sect. 2.4, some negative MODIS AODs
are expected when AODs are low, since negative values fall
within an expected error envelope. A simple increase in
the frequency of negative or zero-valued retrievals would
be expected at locations and times where aerosol burdens
are characteristically low, and these retrievals may coincide
with higher SZAs. However, “MODIS zero” cases as defined
above are only identified when CALIOP (which is known to
“miss” optically thin AODs) returns positive values. Thus, it
seems likely that MODIS is reporting artificially low AODs
at high SZAs when column aerosol is non-negligible, consis-
tent with our findings in Sect. 4.2.1.

In Sect. 4.2.1, we found that a pronounced SZA de-
pendency was evident in colocations characterized by low-
quality MODIS retrievals, but colocations characterized by
high-quality MODIS retrievals showed minimal effects. In
this section, we find that instances in which MODIS retrieves
an AOD of zero or less increase with the SZA, whereas
CALIOP all-RFV profiles do not. Together, these results
demonstrate that low-quality MODIS retrievals, which are
more prevalent in latitudes and months characterized by high
SZAs (Fig. 3), likely drive most of the observed dependency.
Still, a more quantitative measure of MODIS retrieval quality
at different SZAs is necessary to understand the effects of the
dependency on L3 average AODs in the high latitudes. More-
over, for many data users, the usefulness of AOD measures
depends less on dataset biases, and more on whether datasets
detect various aerosol events. While we have determined that
the bias between datasets may depend on the SZA, it remains
undetermined whether the correlation between CALIOP and
MODIS AODs varies with the SZA.

https://doi.org/10.5194/acp-25-14333-2025 Atmos. Chem. Phys., 25, 14333–14351, 2025



14346 S. Smith et al.: Seasonality biases arise from the interplay of retrieval quality and SZA effects

Figure 9. Pearson’s R for colocated MODIS and CALIOP AODs
within running 5° SZA bins (left y axis), for all colocations (black
line), colocations with high-quality MODIS retrievals (purple solid
line), colocations with low-quality MODIS retrievals (green solid
line), NH colocations (dashed blue line), and SH colocations (blue
dotted line). The fraction of colocations within each running 5° SZA
bin characterized by low-quality MODIS retrievals is shown by the
gray shading (right y axis).

4.2.3 Usefulness of low-quality retrievals

In remote regions where observations are sparse, extract-
ing as much information as possible from all available data
sources is compelling. In many cases, imperfect or incom-
plete data can provide useful information, but only when the
biases and limitations of the data are understood.

Validation of AOD data products involves assessing both
the bias and the correlation between instruments. Bias
provides important context for interpreting differences be-
tween the instrument retrievals, while correlation determines
whether the data capture similar phenomena. Above, we
examined whether the bias between CALIOP and MODIS
products depends on the SZA. Now, we consider whether the
correlation shows similar dependencies.

To determine whether the SZA affects the correlation be-
tween CALIOP and MODIS, we calculated Pearson’s R for
the above colocations within running 5° SZA bins (Fig. 9,
black line). To examine the extent to which retrieval quality
and hemispheric location intervene in this relationship, we
performed the same analysis for subsets of colocations char-
acterized by high- (purple line) and low- (green line) quality
MODIS retrievals, and separately for subsets from the NH
(blue dashed line) and SH (blue dotted line). The fraction of
colocations within each 5° SZA bin characterized by low-
quality MODIS retrievals is shaded in gray (left y axis).

The correlations for all colocations (black line) show a
pronounced negative SZA dependency, beginning at even
low (25°) SZAs. A brief departure from the overall nega-
tive relationship begins at 58° and peaks at 65° SZA, with
R nearly doubling from 0.340 to 0.570. The departure is fol-
lowed by a precipitous drop in correlation at increasingly
high (68°) SZAs. This temporary increase in correlation is
evident in colocation subsets characterized by NH coloca-

tions and high-quality MODIS retrievals, but not SH coloca-
tions or low-quality MODIS retrievals. Retrievals with SZAs
between 58 and 65° in the NH correspond to midlatitude
source regions, and enhanced correlation likely stems from
higher average AODs (and hence greater variability), and
perhaps better constraints on retrieval processing in more ac-
cessible regions.

Across all SZAs, the subset of colocations with high-
quality MODIS retrievals shows no monotonic relationship
to the SZA. For this subset, R remains consistently high
at all SZAs, ranging from 0.512 to 0.828. In contrast, the
subset characterized by low-quality MODIS retrievals shows
lower correlations than the high-quality subset at virtually
all SZAs, as well as a pronounced, steady decline in correla-
tion with increasing SZAs. At low (< 22°) SZAs, low-quality
MODIS retrievals are suitably correlated with their CALIOP
counterparts (R > 0.5). Above moderate (> 45°) SZAs, the
correlation never surpassesR = 0.3, while above 75° the cor-
relation effectively disappears as R never exceeds 0.1.

From 40°, the fraction of colocations characterized by
low-quality MODIS retrievals increases steadily with higher
SZAs. Accordingly, the decline in correlation among all
colocations is more pronounced than for just the low-quality
MODIS retrieval subset, reflecting both the SZA dependency
for low-quality MODIS retrievals, and the increased fraction
of low-quality retrievals with higher SZAs. Similar to our
findings in Sect. 4.2.1, the decline in correlation does not
simply result from a decline in retrieval quality alone; it is
evident at all SZAs among low-quality retrievals, and the in-
creased incidence of low-quality retrievals at higher SZAs
amplifies the relationship when averaging across all coloca-
tions.

The decline in correlation is evident in colocations from
both the NH and SH, though SH colocations (blue, dotted
line) are less correlated than NH correlations (blue, dashed
line) at all SZAs below 70°, and do not show the abrupt
decoupling at 65°. Instead, a more modest decline is ob-
served after 42° SZA. SH retrievals with SZAs of 45° to
60° occur most frequently over the Southern Ocean, where
MODIS retrievals are characteristically low-quality (Fig. 3).
Accordingly, hemispheric differences in the relationship be-
tween correlation and the SZA can be explained by slight
differences in the spatiotemporal variability of data quality.
In both hemispheres, CALIOP and MODIS low-quality re-
trievals gradually decouple as the SZA increases, and the
prevalence of low-quality MODIS retrievals intervenes in the
relationship between correlation and SZA.

At SZAs greater than 60°, low-quality MODIS retrievals
make up 60 % or more of the retrievals, while at very high
(> 70°) SZAs, MODIS retrievals are overwhelmingly (>
80 %) low-quality. At 13:00 local time, SZAs at 60° N range
from approximately 70° in late February to over 80° in mid-
December, suggesting that wintertime Arctic retrievals from
MODIS (Aqua) are mostly low-quality, and hence strongly
influenced by the dependency described in Sect. 4.2.1.
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The low correlation between CALIOP and MODIS re-
trievals at high SZAs indicates that the L3 data products
become increasingly less likely to capture similar aerosol
events at high SZAs, even apart from any effects on bias.
Had the bias, but not correlation, shown an SZA dependency,
data products in the high latitudes may be relied upon to
show similar sub-seasonal variability, and similar interannual
variability for a given month, even while the seasonality di-
verged. However, our findings indicate that the MODIS L3
products have limited utility when a preponderance of the
gridcell-averaged L2 retrievals occur at SZAs above 63°.
However, where sufficient coverage with high-quality L2
MODIS AODs is available, such retrievals may provide use-
ful information even under very high (> 70°) SZAs.

5 Summary and Conclusion

The Arctic is characterized by both heightened sensitivity to
radiative forcing and a paucity of observational constraints.
As such, satellite data products have the potential to provide
valuable information about the region, but only if their ca-
pabilities and limitations in the region are understood and,
ideally, quantified. In this analysis, we found stark differ-
ences in Arctic AOD seasonality between CALIOP and six
passive sensor L3 data products, even when controlling for
sampling biases, with all passive sensor products reporting
dubiously low AODs from early autumn to mid-spring. We
further found that seasonal biases between CALIOP and two
reanalysis products were evident in both hemispheres, ex-
tending from the poles into the midlatitudes. These findings
suggest that biases in passive sensor AOD retrievals may be
propagated into reanalysis products, as these datasets assimi-
late passive sensor observations. However, further investiga-
tion of the reanalysis products, including their assimilation
and modeling processes, is needed to determine whether this
is the case.

Our analysis of colocated L2 MODIS and CALIOP re-
trievals shows that the interplay between reduced MODIS
retrieval quality in winter and a strong solar zenith angle de-
pendence in low-quality retrievals substantially contributes
to seasonality biases between passive and active sensor data
products. Specifically, we can infer that the relationship is re-
sponsible for a ∼ 78 % reduction in over ∼ 80 % of MODIS
high latitude retrievals in winter, compared to what they
would be in the summer, relative to the instrument-mean. As
noted in Sect. 2.4.2, QAC flag assignments do not depend ex-
plicitly on retrieval geometry, and indeed some high-quality
retrievals are still present even at very high SZAs. More-
over, high-quality retrievals show little sensitivity to SZA,
even at extreme angles (Fig. 7b). Therefore, retrieval qual-
ity is not fully explained by increasing SZAs, nor is the de-
cline in AOD at high SZAs independent of retrieval quality.
Rather, it is the interaction between declining quality and a

Figure 10. A schematic illustration of insolation and reflectance
at low (left) and high (right) solar zenith angles (θ ), with nearby
clouds. At high SZAs, adjacent clouds may enshadow the aerosol
layer, resulting in lower reflectance and underestimates of AOD for
passive sensors. At low SZAs, the light source is unimpeded by
neighboring clouds.

quality-mediated SZA dependence that drives the seasonal
decoupling.

In addition, we demonstrate that other plausible explana-
tions account for only a small fraction of the observed bias
between instruments. Sampling bias is not sufficient to ex-
plain the observed differences (Fig. 5), and our analysis of
CALIOP RFVs suggests that the instrument’s sensitivity is
not affected by the SZA (Fig. 8). Further, retrievals in the
low-quality subset of data occurred over the ocean, where
MODIS radiative transfer assumes a pseudospherical atmo-
sphere, indicating that errors do not arise from the breakdown
of plane-parallel assumptions. The lack of a strong trend
in high-quality MODIS data (Fig. 7b) suggests that SZA-
dependent biases stem primarily from low-quality MODIS
retrievals, not CALIOP lidar ratio errors.

Still, outstanding questions remain. Our evaluation in-
cludes only passive sensor retrievals where the VZA was
near-nadir; other works have shown that VZAs can affect
MODIS cloud optical depths, and a VZA dependence for
AOD is plausible as well. VZA variability changes little with
the seasons in the Arctic, so it is unlikely to impact AOD
seasonality on its own (Fig. S3). However, non-linear effects
between SZA- and VZA-mediated biases are very possible,
and need to be evaluated in order to understand the full ef-
fects of retrieval geometry on L3 datasets.

Next, the specific conditions responsible for this rela-
tionship have yet to be fully described. As described in
Sect. 2.4.2, low-quality scores over ocean may be assigned
due to a number of different retrieval characteristics, and we
don’t yet know whether the SZA-dependence is evident in
all low-quality retrievals. One well-known source of uncer-
tainty in remote sensing is cloud adjacency, whereby shad-
ows or scattered light from neighboring clouds introduce un-
constrained effects on reflectance measures in nearby pixels
(see Fig. 10). Assessing how different pathways to low QAC
scores vary in prevalence and SZA dependence will help clar-
ify the role of this and other 3D artifacts. Better constraints
on cloud adjacency could prove especially valuable, as more
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reliable observations of aerosols near clouds could provide
important insight into aerosol-cloud microphysical interac-
tions, a topic of considerable importance to atmospheric and
climate science.

Finally, for low-quality retrievals we found an SZA de-
pendence in both biases and correlations, suggesting the po-
tential for bias correction or more detailed error characteri-
zation in future products. Inversion algorithms for MODIS
depend on measured top-of-atmosphere reflectance and as-
sumptions about surface reflectance, path reflectance, and
multiple scattering. While our analysis shows that CALIOP
sensitivity does not appear to vary with SZA, ground-truth
measures are necessary to provide important constraints on
these assumptions under different retrieval geometries. Fur-
ther comparisons of satellite AODs to AERONET, MAN, and
ground-based lidar across a range of SZAs can help disentan-
gle the effects of 3D artifacts on these different assumptions,
and should be a focus of future investigations. Additionally,
examining low-quality retrieval errors within different SZA
and VZA bins can help determine the extent to which ex-
pected errors may vary with retrieval geometry, supporting
more refined uncertainty quantification in future products.

In the meantime, high-quality L2 passive sensor retrievals
may offer a useful alternative for studying Arctic AOD
seasonality, though only when sampling biases are well-
controlled. Complementary efforts to characterize Arctic
aerosol variability are necessary to assess how well high-
quality retrievals capture the range of aerosol conditions in
the region, and to better understand the various processes
shaping Arctic aerosol.

Data availability. L3 products from MODIS
(https://doi.org/10.5067/MODIS/MYD04_L2.061;
Levy et al., 2015), CALIOP
(https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L3_
Tropospheric_APro_AllSky-Standard-V4-20;
NASA/LARC/SD/ASDC, 2019), and VIIRS
(https://doi.org/10.5067/VIIRS/AERDB_M3_VIIRS_SNPP.011;
NASA Earth Data, 2025), and L2 products from CALIOP
(https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-
STANDARD-V4-20; NASA/LARC/SD/ASDC, 2018) and MODIS
(https://doi.org/10.5067/MODIS/MYD04_L2.061; Levy et al.,
2015) can be downloaded from NASA’s Atmospheric Science
Data Center at Langley Research Center, while the SeaWiFS data
product (https://doi.org/10.5067/MEASURES/SWDB/DATA304;
Hsu et al., 2013b) is stored at NASA Goddard Space Flight
Center. POLDER (https://www.grasp-open.com/products/
polder-data-release/, last access: 17 March 2020) can be
accessed through AERIS/ICARE Data and Services Cen-
ter. AVHRR (https://doi.org/10.7289/V5X9287S; Foster et
al., 2021) can be accessed through the National Centers for
Environmental Information (NCEI) at NOAA. MERRA2
(https://doi.org/10.5067/2E096JV59PK7; Global Modeling and
Assimilation Office, 2015) can be accessed through the NASA
Global Modeling and Assimilation Office. CAMS reanalysis

product (Inness et al., 2019) are available from the Copernicus
Atmospheric data store.
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