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Section 1. Detailed Procedures for PMF on ACSM Data

PMF analysis was conducted on the ToF-ACSM mass spectra to identify the key OA components and investigate their sources
(Paatero, 1997; Paatero and Tapper, 1994). Briefly, in the bilinear mode used here, PMF describes the measured data matrix X as
a product of two matrices, G and F, and the residual matrix E:

X=GF+E (1)

Each column in matrix G represents the time series of a factor profile (mass spectrum) and each row in the matrix F represents the
corresponding factor profile. In order to solve equation (1), quantity Q is minimized with respect to all model variables:

Q= X125 (E—:)Z (2)

Where o corresponds to the matrix of measurement uncertainties of X.

In this study, we base the PMF approach on that described in Canonaco et al. (2021), in that we use the multilinear engine (ME-2,
Paatero, 1999) algorithm, constrain certain profiles with reference mass spectra, and perform multiple PMF runs on a subset of
data defined by a temporal window moved in 1 day increments across the entire dataset (“rolling PMF” strategy). This method
allows for better capturing of seasonal variations in factor profiles (Canonaco et al., 2021). We carry out the PMF calculations
using the Source Finder (SoFi) software package (Canonaco et al., 2013). However, the clustering and post-processing averaging
steps were performed with custom routines written in the MATLAB environment (MATLAB 2020b).

S1.1 Unconstrained PMF

Before performing rolling PMF constrained with reference profiles, we carried out an unconstrained PMF run to identify a plausible
set of reference profiles. The TRACER TOF-ACSM organic matrix and its associated error matrix generated by the TOFWerk
TOFware software package were first averaged to a 90-minute sampling frequency. An unconstrained PMF run with random seeds
was performed for four, five and six factors, 350 times each. Subsequently, each set of 350 PMF runs was then clustered using the
k-means algorithm.

The optimized number of PMF profiles for each season is selected based on the calculated average silhouette value of the k-means
clustering solution for 4, 5 and 6 factors. The silhouette value for each point is a measure of how similar that point is to other points
in the same cluster, compared to points in other clusters. The silhouette value s; for the i point is defined as

5 = i) 3)

max(aj,bj)

where a; is the average distance from the i point to the other points in the same cluster as i, and b; is the minimum average distance
from the i point to points in a different cluster, minimized over the clusters. If the i point is the only point in its cluster, then the
silhouette value s; is set to 1. A high silhouette value indicates that the point is well matched to its own cluster, and poorly matched
to other clusters. If most points have a high silhouette value, then the clustering solution is appropriate. If many points have a low
or negative silhouette value, then the clustering solution might have too many or too few clusters. We select the appropriate
seasonal PMF solution based on the highest silhouette value.

Fig. S1 shows average silhouette values for each unconstrained PMF solution. The five-factor solution has the highest silhouette
value, which suggests that it captures the most reasonable number of factors. Figs. S2-S4 show the PMF factors for each solution
and plots of key m/z markers for individual unconstrained PMF runs (fis, fis, f5s, f57, f60, fs2 and fo1).
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Figure S1. Silhouette values for 4-, 5- and 6-factor unconstrained PMF solutions.

Each solution includes a profile identified as HOA (black in Figs. S2-S4) based on a relatively high value of fss and f57. Each

solution also includes a profile identified as MT-SOA (darkest green in Figs. S2-S4) identified based on relatively high f3 and fo;.

Five and six factor solutions also include a factor identified as isoprene-SOA (blue in Figs. S3-S4), identified based on prominent
40  fs.. Beyond this, all solutions include 1-3 aged OOA factors (lighter green in Figs. S2-S4) based on a high f4 to f43 ratio.

Based on the unconstrained runs, the rolling PMF solution was constrained with HOA, MT-SOA, and isoprene-SOA factors from
the five-factor unconstrained solution. These reference factors are shown in Fig. S5
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Figure S2. Four-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented
45 by centroids of each k-means cluster. (b) Scatter plot of fa4 vs. fa3. (¢) Scatter plot of fa3 vs. fs2. (d) Scatter plot of fa3 vs. fo1. (€) Scatter plot of fi3
vs. feo. (f) Scatter plot of f37 vs. fss. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a).



a ; b) oz
(a) gigi J OO0OA2 (b)
- 1l T I I I I
— 02020 40 60 80 100 120 025
@ 015 |
= g-ggj J isoprene-SOA
D o000, === T T 1 020
0§32 60 80 100 120 A
Y— 03033 I & < |
O 883 AL' ey OIOA;] ‘.:t 0.15 :
g 0163 20 60 80 100 120
s e MT-SOA e
© 0.00
Lt g.}g 20| 40 60 80 100 120 0.05
8:833 l J L HOA
0.00 jl S BN S e 0.00 :
% 45 e 8¢ w06 %o 005 010 015 020
mlz f43
020F T T 3
(©) Tl
w 015 —‘"-_' e L (f)
N A 60x10° - Y
0.05 k& L -
1 1 1 1 1
0 5 10 16 20 2% 30x10° 50 a
f82
0.20 F 5, T T T T L= -
@ I B
o B3 » i 20
W3 P L A @ o
i 20 ]
1 1 1 1
16 2 2% 30x10°
f91 1
(e) 020F T T T o N
s w‘ P s Ol N T T
015 % \aaAtEY 1 1 0.02 0.04 0.06 0.08 0.10
© ol % a%e®*’
W3 g W ,..‘.\'“"' . f55
7 A P
2 4 6 8 10x10°
f60

Figure S3. Five-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented
by centroids of each k-means cluster. (b) Scatter plot of fa4 vs. fas. (¢) Scatter plot of fa3 vs. fs2. (d) Scatter plot of fa3 vs. fo1. () Scatter plot of fa3
50  wvs. fso. (f) Scatter plot of /37 vs. f35. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a).
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Figure S4. Six-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented by
centroids of each k-means cluster. (b) Scatter plot of fas vs. fa3. (¢) Scatter plot of fa3 vs. fs2. (d) Scatter plot of fa3 vs. fo1. (e) Scatter plot of fi3 vs.
fo0. (f) Scatter plot of f57 vs. f5s. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a).

S1.2 Constrained Rolling PMF

Rolling PMF is carried out on the ACSM organic matrix and its corresponding error matrix at the native sampling resolution of 10
minutes. The m/z 16, 17, 18 and 28, which are replicates of the variability in m/z 44 were removed from the PMF calculation and
recalculated a posteriori as a function of the m/z 44 contribution attributed to each factor profile (Elser et al., 2016). A down-
weighting function of the form of 1/S2N was applied for signal-to-noise (S2N) ratios lower than 1 and untouched otherwise (Visser
et al., 2015) on each cell of the organic matrix separately. A rolling window of 7 days with a 1-day shift was used for the rolling
strategy. Each rolling window run was initialized 35 times. The total number of individual PMF runs performed was 4375.
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Figure S5. Reference profiles used to constrain the rolling PMF run.

From the unconstrained pre-tests shown in Figs. S3-S4, it is evident that the solution should contain HOA, MT-SOA and isoprene-
SOA factors. We tested three different rolling solutions: (1) a 4-factor solution with constrained HOA, MT-SOA and isoprene-
SOA factors and one unconstrained OOA factor, (2) a 5-factor solution with the same constrained factors and two unconstrained
OOA factors, and (3) a 6-factor solution with the same constrained factors and three unconstrained OOA factors. In the 6-factor
solution, the OOA factor with the lowest O:C ratio was identified and named as “shipping-OOA” based on the results of the source
analysis, as discussed in the main manuscript section 3.2.2. For the constrained factors, we use the reference profiles shown in Fig.
S5 and the a-value approach (Crippa et al., 2014) to allow variability in the constraints. Following Canonaco et al., (2021), we use
a random a-value between 0.1 and 0.6 (with a step 0.01) for each rolling window.

Before averaging the individual rolling windows to arrive at a final solution, we eliminate outlier solution windows using one-
class support vector machines (SVM), a type of unsupervised outlier detection algorithm (Hejazi and Singh, 2013). In this case,
the one-class SVM is performed with a radial basis function kernel on each of the unconstrained OOA factors separately. If a given
OOA factor is determined to be an outlier, the whole rolling PMF window is eliminated from the average solution. Approximately
5% of all PMF windows in each solution are determined to be outliers and excluded based on this analysis.

In rolling PMF, each time point is associated with ~ 50 PMF solutions, which are averaged to arrive at the final answer. In the
sections below, we present the Quality metrics for the 4-, 5-, and 6-factor rolling PMF solutions.

S1.3 Quality metrics for the 4-factor rolling PMF solution

For the 4-factor solution, we computed the standard deviations at each time point to estimate the relative PMF error, as defined in
Canonaco et al. (2021) as shown in Fig. S6. The centers of the log-normal fits are £25%, +11%, £23%, and +21% for HOA, MT-
SOA, isoprene-SOA and OOA respectively.
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Figure S6. Uncertainty analysis for 4-factor rolling PMF solution. (a) HOA, (b) MT-SOA, (c) isoprene-SOA, (d) OOA.

The averaged time series and factor profiles can be used together with the organic matrix and its uncertainty matrix to calculate
the residual matrix E (equation (1)) and scaled residuals (E;j/c;). Those are plotted as total histograms and statistics over the m/z
and time in Fig. S7. The scaled residuals are distributed around 0, not revealing any systematic over- or under-estimation. The
distribution of the scaled residuals almost always falls between +3, with +3 being a reasonable range for scaled residuals as defined
in Paatero and Hopke, (2009).
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Figure S7. Residuals for the 4-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual
matrix (Ejj/oij). (¢) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are
75% confidence level.

S1.4 Quality metrics for the 5-factor rolling PMF solution

In the 5-factor solution, the two OOA factors are ordered prior to averaging so that OOA1 always has lower fi4 (less aged) than
OOA2. Similarly as for the 4-factor solution, we compute the standard deviations at each time point to estimate the relative PMF
error, as defined in Canonaco et al. (2021) as shown in Fig. S8. The centers of the log-normal fits are +23%, +15%, +32%, +68%
and £20% for HOA, MT-SOA, isoprene-SOA, OOA1 and OOA2 respectively.
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Fig. S9 shows the residual analysis for the 5-factor solution. As with the 4-factor solution, the distribution of the scaled residuals

tends to fall between £3.
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Figure S9. Residuals for the 5-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual
matrix (Ejj/oij). (¢) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are

75% confidence level.

S1.5 Quality metrics for the 6-factor rolling PMF solution

In the 6-factor solution, the three OOA factors are ordered prior to averaging so that shipping-OOA always has the lowest f14 (least
aged), OOA2 always has the highest fis (most aged), and OOA1 has intermediate fi4. Similarly as for the 4-factor and 5-factor
solutions, we compute the standard deviations at each time point to estimate the relative PMF error, as defined in Canonaco et al.
(2021) as shown in Fig. S10. The centers of the log-normal fits are £21%, £13%, £28%, +59%, £43%, and £25% for HOA, MT-
SOA, isoprene-SOA, shipping-OOA, OOA1 and OOA2 respectively.
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Figure S10. Uncertainty analysis for 6-factor rolling PMF solution. (a) HOA, (b) MT-SOA, (c) isoprene-SOA, (d) shipping-OOA, (e) OOAI,
(f) OOA2.

Fig. S11 shows the residual analysis for the 6-factor solution. As with the 4-factor and 5-factor solutions, the distribution of the
scaled residuals tends to fall between +3.
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Figure S11. Residuals for the 6-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual
matrix (Ejj/oij). (¢) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are
75% confidence level.

S1.6 Comparison of 3 rolling PMF solutions

We consider the 6-factor solution optimal based on the mass spectral profiles and the correlations of the components with time
series for tracer species. First, the mass spectral profiles of HOA are different in 3 solutions. The HOA factor in 6-factor solution
exhibits a low O:C ratio (0.14, Fig. 5), consistent with previous studies (Docherty et al., 2011; Mohr et al., 2012). In contrast, the
HOA factors in the 4- and 5-factor solutions have much higher O:C ratio of 0.61 and 0.64 (Fig. S12a and Fig. S13a), respectively.
Second, compared to 4-factor solutions, the 6-factor solution provides a more refined separation of OOA factors, yielding three



distinct factors with different O:C ratios. Specifically, it resolves one factor associated with shipping emissions (shipping-OOA)

130  and two more oxidized secondary organic aerosol factors (OOA1 and OOA?2). In contrast, the OOA factor in the 4-factor solution
does not exhibit the characteristic signal as shipping-OOA in the 6-factor solution. Third, in the 6-factor solution, the correlation
coefficient R?> between isoprene-SOA and sulfate is 0.36, higher than those in the 4- and 5-factor solutions (0.25 and 0.27,
respectively). Therefore, we consider the 6-factor solution to be the most physically meaningful and interpretable result for
characterizing the organic aerosol sources in this study.
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Figure S21. CWT analysis of shipping-OOA in marine air masses. The red square marks Freeport.
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175 Figure S22. CWT analysis in the urban air mass of (a) OOA1 and (b) OOA2. The red triangle marks the sampling site.
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Figure S23. The sensitivity test of the 1-D box model (Same as Fig. 9 in the main text except that ki, k2, and ks are set to 2.5x10"'2, 5x10"
13 and 510" cm?® molecule™ s™!, which are 50% lower than base values). (a, b, ¢) Diurnal variations of observed and modeled OOA2 mass
180 concentrations in marine (a), urban (b), and unseparated (c) air masses from left to right. (d, e, f) Simulated contributions from different processes
(mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA2 within the PBLH in the marine (d), urban (e),

and unseparated (f) air mass from left to right.
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processes (mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA2 within the PBLH in the marine (d),
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190 Figure S25. The circulation of land-sea/bay breezes increases the time of air mass over land and the fraction of urban air
mass type observed at the ANC site midday. (a) Averaged diurnal variations of wind direction and wind speed over days with
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Section 3. Tables

Table S1. Instruments deployed at the ANC site during the TRACER IOP and measurements that are related to this study.

Measurement type Instruments Variable Data available Time resolution
time (Local Time)
Meteorology Vaisala automatic weather  Surface wind speed, 05/29/2022- 1 min
station wind direction, air 09/29/2022

temperature, relative
humidity, air pressure

Clouds Ceilometer Planetary boundary layer  06/30/2022- 16s
heights 09/29/2022

Aerosol Aerosol Chemical Chemical compositions 05/29/2022- 10 min
Speciation Monitor of aerosol particles 09/29/2022
(ACSM)
Scanning Mobility Particle  Aerosol size distribution ~ 05/29/2022- 5 min
Sizer (SMPS) 09/29/2022
Condensation Particle Total particle number 05/29/2022- 1 min
Counter (CPC) concentration 09/29/2022

Table S2. Correlation coefficients R? of NR-PM; chemical compositions.

NO3 Org SO4 NH4
NOs; 1.00 054 0.09 0.24

Org 1.00 023 033
SO4 1.00 0.83
NH4 1.00

200
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Table S3. Comparison of OA mass spectra with those from earlier laboratory and field studies.
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Table S4. Correlation coefficients R? of OA factors with NO3 and SOs4.

NO; SOq4
HOA 0.28 0.07
MT-SOA 0.58 0.05

isoprene-SOA  0.40 0.36
shipping-OOA 0.42 0.17
O0A1 042 0.24
O0A2 036 0.25
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205 Table S5. Comparison of the mass concentrations of key aerosol components with those reported by prior studies in the Houston region.

Total Org SO4 NH4 NOs3 HOA SOA
Location Air mass 3 3 3 3 3 3 3
(pg'm™) (ug'm™) (ug'm™) (pg'm~) (ug'm™) (pg'm~) (ug'm=)
. Marine 3.55 1.42 1.47 0.50 0.16 0.07 1.29
This study Guy
Urban 9.96 6.58 2.15 0.74 0.49 0.24 5.87
Yoon 2021 Manvel Croix 0.41 3.74
Dai 2019 Sugar Land 3.58 1.7 1.3 0.5 0.08 0.2 1.0
Wallace 2018 Manchester St. 10.8 5.5 2.5 1.3 1.5 0.67 1.93
Marine 3.82 0.7 2.4 0.7 0.02 0.05 0.64
Schulze 2018 Southwest of Galveston
Urban 9.8 7.2 1.9 0.6 0.1 0.16 7.06
Al-Naiema 2018 Houston Ship Channel 2.86 1.14 1.29 0.4 0.03 0.42 0.72
University of
Cleveland 2012 10.9 5.5 4.1 0.9 04 1.7 3.7

Houston
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