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Abstract. Marine primary organic aerosols (POAs) are important components of the marine climate system,
regulating solar radiation budget and cloud dynamics. Despite their importance, there is a lack of extensive long-
term observations of POA properties, introducing great uncertainty in their parameterization in models. This
lack of information originates from the complexity of POA chemical composition, very few long-term high-
resolution measurements of clean marine air, and the difficulty in performing source apportionment techniques
over a long-term period. In this study, we utilize a comprehensive high-resolution time-of-flight aerosol mass
spectrometer (HR-ToF-AMS) dataset spanning 1 decade (2009–2018) and introduce a machine learning (ML)
approach to distinguish between marine POA and marine secondary organic aerosol (SOA). Results indicate that
marine POA concentrations peak during summer months and reach their lowest levels in winter. On average,
marine POA constitutes 51 % (ranging from 21 % to 76 %) of the marine organic aerosol (OA) annually and up
to 63 % (48 % to 75 %) in summer. With the differentiated POA and SOA, we found diverse impacts of POA
and SOA on aerosol hygroscopicity and mixing state. An increase in POA reduces the hygroscopicity and leads
to an external state of mixing, while an increase in SOA sustains the relatively high hygroscopicity and leads to
internal mixing. This study provides an observational dataset for marine POA and SOA and their diverse impacts
on aerosol hygroscopicity, emphasizing a better appreciation of marine POA and SOA to improve the climate
projections.

1 Introduction

Marine aerosols constitute a large portion of the global
aerosol budget and are pivotal in regulating the Earth’s cli-
mate system (Fitzgerald, 1991; O’Dowd and Leeuw, 2007).
It has been known for quite some time that marine aerosols
contain a significant amount of organic matter (Blanchard,
1964). Cavalli et al. (2004) and O’Dowd et al. (2004)
show the great contribution of organic matter to the North-

east Atlantic marine aerosol during periods of high bio-
logical activities. This marine organic aerosol (OA) origi-
nates from two sources: (1) bubble bursting that scavenges
surface-active organic matter and other biogenic materials
(bacteria, viruses, and detritus), producing primary organic
aerosol (POA) (Barger and Garrett, 1970; Blanchard, 1964;
Blanchard and Woodcock, 1957); (2) oxidation of marine
volatile organic compounds (VOCs), such as dimethyl sul-
fide (DMS), aliphatic amines, isoprene, and monoterpenes,
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which can form secondary organic aerosol (SOA) (Bates et
al., 1992; Bonsang et al., 1988; Charlson et al., 1987; Fac-
chini et al., 2008; Meskhidze and Nenes, 2006; Wohl et al.,
2023; Zheng et al., 2020).

Marine POA is crucial for regulating cloud properties, act-
ing as cloud condensation nuclei (CCN) or ice nuclei (IN).
Ovadnevaite et al. (2011a) documented a marine POA plume
with a peak POA concentration of up to 3.8 µg m−3 in the
Northeast Atlantic, which is comparable to levels found in
European continental air. Ovadnevaite et al. (2011b) fur-
ther highlighted that marine POA has low hygroscopicity
but high CCN potential. Additionally, sea spray tank exper-
iments have demonstrated a significant correlation between
seawater nanophytoplankton cell abundances and sea spray
CCN number fluxes (Sellegri et al., 2021).

Incorporating marine POA into global models necessitates
a comprehensive understanding of the source strength and
environmental response of POA. O’Dowd et al. (2008) pro-
posed an integrated organic–inorganic sea spray source func-
tion that accounted for a size-dependent contribution of POA
to total sea spray aerosol. Further parameterization efforts
have considered factors such as chlorophyll a concentration
and wind speed (Gantt et al., 2011; Gantt et al., 2012; Rinaldi
et al., 2013), which have been integrated into global chemical
transport models. However, the influence of marine biota on
the chemical composition and cloud activation properties of
POA remains a contentious topic. O’Dowd et al. (2015) ob-
served significant changes in the CCN activities of sea spray
aerosol during a phytoplankton plume over the Northeast At-
lantic, whereas Quinn et al. (2014) and Bates et al. (2020)
reported no substantial alterations in CCN activity over the
Northwest Atlantic.

In summary, the source intensity, chemical composi-
tion, mixing state, and cloud condensation activation poten-
tial of marine POA remain poorly understood (Gantt and
Meskhidze, 2013), with large discrepancies between mod-
elled and measured POA (Gantt et al., 2015). A major chal-
lenge in improving POA parameterization and modelling is
the lack of long-term datasets, which are critical for both un-
derstanding the environmental drivers of POA emissions and
developing emission schemes for regional or global chemical
transport models. The majority of the available data, such as
those in Rinaldi et al. (2013), are derived from filter measure-
ments that require extended sampling durations and result in
low time resolution (days to weeks). Although filter-based
methods can distinguish POA from SOA by using chemi-
cal molecular fingerprints (O’Dowd et al., 2004), they suffer
from low temporal resolution, limiting their ability to capture
dynamic changes in aerosol composition (minutes to hours).

The deployment of an aerosol mass spectrometer (AMS)
in both coastal and remote marine atmospheres has provided
an opportunity to improve the POA parameterization and
refine model predictions (Choi et al., 2017; Huang et al.,
2018; Ovadnevaite et al., 2014; Saliba et al., 2020; Sanchez
et al., 2021; Schmale et al., 2013; Willis et al., 2017). The

AMS enables near-real-time measurements of aerosol chem-
ical composition (DeCarlo et al., 2004, 2006), including or-
ganic aerosol (OA), non-sea-salt sulfate (nss-SO4), ammo-
nium (NH4), nitrate, methanesulfonic acid (Ovadnevaite et
al., 2014), and sea salt (Ovadnevaite et al., 2012). While POA
and SOA can be differentiated using their mass spectra fin-
gerprints through positive matrix factorization (PMF), this
method faces challenges in high-time-resolution long-term
datasets due to the required workforce and computational
cost (Chevassus et al., 2025).

In this study, we developed a machine learning (ML)
model to differentiate the contributions of marine POA
and SOA from the measured total marine OA, using long-
term marine aerosol measurements obtained by an AMS
at the Mace Head Atmospheric Research Station (MHD).
This model effectively identified and quantified contributions
from the marine POA from SOA. The impacts of POA and
SOA on aerosol hygroscopicity were then investigated.

2 Methods

2.1 Data and instrumentation

Aerosol measurements were conducted at the Mace Head At-
mospheric Research Station (53°19′ N, 9°54′W) on the west
coast of Ireland from 2009 to 2018. The station, regularly ex-
posed to clean marine air masses from the North Atlantic, has
been a representative site for studying clean marine aerosols
for several decades (O’Dowd et al., 2014).

We employed a high-resolution time-of-flight AMS (HR-
ToF-AMS; DeCarlo et al., 2004) at Mace Head (Ovadnevaite
et al., 2014) to measure the PM1 (particulate matter with a di-
ameter smaller than 1 µm) chemical composition, including
organic aerosol (OA), non-sea-salt sulfate (nss-SO4), sea salt,
methanesulfonic acid (MSA) (Ovadnevaite et al., 2014), am-
monium (NH4), and nitrate (NO3). Additionally, black car-
bon (BC) was measured using a multi-angle absorption pho-
tometer (MAAP) to trace anthropogenic emissions. Meteoro-
logical conditions were also recorded, including air temper-
ature, pressure, precipitation, relative humidity (RH), wind
speed, and wind direction.

A humidified tandem differential mobility analyser (HT-
DMA) (Swietlicki et al., 2000) was used to measure aerosol
hygroscopic growth at a fixed relative humidity of 90 %
for aerosol with selected dried sizes of 35, 50, 75, 110,
and 165 nm. The growth factors measured by the HTDMA
were inverted using a piecewise linear function (Gysel et al.,
2009).

GFa,bmean =
1

nfa,b

∫ b

a

GFc (GF,D)dGF (1)

The arithmetic mean GF (GFmean) was calculated as

GFmean =

∫
GFc (GF,D)dGF. (2)
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To quantify the mixing state, the GF spread factor (SF), de-
fined as the standard deviation of the GF-PDF divided by the
GFmean, was calculated as

SF=

(∫
∞

0 (GF−GFmean)2c(GF,D)dGF
)1/2

GFmean
. (3)

The GF was measured at 90 % RH; however, the RH of
the second differential mobility analyser (DMA) fluctuated
slightly with the ambient temperature. The data between
88 %–92 % RH were corrected using the κ-Köhler theory ac-
cording to the formula derived from Petters and Kreidenweis
(2007),

κ =

(
GF3
− 1

)
(1− aw)

aw
→ GF(aw,κ)

=

(
1+ κ

aw

1− aw

)1/3

, (4)

where aw is the water activity, and were obtained by Köhler
theory:

aw =
RH

exp( 4σsvw
RTD )

, (5)

where σs is the surface tension of the droplet, vw is the partial
molar volume of water, R is the universal gas constant, T is
the temperature, and D is the diameter of the droplet. The
surface tension is assumed to be 0.072 mN m−1.

Data from the AMS and MAAP were averaged to a 10 min
resolution, while the meteorological records were initially
recorded hourly and later downscaled to 10 min intervals us-
ing linear interpolation to enlarge the dataset’s availability.
Any gaps in the AMS or MAAP data that contain invalid
measurements were removed. Hourly boundary layer heights
were obtained from ERA5 (Hersbach et al., 2020) and down-
scaled to 10 min resolution using linear interpolation.

2.2 Clean sector criteria and machine learning strategy

To differentiate between marine POA and SOA at the Mace
Head Atmospheric Research Station (MHD), this study em-
ploys an ML model to predict the mass concentration of ma-
rine SOA. Subsequently, POA concentrations are obtained by
subtracting SOA from the measured total OA. Marine SOA
was chosen as the ML model predictor because SOA is ex-
pected to be impacted by environmental factors and because
less is known about POA, emission strengthening, and source
regions. To ensure the high quality of the SOA production
period, we implemented multiple screening criteria to mini-
mize the influence of anthropogenic and marine primary sig-
natures. Firstly, we applied clean sector criteria, limiting BC
concentration to less than 15 ng m−3 and selecting wind di-
rection between 190 and 300° (O’Dowd et al., 2014) to ex-
clude continental outflows and ship plumes. The clean sector
criteria, which have been established and applied in various

MHD research studies (O’Dowd et al., 2014; Ovadnevaite et
al., 2014; Xu et al., 2022), were employed to isolate marine
air masses from anthropogenic influences.

We then applied additional filtering processes to reduce
the impact of POA production. We further refined the data
by keeping instances with wind speed below 6 m s−1 and
sea salt mass concentration under 0.03 µg m−3 to minimize
the concentration of marine POA. Finally, we retained only
those data points where nss-SO4 was the dominant compo-
nent (nss-SO4/OA> 4) to ensure a predominantly secondary
source. We presumed that, in these selected data, OA was
predominantly SOA, with the contribution of POA repre-
sented by a minor and constant background concentration
(POAbg).

Subsequently, we employed a support vector regression
(SVR) (Awad et al., 2015) trained on these rigorously se-
lected SOA production periods. SVR was chosen for its gen-
eralizability in handling small datasets and its resistance to
overfitting (Ghimire et al., 2022; Juang and Hsieh, 2009).
Unlike tree-based models like random forest (Breiman,
2001), SVR model can predict continuous values (Ma et
al., 2003; Tang et al., 2024). The hyperparameters, includ-
ing the penalty coefficient (C) and gamma (γ ) of the radial
basis function (RBF) kernel, were tuned via grid research.
The model targeted OA concentration, using nss-SO4, MSA,
NH4, and meteorological parameters (temperature, relative
humidity, boundary layer height, wind direction, and pres-
sure) as predictors. We also included hours of the day to
capture diurnal variations. Predictors not directly linked to
secondary production, e.g. sea salt, NO3, and BC, are ex-
cluded to avoid over-fitting and ensure generalizability, even
though including these might have enhanced the model per-
formance in the training dataset. Wind speed was used to se-
lect the SOA production period; therefore, it was not suitable
as a predictor. A summary of the variables employed as pre-
dictors is shown in Table 1. The SVR was trained using the
“tidymodel 1.3.0” framework using R programming software
(version 4.4.3).

The selected SOA production periods were split by the
year 2015: data before 2015 were used to train the model.
The training dataset covered a significant fraction of the vari-
abilities in predictors, as illustrated in Fig. S1 in the Sup-
plement. The hyperparameters of the SOA-SVR model were
optimized using grid search and 5-fold cross-validation. The
data after 2015, which were unseen for the training process,
were used to challenge the model’s generalizability. Over-
all, there are 1700 h of SOA production periods and 477 h
(27.8 %) after 2015.

A schematic diagram of the proposed methodology is
shown in Fig. 1. Initially, the clean marine dataset was ex-
tracted by applying the clean sector criteria, followed by
additional filtering processes to minimize the influence of
POA. To assess the representativeness of the selected data
as secondary sources, the Fuzzy C-Means (FCM) clustering
method (Bezdek et al., 1984) was utilized. Subsequently, data
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Table 1. Predictors used for SOA ML model.

Predictors Acronyms Source Rationale

Hour of the day hour To capture any diurnal pattern
nss-SO4 SO4 AMS measurement Secondary aerosol marker
MSA MSA AMS measurement Secondary aerosol marker
NH4 NH4 AMS measurement Secondary aerosol marker
Temperature temp Meteorological records Known to influence secondary processes
Rain rain Meteorological records Related to wet removal
Wind direction wddir Meteorological records Related to sources
Boundary layer height blh ERA5 reanalysis Related to concentration

Figure 1. The proposed data processing and model construction
workflow. POAbg represents the assumed constant POA back-
ground concentration. ML (chem+met+ time) represents the ma-
chine learning model that uses chemical composition and meteoro-
logical and time parameters as predictors.

were divided into training, validation, and test sets for ML,
with SOA (including minor POAbg) as the predictive vari-
able. To mitigate experimental uncertainties, cross-validation
and Monte Carlo simulations were performed. The study fur-
ther investigated the magnitude of the POAbg values. Finally,
the ML method was applied on the clean marine air mass data
to predict marine SOA concentrations, enabling the differen-
tiation of marine POA concentrations within the total marine
OA.

2.3 Fuzzy C-Means clustering

FCM is a clustering algorithm that enables the grouping of
data points into multiple clusters with varying degrees of

membership. Unlike traditional hard clustering techniques,
where each data point is assigned to a single cluster, FCM
assigns membership levels to each data point, indicating the
degree to which it belongs to each cluster. This soft cluster-
ing approach is particularly useful when dealing with com-
plex datasets where boundaries between clusters are not well
defined or overlap significantly. By optimizing an objective
function that minimizes the weighted sum of squared errors,
FCM iteratively updates the cluster centres and membership
degrees, providing a flexible and robust means of uncover-
ing underlying patterns and structures within data. In this
study, the input variables for the FCM model included chem-
ical components (sea salt, OA, NO3, SO4, NH4, MSA, and
BC) and meteorological parameters (temperature (temp), rel-
ative humidity (rhum), wind speed (wdsp), and wind direc-
tion (wddir)). We randomly selected 10 000 samples and re-
tained only those with positive concentrations for all chem-
ical components. The data were then log10-transformed and
Z-score-standardized. The FCM model was configured with
five clusters, a fuzziness exponent of 1.2, and Euclidean dis-
tance as the distance metric.

3 Results and discussion

3.1 Performance of the ML model in the SOA production
period

We firstly examined the aerosol composition in the selected
secondary marine aerosol dataset. In these SOA production
periods, nss-SO4 constituted 68.9± 8.7 % of the PM1 mass,
followed by OA at 12.1± 3.4 % and MSA at 6.8± 4.0 %.
The average concentrations of sea salt and wind speed were
0.015± 0.009 µg m−3 and 4.6± 1.2 m s−1, respectively. The
MSA–nss-SO4 ratio was 0.10± 0.06, aligning with previous
findings at the same site (Ovadnevaite et al., 2014). BC con-
centrations remained well below the 15 ng m−3 threshold,
averaging at 6.0± 3.7 ng m−3. Taken together, this chemi-
cal composition indicates the selected data mainly originated
from secondary sources.

To ensure the representativeness of the selected training
data as secondary sources, we applied the FCM method
on the clean marine dataset to identify the characteristics
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Figure 2. Observed OA versus predicted (SOA +POAbg) for (a) training, (b) validation, and (c) test datasets. Data density is illustrated
using a colour gradient, with darker colours indicating a lower data density. Black lines denote the 1 : 1 correspondence lines, and blue lines
represent regression lines.

of chemical and meteorological parameters from typical
sources. Compared to more conventionally used k-means
clustering, FCM allows data instances to belong to multiple
clusters with varying degrees of membership (or probability).
The membership is used to determine how strongly each data
instance belongs to each cluster. The FCM clustering, which
is independent of the selection of SOA production periods,
provides further validation and examination of the data se-
lection for model training. We selected those with any clus-
ter membership higher than 80 % to show the clustering cen-
tre of each cluster. As shown in Fig. S2a, the second factor,
which is featured by low sea salt, low wind speed, and high
temperature, is most likely to be of the secondary origin. This
factor also showed high MSA and nss-SO4, supporting the
selection criteria for the SOA production period. Indeed, the
highest possibility of the selected training data is found to be
the second factor (Fig. S2b), reaffirming the SOA production
characteristics.

Subsequently, we employed the SVR model, leveraging
the clean marine dataset, to predict OA (SOA+POAbg) con-
centrations. Cross-validation yields Pearson’s R of 0.97 for
training and validation datasets, demonstrating the model’s
accuracy in predicting total OA (SOA+POAbg) concentra-
tion using the selected predictors. The slopes between esti-
mated SOA+POAbg and measured OA were 0.97 for both
the training and validation data, indicating robust pattern
recognition across most concentration ranges. The model
also exhibited great generalizability and performed consis-
tently well on an unseen dataset (Fig. 2c), with a Pearson’s R
value of 0.94 and a slope of 0.98 between observed OA and
estimated SOA+POAbg, reaffirming the model’s efficacy in
modelling the complex dynamics of SOA.

Permutation importance analysis highlighted nss-SO4 and
MSA as the most influential variables, followed by NH4
(Fig. 3a). Partial dependence plots (Fig. 3b) indicate a non-

linear relationship between SOA and increasing levels of nss-
SO4 and MSA. While these plots do not imply a causal rela-
tionship, they highlight the complexity of the interactions and
underscore the importance of employing a machine learning
model to effectively capture such intricate patterns. Various
meteorological parameters were also found to influence SOA
concentration, especially relative humidity and precipitation,
but to a lower extent. It should be noted that the nss-SO4,
although being found in marine secondary species, exhibits
different formation dynamics and timescales with marine
SOA, which might induce some extent of uncertainty. How-
ever, both marine SOA and nss-SO4 might originate from
marine biological activities. Furthermore, marine air masses
arriving in MHD are expected to be advected over the North-
east Atlantic for several days. The use of nss-SO4 can also
be supported by the high correlation between nss-SO4 and
MSA, which exhibit different atmospheric formation dynam-
ics.

In this study, one of the major assumptions of this ap-
proach is to assume that the OA in the selected secondary
marine data for training the model is dominated by SOA.
To evaluate the potential influence of POA contributions in
those secondary marine data cases on the entire clean marine
dataset, we conducted a sensitivity analysis. We assumed that
POAbg constitutes 5 % to 30 % of OA. As shown in Fig. S3,
compared to the original assumption, the monthly averaged
concentration of POA systematically increased throughout
most of the year, except during winter, when alternative as-
sumption predicted POA concentrations lower than 0, which
is, of course, nonphysical. Then, we applied the model to
the entire clean marine dataset and tried different fixed
POAbg values iteratively. As shown in Fig. S4, the POAbg
of 0.01 µg m−3 yields the fewest nonphysical predictions (ei-
ther POA or SOA lower than 0). Therefore, the POAbg of
0.01 µg m−3 was used in the following calculation. Based on
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Figure 3. (a) The relative importance of different predictors. The hour and month were transformed with cosine functions. The month and
hour were transformed to preserve continuity in the data. (b) The partial dependence of estimated SOA to different predictors. The lines rep-
resent median values, and the shaded areas represent the 25th to 75th percentile; the 23:00 and 01:00 LT data are numerically far apart despite
being temporally close. Therefore, the hour of the day for periodic functions is simulated with cosine functions: hour= cos(hour · (25/12)).

this strategy, SOA concentrations were predicted, enabling
the estimation of POA concentrations. Furthermore, if the
POA production period is defined as a period with POA con-
centrations exceeding 0.1 µg m−3 for more than 12 h, there
were more than 60 such POA production periods during the
10-year period (Fig. S5). Detecting these POA production
periods allows detailed characterization, potentially enhanc-
ing its parameterization.

Note that the measurement itself contains relatively large
uncertainty, compared to summertime measurement. Indeed,

we manually tuned the POAbg value to minimize the negative
values. This is supported by previous studies that the ma-
rine area is a large organic pool (Quinn et al., 2014). Given
the inherent uncertainties in aerosol measurements, which
are well documented in previous studies (Ovadnevaite et al.,
2014), we further quantified the uncertainties associated with
the ML model using Monte Carlo simulations. To do this,
we performed a robustness test by randomly validating the
model 1000 times, each time excluding 20 % of the data from
the training set. The lower and upper limits of the estimated
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POA seasonality are shown in Fig. S6, which is similar to the
original model. The Monte Carlo ensembles demonstrated
negligible differences in the contribution of POA, indicating
stable model performance across different scenarios. While it
should be noted that the Monte Carlo bootstrapping is used to
assess the random uncertainties, potential uncertainties asso-
ciated with possible systematic uncertainties require further
investigation.

To validate the ML-based POA concentrations, we further
compared them with PMF-based POA concentrations from
Chevassus et al. (2025). The PMF-based source apportion-
ment was conducted for about 1 month. The Pearson’s cor-
relation coefficient between ML-based POA and PMF-based
POA was about 0.91, indicating strong agreement between
the two methods (Fig. 4). Compared to the conventional
AMS-based OA source apportionment techniques, e.g. PMF,
this ML approach requires significantly fewer computational
resources and is less dependent on detailed knowledge of the
mass spectra signatures of marine POA and SOA. For ex-
ample, the model performed equally well even after remov-
ing MSA as a predictor (Fig. S7). Given that MSA can only
be resolved by high-resolution AMS, this suggests that our
approach could be extended to Aerosol Chemical Speciation
Monitor (ACSM) data, which are more affordable and widely
used but have a lower mass resolution. This would enable
broader applications of our method, offering a more compre-
hensive understanding of marine POA over global oceans. Fi-
nally, although secondary production of OA and nss-SO4 re-
lies on similar meteorological conditions, it should be noted
that many marine VOC species do not share the same sources
and oxidization pathways as DMS and its derivatives. For
example, some VOCs are produced by different organisms
or abiotically from the sea surface microlayer (Ciuraru et al.,
2015; Mungall et al., 2017), which could introduce additional
uncertainty in the SOA quantification based on periods of
high nss-SO4, which adds to the uncertainty for POA attribu-
tion as well.

3.2 Case study and long-term seasonality

The evaluation of the model’s performance has shown a
clear relationship between SOA and the predictor variables in
the chosen SOA production period. Assuming there is little
and constant contribution from POAbg, the estimated SOA
concentration should be similar to the measured OA. We
then evaluated the model’s performance in well-defined cases
over finer timescales. During a typical SOA production pe-
riod from 11 to 14 August 2011 (Fig. 4a), which was not in-
cluded in the training dataset because of the slightly elevated
sea salt above the threshold of 0.03 µg m−3, the measured
OA closely followed the variation in nss-SO4 and MSA, with
Pearson’s R values of over 0.80 and 0.84, respectively. These
high correlations indicate a predominant secondary source of
OA. The model’s estimates of SOA concentrations were very
close to the measured total OA (Fig. 4b), with an OA/SOA

Figure 4. The comparison between machine-learning-derived POA
and HR-PMF POA. The HR-PMF POA data are taken from Chevas-
sus et al. (2025). The blue line is the regression line, and the grey
area represents the 95 % confidence interval. The black line repre-
sents the 1 : 1 line. Pearson’s correlation coefficient and the equa-
tion of regression line are shown in the top left.

ratio of 1.03± 0.04. This further suggests that the ML model
is able to predict the variability in SOA.

In contrast, during a well-documented marine POA plume,
from 13 to 18 August 2009 (Fig. 5c), the OA dominated the
PM1 concentration and showed little correlation with nss-
SO4 or MSA (Pearson’s R of 0.05 and 0.08, respectively).
Notably, the estimated SOA deviates significantly from the
observed OA (Fig. 5d). In this instance, the SOA estimated
by the ML model accounted for only about 20 % of the total
OA during the plume, underscoring the significant contribu-
tion of marine POA. The different performance, presented in
Fig. 5, is expected. In Fig. 5a, the model is mostly influenced
by the nss-SO4, a marker for secondary species, leading to a
great agreement between modelled SOA and observed OA.
Conversely, Fig. 5d shows a significant discrepancy between
modelled SOA and observed OA. The difference is largely
attributed to the contribution of POA. This case was reported
by Ovadnevaite et al. (2011a), in which the marine POA was
identified using HR-ToF-AMS mass spectra and the SOA
during the period was not quantified.

The cases of SOA and POA production periods indicate
the model’s capability to predict the SOA and POA levels. As
illustrated in Fig. 6, both POA and SOA reached their peak in
June and dropped to their lowest during the winter months.
Typically, median concentrations of SOA were higher than
those of POA across most months, except for May. However,
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Figure 5. Case study of (a–b) the SOA production period and (c–d) the POA production period. (a, c) Time series of PM1 chemical species
and (b, d) measured OA versus estimated SOA. The colours represent data density, with darker colours indicating lower data density, and the
black lines represent 1 : 1 lines.

Figure 6. The seasonality of POA and SOA. (a) Boxplot of the mass concentration of POA (dark green) and SOA (purple). The horizontal
lines represent the median, the boxes represent the 25th and 75th quantiles, and the whiskers represent the 1.5 interquartile range. Note that
outliers are not fully shown to ease visualization. (b) The contribution of POA to total OA. The line represents the monthly median, and the
shaded area represents the 25th and 75th quantiles.
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Figure 7. The potential source contribution function analysis of marine POA (a) and SOA (b). The reddish colour represents higher proba-
bility.

POA concentrations spiked periodically, highlighted by out-
liers. The mean relative contribution of POA to total OA, de-
tailed in Fig. 6b, shows the lowest contribution in winter and
the highest contribution from May to July, peaking at approx-
imately 50 % and slightly later in summer than SOA. The pat-
tern corresponds with the enhanced marine activities in late
spring and early summer of the North Atlantic, involving ex-
tensive phytoplankton proliferation and other marine organ-
isms that release organic matter into the atmosphere through
wave breaking and bubble bursting.

It is important to note that the total marine OA concentra-
tions during winter at Mace Head are very low, introducing
substantial uncertainty in OA separation during this season.
The minimal POA concentration observed in winter suggests
a distinct relationship between total OA, secondary species,
and environmental factors. This relationship closely mirrors
the dynamics observed in SOA. As shown in Fig. S8, the esti-
mated SOA closely aligns with measured OA throughout the
winter, pointing to low contribution from POA. Conversely,
during the summer, numerous data points shown in Fig. S8
deviate to the right of the 1 : 1 lines, indicating a substantial
contribution from POA.

The differentiation of POA from SOA is further substanti-
ated by additional correlation analysis. As shown in Fig. S9,
the correlation between OA and nss-SO4 across the entire
clean marine dataset is relatively low, at approximately 0.17,
suggesting that nss-SO4 explains less than 3 % of the vari-
ability in marine OA. Upon decoupling the OA into POA and
SOA, we observed distinct correlation patterns: the correla-
tion between SOA and nss-SO4 increased to 0.88, reflecting
a strong linkage, whereas, for POA, it decreased to 0.08. This

stark contrast underscores the different sources and atmo-
spheric behaviours of marine POA and SOA. This different
correlation analysis provides a clear delineation of how POA
and SOA contribute to marine OA and emphasizes the ca-
pacity of advanced modelling techniques and long-term ob-
servations to unravel complex atmospheric processes.

The potential sources of POA and SOA were investigated
using the potential source contribution function (PSCF) com-
bined with air mass backward trajectories (Mansour et al.,
2020). As shown in Fig. 7, POA likely originates from the
Northeast Atlantic polar marine regions (Fig. 7a), which are
recognized as biologically active waters. In contrast, SOA
sources are traced to tropical marine regions (Fig. 7b). The
identified POA sources align with previous studies suggest-
ing that regional marine biological activity is a key driver
of POA production (O’Dowd et al., 2004; Sellegri et al.,
2021). For SOA, enhanced photochemical reactions in lower-
latitude waters likely promote the formation of secondary
species. The distinct source regions of marine POA and SOA
underscore the need for models to incorporate specific pa-
rameterization schemes that account for these spatial and
mechanistic differences.

In contrast to prior studies that relied on filter-based mea-
surements with limited temporal resolution, this study intro-
duces an ML framework to systematically differentiate and
quantify marine POA and SOA. While seasonal variations
in POA/SOA have been reported previously, our decade-
long dataset – the most extensive of its kind to date –
provides unprecedented resolution to constrain and develop
POA and SOA parameterization for climate models. Further-
more, the distinct source regions identified for POA (polar
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Figure 8. The impact of POA (a) and SOA (b) on aerosol hygroscopicity parameter (κHTDMA) at different sizes. The analysis was limited
to April to August to minimize the seasonal variations. The black lines represent medians, the dark shaded areas represent the 25th to 75th
percentiles, and the darker shaded areas represent the 10th to 90th percentiles.

marine zones) and SOA (tropical waters) underscore their
divergent formation mechanisms. Current model estimates
of global emissions of POA span 6.9–76 Tg yr−1 for < 1 µm
emissions, and the global source of SOA was thought to be
substantially smaller than marine POA. Our measurements
found similar contributions of POA and SOA, while it has to
be noted that some fraction of SOA was transformed via at-
mospheric ageing from POA, which is difficult to quantify. A
recent study found the photochemical reactions in the sea–air
interface produced substantial VOC as the precursors of ma-
rine SOA (Brüggemann et al., 2018); the complex sources of
SOA highlight the need for field observational data to chal-
lenge the models. The combined sensitivity to marine bio-
logical activities and photochemistry of marine OA was also

supported by Sanchez et al. (2021), who found high correla-
tion with downward shortwave flux and net primary produc-
tion, although they did not separate POA and SOA.

3.3 Impact of marine organic aerosol on aerosol
hygroscopicity and mixing state

The long-term marine POA and SOA time series now enable
an assessment of their influence on aerosol hygroscopicity –
a relationship which was previously uncertain. As shown in
Fig. 8a, increasing POA concentrations from 0.1 to 1 µg m−3

reduces the hygroscopicity parameter (κ) across all particle
sizes, dropping values from ∼ 0.5 to below 0.25. This find-
ing contrasts with earlier experimental work suggesting POA
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Figure 9. The impact of percentage contribution of POA (a) and SOA (b) to aerosol mixing state (spread factor) at different sizes. The
analysis was limited to April to August to minimize the seasonal variations. The black lines represent medians, the dark shaded areas
represent the 25th to 75th percentiles, and the darker shaded areas represent the 10th to 90th percentiles.

production has negligible effects on aerosol hygroscopicity
and CCN activity (Quinn et al., 2014) but aligns with our
prior case study highlighting the inherently low hygroscop-
icity of POA (Ovadnevaite et al., 2011b). Quinn et al. (2014)
investigated the impact of marine POA on its cloud conden-
sation nuclei using a sea sweep device; they found no sig-
nificant difference in POA contribution at different oceanic
regions with diverse ranges of chlorophyll a, and they at-
tributed the POA to the ocean carbon pool. However, based
on our field measurements, it is unlikely that the ocean car-
bon pool induces such large variations in the observed POA,
underscoring the importance of oceanic biological activities.

As for the SOA, the increasing SOA concentrations from
0.1 to 0.3 µg m−3 only slightly reduce κHTDMA values (from

0.5 to 0.45) for particles between 50 and 165 nm, with no
significant change observed for 35 nm particles. This muted
response may arise from co-varying increases in secondary
species, such as nss-SO2−

4 or MSA, which help maintain
hygroscopicity at relatively high levels. This is consistent
with our recent high-temporal-resolution online measure-
ment, which shows a simultaneous increase in SOA and nss-
SO2−

4 during particle growth (Xu et al., 2024; Zheng et al.,
2020). These results underscore the distinct roles of POA and
SOA in modulating aerosol water uptake and cloud-forming
potential, emphasizing the need to explicitly represent OA
composition and sources in climate models.

The influence of POA and SOA on the aerosol mixing state
was further investigated using the spread factor, calculated

https://doi.org/10.5194/acp-25-14205-2025 Atmos. Chem. Phys., 25, 14205–14219, 2025



14216 B. Chen et al.: Differentiation of primary and secondary marine organic aerosol

from growth factor probability density functions (Xu et al.,
2020b). A spread factor of 0 indicates a theoretically inter-
nal mixture, while higher values reflect increasing external
mixing. Based on established thresholds (Swietlicki et al.,
2008; Xu et al., 2020a), a spread factor of ≤ 0.05 is clas-
sified as an internal mixture, whereas values ≥ 0.2 signify
external mixing. POA and SOA exhibit divergent impacts on
the aerosol mixing state. As shown in Fig. 9a, increasing the
POA contribution from 0 % to 100 % elevates the spread fac-
tor, suggesting POA production promotes external mixing.
Conversely, SOA accumulation drives the system toward a
more internally mixed state. This aligns with aerosol age-
ing processes, where particles tend to homogenize over time.
Accurately representing the hygroscopicity and mixing-state
dynamics of POA and SOA is critical for assessing their cli-
matic impacts, as these properties directly influence aerosol–
cloud interactions and radiative forcing.

4 Conclusions

The quantification of marine POA and SOA traditionally
relies on PMF applied to aerosol mass spectra, which is
challenging for long-term data. This study presents a data-
driven ML framework to identify and quantify marine POA
by leveraging temporal data patterns rather than chemical
mass signatures. The ML model, trained on rigorously se-
lected SOA-dominated periods, was applied to a multi-year
aerosol dataset, enabling the identification of numerous POA
production events. At Mace Head, marine POA constitutes
∼ 50 % of total marine organic aerosol (OA), increasing to
63 % during late spring and early summer. Unlike PMF, this
ML approach proves particularly effective for disentangling
OA components in complex, long-term environments where
high-resolution AMS data are unavailable.

Combined with aerosol hygroscopicity measurements, our
analysis reveals distinct climatic impacts: marine POA sig-
nificantly reduces aerosol hygroscopicity and promotes ex-
ternal mixing, whereas SOA exhibits weaker effects. These
findings underscore the need to accurately quantify marine
POA abundance and its influence on cloud-relevant proper-
ties. A key limitation lies in the selection of SOA-dominated
periods for model training; future work should optimize ML
performance for smaller or less curated datasets. Addition-
ally, validating these marine POA results with global oceanic
measurements is essential to refine POA parameterizations in
climate and chemical transport models.
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