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Abstract. Atmospheric inverse modelling and ecosystem data assimilation are two complementary approaches
to estimate CHy emissions. The inverse approach infers emission estimates from observed atmospheric CHy
mixing ratio, which provide robust large scale constraints on total methane emissions, but with poor spatial
and process resolution. On the other hand, in the ecosystem data assimilation approach, the fit of an ecosystem
model (e.g. a Dynamic Global Vegetation Model, DGVM) to eddy-covariance (EC) flux measurements is used
to optimize model parameters, leading to more realistic emission estimates.

Coupled data assimilation frameworks capable of assimilating both atmospheric and ecosystem observations
have been shown to work for estimating CO, emissions, however ecosystem data assimilation for estimation CHy
emissions is relatively new. Kallingal et al. (2024a) developed the GRaB-AM data assimilation system, which
performs a parameter optimization of the LPJ-GUESS against eddy-covariance estimation of CHy emissions.
The optimization improves the fit to EC data, but the validity of the estimate at large scale remained to be tested.

In this study, we confronted CH4 emissions optimized using the GRaB-AM system to atmospheric CH,4 obser-
vations and to emission estimates from the LUMIA regional atmospheric inversion system (Monteil and Scholze,
2021). We found that the two approaches lead to very consistent corrections to the prior emission estimate from
natural wetlands, with roughly a halving of the annual total compared to the LPJ-GUESS prior. Our findings
confirm the interest of the GRaB-AM approach to constrain the contribution of natural ecosystems to the total
methane budget, which is difficult to achieve for atmospheric inversions outside regions where emissions from
natural ecosystems clearly dominate the emission budget.

1 Introduction

Methane (CHy) is the second most important greenhouse gas
after CO,, accounting for around 21 % of the total effec-
tive radiative forcing of the well-mixed greenhouse gases
(Forster et al., 2023). Its presence in the atmosphere has
more than doubled since pre-industrialization era, with back-
ground mixing ratio at Mauna-Loa approaching the 2000 ppb
(1931.91 ppbv in April 2024, according to https://gml.noaa.
gov/ccgg/trends_ch4 (last access: September 2024). After a
stabilization from 1998 to 2007, the atmospheric CH4 con-
centration has started increasing again, at an accelerating
pace. Although several recent studies attribute this renewed
increase mainly to anthropogenic emissions (Nisbet et al.,

2016; Thanwerdas et al., 2024), an important contribution
from wetlands has also been proposed (Qu et al., 2022; Peng
et al., 2022; Christensen, 2024). While for the global natural
methane budget, tropical wetlands are most important, Arctic
wetlands could constitute a potent positive climate feedback
(Zhang et al., 2023) and there are indications that their emis-
sions have been increasing in recent years (Yuan et al., 2024;
Ward et al., 2024).

Emission estimates for natural wetlands can be obtained
through process models, which calculate methane emissions
according to various environmental inputs (meteorological
forcings, soil type, hydrology, etc.). The model simulates
or approximates known physical processes with various de-
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grees of complexity. However, uncertainties on the exis-
tence or the importance of specific processes, lack of ac-
curacy of some parameterizations, combined with the high
non-linearity of the models leads to large differences be-
tween the estimates at large scales. For example, a com-
parison of mean annual CHy emissions from 16 mod-
els used in the Global Carbon Project (GCP) has shown
that global estimates range from 118.7 to 195 Tg CH, yr~!
(Ito et al., 2023). Specifically for wetlands above 15°N,
the estimated emissions ranged between 10.5 Tg CHyyr™!
(SDGVM model) and 40 Tg CH,4 yr~' (ORCHIDEE). Sim-
ilar ranges were also found during the WETCHIMP model
intercomparison project (Melton et al., 2013), which reported
a +40 % spread of the estimates around the all-model mean
of 190 Tg CH, yr~!, for global emissions.

The Global Rao-Blackwellized Adaptive Metropolis
(GRaB-AM) approach developed by Kallingal et al. (2024a)
is a parameter estimation data assimilation system based on
Bayesian statistics, in which parameters of the LPJ-GUESS
model connected to the production, transport and oxidation
of CHy4 pathways are adjusted to optimize the model fit to
eddy-covariance flux measurements. The optimized param-
eters can then be used to produce a gridded estimate of the
methane emissions, which combine the process knowledge
embedded in the LPJ-GUESS model with the added infor-
mation from in-situ flux observations. However, the quality
of the resulting emission estimate remains difficult to for-
mally assess. The optimization is done by performing site-
scale simulations, with local measurements of meteorologi-
cal forcings and a good knowledge of the wetland types and
their spatial distribution. Scaling up to Northern hemispheric
emissions is then done using forcings from meteorological
reanalysis, with hypothesis on the wetland type and fractions
in each grid cell, which carry their own uncertainties. Total
CH4 weltands emissions for the region north of 45° N as sim-
ulated by LPJ-GUESS are of the order of 43.09 Tg CHy yr~!
for the uncalibrated (prior) model and 37.54 Tg CH4 yr~!
for the calibrated LPJ-GUESS model (posterior) (Kallingal
et al., 2024b).

An alternative approach is to infer methane emissions
from their observed impact on atmospheric CHy, using in-
verse modeling approaches (Houweling et al., 2017). Inver-
sions leverage the fact that atmospheric observations are sen-
sitive to the emissions aggregated over a large area, owing
to the long lifetime of atmospheric CHy, and therefore can
provide large-scale constraints on methane emissions. This
approach has been used by several recent studies to estimate
emissions from arctic wetlands (Wittig et al., 2023; Tsuruta
et al., 2019; Ishizawa et al., 2024). However, observations of
atmospheric CHy are sensitive to the net methane emissions,
which limits the capacity of inversions to resolve wetland
emissions independently from other CHy sources. Satellite
observations, such as TROPOMI XCHy retrievals (Nesser
et al., 2024; Tsuruta et al., 2023), or retrievals from the up-
coming CO2M (Sierk et al., 2021) or MERLIN instruments
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(Ehret et al., 2017), can help increase the resolution of in-
versions, but their coverage is not constant (cloudiness, short
day length at high latitudes in winter, etc.), and their signal-
to-noise ratio is lower than that of in-situ observations for de-
tecting emissions (because satellite XCHy4 retrievals quantify
the column-averaged CH4 mixing ratio, therefore they incor-
porate a stronger background contribution than surface ob-
servations). Some implementations of the inverse approach
use observations of the isotopic composition of atmospheric
methane (813C—CH4, 6D-CHy) as an additional constraint on
the source process distribution (Basu et al., 2022; Thanwer-
das et al., 2024; Drinkwater et al., 2023), but the low amount
of available data and the uncertainties on the isotopic signa-
tures of methane emissions have limited the practicality of
that approach.

The atmospheric inversion and parameter estimation ap-
proaches assimilate complementary observations, and is po-
tentially a strong benefit in integrating them further in a uni-
fied CH4 data assimilation system, on the model of what ex-
ists for CO, (Rayner et al., 2005). In this study, we take a step
in that direction by confronting emissions estimates from
the GRaB-AM data assimilation system of Kallingal et al.
(2024b) to inverse modelling estimates from the LUMIA
(Lund University Modular Inversion Algorithm) regional in-
version system Monteil and Scholze (2021), focusing our
analysis on high-latitude European wetland emissions. The
confrontation between the approaches serves both as a form
of cross-validation, but also to explore the potential for a joint
data assimilation setup.

2 Methods

We compare four main wetland emission estimates: two
LPJ-GUESS, one from the default setup (LPJ-GUESS-
unopt) and one from the GRaB-AM optimized setup-
GUESS (LPJ-GUESS-opt), and two LUMIA inversions, us-
ing these LPJ-GUESS simulations, and their uncertainties
as prior: LUMIA-Lprior (using LPJ-GUESS-unopt as prior)
and LUMIA-Lpost (using LPJ-GUESS-opt as prior). These
four simulations correspond respectively to a pure bottom-
up estimate, a flux-observation informed estimate, a atmo-
spheric observation informed estimate, and an estimate in-
formed both by flux and atmospheric data. Two additional
LUMIA inversions were performed as sensitivity simulations
(LUMIA-Lprior+corr, LUMIA-Lpost+corr), with a different
prior error covariance structure (see also Sect. 3.1). The sup-
plementary figures also include some results from an ad-
ditional sensitivity test, LUMIA-Lpost_total, in which only
the total CH4 emissions (wetland 4+ non-wetlands) was opti-
mized.

The study covers the year 2018, for the LUMIA inver-
sion domain represented in Fig. 1, although we focus mainly
on the observations in the Nordic sub-domain (red box in
Fig. 1). The domain extent is based on that of a CHy re-
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gional inverse modelling intercomparison, jointly organised
by WMOs Integrated Global Greenhouse Gas Information
System (IG3IS) and the Horizon-Europe CoCO2 project
(https://coco2-project.eu, last access: 23 September 2024), to
which this study contributes.

2.1  Wetland emissions modelling
211 LPJ-GUESS

LPJ-GUESS is a dynamic global vegetation model (DGVM),
designed to simulate the interactions between vegetation,
soil, and their responses to environmental changes and man-
agement (Sitch et al., 2003; Smith et al., 2001, 2014). The
model can simulate vegetation dynamics, carbon and water
cycles, and soil biogeochemistry from local to global scales,
including the simulation of methane fluxes from natural wet-
lands.

For this study, we used the Arctic-enabled version 4.1 of
the model (Smith et al., 2014), which differs from previous
versions for having detailed representation of wetland CHy
emission. The process descriptions of the CHs module were
mostly adopted from the LPJ-WHyMe model (Wania et al.,
2010), and are described in detail in (McGuire et al., 2012).
It is based on a “potential carbon pool”, which is then de-
composed to soil organic carbon distributed vertically in the
soil layers. Methanogens use this decomposed organic car-
bon and produce CH4. A part of this produced CHy gets
oxidized by O, and the remainder is transported to the at-
mosphere by diffusion, ebullition, or plant-mediated trans-
port (see Wania et al., 2010; Kallingal et al., 2024a for more
details). The model is driven by daily climate data includ-
ing air temperature, precipitation, and shortwave radiation
taken from the Climatic Research Unit-Japanese Reanaly-
sis (CRU-JRA; Harris et al. (2020) dataset. Annual atmo-
spheric CO, concentrations, as additional model input for
LPJ-GUESS, are obtained from the Global Monitoring Labo-
ratory (https://gml.noaa.gov/ccgg/trends, last access: 23 Oc-
tober 2025), and the soil property data was extracted from
WISESmin, V1.2 Soil Property Database (Batjes, 2005).

Model simulations covering the area north of 45°N are
produced using PEATMAP (Xu et al., 2018), which com-
bines geospatial information from various sources to create
a global map of wetland extent. PEATMAP has been used in
several studies mainly because it is an updated quantification
of peat land extend, and it focuses on mapping peatlands,
such as marshes and swamps, which are the dominant wet-
lands in northern latitudes (Peltola et al., 2019; Aalto et al.,
2025; Miiller and Joos, 2020).

2.1.2 GRaB-AM flux data assimilation framework

To optimize the methane module of LPJ-GUESS, Kallin-
gal et al. (2024a) developed the GRaB-AM data assimilation
framework, which seeks to optimize the value of ten highly
sensitive parameters in the methane module of LPJ-GUESS
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(connected to production, transport and consumption path-
ways of CHy), based on the model fit to eddy-covariance
(EC) flux observations. The minimization is performed us-
ing an adaptive scheme of the Markov Chain Monte Carlo
Metropolis-Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970). In Kallingal et al. (2024b), observations
from 14 natural wetlands distributed across the Northern
Hemisphere above 40° and over a total period of 20 years
(from 2000 to 2020 with individual sites contributing obser-
vations over different years within this time period) were as-
similated. The number of sites used for the GRaB-AM opti-
mization exceeds the indicated sites shown in Fig. 1 (a full
list of the sites is given in Kallingal et al., 2024b).

In this study we computed two ensembles of hundred grid-
ded LPJ-GUESS simulations each, randomizing the values
of the LPJ-GUESS parameters adjusted by the GRaB-AM
algorithm. In the first ensemble (LPJ-GUESS-unopt) the pa-
rameter values were draw from a log transform distribu-
tion, such that 90 % of the prior samples fall within their
assumed +40 % uncertainty range. In the second ensemble
(LPJ-GUESS-opt), the ensemble members were drawn from
the corresponding 90 % confidence interval, to maintain con-
sistency.

2.2 Atmospheric inverse modelling

The consistency of CHy emission from LPJ-GUESS (LPJ-
GUESS-unopt and LPJ-GUESS-opt) with atmospheric CHy
mixing ratio measurements was tested using the LUMIA in-
version framework. The comparison requires using an atmo-
spheric transport model, and accounting for contributions of
other methane sources, and from lateral boundary conditions.
The model data mismatches then serve to infer a further cor-
rection to the emission estimates.

2.2.1 Inversion approach

LUMIA (Monteil and Scholze, 2021) is a regional atmo-
spheric inversion setup developed initially to estimate Eu-
ropean CO; inversions using in-situ concentration measure-
ments such as those provided by the ICOS network (Monteil
et al., 2020; Munassar et al., 2023; Gomez-Ortiz et al., 2025).
This study is the first application to a non-CO; tracer.

The inversion seeks to determine the set of regional CHy
emissions that is the most consistent with a dataset of ob-
served in-situ CHy4 mixing ratios. The impact of emissions
outside the regional domain is provided through a prescribed
background term. The link between emissions and volume
mixing ratio given by:

y+e,=Hx+y,,+em ey
with y the observations vector contains observations of the

atmospheric CH4 mixing ratio, and x the control vector con-
tains the variables that we seek to optimise: in our case,
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Figure 1. LUMIA inversion domain (cyan grid), the position of the observations used in the LUMIA inversions (blue dots, with the area
proportional to the number of assimilated observations); position of the eddy-covariance sites used in the GRaB-AM optimization (green
stars) and Nordic domain of interest (red box). The EC sites covering the year 2018 (Fig. 9) are marked with a red dot.

the daily CHy4 emissions, grouped in two categories (wet-
lands and non-wetlands), at a 0.25° resolution over a re-
gional domain ranging from 15°W, 33°N to 35°E, 73°N
(Fig. 1). The regional transport operator H contains the sen-
sitivity of the observations y to the (regional) emissions x
(H;,; = 0y;/0x ;). The background concentrations ( ybg) are
provided as timeseries of baseline concentrations directly at
the observation sites, following the two step approach of R6-
denbeck et al. (2009) (see Sect. 2.2.3). The error terms &,
and ey, represent respectively the measurement error and the
model error.

The optimal control vector ¥ is given as the one that min-
imises a cost function 7 (x), such that

1 Tp—1
J(x)=§(x—xb) B™ (x —xp)

1
+ E(Hx + Yog — y)TR*1 (Hx + ypg — ¥) )

The first part evaluates the goodness of fit of the estimated
control vector x to its prior estimate x, normalised by the
prior error-covariance matrix B, which contains the uncer-
tainty of xj. The right hand side term evaluates the model fit
to the observations y, normalised by the observation error-
covariance matrix R, which combines the model (&) and
measurement (€,) uncertainties (i.e. it is the total uncertainty
on the model-data mismatch).
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The optimal control vector X, which satisfies V, 7 (x) = 0,
is the set of CH,4 emissions that represents the best compro-
mise between fitting the observations and limiting the de-
partures from the prior estimate (which implicitly carries the
knowledge of the models and data used to construct the prior
emissions).

The solution is searched for iteratively, using a conjugate
gradient algorithm provided by the python “scipy.optimize”
package (which employs a nonlinear conjugate gradient al-
gorithm by Polak and Ribiere, a variant of the Fletcher-
Reeves method described in Nocedeal and Wright (2006).
This solver is not optimal for our setup (a linear CG algo-
rithm would be better suited, since our optimization problem
is strictly linear), but turned out to be more practical and I/O
efficient than the Lanczos (1952) linear solver used in pre-
vious LUMIA papers (e.g. Monteil et al., 2020; Munassar
et al., 2023), while giving similar results.

2.2.2 Regional transport model

The regional transport operator H was computed using
the FLEXPART 10.4 Lagrangian particle dispersion model
(Pisso et al., 2019). FLEXPART is not called directly within
the inversion, but is used before, to pre-compute observa-
tion footprints, i.e. rows of the H matrix from Eq. (2). These
footprints are stored on disk and simply read during the suc-

https://doi.org/10.5194/acp-25-14251-2025



G. Monteil et al.: CH4 emissions from Northern Europe wetlands

cessive phases of the inversion. Each footprint was obtained
by simulating the dispersion, backward in time starting from
the observation time and position, of ten thousand virtual air
particles, based on meteorological fields from the ECMWF
ERAS reanalysis (at a 0.25°, hourly resolution), and limited
to the aforementioned European domain: the particles are de-
stroyed when they reach the edge of the domain. The aggre-
gated residence time of the particles near the surface (below
100 m above ground) is used as a proxy for the sensitivity of
the observations to the emissions.

2.2.3 Boundary conditions

The background vector yy, accounts for all the contributions
to the observed CH4 mixing ratio that are not adjusted by the
inversions: the impact of the initial condition, the impact of
CH4 emissions from outside the regional domain, the impact
of European CHy emissions having left the domain on the
CH4 mixing ratio of air masses (re-)entering it, and the im-
pact of the various CHy4 sinks (reactions with OH, and, in the
stratosphere, with Cl and O('D).

The background concentrations were taken from the
CAMS v19r1 global CHy reanalysis of surface observations
(Segers, 2020), which relies on the TM5-4DVAR global at-
mospheric inversion system. The concentrations baselines
were extracted using the two-step scheme of Rodenbeck et al.
(2009) (see also Bergamaschi et al. (2022) for the CAMS im-
plementation, and Monteil and Scholze (2021) for the usage
in LUMIA). These baselines were provided as part of the
CoCO2 CHy inversion intercomparison, therefore they are
purely an external input to our modeling setup.

2.2.4 Prior emissions and uncertainties

The inversions solve for CHs emissions grouped in two
“super-categories”: wetland and non-wetlands. The latter
groups the contributions of all remaining categories, both
anthropogenic (mainly agriculture, waste management and
fossil fuel emissions), and natural (geological emissions, ter-
mites, lakes and oceans). Anthropogenic emissions are taken
from the EDGAR v6.0 emission inventory (Crippa et al.,
2019), wetland emissions are taken from the LPJ-GUESS
simulations described in Sect. 2.1.1, with or without the pa-
rameters optimization described in Sect. 2.1.2 (depending on
the simulation). Natural emissions are taken from various cli-
matological estimates, reported in Table 1. All the emissions
were regridded from their original resolution to the 0.25°,
daily resolution of the FLEXPART footprints.

The spatial distribution of the emissions is shown in Fig. 3,
while their temporal distribution is shown in Fig. 2. Wetland
emissions are the only category that exhibits a strong season-
ality (biomass burning emissions are seasonal as well, but
very low overall, so their contribution to the seasonality of
total emissions is negligible). There is also a geographical
separation between emissions from wetlands, which are con-
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centrated in Northern Europe, and emissions from the other
categories, which are more significant in the rest of the conti-
nent, and tend to overlap in time and space. This, and the fact
that the observation network is relatively dense in Northern
Europe (Fig. 1), where wetland emissions are important, jus-
tify resolving wetland emissions separately from the other
CHy sources in the inversions.

The emission uncertainties are stored in the prior error-
covariance matrix B, which is composed, for each category
¢, of four components: the vector oy, containing the stan-
dard deviations of the emission themselves, two correlation
matrices, Cﬁ‘ and C!, storing respectively the prescribed cor-
relations in the spatial and in the temporal dimension, and a
scalar scaling factor y,, which is used to enforce a specified
total annual uncertainty. No cross-category correlations are
assumed, therefore the error-covariance matrix is written, for
each category, as:

B.=(C.®CHTel ylo, (Ci®CH (3)

For wetland emissions, the standard deviations o, are set
to the standard deviation of the LPJ-GUESS ensembles
(Sect. 2.1.1), whereas for non-wetland emissions, they are set
to the absolute value of the emissions. The scaling factor y, is

i\ —1/2
then determined such that (Zl jBlc") equals the desired

annual uncertainty for category c. This facilitates compar-
isons between simulations with different correlation struc-
ture, as their overall uncertainty remain identical.

The uncertainties on non-wetland emissions were set to
5TgCHy yr‘1 (& 15 % of the annual emissions), with C!
and C” constructed as correlation-decay functions (corr(x) =
e/ L), with horizontal correlation length of 500 km and
temporal correlation length of 30 d. For wetlands, the annual
uncertainty was set to 0.5 Tg CHy yr~!, with temporal cor-
relation length of 30d. The spatial correlations were either
constructed using the same approach, with spatial correlation
lengths of 1000 km, in the main inversions (LUMIA-Lprior
and LUMIA-Lpost), or directly using the error correlation
structure from the LPJ-GUESS ensembles (see Sect. 3.1).

2.2.5 Observation and observational uncertainties

The LUMIA inversions were constrained by observations
from 43 European in-situ and flask measurement sites, from
various observation networks (see Table 2 and Fig. 1), most
of which are now part of the ICOS network of atmospheric
in-situ measurements. The observations were taken from a
quality controlled dataset prepared for a CH4 inverse mod-
eling intercomparison conducted within the CoCO2 project
(https://coco2-project.eu/, last access: 23 October 2025,
Toannidis et al., 2025).

The observation frequency is typically hourly, but we
filtered the observations to avoid assimilating observations
close to the transition between the planetary boundary layer
(PBL) and the free troposphere, as this is where model er-
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Table 1. Methane (prior) emissions used in the LUMIA inversions. The spatial resolution reported in the table corresponds to the one as it
was made available to us, through the Ioannidis et al. (2025) intercomparison, although the native resolution of some of these products is

higher (e.g. EDGAR v6.0 is available at 0.1°).

Category Annual total ~ Source Temporal  Spatial Climatological
(TgCHy) resolution  resolution

Wetlands 5.5-8.7 LPJ-GUESS (This study) daily 0.25°

Agriculture and waste 22.6  EDGAR v6.0 (Crippa et al., 2019) monthly 0.25°

Fossil 6.8 EDGAR v6.0 (Crippa et al., 2019) monthly 0.25°

Biomass burning 1.1  GFED-4.1s (Randerson et al., 2017)  monthly 0.25°

Oceans 0.6 Weber et al. (2019) monthly 0.25° yes

Inland water 0.4  Johnson et al. (2022) monthly 0.1° yes

Geology 3.5 Etiope et al. (2019) annual 1° yes

Termites 0.2  Saunois et al. (2020) annual 1° yes

European domain
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Figure 2. Prior CH4 emissions used in the “LUMIA-Lprior” inver-
sion.

rors on the PBL height would have the largest impact. For
most sites, afternoon data was selected (from 11:00 to 17:00,
local time), when the PBL is expected to be the most devel-
oped. For high altitude sites (above 1000 m altitude a.m.s.1),
night time data was used instead (from 00:00 to 04:00, local
time), when the observations are expected to be well above
the PBL. At a few sites (Hohenpeissenberg, Hegyhatsal, Is-
pra, Mace Hear and Pallas), there are also a some observa-
tions from flask measurements, for these, no specific filter
was applied.

The uncertainties (diagonal of R in Eq. 2) are set as the
quadratic sum of the measurement uncertainty gqps, provided

Atmos. Chem. Phys., 25, 14251-14277, 2025

by the atmospheric observations dataset, and of the model
uncertainty €m04. The model uncertainty should in theory be
set close to the random component of the error that the model
would make when simulating the observations based on the
“true” emissions, and excluding systematic component of
that error. In practice, that true error is unknown. Here we
constructed it as site-specific weekly uncertainty, based on
the mismatch between the observed and modelled short term
CHy variability. The procedure is conducted for each site, in
four steps:

1. Compute the prior model estimate for the observations,
Yapri> corresponding to the prior emissions described in
Sect. 2.2.4.

2. Separate the modelled (y,,;) and observed (y) time
series into baselines and anomalies. The baselines are
computed as weekly rolling weighted averages (with
the inverse of the measurement uncertainties used as
weights), and the anomalies are obtained by subtracting
these baselines from their respective timeseries.

3. Compute the standard deviation (or;ié%) of the difference

between the anomalies in modelled (prior) and observed
CH4 mixing ratios.

4. The model uncertainty of a single observation is finally
given by &/ = Ursnlg% X +/Mobs, Where ngps is the num-
ber of observations in a £3.5 d interval surrounding the

observation i.

The rationale behind this approach is that the inversions
should be able to efficiently reduce the mismatch between
the baselines by adjusting the CH4 emissions, but will likely
struggle more with reducing the model-data mismatches be-
tween the modelled and observed sub-weekly variability. In
practice this results in a larger uncertainty at sites close to
large CH4 emitters, such as Ispra, Saclay and Norunda, re-
ducing their relative weight in the inversion. The last step (4)
ensures that the weight of a site doesn’t depend on the ob-
servation frequency (if there are more observations within a
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Figure 3. Prior annual average CH4 emission maps from the natural wetlands, fossil fuels, agriculture and waste and “natural” sectors. The
latter groups together emissions from lakes and oceans, geological sources, biomass burning and termites, but is largely dominated by the

geological emissions.

given week, the individual weight of each observation will
be reduced accordingly).

3 Results

The LUMIA inversions use wetland emission estimates and
uncertainties computed in the two LPJ-GUESS ensembles.
We therefore first present the results from these two ensem-
bles, then compare the four CH4 emission estimates and an-
alyze their consistency with observations.

3.1 Model-derived wetland emission uncertainties

As explained in Sect. 2.2.4, for each category, the prior error-
covariance matrix in LUMIA (B in Eq. 2) is constructed
based on a combination of prescribed error correlation struc-
ture, a vector of (normalized) prior uncertainties and a target
annual uncertainty estimate. These settings are typically cho-
sen based on “expert knowledge”. However, for the wetland
category, the GRaB-AM setup provides an explicit represen-
tation of these error correlations.

https://doi.org/10.5194/acp-25-14251-2025

The emission uncertainties corresponding to the LPJ-
GUESS-unopt and LPJ-GUESS-opt simulations were es-
timated through two ensemble simulations of 100 mem-
bers each (see Sect. 2.1.2). The ensemble standard devia-
tion drops from 6.40 Tg CHy yr~! in LPJ-GUESS-unopt to
0.45TgCH4yr~! in LPJ-GUESS-opt. In the LPJ-GUESS-
unopt ensemble, the uncertainties are concentrated in regions
with strong CHy emissions: Northern Finland, Scandina-
vian Arctic, Southern Sweden, Southern Poland and North-
West coasts of Ireland and Scotland (Fig. 4). The GRaB-
AM optimization reduces the uncertainties everywhere, but
predominantly at high-latitudes, with the strongest reduction
(& —95 %) being obtained in the Nordic region.

The error correlations are arguably more important for the
LUMIA inversions: large error correlations effectively re-
duce the dimensionality of the problem, making it in turn
easier to resolve the contributions from separate categories.
Full error covariance matrices can be computed from the en-
semble but are too large to fit in memory and be of practical
use in the inversions. Instead, in Fig. 5, we show the average
error correlations as function of distance (in space and time).

Atmos. Chem. Phys., 25, 14251-14277, 2025
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Table 2. Observation time series assimilated in the LUMIA inversions. The number of observations assimilated is reported in the “nobs”
column. Some stations appear twice, when there are both flask and in-situ measurements. The “Model error” column shows the assumed
model representation error in the LUMIA-Lprior inversion (arf]léed). The numbers differ slightly in the LUMIA-Lpost inversion, since they
are calculated based on the prior fit to the data. When available, the DOI or PID of the data are shown in their corresponding entry in the

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

bibliography.

Station Latitude  Longitude Elevation Inlet height nobs Model error Reference
CN) (W) (mamsl) (ma.gl) (ppm)

Birkenes, Norway 58.39 8.25 215 3 1937 20.69  Lunder and Platt (2025)
Biscarosse, France 44.38 —1.23 73 47 184 16.57 Lopez and Ramonet (2024)
Mt Cimone, Italy 44.17 10.68 2165 12 2025 2529  Arduini (2025)
Finokalia, Greece 35.34 25.67 150 15 532 15.02 Delmotte et al. (2024b)
Heidelberg, Germany 49.42 8.68 113 30 2054 33.12  Hammer and Levin (2024)
Hohenpeissenberg, Germany 47.80 11.01 934 131 2105 34.32  Kubistin et al. (2024b)
Hohenpeissenberg, Germany 47.80 11.02 936 5 49 3432 Lanetal. (2025)
Hyltemossa, Sweden 56.10 13.42 115 150 2162 2477  Heliasz and Biermann (2024)
Hegyhatsal, Hungary 46.96 16.65 248 96 2056 34.38  Haszpra (2025)
Hegyhatsal, Hungary 46.95 16.65 248 96 47 34.38 Lanetal. (2025)
Ispra, Italy 45.81 8.64 210 16 2316 87.63  Bergamaschi and Manca (2025)
Jungfraujoch, Switzerland 46.55 7.98 3570 10 1999 20.26  Steinbacher (2018)
Kasprowy Wierch, Poland 49.23 19.98 1987 2 1783 29.17 Chmura et al. (2024)
Kresin u Pacova, Czech Republic 49.57 15.08 534 250 1995 25.41 Marek et al. (2024)
Lindenberg, Germany 52.17 14.12 73 98 2029 32.56  Kubistin et al. (2024c)
Lampedusa, Italy 35.52 12.62 45 5 47 10.27  Lan et al. (2025)
Lutjewad, Netherlands 53.40 6.35 1 60 2101 91.55 Chen and Scheeren (2024)
Mace Head, Ireland 53.33 —-9.90 5 0 1399 9.91  Prinn et al. (2018)
Mace Head, Ireland 53.33 —-9.90 5 21 5 991 Lanetal. (2025)
Norunda, Sweden 60.09 17.48 46 100 2164 27.16  Lehner and Molder (2024)
Observatoire pérenne de 48.56 5.50 390 120 2054 27.47 Ramonet et al. (2024a)
I’environnement, France
Pallas, Finland 67.97 24.12 560 7 2179 22.33  Laitinen et al. (2025)
Pallas, Finland 67.97 24.12 565 5 32 22.33  Lan et al. (2025)
Pic du Midi, France 42.94 0.14 2877 10 148 12.00  Delmotte et al. (2024a)
Puy de Dome, France 45.77 2.97 1465 10 2009 20.38  Colomb et al. (2024)
Ridge Hill, United Kingdom 52.00 —2.54 204 90 2007 23.62  O’Doherty et al. (2024)
Saclay, France 48.72 2.14 160 100 2100 40.78 Ramonet et al. (2024b)
Hyytiala, Finland 61.85 24.29 181 125 2148 26.98 Levula and Mammarella (2024)
Schauinsland, Germany 47.90 7.92 1205 12 2157 23.96 Meinhardt (2025)
Tacolneston Tall Tower, 52.52 1.14 56 185 1939 26.53  O’Doherty and Pitt (2024)
United Kingdom
Torthaus, Germany 51.81 10.54 801 147 2106 26.25 Kubistin et al. (2024a)
Trainou, France 47.96 2.11 131 180 1722 28.69 Ramonet et al. (2024c)
Uto, Baltic Sea 59.78 21.37 8 57 1766 33.33 Hatakka and Laurila (2024)
Weybourne, United Kingdom 52.95 1.12 10 0 1954 32.33  Forster and Manning (2024)
Zugspitze-Schneefernerhaus, Germany 47.42 10.98 2667 3 2142 19.74  Couret and Schmidt (2024)
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Figure 4. Wetland emission uncertainties, as per the LPJ-GUESS-unopt ensemble (left) and percentage uncertainty reduction in the LPJ-

GUESS-opt ensemble (right).

The error correlations are generally larger in the prior en-
semble (LPJ-GUESS-unopt) than in the posterior one. In the
spatial dimension, there is a lot of variability, but overall,
there is a very rapid drop in correlation values, which sta-
bilize around 0.55 in LPJ-GUESS-unopt and around 0.35 in
LPJ-GUESS-opt, after approximatively 250 km. The corre-
lations decline further with increased distance, but at a very
slow pace. Temporally, correlations decrease almost instantly
in LPJ-GUESS-unopt, but remain in a 0.55-0.65 range after
that, whereas they decrease more gradually in LPJ-GUESS-
opt, reaching below 0.4 after 200 d.

The interpretation of spatial correlations is further com-
plexified by the fact that the number of active CH4 emission
grid cells is not constant throughout the year, and therefore
the correlation-distance relationship is not constant. For com-
puting Fig. 5, we ignored the time dimension for the spa-
tial correlations plot, and the space dimension for the tem-
poral correlation plot (therefore, the averaged correlation for
two points distant by e.g. 500 km includes the correlation be-
tween emission components at different times of the year).
This somewhat mimics the way the prior error-covariance
matrix B is constructed in LUMIA (i.e. with correlations
based on as a Kronecker product of spatial and temporal cor-
relation matrices).

We performed an sensitivity tests to determine the most
appropriate formulation for the error-covariances in LU-
MIA. The two main inversions, LUMIA-Lprior and LUMIA-
Lpost, use the wetland error distributions (o in Eq. (3), but
correlation matrices based on more traditional exponential
correlation-decay functions (corr(x) = /L), with correla-
tion lengths Lj of 1000 km in C, (shown in Fig. 5), and L; =
30d in C, and their domain-wise annual uncertainty was set
to 0.5 Tg CHy yr—!. This is lower than the variability of the
LPJ-GUESS-unopt ensemble, but that variability of that is
purposefully unrealistically high to allow GRaB-AM to ex-
plore the space of solutions.

https://doi.org/10.5194/acp-25-14251-2025

In addition, two sensitivity inversions were computed,
LUMIA-Lprior+corr and LUMIA-Lpost+corr, which take
their annual uncertainty (Ywetland) directly from the standard
deviation of the annual emissions in their corresponding LPJ-
GUESS ensemble, and use the ensemble-based correlation-
distance relationships shown in Fig. 5. The results were
very similar in the Nordic region of interest, therefore for
most of the analysis, we choose to rely on LUMIA-Lprior
and LUMIA-Lpost. This also acknowledges the fact that
ensemble-derived uncertainty estimates ignore errors from
the driving data of LPJ-GUESS, and from the processes in-
correctly modelled in it. Also, the spatial correlations in the
ensembles are not constant through time, therefore the de-
composition in a spatial and a temporal correlation matrices
is not a very accurate approximation of the actual correla-
tions of the ensemble. Finally, setting the annual uncertainty
to the same value in both inversion facilitates the interpreta-
tion of the results.

3.2 CHy4 emissions
3.2.1  Annual CH4 emissions

The non-optimized LPJ-GUESS model (LPJ-GUESS-unopt)
points to an emission total of 8.7 TgCHyyr~!' from nat-
ural wetlands, including 4.3 TgCHyyr~! in the Nordic
sub-domain. All three observation-informed estimates
point to emission reductions ranging from —37 % (LPJ-
GUESS-opt, 5.5TgCHsyr 1) to —51% (LUMIA-Lpost,
43TgCHyyr™!) at the European scale, and from —42 %
(LPJ-GUESS-opt, 2.5TgCHyyr™!) to —60% (LUMIA-
Lpost, 1.7 TgCH, yr™') in the Nordic subdomain (Fig. 6).
The two sensitivity inversions also lead to very similar re-
sults (See full results in Table S1).

In contrast, the inversions lead to much lower adjust-
ments to non-wetland emissions, both in relative and ab-
solute terms. The priors (i.e. LPJ-GUESS-unopt and LPJ-
GUESS-opt in Fig. 6) are 35 Tg CHy for the full domain, and

Atmos. Chem. Phys., 25, 14251-14277, 2025
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Figure 5. Spatial (top) and temporal (bottom) correlation-distance relationships for the two LPJ-GUESS ensembles. The black line represents

the correlation settings used in the LUMIA simulations.

34.3TgCHyyr~! (=2.8%) and 35.2 TgCHy yr~! (—0.1 %)
respectively in LUMIA-Lprior and LUMIA-Lpost. The con-
tribution of the Nordic region to this is very small, with
3.3TgCH4yr~! in the prior (comparable in magnitude to
the wetland emissions in that region). The inversions re-
duce these to 2.2 Tg CHy yr—! (=33 %) and 2.5 Tg CHy yr~!
(—25 %), respectively in LUMIA-Lprior and LUMIA-Lpost.
Here again, the difference between the reference inversions
and their sensitivity run counterparts is very small.

3.2.2 Seasonal cycle of the wetland emissions

Temporal emission adjustments are shown in Fig. 7 (note the
different y-ranges in the figure). For the figure clarity, re-
sults from the LUMIA-Lprior+corr and LUMIA-Lpost+corr
inversions are shown in Fig. S1.

For wetlands, the patterns are very similar between the
full-domain and the Nordic region (which reflects the fact
that this region accounts for more than half of the European
wetland emissions). In LPJ-GUESS-unopt, the emissions re-

Atmos. Chem. Phys., 25, 14251-14277, 2025

main close to zero in the first quarter of the year, except
for two small peaks at the end of January and of March.
The emissions then follow a “double-peak™ pattern, with a
first peak around late May, particularly pronounced in the
Nordics, and the main peak in August, after which the emis-
sions decline steadily to reach nearly zero at the end of the
year.

The assimilation of in-situ flux data in LPJ-GUESS-opt
leads to roughly a halving of the emissions, mainly during
the May to October period. Within the Nordic region, the
emission peak in May is almost fully preserved, whereas the
remaining part of the summer variability is smoothed. Out-
side the Nordics, the temporal structure of the emissions is
better preserved. LPJ-GUESS-opt points to a reduction of the
amplitude of the emission peaks in January-February (mostly
visible outside the Nordics). On the other hand, the emissions
after October remain similar to LPJ-GUESS-unopt.

The two LUMIA inversions lead to emission reduction in
the Nordic region that are overall consistent with those ob-
tained in LPJ-GUESS-opt, in particular during the summer

https://doi.org/10.5194/acp-25-14251-2025
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Figure 6. Annual emission estimates (in Tg CHy yrfl) for the wetland and non-wetland emission categories. LPJ-GUESS-unopt and LPJ-
GUESS-opt are respectively the priors of LUMIA-Lprior(+corr) and LUMIA-Lpost(+corr).

months (June-August). Both inversions further attenuate the
May emission peak compared to both LPJ-GUESS estimates,
and also point to lower emissions than the LPJ-GUESS sim-
ulations after August. LUMIA-Lprior essentially retains the
seasonal cycle shape of its prior (LPJ-GUESS-unopt), but
with a reduced amplitude, whereas LUMIA-Lpost infers cor-
rections to its prior (LPJ-GUESS-opt) only during some parts
of the year (May and August—-November).

Outside the Nordics (lower left plot in Fig. 7), LUMIA-
Lprior also leads to a rather annually uniform scaling
down of the wetland emissions, compared to its prior (LPJ-
GUESS-unopt). LUMIA-Lpost infers almost no adjustment
to its prior (LPJ-GUESS-opt) during most of the year, except
during the last months (October to December), when it leads
to a signfificant (a third to a half) reduction of the baseline
emissions, and also completely erases small emission peaks
that LPJ-GUESS simulated at the end of October and begin-
ning of December.

The two sensitivity inversions LUMIA-Lprior+corr and
LUMIA-Lpost+corr lead to comparable results, on multi-
day averages. However, LUMIA-Lprior+corr displays an ex-
tremely high short-term variability (much more that LPJ-
GUESS-unopt, its prior). We hypothesize that this is due
to the very high uncertainty on wetland emissions used
in that simulation (6.4 Tg CHy, i.e. ~ 13 times more than
in the other inversions), which, associated to the fact that
LPJ-GUESS-unopt tends to alternate (at the grid cell level)
between days with strong emissions and days with near
zero emissions, makes that inversion very under-constrained.
However, on a multi-day average, it is remarkably similar to
LPJ-GUESS-opt within the Nordic region, until August, and

https://doi.org/10.5194/acp-25-14251-2025

to LUMIA-Lprior for the rest of the year, and also in the rest
of Europe.

Compared to LUMIA-Lprior, LUMIA-Lprior+corr fol-
lows very closely the seasonal variability of their prior (LPJ-
GUESS-opt), shifting it only by a seemingly constant scaling
factor. This is a consequence of the very long distance cor-
relations from the LPJ-GUESS ensemble (see Fig. 5), which
reduces drastically the degrees of freedom of the inversion,
even though the observations provide sufficient constraint to
resolve finer scale patterns.

3.2.3 Temporal variability of the other emissions

The temporal adjustments of the “non-wetland” emission
category groups contributions from many source processes,
mainly anthropogenic, which makes them difficult to inter-
pret at the domain-scale. In the Nordics, the LUMIA inver-
sions infer, on average, a reduction of the non-wetland emis-
sion of 25 % (LUMIA-Lpost) to 32 % (LUMIA-Lprior), with
large variations throughout the year, with a peak increase of
up to 35 % (LUMIA-Lpost, in August), and a reduction to
near zero towards the end of the year.

A part of this variability is likely caused by misattribu-
tions of emission corrections between the two emission cat-
egories. For instance, from April to July, the non-wetland
emissions of LUMIA-Lprior in the Nordics are significantly
lower than those inferred in LUMIA-Lpost, which compen-
sates for an opposite sign difference between these two in-
versions in the wetland emission category. However, while
the reduction in non-wetland emissions towards the end of
the year doesn’t appear probable given the expected stabil-
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ity of anthropogenic emissions over the year, re-allocating it
entirely to the wetland emission category would lead to (sig-
nificantly) negative wetland emissions, which isn’t realistic
either.

A possible alternative (or complementary) explanation
could be error in the CAMS boundary condition: the back-
ground concentrations (ybg in Eq. 2) explains nearly 100 % of
the observed mixing ratio on several days towards the end of
the year, especially at Hyytidld (SMR) and Birkenes (BIR).
The situation is also similar in the two sensitivity inversions.

3.2.4 Spatial distribution

The emission adjustments inferred in GRaB-AM and LU-
MIA optimizations are shown in Fig. 8. To facilitate the com-
parison, wetland adjustments in LUMIA-Lpost are shown
relative to the unoptimized LPJ-GUESS estimate (LPJ-
GUESS-unopt). Maps for the sensitivity inversions are can
be found in Figs. S2, and S3 shows the maps relative to LPJ-
GUESS-opt.

The spatial distribution of wetland emission adjustments
is very similar in the five data-informed products, and largely
proportional to the LPJ-GUESS-unopt emission estimate it-
self. The long error-correlations imposed on the LUMIA in-
versions (and intrinsic to the GRaB-AM optimization), com-
bined with the relative concentration of wetland emissions in
Northern Europe, ensure a convergence between the local-
ization of flux corrections.

Among the most marked features in the adjustment to the
“non-wetland” category, we note a doubling of the emissions
in the Bretagne region of France, and in the Northern part
of the Netherlands. This could point to underestimated agri-
cultural emissions, which are important in these two regions.
Another marked feature is an important (& 80 %) reduction
of the emissions in Northern Italy, which is well correlated
with both high natural emissions (mainly geological) and
high agricultural emissions.

We, however, need to ascertain a level of care when inter-
preting these emission adjustments: For instance emissions
in the west of the continent can also result from the need
to correct an inaccurate boundary condition. There can also
be compensating effects between adjustments of emission
hotspots, such as the city of Paris or the Po Valley, and their
surroundings. These emission corrections should be investi-
gated, but fall outside the scope of our study.

3.3 Fit to observed data

A classical diagnostic in data assimilation is to compare re-
sults (optimized emissions or concentrations) to independent
measurements. For GRaB-AM, such a validation has been
conducted in Kallingal et al. (2024b). For atmospheric in-
versions, the comparison is generally made with indepen-
dent observations of the atmospheric composition, keeping
in mind that biases due to the transport model would likely
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affect similarly the fit to assimilated data and to validation
data.

For this study however, most of the available data in the
Nordics has been assimilated, either in the LUMIA inver-
sions (for concentration data), or in the GRaB-AM assimila-
tion (for in-situ flux measurements). The aim of the model-
data comparisons in this section is therefore not to derive an
objective metric of the respective qualities of each emission
estimates, but rather to gain insights on the forcings that lead
to these emission adjustments.

3.3.1 Eddy-covariance flux estimations

CH4 emissions can be estimated locally on wetland scales
using flux measurement techniques such as Eddy-covariance
measurements, which involve capturing the covariance be-
tween the vertical wind speed and the concentration of
methane, providing high-resolution data on gas exchange
over wetlands. Such observations are for instance provided
by the ICOS network in Europe (ICOS RI et al., 2024),
and the FLUXNET-CHy dataset globally (Pastorello et al.,
2020; Delwiche et al., 2021), which offers aggregates of
high-quality CH4 flux measurements from wetlands. These
networks try to offer a comprehensive coverage of the differ-
ent types of wetlands (with differences in physiological fea-
tures such as hydrology, soil characteristics, vegetation types,
etc., and in spatial features, such as geographical distribution,
size, landscape position and topography).

However, a direct comparison with gridded emissions is
difficult, as the latter accounts for average conditions over
the grid cells, which can be very different from the local
ones. This is illustrated in Fig. 9, which shows a comparison
between our four main emission estimates and in-situ flux
measurements at three sites in the Nordic region (Zarnekow
is slightly outside the Nordic domain used for the emis-
sion comparisons, see Fig. 1), along with the site-level LPJ-
GUESS simulations which were used to train the GRaB-AM
optimization (see Sect. 2.1.2).

The fit of the modelled emissions against the observations
is improved for most sites (clearly shown for e.g. Siikaneva
and Degero) but since the GRaB-AM optimization is seeking
for an optimal parameter set fitting multiple sites simultane-
ously it is not surprising that there are still larger differences
between simulated emissions and observations for any given
individual site (as is the case for Zarnekov where the cali-
brated LPJ-GUESS model fails to simulate the observed peak
values during August 2018).

The site-level simulations achieve systematically a better
fit to the observations than their corresponding gridded prod-
ucts. Among the gridded products, the best fit is obtained
by LUMIA-Lpost, at Siikaneva and Degero, with RMSE re-
duction above 61 % (Table 3), whereas the error reduction is
lower at Zarnekow, with all the data-informed product in a
17 % to 21 % RMSE reduction range. The two sensitivity in-
versions using ensemble-derived covariances lead to slightly
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Figure 7. Daily emissions in the entire domain (top), in the Nordic region (middle) and outside it (bottom), for the wetland (left) and

non-wetland (right) CH4 emissions.

worse fit than the base LUMIA inversions. We also note a
tendency of the LUMIA inversions using LPJ-GUESS-unopt
as a prior to infer significant negative emissions on some days
(Fig. S4): LUMIA adjusts the emissions but preserves most
of their original day-to-day variability, which results in days
with negative emissions.

3.3.2 Atmospheric CH4 observations

The CH4 concentrations corresponding to the four methane
emission estimates are shown in Fig. 10, for the six sites in
the Nordic region. These sites are also among the ones where
the relative contribution of wetland emissions to the fore-
ground concentrations (i.e. the part of the concentrations that
can be adjusted by LUMIA) is the highest. For figure clarity,
a two-days rolling average has been applied to the the mod-
elled timeseries, while the data without weekly averaging is
shown in Fig. S5.

LPJ-GUESS-unopt leads to an overestimation of the con-
centrations throughout the summer (with a mean bias of up to
18 ppb at Norunda, and peak model-data mismatches exceed-
ing 200 ppb). The fit obtained using LPJ-GUESS-opt emis-
sions is more in line with the observations, with mean bi-
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ases ranging from —2.1 ppb at Hyltemossa to +14.1 ppb at
Hyytiélla. However, the CH4 concentrations are still signif-
icantly overestimated towards the end of the year at Pallas,
Norunda and Hytiélla.

Both LUMIA inversions lead to very comparable results in
terms of mean bias, with a tendency to underestimate the ob-
servations (with biases ranging from —0.5 ppb at Uto, down
to —5.4 ppb at Hyltemossa). However, they lead to a signifi-
cant RMSE reduction compared to the LPJ-GUESS simula-
tions, with RMSE values in a 12.8 to 17 ppb range (slightly
lower in LUMIA-Lpost).

The slightly worse statistics of the LUMIA inversions in
terms of bias compared to LPJ-GUESS-opt at the Hylte-
mossa site (and to a lesser degree also at Birkenes) is likely
due to a misfit of observations during the first two weeks
of the year, when there is very little flux adjustments that the
inversions can infer since the prior emissions start on 1st Jan-
uary. However, the bias is well below the typical prescribed
model-data mismatches (which are on the order of 30 ppb),
and the RMSEs are reduced as expected. Nonetheless, this
points to a possible slight underestimation of the emissions
by the inversions.
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Figure 8. Emission adjustments for wetlands (left) and non-wetlands (right) in the three data-informed simulations, compared to the unop-
timized LPJ-GUESS model (LPJ-GUESS-unopt).

On the other hand, the overestimation of the observations port model error, uncertainty on the background concen-
in the LPJ-GUESS-unopt simulation is very large and a clear trations, uncertainty in non-wetland emissions) don’t seem
indication that the emissions modelled by the non-optimized large enough to account for such an overestimation of the

LPJ-GUESS in the summer are refuted by the atmospheric observed data.
observations (and to a lesser extent, for the optimized LPJ-
GUESS simulation). Other sources of uncertainties (trans-
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Table 3. Mean bias and percentage RMSE reduction, compared to the LPJ-GUESS-unopt site simulation (i.e. negative RMSE reduction
values indicate a larger RMSE than the LPJ-GUESS-unopt site simulation), at the three eddy-covariance sites represented in Fig. 9.

RMSE reduction (%) ‘ Mean bias (g CHy m—2 d_l)
Simulation Siikaneva Degero Zarnekow ‘ Siikaneva Degero Zarnekow
LPJ-GUESS-unopt (site) - - - 0.051 0.028 0.118
LPJ-GUESS-opt (site) 74 % 88 % 36 % 0.017 —0.007 —0.016
LPJ-GUESS-unopt (gridded) —55 % 36 % 23 % 0.085 0.037 0.014
LPJ-GUESS-opt (gridded) 25 % 64 % 26 % 0.038 0.009 —0.027
LUMIA-Lprior —10 % 56 % 17 % 0.022 —0.004 —0.022
LUMIA-Lpost 61 % 76 % 27 % 0.016 —0.010 —0.037
LUMIA-Lprior+corr -21 % 57 % 17 % 0.031 -0.011 —0.023
LUMIA-Lpost+corr 43 % 72 % 21 % 0.021  —0.005 —0.054
Table 4. Fit statistics (bias and RMSE, in ppb) of the LUMIA simulations, for the six sites shown in Fig. 10.
Simulation Hyltemossa Uto Pallas Birkenes Norunda Hyytidlla
LPJ-GUESS-unopt 244 41.1 454 22.8 38.0 40.0
RMSE LPJ-GUESS-opt 240 364 27.0 21.3 323 37.7
LUMIA-Lprior 170 157 17.0 15.5 14.5 15.6
LUMIA-Lpost 170 153 12.8 15.3 13.2 15.3
LPJ-GUESS-unopt 08 175 18.4 33 17.4 19.7
Bias LPJ-GUESS-opt -2.1 116 6.8 -0.0 11.3 14.1
LUMIA-Lprior -54 —-05 —40 —3.8 —-34 -2.5
LUMIA-Lpost -53 05 38 —3.8 —-33 —-2.6

4 Discussion

Our study combines two data-informed, in principle comple-
mentary, data assimilation approaches: the parameter estima-
tion approach (GRaB-AM) is process-specific and can lead
to improvements in the prognostic capabilities of the under-
lying process model (LPJ-GUESS), but remains subject to
possible large scale biases, both because of the lack of repre-
sentativity of the assimilated data and the inaccuracy of LPJ-
GUESS. The inverse approach, LUMIA, is arguably more
reliable at large scales, but lacks spatial and process resolu-
tion.

In this context, the development of a full CH4 emission
data assimilation system (CH4-DAS), combining a vegeta-
tion and an atmospheric transport model and capable of as-
similating both eddy-covariance measurements and atmo-
spheric CHy observations appears as the next logical step.
Such systems have been developed successfully for CO;
(Rayner et al., 2005) and have shown promising results.
For methane however, the development is complicated by
the need to account for non-wetland methane emissions,
which although less uncertain in relative terms, dominate
the emission and emission uncertainty budget in absolute
terms (Saunois et al., 2020), and by the complexity of wet-
land models, which can be highly non linear (Kallingal et al.,
2024b).

https://doi.org/10.5194/acp-25-14251-2025

As an intermediate solution, our study explores a two-step
approach, with an atmospheric inversion informed by emis-
sion estimates and error correlations from a CHy parameter
estimation approach. In the following sections we further dis-
cuss the potential and limitations of both approaches, and
how they can help us improve the LPJ-GUESS model.

4.1 LPJ-GUESS parameter estimation (GRaB-AM)

The GRaB-AM approach aims at optimizing specifically
wetland emissions, by fitting a DGVM (LPJ-GUESS) to
eddy-covariance (EC) measurements. The resulting emission
estimates inherits the spatio-temporal structure from the pro-
cess parametrizations implemented in the model. This en-
sures that the emissions remain consistent with their assumed
relationships to factors such as climate and environmental
forcings. Overall, it should improve the predictive capacity
of the model but can also lead to large systematic errors if the
aforementioned parametrizations are insufficiently accurate,
if the sites used for training are not representative enough,
and/or if the selection of parameters to resolve doesn’t pro-
vide the necessary degrees of freedom to fit the data. A spe-
cific difficulty encountered in GRaB-AM is the high non-
linearity of LPJ-GUESS which makes it very challenging
to design a minimization algorithm that avoids getting local
minima and/or parameter equifinality issues.

Atmos. Chem. Phys., 25, 14251-14277, 2025
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Figure 9. Modelled (solid lines) and observed (dots) methane emissions at three sites within the Nordic region. All the values are expressed
in CHy emissions per square-meter of wetland. For clarity of the figure, a weekly rolling average has been applied to the modelled data. A
version of this figure without smoothing can be found in supplementary materials.

The LPJ-GUESS-opt methane emissions used in this study
were taken from a multi-site application of the GRaB-AM
parameter estimation (Kallingal et al., 2024b). The compar-
ison to atmospheric CHy observations and to LUMIA inver-
sion results confirm that, overall, GRaB-AM does lead to an
improvement in the quality of the LPJ-GUESS CH4 emis-
sion estimate, with annual emission estimates comparable
to those obtained through the atmospheric inversions. While
this provides a form of validation for GRaB-AM, the compar-
isons to atmospheric data still shows a tendency to overesti-
mate CHy4 concentrations, in particular in winter (Fig. 10).
This is also to some extent the case in comparisons with

Atmos. Chem. Phys., 25, 14251-14277, 2025

eddy-covariance measurements. This could point to neces-
sary improvements in the underlying LPJ-GUESS model;
Kallingal et al. (2024b) mentioned in particular the simplistic
representation of ebullition and the assumption of zero wind
speed above wetlands. Uncertainties in the prescribed wet-
land area extent could also play a role: the spatial extent of
wetlands can vary interannually, depending on hydrological
factors such as precipitation, evapotranspiration, and water
table depth. However, PEATMAP Xu et al. (2018), which
is used in LPJ-GUESS, doesn’t capture this variability. Xu
et al. (2018) highlights this as a key limitation, noting that
the use of static distributions can introduce significant un-
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Figure 10. Modelled (solid lines) and observed (dots) CH4 mixing ratio at the six observation sites within the Nordic region. Modelled time
series are shown with as two-days rolling average. A non-smoothed version of the figure can be found in Fig. S5.

certainty, especially in regions with strong seasonal or inter-
annual variability in inundation. Finally, the GRaB-AM op-
timization did not include a parameter that directly controls
the sensitivity of the CHy4 emissions to temperature, follow-
ing an initial parameter sensitivity analysis conducted on a
single-site experiment in Kallingal et al. (2024a). However,
our results could indicate an exagerated sensitivity to temper-
ature, as indicated by the persistent emission peak in May,
in both the LPJ-GUESS -opt and -unopt ensembles. In this
case it would be beneficial to integrate the temperature de-
pendency to the parameter estimation if future applications
of GRaB-AM.

4.2 Atmospheric inversion (LUMIA)

This study is the first application of LUMIA inversions to
a non-CO, tracer. Compared to the latest CO, applications
(Munassar et al., 2023; Gémez-Ortiz et al., 2025), the in-
version setup has been simplified: the inversions adjust the
emissions directly, instead of offsets to the prior emissions in
these studies. This is permitted by the comparatively lower
temporal variability of the methane emissions. The uncer-
tainties are of two orders: First, inversions rely on a transport
model to establish the link between observed CH4 mixing

https://doi.org/10.5194/acp-25-14251-2025

ratio and emissions, which can bring systematic errors. Sec-
ondly, the source attribution of the emission adjustments de-
pends for a large part of the prescribed emission uncertainties
and error correlations.

The original aim was to construct the wetland emission
error-covariance matrices based on the variability of the LPJ-
GUESS ensembles of CH4 emissions. These ensembles con-
tain long distance correlations (see Fig. 5), which would the-
oretically provide constraints to help resolve the relative con-
tribution of wetlands to the total CH4 emissions. However,
this carries the risk of producing biased results if these cor-
relations are not accurate, which is likely, given the limita-
tions highlighted in the previous section. We therefore opted
for a more conventional approach to constructing the error-
covariance matrices in LUMIA-Lpri and LUMIA-Lpost, us-
ing the ensemble variability only to distribute a prescribed
annual uncertainties in time and space. Results within the
Nordic region of interest were very similar to those obtained
in the “+corr” sensitivity runs, which is an indication that,
in this region, the observations provide robust enough con-
straints on the emissions.

The uncertainty associated to transport is difficult to as-
sess independently. Comparisons to independent (i.e. non as-
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similated) observations rely on the same model to estimate
the link between concentrations and emissions, therefore
they don’t constitute a totally independent validation of the
source-concentration relationships themselves. Model inter-
comparisons, such as TRANSCOM for global models (Gur-
ney et al., 2004), and EUROCOM for regional models (Mon-
teil et al., 2020) can help identifying divergences between
models and inversion approaches. A detailed intercompari-
son was conducted between the LUMIA and CarboScope-
Regional (CSR) inversion systems to quantify the impor-
tance of model biases in regional CO, inversions (Munas-
sar et al., 2023), which highlighted a stronger sensitivity to
emissions in LUMIA. While this could lead to overestimat-
ing the methane concentrations (given the correct emissions),
the amplitude of the mismatches in LPJ-GUESS-unopt, and
the fact that they occur specifically in regions with important
wetland emissions rather plead for a significant overestima-
tion of the methane emissions by LPJ-GUESS.

Both inversions suggest an almost complete reduction of
non-wetland emissions towards the end of the year in the
Nordic region, which doesn’t seem likely given the impor-
tance of fossil-fuel emissions in that non-wetland emission
category. Comparisons with eddy-covariance data (Fig. 9)
show an overestimation of emissions from wetlands at Si-
ikaneva and Zarnekow during that period, suggesting pos-
sible misattribution of the emission corrections to the non-
wetland category. On the other hand, fully re-allocating these
corrections to wetlands would imply negative emissions,
which is also implausible. We noted that the CAMS back-
ground concentrations were very close to (or even occasion-
ally higher than) the observed values in winter, especially at
Pallas and Hyytidla (Fig. 10): as widespread negative emis-
sions of CH4 are unrealistic, this points to an overestimation
of the background concentrations by the CAMS concentra-
tion baselines, and a possible widespread bias in the inferred
emission totals, although it is difficult to determine whether it
affects the whole inversion period or just the winter months.

Some inversion systems allow the boundary condition to
be adjusted (e.g. Steiner et al., 2024), but this is risky in the
absence of a proper quantification boundary condition un-
certainty and of its variability. Here, the non-wetland emis-
sion category partly acts as a bias correction, but we must
acknowledge this issue as a remaining source of uncertainty.

4.3 Refined estimate of European methane emissions
at high latitude

We have refined the wetland emission estimate in the Nordic
region to a range of 1.7 TgCH4yr~' (LUMIA-Lpost) to
2.5Tg CHy yr~! (LPJ-GUESS-opt), significantly down from
4.3 TgCH4 yr~! in the original LPJ-GUESS-unopt estimate.
While the difference between the LPJ-GUESS-unopt and the
other estimates is large, the relative qualities of the three
data-informed products are more difficult to assess.
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The inversions lead to an improved representation of at-
mospheric observations, compared to LPJ-GUESS-opt, and
LUMIA-Lpost also yields a slight improvement in the fit to
eddy covariance data, compared to the gridded LPJ-GUESS-
opt product. The better fit to the eddy-covariance data by
the site-specific LPJ-GUESS simulations (Fig. 9) is expected
since (1) GRaB-AM has already maximized the fit to these
data, leaving only limited scope for improvement to LU-
MIA, and (2) these simulations use site-specific meteorolog-
ical forcings, whereas the emissions in LUMIA and in the
gridded LPJ-GUESS simulations are representative of larger
0.25° x 0.25° grid cells. Nonetheless, the estimates in LU-
MIA could also be impacted by systematic error, such as bi-
ases from the boundary condition, transport model errors (as
highlighted in Munassar et al., 2023), or category attribution
errors, as discussed in the previous sections.

Direct comparisons with other studies are complicated be-
cause of the small size of our Nordic domain, and other vege-
tation models have their own shortcomings, and are therefore
not necessarily more realistic than LPJ-GUESS. Nonethe-
less, in a comparison of Arctic wetland emission estimates
from six different vegetation models, Aalto et al. (2025)
found that, although not a complete outlier, LPJ-GUESS to
be clearly at the high end of the range. In the Ioannidis
et al. (2025) European CHy inversion intercomparison, in
the framework of which our LUMIA CHy setup was devel-
oped, the JSBACH-HIMMELI model (Susiluoto et al., 2018;
Raivonen et al., 2017; Petrecsu et al., 2023) was used to pro-
vide prior wetland emissions. For the same Arctic domain,
the annual wetland emissions add up to 1.3 TgCHg4, 23 %
lower than the ones in LUMIA-Lpost (Fig. 11). LUMIA-
Lpost is also the closest to JSBACH-HIMMELI in terms of
seasonality, with a summer maximum in August, and near
zero emissions in winter time.

Taken together, these comparisons would point at
LUMIA-Lpost being the most realistic of our three wetland
emission estimates. The contribution of wetlands from our
Nordic domain to the overall wetland CH4 emission budget
is however very small, but it suggests a benefit of repeating
the study, with an improved setup, over a wider pan-Arctic
region.

4.4 Towards a coupled flux-concentration CH4 data
assimilation system

The initial aim of the study was the implementation of a
two-step estimation approach, with a transmission of uncer-
tainty between the vegetation model parameter estimation
(GRaB-AM) and the atmospheric inversion (LUMIA). Two
main complications were encountered: first, the error struc-
ture from the parameter estimation step could not be easily
approximated in a form usable by the inversion (i.e. as a set
of standard deviations and spatial and temporal correlation
matrices). This purely technical limitations could be over-
come, e.g. by using an ensemble minimization approach in
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LUMIA, which usually don’t need an explicit representation
of the error covariance matrices (e.g. Bisht et al., 2023).

A more fundamental issue is the complexity of LPJ-
GUESS (and of dynamic global vegetation models in gen-
eral). The heavy parametrization, non linear interactions, and
tightly coupled processes (e.g. photosynthesis, allocation,
soil moisture, plant types, etc.) in the model make its calibra-
tion against EC data computationally demanding and prone
to equifinality. However, increased complexity doesn’t nec-
essarily translate in higher predictive performance (Famigli-
etti et al., 2021). The development of diagnostic models
for wetland methane emissions, e.g. McNicol et al. (2023);
Bernard et al. (2025), similar to those existing for CO, (Ma-
hadevan et al., 2008; Knorr and Heimann, 1995; Potter et al.,
1993), could help overcome these limitations. In contrast
to DGVMs, diagnostic models do not attempt to simulate
ecosystems, but focus solely on empirical parameterizing of
their emissions based on a handful of known or observable or
externally modelled parameters (e.g. net primary production,
water table depth, temperature, etc.). Alternative diagnostic
models based on Machine Learning (ML) algorithms remove
the need to explicitly formulate relationships between the ob-
servables and the inferred CHy emissions (e.g. Virkkala et al.,
2025; Ying et al., 2025; Ross et al., 2024). This however
limits their scope to studying emissions during the observ-
able period (i.e. the past few decades at most), and DGVMs
will remain needed for their long-term predictive capabili-
ties, therefore it is crucial to ensure that data assimilation ex-
periments such as ours eventually lead to improvements in
the DGVMs.

In the past years, subsequent work has also been conducted
by the anthropogenic emission inventory compilers to pro-
duce uncertainty estimates (e.g. Solazzo et al., 2021), which
should lead to a better representation of the anthropogenic
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Figure 11. Wetland CH4 emissions in the LPJ-GUESS and LUMIA products, compared to the JSBACH-HIMMELI emission estimate from
Toannidis et al. (2025).

emission uncertainties in inversions, and in turn improve the
reliability of their source attribution.

5 Conclusions

We have performed European CHy4 inversions using the LU-
MIA regional atmospheric inversion system. Prior estimates
for methane emissions from wetlands, as well as the associ-
ated uncertainties, were taken from a parameter estimation of
the LPJ-GUESS model (GRaB-AM, Kallingal et al., 2024b),
while prior emissions from other methane sources were taken
from conventional emission inventories (e.g. EDGAR 6.0
for anthropogenic emissions). The primary objective was to
compare and cross-validate the two optimization approaches,
but we also wanted to determine whether the additional con-
straints from eddy-covariance data could help the inversion
resolve not only the total CH4 emissions, but also the contri-
bution from wetlands to this total.

We focused most of our analysis on emissions from wet-
lands in the Nordic region (0° E, 55° N; 30°E, 70° N), where
wetlands dominate the emission budget: this limits the risk
that the inversions incorrectly allocate emission adjustments
between the wetland and non-wetland categories. We found
a strong agreement between the different data-informed ap-
proaches (GRaB-AM, informed by EC data; LUMIA, in-
formed by atmospheric CH4 measurements; and LUMIA
constrained by wetland emissions from GRaB-AM, informed
by both observation types): all three approaches point to a
strong (by a factor two to three) overestimation of the CHy
wetland emissions by the un-optimized LPJ-GUESS model.
The GRaB-AM approach leads to significant improvement of
the fit to atmospheric data (which it didn’t assimilate), which
constitutes a form of additional validation for the approach.
The inversion using prior wetland emissions from GRaB-AM
also lead to the best overall fit to observations.
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We have explored implementing a more complete uncer-
tainty transmission between the parameter estimation and
atmospheric inversion steps, constraining the LUMIA in-
versions with error correlations from the GRaB-AM LPJ-
GUESS ensembles. In theory, the long distance correlations
in these ensembles should let us extend our analysis to re-
gions where wetland emissions are significant but contribute
a smaller fraction of the emission total. However, despite an
improved agreement to atmospheric observations, the fit of
LPJ-GUESS to eddy covariance data remains sub-optimal,
even after the GRaB-AM parameter estimation, suggesting
that these error correlations may not be entirely realistic. This
points either to shortcomings in LPJ-GUESS itself, or to the
need to include more degrees of freedom in the GRaB-AM
approach, by increasing the number of parameters, to allow
a more realistic fit to the eddy-covariance data in multi-site
experiments.
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https://doi.org/10.5281/zenodo.17047032 (Monteil et al. , 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-14251-2025-supplement.

Author contributions. GM designed the LUMIA inversion sys-
tem and performed the atmospheric inversions. JTK designed the
GRaB-AM data assimilation system and computed the LPJ-GUESS
ensembles. GM, MS and JTK collectively designed the study. GM
wrote the manuscript, with contributions and critical feedbacks
from MS and JTK.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Also, please note that this paper has not re-
ceived English language copy-editing. Views expressed in the text
are those of the authors and do not necessarily reflect the views of
the publisher.

Acknowledgements. We thank Sander Houweling and Liesbeth
Florentie for coordinating the inverse modeling intercomparison
that lead to this study, preparing and distributing the inversion in-

Atmos. Chem. Phys., 25, 14251-14277, 2025

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

puts (prior emissions, observations, background concentrations).
We also thank Arjo Segers (TNO) who computed the CAMS sim-
ulation and the baseline concentrations used in the inversions. We
acknowledge all the data providers cited in Table 2.

We acknowledge the PIs of the in situ flux measure-
ments obtained from FLUXNET (https://fluxnet.org/data/
fluxnet2015-dataset/, last access: 23 October 2025) and AVAA-
SMEAR (https://smear.avaa.csc.fi/, last access: 23 October 2025,
for SMEAR II data, Ivan Mammarella and colleagues) for the open
data.

We also thank the data providers for the atmospheric observa-
tions: Marc Delomotte, Morgan Lopez, Olivier Laurent, Camille
Yver and Michel Ramonet from the Laboratoire des Sciences du
Climat et de I’Environnement, Sebastien Conil from ANDRA, Fran-
cois Gheusi from the Laboratoire d’ Aérologie, Aurélie Colomb and
Jean-March Pichon from Université Clermont Auvergne, Tobias
Kneuer, Dagmar Kubistin, Christian Plass-Duelmer, Matthias Lin-
dauer and Jennifer Mueller-Williams from the Deutscher Wetterdi-
enst, Michael Heliasz, Tobias Biermann, Irene Lehner and Meelis
Molder from Lund University, Giovanni Manca from the Joint Re-
search Centre Ispra, Lukasz Chmura and Jaroslaw Necki from the
Akademia Gérniczo-Hutnicza, Huilin Chen and Bert Scheeren from
the University of Groningen, Juha Hatakka and Tuomas Laurila
from the Finish Meteorological Institute, Ivan Mammarella from
Helsinki University, Jgor Arduini and Stefano Amendola from the
University of Urbino, Dep. of Pure and Applied Sciences (DIS-
PEA), Italian Air Force Meteorological Service, Lazlo Haspra from
the Hungarian Meteorological Service (now at ATOMKI), Samual
Hammer from the Institut fiir Umweltphysik, Martin Steinbacher
from the Swiss Federal Laboratories for Materials Science and
Technology (EMPA), Frank Meinhardt and Cedric Couret from
the German Environmental Agency (UBA), Kieran Stanley, Simon
O’Doherty and Joseph Pitt from the University of Bristol, Martina
Schmidt from the University of Heidelberg, and Grant Foster from
the University of East Anglia.

This research is a contribution to the Strategic Research Area
“ModElling the Regional and Global Earth system” (MERGE).
MERGE is funded by the Swedish government. The computa-
tions and data handling were enabled by resources provided by
the National Academic Infrastructure for Supercomputing in Swe-
den (NAISS), partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.

Financial support. This research has been supported by the
Strategic Research Area “Biodiversity and Ecosystem services in a
Changing Climate” (BECC, funded by the Swedish government),
Lund University (grant no. DnrV 2018/467), the CoCO2 project
funded by the EU Horizon 2020 Framework Programme, H2020
Industrial Leadership (grant no. 958927) and the AVENGERS
project funded by the EU HORIZON EUROPE Framework
Programme, Climate, Energy and Mobility (grant no. 101081322).

The publication of this article was funded by the
Swedish Research Council, Forte, Formas, and Vinnova.

Review statement. This paper was edited by Tim Butler and re-
viewed by two anonymous referees.

https://doi.org/10.5194/acp-25-14251-2025


https://doi.org/10.5281/zenodo.17467258
https://doi.org/10.5281/zenodo.17047032
https://doi.org/10.5194/acp-25-14251-2025-supplement
https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/
https://smear.avaa.csc.fi/

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

References

Aalto, T., Tsuruta, A., Mikeld, J., Miiller, J., Tenkanen, M., Burke,
E., Chadburn, S., Gao, Y., Mannisenaho, V., Kleinen, T., Lee,
H., Leppédnen, A., Markkanen, T., Materia, S., Miller, P. A,
Peano, D., Peltola, O., Poulter, B., Raivonen, M., Saunois, M.,
Warlind, D., and Zaehle, S.: Air temperature and precipitation
constraining the modelled wetland methane emissions in a bo-
real region in northern Europe, Biogeosciences, 22, 323-340,
https://doi.org/10.5194/bg-22-323-2025, 2025.

Arduini, J.: Atmospheric CH4 at Monte Cimone by Uni-
versity of Urbino, Dep. of Pure and Applied Sciences
(DISPEA) [data set], https://gaw.kishou.go.jp/search/file/
0074-6042-1002-01-01-9999 (last access: 23 October 2025),
2025.

Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S.,
Miller, J. B., Bruhwiler, L., Oh, Y., Tans, P. P., Apadula, F., Gatti,
L. V., Jordan, A., Necki, J., Sasakawa, M., Morimoto, S., Di Io-
rio, T., Lee, H., Arduini, J., and Manca, G.: Estimating emis-
sions of methane consistent with atmospheric measurements of
methane and §13C of methane, Atmos. Chem. Phys., 22, 15351
15377, https://doi.org/10.5194/acp-22-15351-2022, 2022.

Batjes, N. H.: ISRIC-WISE Global Data Set of Derived
Soil Properties on a 0.5 by 0.5 Degree Grid (Ver. 3.0),
ISRIC Report, https://data.isric.org/geonetwork/srv/api/records/
d9eca770-29a4-4d95-bf93-f32e1ab419¢3 (last access: 23 Octo-
ber 2025), 2005.

Bergamaschi, P. and Manca, G.: ICOS ATC CHy4 Release from Ispra
(100.0 m), 2017-12-15-2025-03-31, ICOS [data set], https://hdl.
handle.net/11676/8yimXenpgumK1-E-AZudMxr1 (last access:
23 October 2025), 2025.

Bergamaschi, P., Segers, A., Brunner, D., Haussaire, J.-M., Henne,
S., Ramonet, M., Arnold, T., Biermann, T., Chen, H., Conil,
S., Delmotte, M., Forster, G., Frumau, A., Kubistin, D.,
Lan, X., Leuenberger, M., Lindauer, M., Lopez, M., Manca,
G., Miiller-Williams, J., O’Doherty, S., Scheeren, B., Stein-
bacher, M., Trisolino, P., Vitkova, G., and Yver Kwok, C.:
High-resolution inverse modelling of European CHj4 emis-
sions using the novel FLEXPART-COSMO TMS5 4DVAR in-
verse modelling system, Atmos. Chem. Phys., 22, 13243-13268,
https://doi.org/10.5194/acp-22-13243-2022, 2022.

Bernard, J., Salmon, E., Saunois, M., Peng, S., Serrano-Ortiz,
P, Berchet, A., Gnanamoorthy, P., Jansen, J., and Ciais, P.:
Satellite-based modeling of wetland methane emissions on a
global scale (SatWetCH4 1.0), Geosci. Model Dev., 18, 863-883,
https://doi.org/10.5194/gmd-18-863-2025, 2025.

Bisht, J. S. H., Patra, P. K. Takigawa, M., Sekiya, T.,
Kanaya, Y., Saitoh, N., and Miyazaki, K.: Estimation of CHy
Emission Based on an Advanced 4D-LETKF Assimilation
System, Geoscientific Model Development, 16, 1823-1838,
https://doi.org/10.5194/gmd-16-1823-2023, 2023.

Chen, H. and Scheeren, B.: Atmospheric CH4 Product, Lutjewad
(60.0 m), 2006-05-17-2024-03-31, ICOS [data set], https://hdl.
handle.net/11676/dvsu8Y6AX9- YmpPwzp-hXVKC (last ac-
cess: 23 October 2025), 2024.

Chmura, L., Chmura, L., and Necki, J.: Atmospheric CHy
Product, Kasprowy Wierch (7.0m), 1996-07-05-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/

https://doi.org/10.5194/acp-25-14251-2025

14271

Qowtphdwpy95uFVvgPk-VES  (last 23 October
2025), 2024.

Christensen, T. R.: Wetland Emissions on the Rise, Nature Cli-
mate Change, 14, 210-211, https://doi.org/10.1038/s41558-024-
01938-y, 2024.

Colomb, A., Ramonet, M., Yver-Kwok, C., Delmotte, M., Lopez,
M., and Pichon, J.-M.: Atmospheric CH4 product, puy de
dome (10.0 m), 2011-04-18-2024-03-31, ICOS [data set], https:
//hdlLhandle.net/11676/_UMq711VgOR4-5RawhPQC1nU (last
access: 23 October 2025), 2024.

Couret, C. and Schmidt, M.: Atmospheric CHy Product, Zugspitze
(3.0m), 2002-01-01-2024-03-31, ICOS [data set], https://hdl.
handle.net/11676/eFh1N9EGf70Y Xbfrwt 1 IURYw (last access:
23 October 2025), 2024.

Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E.,
Lo, V. E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., and Vig-
nati, E.: Fossil CO, and GHG Emissions of All World Countries,
https://doi.org/10.2760/687800, 2019.

Delmotte, M., Gheusi, F.,, Lopez, M., and Ramonet, M.: At-
mospheric CH4 Product, Pic Du Midi (28.0m), 2014-05-
07-2024-03-31, ICOS [data set], https://hdl.handle.net/11676/
OK113K5n2itBpxlqzgakrZKp (last access: 23 October 2025),
2024a.

Delmotte, M., Lopez, M., and Ramonet, M.: Atmospheric
CH4  Product, Finokalia (15.0m), 2014-06-05-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/
C06b8z3xyRgR4BVFHr4LcxAl  (last 23 October
2025), 2024b.

Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E.,
McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Can-
fora, E., Cheah, Y.-W., Christianson, D., Alberto, Ma. C. R.,
Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billes-
bach, D. P., Bohrer, G., Bracho, R., Buchmann, N., Campbell,
D. L, Celis, G., Chen, J., Chen, W., Chu, H., Dalmagro, H. J.,
Dengel, S., Desai, A. R., Detto, M., Dolman, H., Eichelmann, E.,
Euskirchen, E., Famulari, D., Fuchs, K., Goeckede, M., Gogo,
S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Graham, S. L.,
Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T.,
Hollinger, D., Hortnagl, L., Iwata, H., Jacotot, A., Jurasinski, G.,
Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K.
W., Lai, D. Y. E,, Lohila, A., Mammarella, 1., Belelli Marchesini,
L., Manca, G., Matthes, J. H., Maximov, T., Merbold, L., Mitra,
B., Morin, T. H., Nemitz, E., Nilsson, M. B., Niu, S., Oechel, W.
C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. L.,
Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu, Y., Sachs,
T., Sakabe, A., Sanchez, C. R., Schuur, E. A., Schifer, K. V. R.,
Sonnentag, O., Sparks, J. P., Stuart-Haéntjens, E., Sturtevant, C.,
Sullivan, R. C., Szutu, D. J., Thom, J. E., Torn, M. S., Tuittila, E.-
S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin,
A., Vazquez-Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G.
L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z.,
Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.:
FLUXNET-CHy: a global, multi-ecosystem dataset and analy-
sis of methane seasonality from freshwater wetlands, Earth Syst.
Sci. Data, 13, 3607-3689, https://doi.org/10.5194/essd-13-3607-
2021, 2021.

Drinkwater, A., Palmer, P. L., Feng, L., Arnold, T., Lan, X., Michel,
S. E., Parker, R., and Boesch, H.: Atmospheric data support a
multi-decadal shift in the global methane budget towards nat-

access:

access:

Atmos. Chem. Phys., 25, 14251-14277, 2025


https://doi.org/10.5194/bg-22-323-2025
https://gaw.kishou.go.jp/search/file/0074-6042-1002-01-01-9999
https://gaw.kishou.go.jp/search/file/0074-6042-1002-01-01-9999
https://doi.org/10.5194/acp-22-15351-2022
https://data.isric.org/geonetwork/srv/api/records/d9eca770-29a4-4d95-bf93-f32e1ab419c3
https://data.isric.org/geonetwork/srv/api/records/d9eca770-29a4-4d95-bf93-f32e1ab419c3
https://hdl.handle.net/11676/8yimXenpgumK1-E-AZudMxr1
https://hdl.handle.net/11676/8yimXenpgumK1-E-AZudMxr1
https://doi.org/10.5194/acp-22-13243-2022
https://doi.org/10.5194/gmd-18-863-2025
https://doi.org/10.5194/gmd-16-1823-2023
https://hdl.handle.net/11676/dvsu8Y6AX9-YmpPwzp-hXVKC
https://hdl.handle.net/11676/dvsu8Y6AX9-YmpPwzp-hXVKC
https://hdl.handle.net/11676/Qowtphdwpy95uFVvqPk-VES
https://hdl.handle.net/11676/Qowtphdwpy95uFVvqPk-VES
https://doi.org/10.1038/s41558-024-01938-y
https://doi.org/10.1038/s41558-024-01938-y
https://hdl.handle.net/11676/_UMq711VgOR4-5RawhPQC1nU
https://hdl.handle.net/11676/_UMq711VgOR4-5RawhPQC1nU
https://hdl.handle.net/11676/eFh1N9EGf7oYXbfrwt1IURYw
https://hdl.handle.net/11676/eFh1N9EGf7oYXbfrwt1IURYw
https://doi.org/10.2760/687800
https://hdl.handle.net/11676/OK1l3K5n2itBpxIqzgakrZKp
https://hdl.handle.net/11676/OK1l3K5n2itBpxIqzgakrZKp
https://hdl.handle.net/11676/C06b8z3xyRgR4BvFHr4LcxAI
https://hdl.handle.net/11676/C06b8z3xyRgR4BvFHr4LcxAI
https://doi.org/10.5194/essd-13-3607-2021
https://doi.org/10.5194/essd-13-3607-2021

14272

ural tropical emissions, Atmos. Chem. Phys., 23, 8429-8452,
https://doi.org/10.5194/acp-23-8429-2023, 2023.

Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Ab-
shire, J. B., Bovensmann, H., Burrows, J. P., Chevallier, F., Ciais,
P, Crevoisier, C., Fix, A., Flamant, P., Frankenberg, C., Gibert,
F.,, Heim, B., Heimann, M., Houweling, S., Hubberten, H. W.,
Jockel, P, Law, K., Low, A., Marshall, J., Agusti-Panareda, A.,
Payan, S., Prigent, C., Rairoux, P., Sachs, T., Scholze, M., and
Wirth, M.: MERLIN: A French-German Space Lidar Mission
Dedicated to Atmospheric Methane, Remote Sensing, 9, 1052,
https://doi.org/10.3390/rs9101052, 2017.

Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.:
Gridded maps of geological methane emissions and
their isotopic signature, Earth Syst. Sci. Data, 11, 1-22,
https://doi.org/10.5194/essd-11-1-2019, 2019.

Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S.,
Quetin, G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang,
Y., Bonal, D., Bloom, A. A., Williams, M., and Konings, A. G.:
Optimal model complexity for terrestrial carbon cycle prediction,
Biogeosciences, 18, 2727-2754, https://doi.org/10.5194/bg-18-
2727-2021, 2021.

Forster, G. and Manning, A.: Atmospheric CH4 Product, Wey-
bourne (10.0m), 2013-03-06-2024-03-31, ICOS [data set],
https://hdl.handle.net/11676/z7mpwPjyMPWI5aRv7eW52kMS
(last access: 23 October 2025), 2024.

Forster, P. M., Smith, C. J., Walsh, T., Lamb, W. F., Lamboll, R.,
Hauser, M., Ribes, A., Rosen, D., Gillett, N., Palmer, M. D.,
Rogelj, J., von Schuckmann, K., Seneviratne, S. I., Trewin, B.,
Zhang, X., Allen, M., Andrew, R., Birt, A., Borger, A., Boyer,
T., Broersma, J. A., Cheng, L., Dentener, F., Friedlingstein, P.,
Gutiérrez, J. M., Giitschow, J., Hall, B., Ishii, M., Jenkins, S.,
Lan, X., Lee, J.-Y., Morice, C., Kadow, C., Kennedy, J., Kil-
lick, R., Minx, J. C., Naik, V., Peters, G. P, Pirani, A., Pongratz,
J., Schleussner, C.-F., Szopa, S., Thorne, P, Rohde, R., Rojas
Corradi, M., Schumacher, D., Vose, R., Zickfeld, K., Masson-
Delmotte, V., and Zhai, P.: Indicators of Global Climate Change
2022: annual update of large-scale indicators of the state of the
climate system and human influence, Earth Syst. Sci. Data, 15,
2295-2327, https://doi.org/10.5194/essd-15-2295-2023, 2023.

Gomez-Ortiz, C., Monteil, G., Basu, S., and Scholze, M.:
A COZ—AMCOz inversion setup for estimating European
fossil CO, emissions, Atmos. Chem. Phys., 25, 397-424,
https://doi.org/10.5194/acp-25-397-2025, 2025.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J.,
Pak, B. C., Baker, D., Bousquet, P, Bruhwiler, L., Chen,
Y.-H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki,
T., Maksyutov, S., Peylin, P., Prather, M., and Taguchi,
S.: Transcom 3 Inversion Intercomparison: Model Mean Re-
sults for the Estimation of Seasonal Carbon Sources and
Sinks, Global Biogeochemical Cycles, 18, 2003GB002111,
https://doi.org/10.1029/2003GB002111, 2004.

Hammer, S. and Levin, I.: Atmospheric CHy Product, Heidel-
berg (30.0m), 1996-01-01-2024-03-31, ICOS [data set], https:
//hdl.handle.net/11676/11BrV9jz9D4hIHW VSbgImMG (last ac-
cess: 23 October 2025), 2024.

Harris, 1., Osborn, T. J., Jones, P, and Lister, D.: Ver-
sion 4 of the CRU TS Monthly High-Resolution Grid-
ded Multivariate Climate Dataset, Scientific Data, 7, 109,
https://doi.org/10.1038/s41597-020-0453-3, 2020.

Atmos. Chem. Phys., 25, 14251-14277, 2025

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

Hastings, W. K.: Monte Carlo Sampling Methods Using Markov
Chains and Their Applications, Biometrika, 57, 97-109,
https://doi.org/10.1093/biomet/57.1.97, 1970.

Haszpra, L.: Atmospheric CHy at Hegyhdtsdl hattérszennyettség-
mérd 4llomds by Institute for Nuclear Research, dataset pub-
lished as CH4_HUNG6034_tower-insitu_ ATOMKI_tower82 at
WDCGG, ver. 2025-01-01-0237 [data set], https://gaw.kishou.
go.jp/search/file/0157-6034-1002-02-01-6083 (last access: 24
October 2025), 2025.

Hatakka, J. and Laurila, T.: Atmospheric CH4 Product, Ut6 —
Baltic Sea (57.0m), 2012-03-23-2024-03-31, ICOS [data set],
https://hdl.handle.net/11676/DIsAmw1ZIAmRJHNB_8dFN_jq
(last access: 23 October 2025), 2024.

Heliasz, M. and Biermann, T.: Atmospheric CHy Product, Hyl-
temossa (150.0 m), 2016-12-13-2024-03-31, ICOS [data set],
https://hdl.handle.net/11676/dwFbNZQ1Y5_B6cZSkUopJbtm
(last access: 23 October 2025), 2024.

Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M.,
Kaminski, T., Krol, M., Michalak, A. M., and Patra, P.
Global inverse modeling of CH4 sources and sinks: an
overview of methods, Atmos. Chem. Phys., 17, 235-256,
https://doi.org/10.5194/acp-17-235-2017, 2017.

ICOS RI, Aalto, J., Aalto, P, Aaltonen, H., Aiguier, T., Aku-
bia, J., Ala-Konni, J., Alivernini, A., Aluome, C., Andersson,
T., Arca, A., Arriga, N., Aurela, M., BRECHET, L., Baab, F,,
Back, J., Baltes, U., Baneschi, I., Barten, S., Baur, T., Bauters,
M., Bazot, S., Beauclair, P., Becker, N., Belelli Marchesini,
L., Bergstrom, G., Bernhofer, C., Berveiller, D., Biermann, T.,
Bignotti, L., Biron, R., Bloor, J., Bodson, B., Boeckx, P., Bo-
gaerts, G., Bonal, D., Boon, G., Bornet, F., Bortoli, M., Bosio,
1., Brut, A., Briimmer, C., Buchmann, N., Bulonza, E., Burban,
B., Buysse, P., Bath, A., Calandrelli, D., Calvet, J.-C., Canut-
Rocafort, G., Carrara, A., Cavagna, M., Ceschia, E., Chabbi, A.,
Chan, T., Chebbi, W., Chianucci, F., Chipeaux, C., Chopin, H.,
Christen, A., Chrysoulakis, N., Claverie, N., Cobbe, 1., Cohard,
J.-M., Colosse, D., Conte, A., Corsanici, R., Coulaud, C., Cour-
tois, P., Coyle, M., Cremonese, E., Crill, P., Cuntz, M., Cuocolo,
D., Czerny, R., DEPUYDT, J., Daelman, R., Darenov4, E., Dar-
sonville, O., De Ligne, A., De Meulder, T., De Simon, G., De-
cau, M.-L., Dell’Acqua, A., Delorme, J.-P., Delpierre, N., De-
moulin, L., Denou, J.-L., Di Tommasi, P., Dienstbach, L., Dig-
nam, R., Dolfus, D., Domec, J.-C., Douxfils, B., Drosler, M.,
Driie, C., Dufréne, E., Dumont, B., Durand, B., Dusek, J., Eberl,
J., Eichelmann, U., Ekili, D., Engelmann, T., Esposito, A., Esser,
0., Etienne, J.-C., Etzold, S., Eugster, W., Famulari, D., Fares,
S., Faures, A., Fauvel, Y., Feigenwinter, 1., Feldmann, I., Fin-
cham, W., Finco, A., Fischer, M., Flechard, C., Foltynova, L.,
Foulquier, A., Friborg, T., Galliot, J.-N., Galvagno, M., Gar-
cia Quiros, 1., Garrigou, C., Gastal, F., Geilfus, N.-X., Gerosa,
G., Gessler, A., Gharun, M., Giamberini, M., Gianelle, D., Gib-
rin, H., Gimper, S., Goded, 1., Graf, A., Granouillac, F., Grehan,
E., Grenier, M., Grudd, H., Griinwald, T., Guillot, T., Hamon,
Y., Harvey, D., Hatakka, J., Haustein, A., Hehn, M., Heinesch,
B., Helfter, C., Heliasz, M., Holst, J., Holst, T., Holtmann, A.,
Hug, C., Huguet, C., Hini, M., Hortnagl, L., Ibrom, A., Ilardi, E.,
Jackowicz-Korczynski, M. A., Jacotot, A., Janssens, 1., Jensen,
R., Jocher, G., Joetzjer, E., Jones, M., Jarvi, L., Kempf, J., Kero-
nen, P., Kettler, M., Kimbesa, F., Kivalov, S., Klatt, J., Kljun,
N., Klosterhalfen, A., Klumpp, K., Knohl, A., Kogxylakis, G.,

https://doi.org/10.5194/acp-25-14251-2025


https://doi.org/10.5194/acp-23-8429-2023
https://doi.org/10.3390/rs9101052
https://doi.org/10.5194/essd-11-1-2019
https://doi.org/10.5194/bg-18-2727-2021
https://doi.org/10.5194/bg-18-2727-2021
https://hdl.handle.net/11676/z7mpwPjyMPWI5aRv7eW52kMS
https://doi.org/10.5194/essd-15-2295-2023
https://doi.org/10.5194/acp-25-397-2025
https://doi.org/10.1029/2003GB002111
https://hdl.handle.net/11676/IIBrV9jz9D4hlHWVSbg1mMG
https://hdl.handle.net/11676/IIBrV9jz9D4hlHWVSbg1mMG
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1093/biomet/57.1.97
https://gaw.kishou.go.jp/search/file/0157-6034-1002-02-01-6083
https://gaw.kishou.go.jp/search/file/0157-6034-1002-02-01-6083
https://hdl.handle.net/11676/DIsAmw1ZIAmRJHNB_8dFN_jq
https://hdl.handle.net/11676/dwFbNZQ1Y5_B6cZSkUopJbtm
https://doi.org/10.5194/acp-17-235-2017

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

Kolari, P., Kolbe, S., Korkiakoski, M., Korrensalo, A., Kowal-
ska, N., Kozii, N., Krejza, J., Kristoffersson, A., Kruijt, B.,
Kruszewski, A., Kulmala, L., Kumar, S., Kummer, S., Laakso,
H., Lafont, S., Lange Rgnn, E., Larmanou, E., Laurila, T., Lee-
son, S., Lefevre, L., Lehner, 1., Lemaire, B., Leonard, J., Lev-
ula, J., Levy, P, Liechti, K., Liger, L., Lily, J.-B., Limousin, J.-
M., Linderson, M.-L., Lindgren, K., Lo Cascio, M., Lohila, A.,
Longdoz, B., Lootens, R., Loubet, B., Loustau, D., Lucarini, A.,
Lundin, E., L6épez-Blanco, E., Lofvenius, P., Magliulo, V., Mam-
marella, 1., Manco, A., Manise, T., Marcolla, B., Marek, M. V.,
Marklund, P., Markwitz, C., Marloie, O., Marras, S., Martin, R.,
Martin - Saint Paul, N., Marty, M., Martin, M. P., Marzuoli, R.,
Matilainen, T., Mattes, J., Matteucci, M., Mauder, M., Maurel,
W., Mbifo, J., Meggio, F., Meier, F., Meier, P., Meire, A., Meis,
J., Mensah, C., Meyer, H., Michaud, L., Minerbi, S., Moderow,
U., Montagnani, L., Moreno, G., Moretti, V., Morfin, A., Morra
di Cella, U., Mullinger, N., Mikeld, T., Médnnikko, M., Ménnisto,
E., Molder, M., Mgller, F., Naiken, A., Naseer, M., Nemitz, E.,
Nezval, O., Nilsson, M., Norkko, J., Ocallaghan, F., Ojala, A.,
Orgun, A., Ottosson-Lofvenius, M., Ourcival, J.-M., Paasch, S.,
Paci, A., Pavelka, M., Pavot, L., Peichl, M., Peressotti, A., Perot-
Guillaume, C., Perrot, C., Pihlatie, M., Pilegaard, K., Pilkottu,
R., Piret, A., Pitacco, A., Plapp, T., Plebani, D., Politakos, K.,
Prasse, H., Provenzale, A., Pumpanen, J., Raco, B., Rainne,
J., Rakos, N., Rasmussen, L., Rebmann, C., Redepenning, D.,
Rinne, J., Rodeghiero, M., Roland, M., Rudd, D., Rgjle Chris-
tensen, T., Sahoo, G., Salze, P., Schaarup Sgrensen, J., Schindler,
D., Schlaipfer, M., Schmidt, M., Schmidt, P., Schmitt Oehler,
M., Schrader, F., Segers, J., Sibret, T., Siebicke, L., Siivola, E.,
Simioni, G., Sirca, C., Smith, P., Snellen, H., Sorgi, T., Soudani,
K., Spano, D., Spence, K., Spyridakis, N., Stagakis, S., Stanik,
K., Staudinger, M., Stecher, M., Stellner, S., Stutz, T., Suopa-
jarvi, S., Sutter, E., Taipale, R., Tallec, T., Tenca, F., Tezza, L.,
Thimonier Rickenmann, A., Thyrion, T., Tiedemann, F., Tomel-
leri, E., Trotsiuk, V., Trusina, J., Tuittila, E.-S., Tuovinen, J.-
P., Tyssandier, J., Valay, J.-G., Van Damme, F., Van Look, J.,
Varjonen, S., Vendrame, N., Verbeeck, H., Vesala, T., Vescovo,
L., Vincent, G., Vincke, C., Vitale, L., Vivaldo, G., Voisin, D.,
Vigner, L., Vihd, A., Waldner, P, Wiesen, R., Winck, B., Ye-
ung, K., Zampedri, R., Zawilski, B., Zenone, T., Zimmermann,
S., Zweifel, R., de Berranger, C., van Dijk, N., van der Molen,
M., Sigut, L., Slizek, I., and ICOS ETC: Ecosystem Final Qual-
ity (L2) Product in ETC-Archive Format — Release 2024-1, ICOS
[data set], https://doi.org/10.18160/G5KZ-ZD83, 2024.

JToannidis, E., Meesters, A., Steiner, M., Brunner, D., Reum, F,
Pison, I., Berchet, A., Thompson, R., Sollum, E., Koch, E.-
T., Gerbig, C., Wang, F., Maksyutov, S., Tsuruta, A., Tenka-
nen, M., Aalto, T., Monteil, G., Lin, H., Ren, G., Scholze,
M., and Houweling, S.: An inter-comparison of inverse models
for estimating European CH,4 emissions, Earth Syst. Sci. Data
Discuss. [preprint], https://doi.org/10.5194/essd-2025-235, in re-
view, 2025.

Ishizawa, M., Chan, D., Worthy, D., Chan, E., Vogel, F., Melton, J.
R., and Arora, V. K.: Estimation of Canada’s methane emissions:
inverse modelling analysis using the Environment and Climate
Change Canada (ECCC) measurement network, Atmos. Chem.
Phys., 24, 10013-10038, https://doi.org/10.5194/acp-24-10013-
2024, 2024.

https://doi.org/10.5194/acp-25-14251-2025

14273

Ito, A., Li, T, Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang,
W., Zhang, Z., Joos, E., Ciais, P., Hopcroft, P. O., Beerling,
D. J., Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Chang, K.-Y,
Fluet-Chouinard, E., McNicol, G., Patra, P., Poulter, B., Sitch,
S., Riley, W., and Zhu, Q.: Cold-Season Methane Fluxes Simu-
lated by GCP-CHy4 Models, Geophysical Research Letters, 50,
€2023GL103037, https://doi.org/10.1029/2023GL 103037, 2023.

Johnson, M. S., Matthews, E., Du, J.,, Genovese, V., and
Bastviken, D.: Methane Emission From Global Lakes: New
Spatiotemporal Data and Observation-Driven Modeling of
Methane Dynamics Indicates Lower Emissions, Journal of
Geophysical Research: Biogeosciences, 127, €2022JG006793,
https://doi.org/10.1029/2022JG006793, 2022.

Kallingal, J. T., Lindstrom, J., Miller, P. A., Rinne, J., Raivo-
nen, M., and Scholze, M.: Optimising CH4 simulations from
the LPJ-GUESS model v4.1 using an adaptive Markov chain
Monte Carlo algorithm, Geosci. Model Dev., 17, 2299-2324,
https://doi.org/10.5194/gmd-17-2299-2024, 2024a.

Kallingal, J. T., Scholze, M., Miller, P. A., Lindstrom, J., Rinne, J.,
Aurela, M., Vestin, P, and Weslien, P.: Assimilating Multi-site
Eddy-Covariance Data to Calibrate the CH4 Wetland Emission
Module in a Terrestrial Ecosystem Model, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2024-373, 2024b.

Knorr, W. and Heimann, M.: Impact of Drought Stress and Other
Factors on Seasonal Land Biosphere CO, Exchange Studied
through an Atmospheric Tracer Transport Model, Tellus B,
47, 471-489, https://doi.org/10.1034/j.1600-0889.47 .issue4.7 x,
1995.

Kubistin, D., PlaB-Diilmer, C., Arnold, S., Kneuer, T., Lin-
dauer, M., Miiller-Williams, J., and Schumacher, M.: At-
mospheric CHy Product, Torthaus (147.0m), 2017-12-12—
2024-03-31, ICOS [data set], https://hdl.handle.net/11676/30T_
XC6YHxBDG3NmMNZ-SMisB (last access: 23 October 2025),
2024a.

Kubistin, D., PlaB-Diilmer, C., Arnold, S., Kneuer, T., Lin-
dauer, M., Miiller-Williams, J., and Schumacher, M.: Atmo-
spheric CH4 Product, Hohenpeissenberg (131.0m), 2015-09-
03-2024-03-31, ICOS [data set], https://hdl.handle.net/11676/
WTBfJCTsxRUtjo2jsvO22771 (last access: 23 October 2025),
2024b.

Kubistin, D., PlaB-Diilmer, C., Arnold, S., Kneuer, T., Lindauer,
M., Miller-Williams, J., and Schumacher, M.: Atmospheric
CHy Product, Lindenberg (98.0m), 2015-10-08-2024-03-31,
ICOS [data set], https://hdl.handle.net/11676/fHOUqKnX7rf _
kigEjawJ9Adk (last access: 23 October 2025), 2024c.

Laitinen, A., Aaltonen, H., Zellweger, C., Tsuruta, A., Aalto, T,
and Hatakka, J.: Long-term observations of atmospheric CO;
and CHy4 trends and comparison of two measurement Sys-
tems at Pallas-Sammaltunturi station in Northern Finland, At-
mos. Meas. Tech., 18, 3109-3133, https://doi.org/10.5194/amt-
18-3109-2025, 2025.

Lan, X., Mund, J.,, Crotwell, A., Thoning, K., Moglia, E.,
Madronich, M., Baugh, K., Petron, G., Crotwell, M., Neff, D.,
Wolter, S., Mefford, T., and Devogel, S.: Atmospheric Methane
Dry Air Mole Fractions from the NOAA GML Carbon Cycle
Cooperative Global Air Sampling Network, 1983-2023, NOAA
[data set], https://doi.org/10.15138/VNCZ-M766, 2025.

Atmos. Chem. Phys., 25, 14251-14277, 2025


https://doi.org/10.18160/G5KZ-ZD83
https://doi.org/10.5194/essd-2025-235
https://doi.org/10.5194/acp-24-10013-2024
https://doi.org/10.5194/acp-24-10013-2024
https://doi.org/10.1029/2023GL103037
https://doi.org/10.1029/2022JG006793
https://doi.org/10.5194/gmd-17-2299-2024
https://doi.org/10.5194/egusphere-2024-373
https://doi.org/10.1034/j.1600-0889.47.issue4.7.x
https://hdl.handle.net/11676/3oT_XC6YHxBDG3NmNZ-SMisB
https://hdl.handle.net/11676/3oT_XC6YHxBDG3NmNZ-SMisB
https://hdl.handle.net/11676/WTBfJCTsxRUtjo2jsvO2277I
https://hdl.handle.net/11676/WTBfJCTsxRUtjo2jsvO2277I
https://hdl.handle.net/11676/fH0UqKnX7rf_kigEjawJ9Adk
https://hdl.handle.net/11676/fH0UqKnX7rf_kigEjawJ9Adk
https://doi.org/10.5194/amt-18-3109-2025
https://doi.org/10.5194/amt-18-3109-2025
https://doi.org/10.15138/VNCZ-M766

14274

Lanczos, C.: Solution of Systems of Linear Equations by Mini-
mized Iterations, Journal of Research of the National Bureau of
Standards, 49, 33, https://doi.org/10.6028/jres.049.006, 1952.

Lehner, 1. and Molder, M.: Atmospheric CHy Product, Norunda
(100.0 m), 2017-01-31-2024-03-31, ICOS [data set], https://hdl.
handle.net/11676/dyPHK7qEEbQFnqSJx8ZntxOlI (last access:
23 October 2025), 2024.

Levula, J. and Mammarella, I.: Atmospheric CHy Product, Hyytidla
(125.0 m), 2015-05-03-2024-03-31, ICOS [data set], https://hdl.
handle.net/11676/0MPibudu556XoynXRXnqLilC (last access:
23 October 2025), 2024.

Lopez, M. and Ramonet, M.: Atmospheric CH4 Product, Biscar-
rosse (47.0 m), 2009-09-01-2024-03-31, ICOS [data set], https://
hdl.handle.net/11676/Hdn5JfclbuA3xIdcF2o0W_Jf0 (last access:
23 October 2025), 2024.

Lunder, C. and Platt, S.: Main Greenhouse Gases and
Carbon_monoxide at Birkenes II, NILU [data set],
https://doi.org/10.48597/7756-364A, 2025.

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L.,
Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y., and Got-
tlieb, E. W.: A Satellite-Based Biosphere Parameterization for
Net Ecosystem CO; Exchange: Vegetation Photosynthesis and
Respiration Model (VPRM), Global Biogeochemical Cycles, 22,
https://doi.org/10.1029/2006GB002735, 2008.

Marek, M. V., Vitkovd, G., and Kominkovd, K.: Atmospheric
CH4 Product, KieSin u Pacova (250.0m), 2017-04-12-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/ft2De4_
2elQIT8nyjO_6TYsW (last access: 23 October 2025), 2024.

McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Eu-
skirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P.
A., Oechel, W,, Peylin, P., Williams, M., and Yi, Y.: An assess-
ment of the carbon balance of Arctic tundra: comparisons among
observations, process models, and atmospheric inversions, Bio-
geosciences, 9, 3185-3204, https://doi.org/10.5194/bg-9-3185-
2012, 2012.

McNicol, G., Fluet-Chouinard, E., Ouyang, Z., Knox, S., Zhang,
Z., Aalto, T., Bansal, S., Chang, K.-Y., Chen, M., Delwiche, K.,
Feron, S., Goeckede, M., Liu, J., Malhotra, A., Melton, J. R., Ri-
ley, W., Vargas, R., Yuan, K., Ying, Q., Zhu, Q., Alekseychik,
P., Aurela, M., Billesbach, D. P, Campbell, D. I., Chen, J., Chu,
H., Desai, A. R., Euskirchen, E., Goodrich, J., Griffis, T., Hel-
big, M., Hirano, T., Iwata, H., Jurasinski, G., King, J., Koebsch,
F., Kolka, R., Krauss, K., Lohila, A., Mammarella, 1., Nilson,
M., Noormets, A., Oechel, W., Peichl, M., Sachs, T., Sakabe,
A., Schulze, C., Sonnentag, O., Sullivan, R. C., Tuittila, E.-S.,
Ueyama, M., Vesala, T., Ward, E., Wille, C., Wong, G. X., Zona,
D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: Upscal-
ing Wetland Methane Emissions From the FLUXNET-CH4 Eddy
Covariance Network (UpCH4 v1.0): Model Development, Net-
work Assessment, and Budget Comparison, AGU Advances, 4,
€2023AV000956, https://doi.org/10.1029/2023AV000956, 2023.

Meinhardt, F.: Atmospheric CHy at Schauinsland by
German Environment Agency, dataset published as
CH4_SSL6027_surface-insitu_ UBAG_datal at  WDCGG,
ver. 2025-01-01-0111 [data set], https://gaw.kishou.go.jp/search/
file/0071-6027-1002-01-01-9999 (last access: 24 October
2025), 2025.

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B.,
Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G.,

Atmos. Chem. Phys., 25, 14251-14277, 2025

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D.
P, Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Ziircher,
S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C.,
and Kaplan, J. O.: Present state of global wetland extent and
wetland methane modelling: conclusions from a model inter-
comparison project (WETCHIMP), Biogeosciences, 10, 753—
788, https://doi.org/10.5194/bg-10-753-2013, 2013.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
and Teller, E.: Equation of State Calculations by Fast Comput-
ing Machines, The Journal of Chemical Physics, 21, 1087-1092,
https://doi.org/10.1063/1.1699114, 1953.

Monteil, G. and Scholze, M.: Regional CO; inversions
with LUMIA, the Lund University Modular Inversion
Algorithm, v1.0, Geosci. Model Dev., 14, 3383-3406,
https://doi.org/10.5194/gmd-14-3383-2021, 2021.

Monteil, G., Broquet, G., Scholze, M., Lang, M., Karstens, U., Ger-
big, C., Koch, FE.-T., Smith, N. E., Thompson, R. L., Luijkx, I. T.,
White, E., Meesters, A., Ciais, P., Ganesan, A. L., Manning, A.,
Mischurow, M., Peters, W., Peylin, P., Tarniewicz, J., Rigby, M.,
Rodenbeck, C., Vermeulen, A., and Walton, E. M.: The regional
European atmospheric transport inversion comparison, EURO-
COM: first results on European-wide terrestrial carbon fluxes for
the period 2006-2015, Atmos. Chem. Phys., 20, 12063-12091,
https://doi.org/10.5194/acp-20-12063-2020, 2020.

Monteil, G.: LUMIA CHy Release (Egusphere-2024-3122), Zen-
odo [code], https://doi.org/10.5281/zenodo.17467258, 2025.

Monteil, G., Theanutti Kallingal, J., and Scholze, M.: Data Corre-
sponding to the CH4 Inverse Modeling Simulations Described in
https://doi.org/10.5194/egusphere-2024-3122, Zenodo [data set],
https://doi.org/10.5281/zenodo.17047032, 2025.

Miiller, J. and Joos, F.: Global peatland area and carbon dy-
namics from the Last Glacial Maximum to the present — a
process-based model investigation, Biogeosciences, 17, 5285—
5308, https://doi.org/10.5194/bg-17-5285-2020, 2020.

Munassar, S., Monteil, G., Scholze, M., Karstens, U., Roden-
beck, C., Koch, F-T., Totsche, K. U., and Gerbig, C.: Why
do inverse models disagree? A case study with two Euro-
pean CO2 inversions, Atmos. Chem. Phys., 23, 2813-2828,
https://doi.org/10.5194/acp-23-2813-2023, 2023.

Nesser, H., Jacob, D. J., Maasakkers, J. D., Lorente, A., Chen, Z.,
Lu, X., Shen, L., Qu, Z., Sulprizio, M. P., Winter, M., Ma, S.,
Bloom, A. A., Worden, J. R., Stavins, R. N., and Randles, C. A.:
High-resolution US methane emissions inferred from an inver-
sion of 2019 TROPOMI satellite data: contributions from indi-
vidual states, urban areas, and landfills, Atmos. Chem. Phys., 24,
5069-5091, https://doi.org/10.5194/acp-24-5069-2024, 2024.

Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D.,
Fisher, R. E., France, J. L., Michel, S. E., Miller, J. B., White, J.
W. C., Vaughn, B., Bousquet, P., Pyle, J. A., Warwick, N. J., Cain,
M., Brownlow, R., Zazzeri, G., Lanoisellé¢, M., Manning, A. C.,
Gloor, E., Worthy, D. E. J., Brunke, E.-G., Labuschagne, C.,
Wolff, E. W., and Ganesan, A. L.: Rising Atmospheric Methane:
2007-2014 Growth and Isotopic Shift, Global Biogeochemical
Cycles, 30, 1356-1370, https://doi.org/10.1002/2016GB005406,
2016.

Nocedal, J. and Wright, S. J.: Conjugate Gradient Methods, in: Nu-
merical Optimization, Springer New York, New York, NY, 101-
134, ISBN 978-0-387-40065-5, https://doi.org/10.1007/978-0-
387-40065-5_5, 2006.

https://doi.org/10.5194/acp-25-14251-2025


https://doi.org/10.6028/jres.049.006
https://hdl.handle.net/11676/dyPHK7qEEbQFnqSJx8ZntxOI
https://hdl.handle.net/11676/dyPHK7qEEbQFnqSJx8ZntxOI
https://hdl.handle.net/11676/oMPibudu556XoynXRXnqLilC
https://hdl.handle.net/11676/oMPibudu556XoynXRXnqLilC
https://hdl.handle.net/11676/Hdn5JfclbuA3xIdcF2oW_Jf0
https://hdl.handle.net/11676/Hdn5JfclbuA3xIdcF2oW_Jf0
https://doi.org/10.48597/77S6-364A
https://doi.org/10.1029/2006GB002735
https://hdl.handle.net/11676/ft2De4_2elQIT8nyj0_6TYsW
https://hdl.handle.net/11676/ft2De4_2elQIT8nyj0_6TYsW
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.1029/2023AV000956
https://gaw.kishou.go.jp/search/file/0071-6027-1002-01-01-9999
https://gaw.kishou.go.jp/search/file/0071-6027-1002-01-01-9999
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.1063/1.1699114
https://doi.org/10.5194/gmd-14-3383-2021
https://doi.org/10.5194/acp-20-12063-2020
https://doi.org/10.5281/zenodo.17467258
https://doi.org/10.5194/egusphere-2024-3122
https://doi.org/10.5281/zenodo.17047032
https://doi.org/10.5194/bg-17-5285-2020
https://doi.org/10.5194/acp-23-2813-2023
https://doi.org/10.5194/acp-24-5069-2024
https://doi.org/10.1002/2016GB005406
https://doi.org/10.1007/978-0-387-40065-5_5
https://doi.org/10.1007/978-0-387-40065-5_5

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

O’Doherty, S. and Pitt, J.: Atmospheric CHy Product, Tacolne-
ston (185.0 m), 2013-01-31-2024-03-31, ICOS [data set], https:
//hdlL.handle.net/11676/sGoYLTdK6BmrBm1mBKgAOuoD (last
access: 23 October 2025), 2024.

O’Doherty, S., Pitt, J., and Stanley, K.: Atmospheric CH4 Product,
Ridge Hill (90.0 m), 2012-02-23-2024-03-31, ICOS [data set],
https://hdl.handle.net/11676/XENJWmI0eRV4pNf2xrLFtSSR
(last access: 23 October 2025), 2024.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson,
D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A.,
Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A.,
van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C.,
Arain, M. A., Ardo, J., Arkebauer, T., Arndt, S. K., Arriga, N.,
Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesder-
fer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer,
C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D.,
Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-
M., Bowling, D. R., Bracho, R., Brodeur, J., Briimmer, C., Buch-
mann, N., Burban, B., Burns, S. P, Buysse, P., Cale, P., Cavagna,
M., Cellier, P., Chen, S., Chini, 1., Christensen, T. R., Cleverly, J.,
Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C.,
Cremonese, E., Curtis, P. S., D’ Andrea, E., da Rocha, H., Dai,
X., Davis, K. J., Cinti, B. D., de Grandcourt, A., Ligne, A. D.,
De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M.,
di Tommasi, P., Dolman, H., Domingo, F., Dong, G., Dore, S.,
Duce, P., Dufréne, E., Dunn, A., Dusek, J., Eamus, D., Eichel-
mann, U., EIKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers,
B., Famulari, D., Fares, S., Feigenwinter, 1., Feitz, A., Fensholt,
R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun,
M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I.,
Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L.,
Graf, A., Griebel, A., Gruening, C., Griinwald, T., Hammerle,
A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He,
Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hortnagl, L., Hut-
ley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janous,
D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt,
J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O.,
Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J.,
Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Le-
uning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska,
A.J., Lohila, A., Lépez-Ballesteros, A., Lépez-Blanco, E., Lou-
bet, B., Loustau, D., Lucas-Moffat, A., Liiers, J., Ma, S., Mac-
farlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G.,
Marcolla, B., Margolis, H. A., Marras, S., Massman, W., Mas-
tepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F., Mc-
Caughey, H., McHugh, 1., McMillan, A. M. S., Merbold, L.,
Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U.,
Monson, R. K., Montagnani, L., Moore, C. E., Moors, E., More-
aux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck, J.,
Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto,
M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Our-
cival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E.,
Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard,
K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S. M.,
Rambal, S., Rannik, U., Raz-Yaseef, N., Rebmann, C., Reed, D.,
de Dios, V. R., Restrepo-Coupe, N., Reverter, B. R., Roland, M.,
Sabbatini, S., Sachs, T., Saleska, S. R., Sanchez-Caiiete, E. P.,
Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M., Schneider,
K., Schrader, F., Schroder, 1., Scott, R. L., Sedldk, P., Serrano-

https://doi.org/10.5194/acp-25-14251-2025

14275

Ortiz, P, Shao, C., Shi, P., Shironya, I., Siebicke, L., §igut, L.,
Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens,
R. M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S.,
Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.-
P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel,
E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T.,
Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P, Walter-
Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy,
S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R.,
Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M.,
and Papale, D.: The FLUXNET2015 Dataset and the ONEFlux
Processing Pipeline for Eddy Covariance Data, Scientific Data,
7,225, https://doi.org/10.1038/s41597-020-0534-3, 2020.

Peltola, O., Vesala, T., Gao, Y., Rity, O., Alekseychik, P., Aurela,

M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S.,
Friborg, T., Gockede, M., Helbig, M., Humphreys, E., Jackson,
R. B., Jocher, G., Joos, F,, Klatt, J., Knox, S. H., Kowalska, N.,
Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D.
F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quin-
ton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Son-
nentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded
data product of northern wetland methane emissions based on up-
scaling eddy covariance observations, Earth Syst. Sci. Data, 11,
12631289, https://doi.org/10.5194/essd-11-1263-2019, 2019.

Peng, S., Lin, X., Thompson, R. L., Xi, Y., Liu, G., Hauglustaine,

D., Lan, X., Poulter, B., Ramonet, M., Saunois, M., Yin, Y.,
Zhang, Z., Zheng, B., and Ciais, P.: Wetland Emission and At-
mospheric Sink Changes Explain Methane Growth in 2020, Na-
ture, 612, 477-482, https://doi.org/10.1038/s41586-022-05447-
w, 2022.

Petrescu, A. M. R., Qiu, C., McGrath, M. J., Peylin, P., Peters, G. P.,

Ciais, P,, Thompson, R. L., Tsuruta, A., Brunner, D., Kuhnert,
M., Matthews, B., Palmer, P. 1., Tarasova, O., Regnier, P., Lauer-
wald, R., Bastviken, D., Hoglund-Isaksson, L., Winiwarter, W.,
Etiope, G., Aalto, T., Balsamo, G., Bastrikov, V., Berchet, A.,
Brockmann, P., Ciotoli, G., Conchedda, G., Crippa, M., Den-
tener, F., Groot Zwaaftink, C. D., Guizzardi, D., Giinther, D.,
Haussaire, J.-M., Houweling, S., Janssens-Maenhout, G., Kouy-
ate, M., Leip, A., Leppdnen, A., Lugato, E., Maisonnier, M.,
Manning, A. J., Markkanen, T., McNorton, J., Muntean, M.,
Oreggioni, G. D., Patra, P. K., Perugini, L., Pison, I., Raivo-
nen, M. T., Saunois, M., Segers, A. J., Smith, P., Solazzo, E.,
Tian, H., Tubiello, F. N., Vesala, T., van der Werf, G. R., Wil-
son, C. and Zaehle, S.: The Consolidated European Synthe-
sis of CHy and N,O Emissions for the European Union and
United Kingdom: 1990-2019, Earth System Science Data, 15,
1197-1268, ISSN 1866-3508, https://doi.org/10.5194/essd-15-
1197-2023, 2023.

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cas-

siani, M., Eckhardt, S., Arnold, D., Morton, D., Thomp-
son, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sode-
mann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart,
J. E, Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and
Stohl, A.: The Lagrangian particle dispersion model FLEX-
PART version 10.4, Geosci. Model Dev., 12, 4955-4997,
https://doi.org/10.5194/gmd-12-4955-2019, 2019.

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vi-

tousek, P. M., Mooney, H. A., and Klooster, S. A.: Terrestrial
Ecosystem Production: A Process Model Based on Global Satel-

Atmos. Chem. Phys., 25, 14251-14277, 2025


https://hdl.handle.net/11676/sGoYLTdK6BmrBm1mBKgA0uoD
https://hdl.handle.net/11676/sGoYLTdK6BmrBm1mBKgA0uoD
https://hdl.handle.net/11676/XENJWmI0eRV4pNf2xrLFt5SR
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.5194/essd-11-1263-2019
https://doi.org/10.1038/s41586-022-05447-w
https://doi.org/10.1038/s41586-022-05447-w
https://doi.org/10.5194/essd-15-1197-2023
https://doi.org/10.5194/essd-15-1197-2023
https://doi.org/10.5194/gmd-12-4955-2019

14276

lite and Surface Data, Global Biogeochemical Cycles, 7, 811—
841, https://doi.org/10.1029/93GB02725, 1993.

Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L.,
Fraser, P. J., Ganesan, A. L., Gasore, J., Harth, C. M., Her-
mansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lun-
der, C. R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski,
B., Miihle, J., O’Dobherty, S., Park, S., Reimann, S., Rigby, M.,
Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele,
L. P, Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young,
D., and Zhou, L.: History of chemically and radiatively impor-
tant atmospheric gases from the Advanced Global Atmospheric
Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985—
1018, https://doi.org/10.5194/essd-10-985-2018, 2018.

Qu, Z., Jacob, D. J., Zhang, Y., Shen, L., Varon, D. J., Lu, X.,
Scarpelli, T., Bloom, A., Worden, J., and Parker, R. J.: Attribu-
tion of the 2020 Surge in Atmospheric Methane by Inverse Anal-
ysis of GOSAT Observations, Environmental Research Letters,
17, 094003, https://doi.org/10.1088/1748-9326/ac8754, 2022.

Raivonen, M., Smolander, S., Backman, L., Susiluoto, J., Aalto,
T., Markkanen, T., Mikeld, J., Rinne, J., Peltola, O., Au-
rela, M., Lohila, A., Tomasic, M., Li, X., Larmola, T., Juuti-
nen, S., Tuittila, E.-S., Heimann, M., Sevanto, S., Kleinen, T.,
Brovkin, V. and Vesala, T.. HIMMELI v1.0: Helsinkl Model
of MEthane builLd-up and emlssion for Peatlands, Geoscien-
tific Model Development, 10, 4665-4691, ISSN 1991-959X,
https://doi.org/10.5194/gmd-10-4665-2017, 2017.

Ramonet, M., Conil, S., Delmotte, M., Laurent, O., and
Lopez, M.: Atmospheric CH4 Product, Observatoire
Pérenne de I’environnement (120.0m), 2011-04-21-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/25_
LcWRQe-7rZpuyjELUKBeub (last access: 23 October 2025),
2024a.

Ramonet, M., Delmotte, M., and Lopez, M.: Atmospheric
CH4  Product, Saclay (100.0m), 2015-07-08-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/
dWDZTRzDW700ontXITF20DeUu (last access: 23 October
2025), 2024b.

Ramonet, M., Lopez, M., and Delmotte, M.: Atmospheric
CH4 Product, Trainou (180.0m), 2007-01-29-2024-
03-31, ICOS [data set], https://hdl.handle.net/11676/
5KUsuilZhUjFtzVEiusE60x (last access: 23 October 2025
), 2024c.

Randerson, J., Van Der Werf, G., Giglio, L., Collatz, G., and
Kasibhatla, P.: Global Fire Emissions Database, Version 4.1
(GFEDv4), ORNL Distributed Active Archive Center [data set],
https://doi.org/10.3334/ORNLDAAC/1293, 2017.

Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Gier-
ing, R., and Widmann, H.: Two Decades of Terrestrial
Carbon Fluxes from a Carbon Cycle Data Assimilation
System (CCDAS), Global Biogeochemical Cycles, 19,
https://doi.org/10.1029/2004GB 002254, 2005.

Rédenbeck, C., Gerbig, C., Trusilova, K., and Heimann, M.: A two-
step scheme for high-resolution regional atmospheric trace gas
inversions based on independent models, Atmos. Chem. Phys.,
9, 5331-5342, https://doi.org/10.5194/acp-9-5331-2009, 2009.

Ross, S., Wang, H., Zheng, H., Yan, T., and Shirali, M.: Approaches
for predicting dairy cattle methane emissions: from traditional
methods to machine learning, Journal of Animal Science, 102,
skae219, https://doi.org/10.1093/jas/skae219, 2024.

Atmos. Chem. Phys., 25, 14251-14277, 2025

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J.
G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houwel-
ing, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Berga-
maschi, P, Blake, D. R., Brailsford, G., Bruhwiler, L., Carl-
son, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C.,
Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg,
C., Gedney, N., Hegglin, M. 1., Hoglund-Isaksson, L., Hugelius,
G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.
M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L.,
Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDon-
ald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino,
L., Miiller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S.,
O’Dobherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P.,
Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J.,
Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S.
J., Steele, L. P, Thornton, B. F., Tian, H., Tohjima, Y., Tubiello,
F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S.,
van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D.,
Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao,
Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The Global
Methane Budget 2000-2017, Earth Syst. Sci. Data, 12, 1561—
1623, https://doi.org/10.5194/essd-12-1561-2020, 2020.

Segers, A.: Description of the CHy Inversion Production Chain,
ECMWF Copernicus report, ECMWE, https://atmosphere.
copernicus.eu/sites/default/files/2021-01/CAMS73_2018SC3_
D73.5.2.2-2020_202012_production_chain_Verl.pdf (last
access: 24 October 2025), 2020.

Sierk, B., Fernandez, V., Bézy, J.-L., Meijer, Y., Durand, Y.,
Courreges-Lacoste, G. B., Pachot, C., Loscher, A., Nett,
H., Minoglou, K., Boucher, L., Windpassinger, R., Pas-
quet, A., Serre, D., and te Hennepe, F..: The Coperni-
cus CO2M Mission for Monitoring Anthropogenic Carbon
Dioxide Emissions from Space, in: International Conference
on Space Optics — ICSO 2020, 11852, 1563-1580, SPIE,
https://doi.org/10.1117/12.2599613, 2021.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A.,
Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T,
Thonicke, K., and Venevsky, S.: Evaluation of Ecosystem Dy-
namics, Plant Geography and Terrestrial Carbon Cycling in the
LPJ Dynamic Global Vegetation Model, Global Change Biology,
9, 161-185, https://doi.org/10.1046/j.1365-2486.2003.00569.x,
2003.

Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of
Vegetation Dynamics in the Modelling of Terrestrial Ecosys-
tems: Comparing Two Contrasting Approaches within Euro-
pean Climate Space, Global Ecology & Biogeography, 621-237,
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.

Smith, B., Warlind, D., Arneth, A., Hickler, T., Leadley, P., Silt-
berg, J., and Zaehle, S.: Implications of incorporating N cy-
cling and N limitations on primary production in an individual-
based dynamic vegetation model, Biogeosciences, 11, 2027—
2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.

Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga,
M., and Janssens-Maenhout, G.: Uncertainties in the Emissions
Database for Global Atmospheric Research (EDGAR) emission
inventory of greenhouse gases, Atmos. Chem. Phys., 21, 5655-
5683, https://doi.org/10.5194/acp-21-5655-2021, 2021.

Steinbacher, M.: Atmospheric CH4 at Jungfraujoch by
Swiss Federal Laboratories for Materials Science and

https://doi.org/10.5194/acp-25-14251-2025


https://doi.org/10.1029/93GB02725
https://doi.org/10.5194/essd-10-985-2018
https://doi.org/10.1088/1748-9326/ac8754
https://doi.org/10.5194/gmd-10-4665-2017
https://hdl.handle.net/11676/25_LcWRQe-7rZpujELUKBeub
https://hdl.handle.net/11676/25_LcWRQe-7rZpujELUKBeub
https://hdl.handle.net/11676/dWDZTRzDW70ontXITF2oDeUu
https://hdl.handle.net/11676/dWDZTRzDW70ontXITF2oDeUu
https://hdl.handle.net/11676/5KUsuilZhUjFtzVEiusE60x
https://hdl.handle.net/11676/5KUsuilZhUjFtzVEiusE60x
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.1029/2004GB002254
https://doi.org/10.5194/acp-9-5331-2009
https://doi.org/10.1093/jas/skae219
https://doi.org/10.5194/essd-12-1561-2020
https://atmosphere.copernicus.eu/sites/default/files/2021-01/CAMS73_2018SC3_D73.5.2.2-2020_202012_production_chain_Ver1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2021-01/CAMS73_2018SC3_D73.5.2.2-2020_202012_production_chain_Ver1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2021-01/CAMS73_2018SC3_D73.5.2.2-2020_202012_production_chain_Ver1.pdf
https://doi.org/10.1117/12.2599613
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.5194/acp-21-5655-2021

G. Monteil et al.: CH4 emissions from Northern Europe wetlands

Technology, dataset published as CH4_JFJ6036_surface-
insitu_Empa_datal at WDCGG, ver. 2025-07-08-1503 [data
set],  https://doi.org/10.50849/WDCGG_0023-6036-1002-01-
01-9999, 2018.

Steiner, M., Peters, W., Luijkx, 1., Henne, S., Chen, H., Ham-
mer, S., and Brunner, D.: European CHy4 inversions with ICON-
ART coupled to the CarbonTracker Data Assimilation Shell, At-
mos. Chem. Phys., 24, 2759-2782, https://doi.org/10.5194/acp-
24-2759-2024, 2024.

Susiluoto, J., Raivonen, M., Backman, L., Laine, M., Makela, J.,
Peltola, O., Vesala, T. and Aalto, T.: Calibrating the sqHIM-
MELI v1.0 Wetland Methane Emission Model with Hierarchi-
cal Modeling and Adaptive MCMC, Geoscientific Model Devel-
opment, Copernicus GmbH, 11, 1199-1228, ISSN 1991-959X,
https://doi.org/10.5194/gmd-11-1199-2018, 2018.

Thanwerdas, J., Saunois, M., Berchet, A., Pison, 1., and Bous-
quet, P.: Investigation of the renewed methane growth post-
2007 with high-resolution 3-D variational inverse modeling
and isotopic constraints, Atmos. Chem. Phys., 24, 2129-2167,
https://doi.org/10.5194/acp-24-2129-2024, 2024.

Tsuruta, A., Aalto, T., Backman, L., Krol, M. C., Peters, W., Lienert,
S., Joos, F., Miller, P. A., Zhang, W., Laurila, T., Hatakka, J., Le-
skinen, A., Lehtinen, K. E. J., Peltola, O., Vesala, T., Levula, J.,
Dlugokencky, E., Heimann, M., Kozlova, E., Aurela, M., Lohila,
A., Kauhaniemi, M., and Gomez-Pelaez, A. J.: Methane Budget
Estimates in Finland from the CarbonTracker Europe-CHy Data
Assimilation System, Tellus B: Chemical and Physical Meteorol-
ogy, 71, https://doi.org/10.1080/16000889.2018.1565030, 2019.

Tsuruta, A., Kivimiki, E., Lindqvist, H., Karppinen, T., Back-
man, L., Hakkarainen, J., Schneising, O., Buchwitz, M., Lan, X.,
Kivi, R., Chen, H., Buschmann, M., Herkommer, B., Notholt, J.,
Roehl, C., Té, Y., Wunch, D., Tamminen, J., and Aalto, T.: CHyg
Fluxes Derived from Assimilation of TROPOMI XCHy in Car-
bonTracker Europe-CHy4: Evaluation of Seasonality and Spatial
Distribution in the Northern High Latitudes, Remote Sensing, 15,
1620, https://doi.org/10.3390/rs15061620, 2023.

Virkkala, A.-M., Rogers, B. M., Watts, J. D., Arndt, K. A., Potter,
S., Wargowsky, 1., Schuur, E. A. G., See, C. R., Mauritz, M.,
Boike, J., Bret-Harte, M. S., Burke, E. J., Burrell, A., Chae, N.,
Chatterjee, A., Chevallier, F., Christensen, T. R., Commane, R.,
Dolman, H., Edgar, C. W., Elberling, B., Emmerton, C. A., Eu-
skirchen, E. S., Feng, L., Gockede, M., Grelle, A., Helbig, M.,
Holl, D., Jarveoja, J., Karsanaev, S. V., Kobayashi, H., Kutzbach,
L., Liu, J., Luijkx, I. T., L6pez-Blanco, E., Lunneberg, K., Mam-
marella, 1., Marushchak, M. E., Mastepanov, M., Matsuura, Y.,
Maximov, T. C., Merbold, L., Meyer, G., Nilsson, M. B., Niwa,
Y., Oechel, W., Palmer, P. 1., Park, S.-J., Parmentier, F.-J. W.,
Peichl, M., Peters, W., Petrov, R., Quinton, W., Rddenbeck, C.,
Sachs, T., Schulze, C., Sonnentag, O., St. Louis, V. L., Tuit-
tila, E.-S., Ueyama, M., Varlagin, A., Zona, D., and Natali,
S. M.: Wildfires offset the increasing but spatially heterogeneous
Arctic—boreal CO, uptake, Nature Climate Change, 15, 188—
195, https://doi.org/10.1038/s41558-024-02234-5, 2025.

https://doi.org/10.5194/acp-25-14251-2025

14277

Wania, R., Ross, ., and Prentice, I. C.: Implementation and evalua-
tion of a new methane model within a dynamic global vegetation
model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565-584,
https://doi.org/10.5194/gmd-3-565-2010, 2010.

Ward, R. H., Sweeney, C., Miller, J. B., Goeckede, M., Laurila, T.,
Hatakka, J., Ivakov, V., Sasakawa, M., Machida, T., Morimoto,
S., Goto, D., and Ganesan, A. L.: Increasing Methane Emis-
sions and Widespread Cold-Season Release From High-Arctic
Regions Detected Through Atmospheric Measurements, Journal
of Geophysical Research: Atmospheres, 129, ¢2024JD040766,
https://doi.org/10.1029/2024JD040766, 2024.

Weber, T., Wiseman, N. A., and Kock, A.: Global Ocean Methane
Emissions Dominated by Shallow Coastal Waters, Nature
Communications, 10, 4584, https://doi.org/10.1038/s41467-019-
12541-7, 2019.

Wittig, S., Berchet, A., Pison, 1., Saunois, M., Thanwerdas, J., Mar-
tinez, A., Paris, J.-D., Machida, T., Sasakawa, M., Worthy, D. E.
J., Lan, X., Thompson, R. L., Sollum, E., and Arshinov, M.: Es-
timating methane emissions in the Arctic nations using surface
observations from 2008 to 2019, Atmos. Chem. Phys., 23, 6457-
6485, https://doi.org/10.5194/acp-23-6457-2023, 2023.

Xu, J.,, Morris, P. J., Liu, J.,, and Holden, J.: PEATMAP:
Refining Estimates of Global Peatland Distribution
Based on a Meta-Analysis, CATENA, 160, 134-140,
https://doi.org/10.1016/j.catena.2017.09.010, 2018.

Ying, Q., Poulter, B., Watts, J. D., Arndt, K. A., Virkkala, A.-
M., Bruhwiler, L., Oh, Y., Rogers, B. M., Natali, S. M., Sul-
livan, H., Armstrong, A., Ward, E. J., Schifer]l, L. D., Elder,
C. D., Peltola, O., Bartsch, A., Desai, A. R., Euskirchen, E.,
Gockede, M., Lehner, B., Nilsson, M. B., Peichl, M., Sonnen-
tag, O., Tuittila, E.-S., Sachs, T., Kalhori, A., Ueyama, M.,
and Zhang, Z.: WetCHy: a machine-learning-based upscaling of
methane fluxes of northern wetlands during 2016-2022, Earth
Syst. Sci. Data, 17, 2507-2534, https://doi.org/10.5194/essd-17-
2507-2025, 2025.

Yuan, K., Li, F, McNicol, G., Chen, M., Hoyt, A., Knox,
S., Riley, W. J., Jackson, R., and Zhu, Q.: Boreal-Arctic
Wetland Methane Emissions Modulated by Warming and
Vegetation Activity, Nature Climate Change, 14, 282-288,
https://doi.org/10.1038/s41558-024-01933-3, 2024.

Zhang, Z., Poulter, B., Feldman, A. F, Ying, Q., Ciais, P,
Peng, S., and Li, X.: Recent Intensification of Wetland
Methane Feedback, Nature Climate Change, 13, 430-433,
https://doi.org/10.1038/541558-023-01629-0, 2023.

Atmos. Chem. Phys., 25, 14251-14277, 2025


https://doi.org/10.50849/WDCGG_0023-6036-1002-01-01-9999
https://doi.org/10.50849/WDCGG_0023-6036-1002-01-01-9999
https://doi.org/10.5194/acp-24-2759-2024
https://doi.org/10.5194/acp-24-2759-2024
https://doi.org/10.5194/gmd-11-1199-2018
https://doi.org/10.5194/acp-24-2129-2024
https://doi.org/10.1080/16000889.2018.1565030
https://doi.org/10.3390/rs15061620
https://doi.org/10.1038/s41558-024-02234-5
https://doi.org/10.5194/gmd-3-565-2010
https://doi.org/10.1029/2024JD040766
https://doi.org/10.1038/s41467-019-12541-7
https://doi.org/10.1038/s41467-019-12541-7
https://doi.org/10.5194/acp-23-6457-2023
https://doi.org/10.1016/j.catena.2017.09.010
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.1038/s41558-024-01933-3
https://doi.org/10.1038/s41558-023-01629-0

	Abstract
	Introduction
	Methods
	Wetland emissions modelling
	LPJ-GUESS
	GRaB-AM flux data assimilation framework

	Atmospheric inverse modelling
	Inversion approach
	Regional transport model
	Boundary conditions
	Prior emissions and uncertainties
	Observation and observational uncertainties


	Results
	Model-derived wetland emission uncertainties
	CH4 emissions
	Annual CH4 emissions
	Seasonal cycle of the wetland emissions
	Temporal variability of the other emissions
	Spatial distribution

	Fit to observed data
	Eddy-covariance flux estimations
	Atmospheric CH4 observations


	Discussion
	LPJ-GUESS parameter estimation (GRaB-AM)
	Atmospheric inversion (LUMIA)
	Refined estimate of European methane emissions at high latitude
	Towards a coupled flux-concentration CH4 data assimilation system

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

