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Abstract. In-situ measurements of trace gases are crucial for monitoring changes in the atmosphere’s composi-
tion and understanding the underlying processes that drive them. For over three decades, the Global Atmosphere
Watch (GAW) programme of the World Meteorological Organization (WMO) has coordinated a network of
surface monitoring stations and facilities with the goal of providing high-quality atmospheric composition mea-
surements worldwide. One of the critical challenges towards this goal is the spatially unbalanced availability
of high-quality time series, and the lack of near-realtime quality control (QC) procedures that would allow the
prompt detection of unreliable data. Here, we describe an interactive dashboard designed for GAW station oper-
ators, but which may be of much wider use, that is able to flag anomalous values in near-realtime or historical
data. The dashboard combines three distinct algorithms that identify anomalous measurements: (i) an outlier
detection based on the Subsequence Local Outlier Factor (Sub-LOF) method, (ii) a comparison with numerical
forecasts coupled with a machine learning model, and (iii) a Seasonal Autoregressive Integrated Moving Av-
erage (SARIMA) regression model. The application, called GAW-QC, can process measurements of methane
(CH4), carbon monoxide (CO), carbon dioxide (CO2), nitrous oxide (N2O), and ozone (O3) at hourly resolution,
offering multiple statistical and visual aids to help users to identify problematic data. By enhancing QC capa-
bilities, GAW-QC contributes to the GAW programme’s goal of providing reliable atmospheric measurements
worldwide.

1 Introduction

The Global Atmosphere Watch (GAW) programme, estab-
lished in 1989 by the World Meteorological Organization
(WMO), plays a pivotal role in monitoring and understand-
ing the composition of the Earth’s atmosphere (WMO, 2014).
This international network of observing stations provides
data on atmospheric gases, aerosols, and other constituents,
which are essential for climate research, environmental
policy-making, and public health assessments. The accu-
racy and reliability of these measurements are paramount,
as they inform scientific models, guide policy decisions,
and contribute to our understanding of global environmen-
tal changes. GAW data are made publicly available through

focus-area specific data centres, where data undergo consis-
tency checks prior to release. However, data submissions to
the data centres are often performed only once a year with
delays of several months.

Quality control (QC) is a cornerstone of high-quality at-
mospheric measurements. Ensuring the integrity and preci-
sion of data is crucial for maintaining the credibility of sci-
entific findings and the effectiveness of environmental moni-
toring efforts. QC processes help identify and mitigate errors,
biases, and inconsistencies in data collection, thereby en-
hancing the reliability of atmospheric composition measure-
ments. Effective QC not only improves the quality of individ-
ual measurements but also strengthens the overall robustness
of the GAW programme by ensuring that data from different
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stations are comparable and consistent. However, achieving
comparability and consistency can be challenging and will
largely depend on resources, infrastructure, and technical ex-
pertise, which vary significantly from country to country.

Near-real-time QC often depends on the capabilities of
the station PI, whose responsibility is to check and submit
data, typically on an annual basis. The general lack of near-
realtime data sharing can sometime cause instrument mal-
functions to go unnoticed for months or even years, resulting
in large data losses and a waste of precious resources.

In recent years, a wide range of powerful tools for enhanc-
ing QC processes has emerged in the field of data science.
The rise of big data and advanced analytical techniques has
revolutionized our way to handle and interpret large amounts
of atmospheric data. One particularly relevant area within
data science is anomaly detection in time series, which fo-
cuses on identifying unusual patterns or outliers within a se-
quence of data points collected over time (see, e.g., Schmidl
et al., 2022). In the context of atmospheric sciences, anomaly
detection can help pinpoint measurement errors, instrument
malfunctions, or unexpected atmospheric events that require
further investigation (e.g., El Yazidi et al., 2018; Barré et al.,
2021; Resovsky et al., 2021; Cristofanelli et al., 2023).

This paper introduces an interactive dashboard designed
to facilitate quality control of in-situ atmospheric composi-
tion measurements, with a particular focus on recent mea-
surements (i.e., last few months) but applicable to any pe-
riod since 2015. The dashboard integrates anomaly detec-
tion algorithms and makes use of near-realtime numerical
forecasts by the Copernicus Atmosphere Monitoring Service
(CAMS). By providing a user-friendly interface that visual-
izes data and highlights potential anomalies, the dashboard
enables researchers and technicians to rapidly identify and
address irregularities. However, GAW-QC is intended as a
guidance to expert decision, and the ultimate task of flagging
the data remains with the station operator, who has the best
local knowledge. This innovative tool improves the accuracy
of atmospheric measurements and supports the GAW pro-
gramme by ensuring that the collected data are of the highest
possible quality.

2 Data sources

We use historical data of CH4, CO, CO2, N2O, and O3
at hourly resolution measured at GAW stations, which are
available at the World Data Centre for Greenhouse Gases
(WDCGG) and the World Data Centre for Reactive Gases
(WDCRG). We chose these five gas species because they are
the most commonly measured at GAW stations. Note, how-
ever, that N2O is a very recent addition and for that reason it
is not analysed in this paper. At the time of writing (August
2025), 124 stations were supported by the GAW-QC appli-
cation (Fig. 1; Table S1 in the Supplement). These are the

Figure 1. Map of the 124 GAW stations that were supported by
GAW-QC at the time of writing.

stations that submitted data for any of the aforementioned
variables to the world data centres at least once since 2021.

The archive of numerical forecasts is obtained from
CAMS (Peuch et al., 2022). The CAMS Global Atmospheric
Composition Forecasts (hereafter just CAMS forecasts) have
a horizontal grid resolution of ca. 40 km, a time resolution
between 1–3 h (depending on the variable) with two analy-
ses per day (at 00:00 and 12:00 UTC; hence, we use fore-
casts with up to 11 h lead time). They are produced using
ECMWF’s Integrated Forecasting System (IFS) model with
additional modules enabled for aerosols, reactive gases and
greenhouse gases, and with the assimilation of additional
satellite measurements (Eskes et al., 2024; CAMS, 2024).
These forecasts are independent from in-situ measurements.

The IFS model is upgraded regularly, which poses a chal-
lenge when using the forecasts to train a machine learning
model. In fact, we did not consider data before 2020 be-
cause of a change in the vertical resolution that took place
in July 2019. A better alternative to an archive of forecasts
would be a reanalysis (e.g., Inness et al., 2019); however, no
such product is currently available in near-realtime for atmo-
spheric composition variables.

The CAMS forecasts provide data for more than 50 chem-
ical species and seven different types of aerosol, in addition
to several meteorological variables. We use only a small part
of these data: Table 1 lists the variables that we extract from
the CAMS forecasts and feed to the machine learning model.
For 3D variables, we use the following pressure levels: 1000,
950, 925, 900, 850, 700 and 600 hPa. The selection criteria
for these variables are described in Sect. 3.2.

In addition, we use data from atmospheric stations of the
Integrated Carbon Observation System (ICOS) (Heiskanen et
al., 2022), for validation purposes. By providing both near-
realtime (L1, i.e. automatically processed data without any
further screening and flagging by the operators, see Hazan
et al., 2016) and quality controlled (L2) data, ICOS consti-
tutes an almost ideal validation data set. The quality control
in ICOS follows various manual and semi-automatic proce-
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Table 1. Variables extracted from the CAMS forecasts.

Variable Abbreviation used Level Resolution
in CAMS products

CH4/CO/O3 ch4/co/o3 3D 3-hourly
CH4/CO/O3 tc_ch4/tcco/gtco3 total column hourly
Black carbon (550 nm o.d.) bcod total column hourly
PM10 pm10 surface hourly
Water vapour tcwv total column hourly
Wind (u component) u10 10 m hourly
Wind (v component) v10 10 m hourly
Temperature t2m 2 m hourly
Pressure msl mean sea level hourly

dures performed by trained scientists, usually on the sub-
hourly scale (see, e.g., Cristofanelli et al., 2023). We consider
a data point (hourly mean) “flagged” by the ICOS station op-
erators if one of the following conditions is met: (i) more
than 50 % of measurements contributing to the hourly mean
were removed in the L2 data; or (ii) the absolute difference
between L1 and L2 exceeds 5 % of the L1 value. These crite-
ria produce flags for 1.1 % of the total data points, which is a
good compromise between having a sufficient sample at most
stations and limiting the number of false positives. In particu-
lar, we looked for criteria that would produce at least 30 flags
for over two thirds of the series. For stations with towers, we
only use the data from the highest sampling height (we also
show results for the lowest height for comparison). Note that
ICOS data do not include O3.

The main caveat of our validation strategy is that sev-
eral ICOS station operators tend to overflag, meaning that
for practical reasons entire days are removed from L2 data,
even though only few hours may have been of low quality.
As a mitigation measure, we exclude from the data set peri-
ods longer than 7 d in which all data points had been flagged.
Another limitation of the ICOS data set is its geographical
representativeness, since nearly all ICOS stations are located
in Europe.

3 Methods

GAW-QC (Brugnara, 2025) is implemented in Python lan-
guage using the Dash framework (https://dash.plotly.com,
last access: 24 August 2025). Anomaly detection in GAW-
QC is based on three distinct methods, each focusing on a
specific time scale and type of anomaly:

1. a Subsequence Local Outlier Factor (Sub-LOF) algo-
rithm that detects anomalous sequences of measure-
ments on the scale of a few hours, particularly suited
for isolated outliers and changes in variability;

2. CAMS forecasts combined with machine learning that
provide predictions at hourly resolution, allowing the

detection of systematic biases on most time scales
(down to a few days);

3. a Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) regression model that predicts monthly
mean values based on previous data and can highlight
outliers at the monthly scale.

These methods were chosen based on performance, effi-
ciency and ability to work well with little training data. The
need for near-realtime QC implies that we could not use data
from nearby stations (which are generally not available in
near-realtime), nor other variables measured at the target sta-
tion (to avoid a too large burden on the user and too complex
data format requirements). In the following sections, we de-
scribe each of the three methods in details.

3.1 Outlier detection with Sub-LOF

LOF (Breunig et al., 2000) is an unsupervised, distance-
based algorithm that produces an anomaly score for each
data point (the higher the score, the more “anomalous” the
point). Sub-LOF is its extension to time series and produces
an anomaly score for each sequence of length ns within the
series.

Sub-LOF essentially takes each sequence of length ns and
compares it with all other sequences in the time series. First
it extracts the k sequences that are most similar to the target
sequence, then it assigns a score based on a distance met-
rics that can be interpreted as the reciprocal of the local den-
sity: the lower the density, the more different the sequence
is from its neighbors. For example, for ns = 2 this can be
visualized by representing each sequence with a point in a
2-dimensional space, where the coordinates of the point are
the first and second value of the sequence. Areas with high
density of points are related to low anomaly scores, and vice
versa.

We use the Sub-LOF implementation provided by Schmidl
et al. (2022), in which an additional step assigns an anomaly
score to each data point as the average of the anomaly scores
of the sequences that include the target data point. Despite
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its relative simplicity, Schmidl et al. (2022) have shown that
Sub-LOF is among the best performing anomaly detection
algorithms for a large collection of data sets.

LOF anomaly scores are based on a subsample of k nearest
neighbours (hence the “local” in the name). For a time series,
this means that, e.g., seasonal differences can be taken into
account without any pre-processing of the data. To find suit-
able hyper-parameters ns and k, we run a grid search (that is,
we tested the algorithm with many different combinations of
hyper-parameters) using data from ICOS stations that have
at least 30 flagged measurements (i.e., the anomalies that we
want to detect) between April 2021 and March 2024. This
led to ns = 3 and k = 100, a choice that we further discuss in
Sect. 4.

Being an unsupervised method, Sub-LOF does not need
a training data set and, therefore, does not need historical
data to work. However, we take advantage of historical data
to increase the sample size (which, ideally, should be much
larger than k) and to define station-tailored thresholds for the
anomaly score that GAW-QC uses to flag anomalous data
points.

The anomaly score of a point can be calculated only if
there are at least two (ns− 1) valid measurements next to it
(i.e., it must be part of at least one valid 3 h sequence). There-
fore, in case of frequent missing values, it might not be possi-
ble to determine if certain measurements are anomalous. To
partially compensate for this limitation, we implemented a
simple additional test that flags all values exceeding the his-
torical highest or lowest value by half the historical range.

3.2 Downscaling of CAMS forecasts

The CAMS forecasts have a too coarse resolution to well re-
produce the atmospheric composition at most stations. More-
over, they are often affected by systematic biases. For exam-
ple, CH4 is a pure model product (i.e., no CH4 measurements
are assimilated) and this causes typically an underestimation.
However, a negative bias of over 20 % was also found for CO
in East Asia and both positive and negative biases affect O3
in several regions (Pison et al., 2025).

To deal with these limitations, we train a machine learn-
ing model for each station using the archive of forecasts for
the most representative grid point and the historical mea-
surements at the station, in order to obtain a more reliable
“downscaled” point forecast (hereafter CAMS+). A similar
approach was followed by Bertrand et al. (2023) to improve
CAMS forecasts of aerosols.

As already mentioned in Sect. 2, forecasts have the disad-
vantage that their main goal is to predict the future, not to
provide a consistent reconstruction of the past (as reanaly-
ses would do). This means that the underlying model setup
changes at least once per year. However, forecasts are cur-
rently the only product with near-realtime updates, which
are essential for a timely QC, and no major changes have
occurred since 2019.

We use the Extra-Trees (ET) model (Geurts et al., 2006), a
variation of the random forest (RF) model with randomized
tree nodes splits, as implemented in the Python library scikit-
learn. This model has two important advantages with respect
to a standard RF: (i) it strongly reduces overfitting without
the need of complex hyper-parametric choices, hence it has
better chances to work well for different stations and gas
species using the same hyper-parameters; and (ii) it is much
cheaper to train, because it does not need to find the best
splits.

By training both ET and RF models using GAW stations
that had at least 50 % data availability during 2020–2022 (the
training period) we found that the ET model outperformed
RF and other classic machine learning models on average
for all tested gas species and for different validation scores
for the test period 2023 (Fig. S1 in the Supplement). More-
over, by reducing the size of the training period, we saw an
increase of the performance difference, implying that ET is
less sensitive to the size of the training data set (Fig. S2).
The (station- and gas-independent) hyper-parameters of both
models were optimized through the same grid search pro-
cedure, which used a random train/test split of 75%/25%
over the 2020–2022 period, different for each station and gas
species.

The ET model is based on 200 trees with maximum tree
depth of 15 layers and minimum sample size for splitting
a node (nmin) of 20 elements. nmin is particularly important
as it has the effect of smoothing the results. Our choice of
a relatively high nmin is justified by the noisiness of atmo-
spheric measurements and helps to reduce overfitting. On the
other hand, we anticipate the model to underestimate extreme
events because of the large smoothing.

The most representative or “best” grid point is selected by
looking for the highest Spearman correlation between CAMS
forecasts and measurements among all grid points that are
within 0.6° of latitude and 0.6° of longitude (i.e., 1.5 times
the grid resolution) from the station. This procedure is par-
ticularly useful for stations located at the coast or in moun-
tainous regions, i.e. where horizontal gradients of most vari-
ables are very large. For 3D variables, the best grid point is
selected from the two closest pressure levels in a standard at-
mosphere. Moreover, 3D variables are linearly interpolated
to hourly intervals from the original 3 hourly resolution.

Each ET model is trained online whenever it is needed, us-
ing all data that are not part of the test period required by the
user. In the typical case, the user submits recent data and all
the previous data are used for training. However, the analysis
of older data is also possible: in that case, the training pe-
riod can include some data that were measured after the test
period.

We performed an initial subjective feature selection of 20
variables from the CAMS forecasts. These are variables that
we expected to have some correlation with the target vari-
able due to known physical and chemical processes. Of these,
only the 13 listed in Table 1 were kept after testing their im-
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pact on the model performance. These variables are comple-
mented by timestamp, day of year and time of day, for a total
of 16 model features. However, we only use a subset (up to
12 features) for each gas species that we want to predict.

We evaluate the impact of each feature by calculating the
permutation importance, which is defined as the decrease in
model performance when a feature is randomly shuffled. The
permutation approach has the advantage that it can make use
of unseen data that were not used for training, hence avoiding
the overestimation of the importance due to overfitting. On
the other hand, the importance of a feature that covariates
with another can be underestimated.

When choosing the features, we took into account cross
correlations and avoided features that are strongly correlated
with others. This led to the exclusion of pressure when mod-
elling CH4, because of its high correlation (r > 0.7 on aver-
age) with the total column quantity of CH4. Although cor-
relations were only analysed as network-wide averages, im-
portances were analysed for each station that had at least
19 months of data since 2020 (of which at least 18 months
were used for training). Therefore, features that have a low
importance on average but a high importance for a particular
station or gas species were still used. In addition to CH4, CO,
and O3, GAW-QC provides CAMS+ data also for CO2. For
that species (not available in the standard CAMS forecasts)
we use the CAMS global greenhouse gas forecasts (Agustí-
Panareda et al., 2019), a newer product released in late 2024
that has a spatial resolution of 9 km. Because of this increase
in the resolution, we use surface variables instead of extract-
ing the closest pressure level. However, since the training
dataset is still very short, the performance of CAMS+ for
CO2 is not evaluated in this paper.

Note that the online version of GAW-QC produces
CAMS+ only if at least one year of training data is avail-
able. Therefore, it will become available for CO2 only after
GAW data for 2025 are submitted to the World Data Centres.
Simulated N2O data is currently not available in any near-
realtime CAMS product. Consequently, GAW-QC does not
provide CAMS+ data for that gas and data flagging at hourly
scale is limited to the Sub-LOF algorithm.

The CAMS forecasts are not read directly from the Coper-
nicus Atmosphere Data Store but are first processed and im-
ported into the GAW-QC database. This can cause some de-
lay between data availability on the Data Store and in the
app. The dates of the last update of both CAMS and GAW
data are provided in the user interface.

3.3 Monthly outliers with SARIMA

Monthly averages are less affected by noise and can be pre-
dicted with sufficient accuracy using classic time series anal-
ysis methods. Moreover, a few GAW stations only deliver
monthly data, for which the two algorithms described so far
cannot be used.

The SARIMA model is a popular method to extrapolate a
data series that exhibits a seasonal cycle and a trend (e.g.,
Dabral and Murry, 2017; Cujia et al., 2019). A SARIMA
model is defined by four components: an autoregression,
meaning that the forecast is based on the previous observed
values; a so-called “moving average”, which is a regression
on past prediction errors; a data integration, meaning that dif-
ferences between time steps are considered rather than the
absolute values, in order to make a time series more station-
ary (a requirement of SARIMA); and a seasonal component
that consists of the previous three terms translated to the sea-
sonal scale.

These components can be represented by 7 hyper-
parameters, written as (p,d,q)(P,D,Q)m, where p is the
autoregression order (i.e., the number of time lags), d the de-
gree of differencing (i.e., the number of times the data have
had past values subtracted), and q the moving average or-
der. The capital letters indicate the same hyper-parameters
for the seasonal component, with m the period of a season
(i.e., 12 months).

To find the best hyper-parameters, we first applied a pre-
selection based on the physical and statistical properties of
the data (Box-Jenkins approach). For example, p was cho-
sen equal to 1 to allow an influence from the previous month
only, while P was chosen equal to 0, implying that the sys-
tem has no memory over a period of one year. The remaining
hyper-parameters were selected through a grid search based
on all available GAW series from 2015 onward, with at least
36 months of training data and 12 (consecutive) months of
validation data. This led to the choice of a (1, 0, 0)(0, 1, 1)12
model. Note that both the integration and the moving average
components are only used at the seasonal level. Even though
this model is not the best one for each and every station and
stationarity cannot always be satisfied, we found that in a
large majority of cases it delivers sufficiently accurate pre-
dictions for our purposes.

We use the implementation of SARIMA available from the
Python library statsmodels, which also provides the possibil-
ity to add a deterministic trend function to the model. By de-
fault, we assume a linear trend (including for the validation),
but the user can change this setting.

3.4 Performance scores

3.4.1 Sub-LOF

The performance of the outlier detection is based on the
ICOS flagged data (see Sect. 2). We use the Area Under
the Precision-Recall Curve (AUC-PR; Davis and Goadrich,
2006), a common metric that takes into account both the abil-
ity of the algorithm to detect outliers and its tendency to pro-
duce false positives. These two properties are represented by
the Recall (or hit rate) and the Precision, respectively, which
are defined as:
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Figure 2. Example of PR curve for a CO2 series with 99 flags.

Recall=
TP

TP+FN
, (1)

Precision=
TP

TP+FP
, (2)

where TP are the true positives (i.e., the number of problem-
atic data points that are correctly flagged), FN the false neg-
atives (problematic data points that are not flagged) and FP
the false positives (correct data points that are erroneously
flagged). The Precision-Recall Curve is then constructed by
calculating Precision and Recall for a number of possible
thresholds of the Sub-LOF score, above which data points
are considered outliers. Given that both Precision and Recall
can have values between [0, 1], the AUC-PR score also cov-
ers the same range, with 1 representing the ideal scenario in
which all outliers are detected without false positives inde-
pendently from the threshold. In real-world applications, any
threshold entails a trade-off between Recall and Precision, so
that an AUC-PR score around 0.5 already represents an ex-
tremely good performance (see, e.g., Schmidl et al., 2022).
We use the algorithm implemented in the scikit-learn library,
based on the trapezoidal rule, to calculate the AUC. Figure 2
shows an example of a PR curve: in this case, to obtain 100 %
Precision (i.e., no false positives) we would need to sacrifice
over 80 % of the maximum Recall.

The classic AUC-PR score is particularly suitable to eval-
uate the detection of individual, isolated outliers. However,
outliers in time series often occur as sequences. It is then
usually not necessary to detect every single outlier, but it is
sufficient to detect at least one outlier per sequence. In order
to tackle this issue, Tatbul et al. (2018) have developed range-
based Recall (RT ) and Precision (PT ) that are generally more
suitable to validate outlier detection in time series.
RT and PT are defined by three parameters: α, γ and δ. α

can range between [0, 1] and represents the relative impor-
tance of rewarding existence (relevant only for RT ). In our

case α = 1, meaning that even if a sequence of anomalies
is detected at just one data point, it will reward the maxi-
mum score. γ represents cardinality and is a function of the
number of flagged sequences that overlap with a detected se-
quence (or vice versa, depending on which score is being cal-
culated). We use the recommended value γ (x)= 1/x (Tat-
bul et al., 2018). δ is a function that defines which part of
the sequence has more importance; in our case δ is a con-
stant, meaning that we do not care about which part of the
sequence is detected. We use the implementation of RT and
PT provided by the Python library PRTS.

The resulting AUC-PTRT score is more suitable for our
benchmark data set, where sequences of flagged data tend
to be artificially too long. In particular, RT should be more
meaningful than the classic Recall. However, we show both
classic and range-based scores, also to facilitate the compar-
ison with other algorithms. The example of Fig. 2 depicts
a typical situation in which the AUC-PTRT score is slightly
higher than the AUC-PR score.

3.4.2 CAMS+

The training of the ET model uses the Mean Squared Error
(MSE) to measure the quality of a split. For grid search and
validation we use the so-called Mean Squared Skill Score
(MSSS), defined as:

MSSS= 1−
MSE+
MSEc

, (3)

where MSE+ and MSEc indicate the MSE of CAMS+ and of
the original CAMS forecasts. The MSSS can assume values
in the range [−∞, 1] and is larger than zero when CAMS+
has a lower (i.e., better) MSE than the CAMS forecasts.

We also use the coefficient of determination (R2), defined
as:

R2
= 1−

RSS
TSS

, (4)

where RSS is the sum of squares of residuals and TSS is the
total sum of squares. R2 represents the ability of the model to
perform better than a constant prediction with zero average
bias, equivalent to R2

= 0.

4 Validation

4.1 Sub-LOF

Figure 3 shows the distributions of the AUC-PR and AUC-
PTRT scores for different values of ns (with k = 100) for
CH4, CO and CO2. The choice of the best value for ns
depends on which score is considered: somewhat coun-
terintuitively, the AUC-PR score favours a higher ns (i.e.,
longer sub-sequences) than the AUC-PTRT score. On the
other hand, differences between variables are rather small,
although CO produces slightly lower scores than the other
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Figure 3. Distribution of the AUC-PR (left) and ACU-PTRT (right) scores of Sub-LOF for different values of the sub-sequence length
(ns; in hours) with k = 100. Note that ns = 1 corresponds to a standard, univariate LOF algorithm. The vertical lines indicate the median of
the tested stations, the boxes indicate the interquartile range (IQR), while the whiskers extend to up to 1.5 IQR from the edges of the boxes.
The circles indicate outliers exceeding 1.5 IQR from the edges of the boxes.

gases (O3 could not be tested due to lack of suitable data). We
also carried out the same validation for the lowest sampling
heights, obtaining generally lower scores but with a similar
dependency from ns (Fig. S3).

Our algorithm uses ns = 3 for all variables, a choice that
maximizes the AUC-PTRT without penalizing much the clas-
sic score. Through a similar exercise, we found a smaller in-
fluence of k on the scores (values between 30 and 300 were
tested, corresponding to ca. 0.1 % to 1 % of the sample size;
not shown).

A comparison with two alternative outlier detection algo-
rithms (Sub-Isolation Forest, Liu et al., 2008, and PhaseS-
pace Support Vector Machines, Ma and Perkins, 2003) con-
firmed the good performance of Sub-LOF (Fig. S4).

4.2 CAMS+

We calculated feature importances for each year between
2020–2023 (using the remaining years for training) and then
considered the maximum of the four resulting values (Fig. 4)
to evaluate the usefulness of each feature. The feature impor-
tances give a measure of how much each feature contributes
to improving the prediction (see Sect. 3.2). A negative impor-
tance implies that the feature is making the prediction worse
(typically due to overfitting).

Where the CAMS forecasts perform well, the respective
gas mole fraction as simulated in the forecasts has by far the
highest importance. This is more often the case for CO and
O3, and less for CH4. The reason is that no CH4 measure-
ments are assimilated in the CAMS forecasts.

The day of year (doy) is often the most important feature
when the CAMS forecasts perform poorly, because the sea-
sonal cycle is the easiest source of variability to model. How-

https://doi.org/10.5194/acp-25-14221-2025 Atmos. Chem. Phys., 25, 14221–14236, 2025



14228 Y. Brugnara et al.: An interactive dashboard for quality control

Figure 4. Maximum feature importance for the three available gas species (CO, O3, CH4) at validation stations (identified by the GAW code
and ordered by decreasing latitude), based on 2020–2023 data and the MSSS. The feature importance is calculated separately for each year
and then the maximum of the yearly values is taken (at least 3 years required). Note that values can be larger than 1. For tower stations the
highest sampling height is used. For station names and coordinates see Table S1.

ever, importances are very heterogeneous across the stations.
Some of the results also give interesting hints to the physi-
cal processes driving the concentration, in particular the high
importance of a certain wind direction for CH4 at some sta-
tions.

The near absence of negative values (the lowest value is
−0.0026) implies that there are no features that consistently
lead to overfitting at any station, although this can happen
in individual years (see the minimum values in Fig. S5). The
trend feature (i.e., timestamp) has sometime a relatively large
importance for CH4: this may be related to a poor represen-
tation of the trend in the CAMS data. In fact, this feature was
added mainly to account for possible future inhomogeneities
in the CAMS forecasts.

The total column variables are a useful backup when none
of the pressure levels that we extract from the CAMS fore-
casts are close on average to the station’s elevation. Exam-
ples are Izaña at 2373 m (rather far from both the 850 and
the 700 hPa levels) and Chacaltaya at 5340 m (well above
the 600 hPa level). These two stations show the largest im-

portance for the total column of CO and O3, respectively.
Moreover, the total column of correlated variables like water
vapour and black carbon are useful proxies for precipitation
and pollution, which have important direct and indirect ef-
fects on the concentration of many trace gases.

The MSSS is positive for a large majority of tested stations
in all years, that is, the ET model is usually able to improve
the CAMS forecasts (Fig. 5). Again, the variability across
stations and gas species is large.

The CAMS forecasts generally underestimate CH4, there-
fore simply correcting for a constant bias would in many
cases result in a MSSS close to 1. The CAMS forecasts are
also generally poor at reproducing the variability of CH4, and
this is often improved in CAMS+ thanks to the ancillary fea-
tures that are fed to the ET model (see Fig. 4).

CO and O3 are much better reproduced by the CAMS
forecasts, making it more challenging for the ET model to
achieve positive MSSS. Nevertheless, negative MSSSs are
very rare and usually affect elevated stations that are pre-
dominantly exposed to the free troposphere, for which the
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Figure 5. Distribution of the MSSS and R2 score by variable for each year between 2020–2023. The boxes and circles are defined as in
Fig. 3.

original CAMS forecasts can already simulate accurately the
mole fraction of CO and O3, leaving little room for improve-
ment to the ET model. Even for CH4 the performance of the
CAMS forecasts is notably better at these stations, as is evi-
dent from the importances in Fig. 4.

The year 2023 represents an interesting case for CO, with
negative MSSS at seven stations out of 27. This was a year
characterised by an extremely active wildfire season in North
America (Jones et al., 2024), which strongly affected CO
concentrations also in Europe (Byrne et al., 2024) and has
no analogues in our relatively short training period.

The R2 score provides a better metric to compare the per-
formance across variables, because it is not defined by the
performance of the CAMS forecasts. Nevertheless, the poor
performance of the CAMS forecasts for CH4 is the ultimate
reason for the low R2 scores for that variable.

The variable that scores best is O3, in part because it ex-
hibits larger and more predictable diurnal and seasonal cycles
than CO. Moreover, the large outliers that can affect CO are
especially detrimental when evaluating scores that rely on the
MSE, as the case of 2023 also shows.

It is important to point out that a negative MSSS or
R2 score does not necessarily imply a bad performance of
CAMS+. Some of the outliers in Fig. 5 are actually related
to problems in the measurements that were not flagged by
the station operators. Typical examples are unrealistic, step-
wise increases or decreases caused probably by the repair or
replacement of an instrument (often coinciding with a data
gap). Moreover, there are cases were biases in the measure-
ments were not noticed for years before being fixed. In those

cases, the ET model will train on a mostly biased training
data set and deliver biased predictions as a consequence.

On the other hand, the CAMS forecasts perform too poorly
in some situations (e.g., at high latitudes) for CAMS+ to
be able to reliably reproduce the variability of the target
gas species, even if the validation scores are positive (which
can be mostly related to a simple reduction of the bias). In
general, the expertise of the user is fundamental to assess
whether CAMS+ can be trusted.

4.3 SARIMA

To evaluate how accurately we can predict monthly means
with SARIMA, we calculate absolute errors as a function of
the prediction horizon, using 12 recent consecutive months
for validation and the previous data (between 3 and 8 years)
for training. The calculation is repeated for every possi-
ble 12 month period (January–December, February–January,
etc.), resulting in up to 122 error values for each data se-
ries. This procedure allows us to minimise seasonal influ-
ences from the results.

The resulting average errors (Fig. 6) are of ca. 10 ppb for
CH4 (i.e., ca. 0.5 of typical background values), 15 ppb for
CO, 1.5 ppm for CO2 (0.4 %), and 3 ppb for O3. However,
the medians of the errors are lower.

As one would expect, the performance is best for a
1 month horizon and the absolute error increases with time.
However, for CO and CO2, the absolute error reaches a maxi-
mum after 6–8 months and then decreases again slightly. The
likely explanation for this behaviour is that the inter-annual
variability of these gases has itself a large seasonal cycle,

https://doi.org/10.5194/acp-25-14221-2025 Atmos. Chem. Phys., 25, 14221–14236, 2025



14230 Y. Brugnara et al.: An interactive dashboard for quality control

Figure 6. Distribution of absolute prediction errors of the SARIMA model as a function of the prediction horizon. The blue line indicates
the average of all tested stations. The orange dashed line shows half the average 99 % confidence range produced by the SARIMA model.
The boxes are defined as in Fig. 3, but outliers are not shown.

particularly at mid-latitudes (higher in winter for CO, in sum-
mer for CO2). Therefore, a prediction starting from a season
with low variability will tend to perform better on a 12 month
than on a 6 month horizon, while a prediction starting from a
season with high variability has high chances of performing
poorly for all horizons.

5 GAW-QC

The algorithms described in the previous sections can be
tested on new data from one of the supported GAW stations
through the web application GAW-QC (https://www.empa.
ch/gaw-qc, last access: 27 October 2025). Moreover, any pe-
riod of the historical data available in the GAW-QC database
can be analysed.

Figure 7 gives a simple schematic of the data flow. GAW-
QC is synchronized daily with the archive of the CAMS fore-
casts, from which the relevant variables and grid points are
extracted. Synchronization with the GAW world data centres
occurs at irregular intervals, although an extension to an au-
tomatic loading process is technically feasible provided the
data are available through appropriate APIs.

To use GAW-QC, the user must select a station, a vari-
able, and the sampling height. If new data are analysed, these
must be uploaded as a csv or xls/xlsx file with two or three
columns representing the timestamp (hourly resolution), the
time series to analyse, and (optionally) an additional time se-
ries to be visually compared with the main one. The addi-
tional time series can be, for example, from another variable

that is expected to be correlated with the tested one, or a me-
teorological parameter like the wind direction. Otherwise, an
available target period of up to one year must be selected
(data availability depends on the station and variable).

GAW-QC consists of an interactive dashboard with three
panels: a panel for hourly data, a panel for monthly data, and
a panel for additional visual checks (Fig. 8). The data shown
in each panel can be downloaded through an export button,
including the information on flags. A user guide is provided
in the form of a wiki, where a tutorial can also be downloaded
in pdf format. Moreover, a short explanation of the dashboard
functionalities is quickly accessible through help buttons on
each panel.

5.1 Hourly data

The hourly data panel (Fig. 8 top) shows the measurements,
the CAMS forecasts and CAMS+ for the selected station.
Data points that are flagged by Sub-LOF are indicated by
yellow and red circles, which represent the exceedance of
two different threshold levels by the LOF anomaly score. By
default, yellow flags are triggered when exceeding the 99.6th
percentile of the anomaly scores of the historical data (i.e.,
the data of the analysed station that are outside the target pe-
riod). The threshold can be adjusted by the user to the 99.3th
or 99.9th percentile through a “strictness” slider located be-
low the plot. Red flags are triggered when the anomaly score
is two times higher than the threshold. By hovering over a
flag, the time and value of the affected measurement appears.
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Figure 7. Schematic diagram of the data flow in GAW-QC.

In addition, periods with significant differences between
the measurements and CAMS+ are highlighted by a yellow
shading. Again, the definition of “significant” depends on a
threshold based on historical data that the user can adjust.
For this we apply a 50 h running median filter to the series
of differences between measurements and CAMS+. The out-
put of the filter is equivalent to an anomaly score. In case of
missing values, at least 50 % of valid data is required within
the 50 h window to calculate the score. Initially the threshold
is set at twice the 99th percentile of the historical data and
can be increased or decreased by one percentile through the
strictness slider. If any data point exceeds the threshold, then
the whole 50 h window is highlighted, that is, all the points in
that window receive a yellow flag. Yellow flags by Sub-LOF
are upgraded to red flags if the affected data point is within a
highlighted region.

On the right-hand side of the panel, two additional plots
show the total quantity of flagged data (Sub-LOF flags plus
CAMS+ flags) on a pie chart and the distribution of the data
on a histogram. The latter is useful to spot systematic biases
and to evaluate the ability of CAMS+ to reproduce extremes.

It is also possible to upload an auxiliary time series to be
plotted alongside the main variable. This is only intended as
an additional visual aid and is not considered by the QC algo-
rithms. For example, it may be beneficial to plot particulate
matter data together with CO to decide whether to confirm or
reject a quality flag affecting CO.

5.2 Monthly data

The second panel (Fig. 8 middle) shows the evolution of the
observed monthly means for up to 10 years before the target
period, where the number of years can be adjusted by the
user through a slider on the right-hand side of the panel. This
number also determines which data are fed to the SARIMA
model. Therefore, changing the number of years will change
the SARIMA prediction accordingly.

In the target period three different predictions are shown:
the CAMS forecasts, CAMS+ and SARIMA, the latter in-
cluding its confidence range (shading). Monthly means of
measurements that are outside the SARIMA confidence
range (see also Fig. 6) are flagged, while no graphical high-
light is used for differences with CAMS+.

The SARIMA model that we employ requires to input a
deterministic long-term trend. By default, a linear trend is
assumed, which is a good approximation in most cases for
the maximum 10 years of consideration. The user can change
this setting to “no trend”, which might be a better choice for
CO and O3 at some stations, or to a quadratic trend, which
might be suitable for CH4 in some periods.

5.3 Visual QC

The last panel (Fig. 8 bottom) provides three plots where
different statistics calculated over the target period are com-
pared with other years and with their average. The statistics
are the diurnal cycle, the seasonal cycle of the monthly mean
values and the seasonal cycle of the variability. The variabil-
ity is defined as the standard deviation of the hourly measure-
ments over a month.

The user can choose the number of years to plot through
the slider in the bottom-left corner. The target period is rep-
resented by thick black dots. The interpretation of this panel
is purely subjective, as neither predictions nor flags are pro-
vided. Nevertheless, these visual comparisons can be useful
to interpret the flags of the previous panels and can occa-
sionally facilitate the detection of some types of issues, for
examples mistakes in the time zone conversion.

5.4 Case studies

To showcase how GAW-QC deals with real world measure-
ments, we show in Fig. 9 the dashboard for the raw CO mea-
surements made at the station of Jungfraujoch between April
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Figure 8. Example of a GAW-QC dashboard.
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Figure 9. Hourly plot produced by GAW-QC for raw CO data measured at the station of Jungfraujoch between April and June 2024.

and June 2024. The time series is characterised by two sud-
den drops in CO mole fraction: a first, short one in mid-April,
and a second, longer and noisier one at the end of May.

The first drop in CO, which lasted between 12 and 15
April 2024, represents a real atmospheric phenomenon, pos-
sibly caused by stratospheric intrusion (Esler et al., 2001; Cui
et al., 2009), and is relatively well reproduced by CAMS+.
Hence, this period is correctly not highlighted by GAW-QC
as anomalous. The second drop, on the other hand, causes a
significant difference between measurements and CAMS+;
moreover, several data points in that period are flagged by
Sub-LOF. An inspection at the station revealed that between
23 May and 5 June, the inlet had been buried under an excep-
tionally deep snow layer, which caused an underestimation of
CO. In this case, the operator should flag all observations in
the affected period as incorrect.

Note that, to improve readability, periods with significant
differences between measurements and CAMS+ that are less
than 50 h apart are merged together into a single shaded area
on the plot (but not in the export file). Given the relatively
large inter-annual variability of CO and the short duration of
the event, this issue is not clearly visible on the other panels
of the dashboard.

In Fig. 10, another example illustrates the impact of local
wildfires on the CH4 levels in Izaña (Spain). Here the out-
liers are correct measurements, yet they are flagged by the
algorithm because they represent an anomalous event.

Finally, the example in Fig. 11 shows a station in Antarc-
tica where CAMS performs poorly for O3, with a large un-
derestimation particularly during the austral summer. The av-
erage bias is corrected well by CAMS+, but the day-to-day
variability cannot be reliably simulated. In this case, even the

CAMS+ data should be ignored for QC of individual mea-
surements, although they can still provide a realistic estima-
tion of monthly values.

6 Concluding remarks

GAW-QC is a web application that helps GAW station op-
erators and GAW data users to spot quality issues in atmo-
spheric concentration data series through an interactive dash-
board. The application brings together modern anomaly de-
tection algorithms, numerical forecasts, and user expertise to
achieve high quality data series of the most commonly mea-
sured trace gases. Depending on the success of the applica-
tion and user feedback, additional gas species may be added
in the future.

The flags provided by GAW-QC are intended as a guid-
ance to expert decision and not as automated QC. In other
words, it is still the station operator that must decide which
measurements to flag as only the station operators have best
local knowledge and access to all available information such
as logbooks and maintenance reports. Indeed, it is important
to make full use of existing metadata and local expertise that
cannot be automatically incorporated into the GAW-QC al-
gorithms. In fact, some of the automatically flagged values
may be correct measurements of rare phenomena that should
be retained in the time series.

A remaining issue in the use of numerical forecasts is
the potential vulnerability to future major upgrades of the
CAMS forecasts of the machine learning model that we use
for downscaling. For example, an increase in resolution of
the CAMS forecasts would likely result in a poor perfor-
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Figure 10. Hourly plot produced by GAW-QC for validated CH4 data measured at the station of Izaña in August 2023. Here dots have been
used instead of lines to better highlight outliers.

Figure 11. Hourly plot produced by GAW-QC for validated O3 data measured at the station of Concordia in the second half of 2023.

mance of CAMS+, because it would have been trained on
lower resolution data. However, this would not strongly im-
pact the overall functionality of the tool. Note that already in
the current version we do not provide CAMS+ forecasts for
N2O due to the lack of suitable CAMS products.

The goals of GAW-QC are manifold: (i) to provide near-
realtime QC, allowing station operators to timely detect and
deal with instrumentation malfunctions or sources of con-
tamination, thus avoiding the loss of months or years of data,

(ii) to promote a correct and consistent QC procedure world-
wide, (iii) to help scientists to evaluate the quality of his-
torical series, hence improving the quality of their research,
(iv) to motivate the station operators to regularly submit their
data to the world data centres; and, finally, (v) to support
training activities within the framework of the GAW pro-
gramme.
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at https://github.com/ybrugnara/gaw-qc (last access: 27 October
2025).

Data availability. GAW data for CH4, CO and CO2 are avail-
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on the Copernicus Atmosphere Data Store (https://ads.atmosphere.
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