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Section 1. Detailed Procedures for PMF on ACSM Data 

PMF analysis was conducted on the ToF-ACSM mass spectra to identify the key OA components and investigate their sources 

(Paatero, 1997; Paatero and Tapper, 1994). Briefly, in the bilinear mode used here, PMF describes the measured data matrix X as 

a product of two matrices, G and F, and the residual matrix E: 

X = GF + E                                   (1) 5 

Each column in matrix G represents the time series of a factor profile (mass spectrum) and each row in the matrix F represents the 

corresponding factor profile. In order to solve equation (1), quantity Q is minimized with respect to all model variables: 

Q =  ∑ ∑ ൬
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൰

ଶ
୫
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୬
୧ୀଵ                                (2) 

Where σ corresponds to the matrix of measurement uncertainties of X. 

In this study, we base the PMF approach on that described in Canonaco et al. (2021), in that we use the multilinear engine (ME-2, 10 

Paatero, 1999) algorithm, constrain certain profiles with reference mass spectra, and perform multiple PMF runs on a subset of 

data defined by a temporal window moved in 1 day increments across the entire dataset (“rolling PMF” strategy). This method 

allows for better capturing of seasonal variations in factor profiles (Canonaco et al., 2021). We carry out the PMF calculations 

using the Source Finder (SoFi) software package (Canonaco et al., 2013). However, the clustering and post-processing averaging 

steps were performed with custom routines written in the MATLAB environment (MATLAB 2020b). 15 

S1.1 Unconstrained PMF 

Before performing rolling PMF constrained with reference profiles, we carried out an unconstrained PMF run to identify a plausible 

set of reference profiles. The TRACER TOF-ACSM organic matrix and its associated error matrix generated by the TOFWerk 

TOFware software package were first averaged to a 90-minute sampling frequency. An unconstrained PMF run with random seeds 

was performed for four, five and six factors, 350 times each. Subsequently, each set of 350 PMF runs was then clustered using the 20 

k-means algorithm.  

The optimized number of PMF profiles for each season is selected based on the calculated average silhouette value of the k-means 

clustering solution for 4, 5 and 6 factors. The silhouette value for each point is a measure of how similar that point is to other points 

in the same cluster, compared to points in other clusters. The silhouette value si for the ith point is defined as 

s୧ =
(ୠ౟ିୟ౟)

୫ୟ୶(ୟ౟,ୠ౟)
                    (3) 25 

where ai is the average distance from the ith point to the other points in the same cluster as i, and bi is the minimum average distance 

from the ith point to points in a different cluster, minimized over the clusters. If the ith point is the only point in its cluster, then the 

silhouette value si is set to 1. A high silhouette value indicates that the point is well matched to its own cluster, and poorly matched 

to other clusters. If most points have a high silhouette value, then the clustering solution is appropriate. If many points have a low 

or negative silhouette value, then the clustering solution might have too many or too few clusters. We select the appropriate 30 

seasonal PMF solution based on the highest silhouette value.  

Fig. S1 shows average silhouette values for each unconstrained PMF solution. The five-factor solution has the highest silhouette 

value, which suggests that it captures the most reasonable number of factors. Figs. S2-S4 show the PMF factors for each solution 

and plots of key m/z markers for individual unconstrained PMF runs (f43, f44, f55, f57, f60, f82 and f91). 
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 35 
Figure S1. Silhouette values for 4-, 5- and 6-factor unconstrained PMF solutions. 

Each solution includes a profile identified as HOA (black in Figs. S2-S4) based on a relatively high value of f55 and f57. Each 

solution also includes a profile identified as MT-SOA (darkest green in Figs. S2-S4) identified based on relatively high f43 and f91. 

Five and six factor solutions also include a factor identified as isoprene-SOA (blue in Figs. S3-S4), identified based on prominent 

f82. Beyond this, all solutions include 1-3 aged OOA factors (lighter green in Figs. S2-S4) based on a high f44 to f43 ratio. 40 

Based on the unconstrained runs, the rolling PMF solution was constrained with HOA, MT-SOA, and isoprene-SOA factors from 

the five-factor unconstrained solution. These reference factors are shown in Fig. S5 

 
Figure S2. Four-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented 
by centroids of each k-means cluster. (b) Scatter plot of f44 vs. f43. (c) Scatter plot of f43 vs. f82. (d) Scatter plot of f43 vs. f91. (e) Scatter plot of f43 45 
vs. f60. (f) Scatter plot of f57 vs. f55. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a). 
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Figure S3. Five-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented 
by centroids of each k-means cluster. (b) Scatter plot of f44 vs. f43. (c) Scatter plot of f43 vs. f82. (d) Scatter plot of f43 vs. f91. (e) Scatter plot of f43 
vs. f60. (f) Scatter plot of f57 vs. f55. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a). 50 
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Figure S4. Six-factor unconstrained PMF solution. Clusters were defined using the k-means algorithm. (a) Factor profiles, represented by 
centroids of each k-means cluster. (b) Scatter plot of f44 vs. f43. (c) Scatter plot of f43 vs. f82. (d) Scatter plot of f43 vs. f91. (e) Scatter plot of f43 vs. 
f60. (f) Scatter plot of f57 vs. f55. In (b)-(f) k-means clusters are identified by color corresponding to the profiles in (a). 

S1.2 Constrained Rolling PMF 55 

Rolling PMF is carried out on the ACSM organic matrix and its corresponding error matrix at the native sampling resolution of 10 

minutes. The m/z 16, 17, 18 and 28, which are replicates of the variability in m/z 44 were removed from the PMF calculation and 

recalculated a posteriori as a function of the m/z 44 contribution attributed to each factor profile (Elser et al., 2016). A down-

weighting function of the form of 1/S2N was applied for signal-to-noise (S2N) ratios lower than 1 and untouched otherwise (Visser 

et al., 2015) on each cell of the organic matrix separately. A rolling window of 7 days with a 1-day shift was used for the rolling 60 

strategy. Each rolling window run was initialized 35 times. The total number of individual PMF runs performed was 4375. 
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Figure S5. Reference profiles used to constrain the rolling PMF run. 

From the unconstrained pre-tests shown in Figs. S3-S4, it is evident that the solution should contain HOA, MT-SOA and isoprene-

SOA factors. We tested three different rolling solutions: (1) a 4-factor solution with constrained HOA, MT-SOA and isoprene-65 

SOA factors and one unconstrained OOA factor, (2) a 5-factor solution with the same constrained factors and two unconstrained 

OOA factors, and (3) a 6-factor solution with the same constrained factors and three unconstrained OOA factors. In the 6-factor 

solution, the OOA factor with the lowest O:C ratio was identified and named as “shipping-OOA” based on the results of the source 

analysis, as discussed in the main manuscript section 3.2.2. For the constrained factors, we use the reference profiles shown in Fig. 

S5 and the a-value approach (Crippa et al., 2014) to allow variability in the constraints. Following Canonaco et al., (2021), we use 70 

a random a-value between 0.1 and 0.6 (with a step 0.01) for each rolling window. 

Before averaging the individual rolling windows to arrive at a final solution, we eliminate outlier solution windows using one-

class support vector machines (SVM), a type of unsupervised outlier detection algorithm (Hejazi and Singh, 2013). In this case, 

the one-class SVM is performed with a radial basis function kernel on each of the unconstrained OOA factors separately. If a given 

OOA factor is determined to be an outlier, the whole rolling PMF window is eliminated from the average solution. Approximately 75 

5% of all PMF windows in each solution are determined to be outliers and excluded based on this analysis. 

In rolling PMF, each time point is associated with ~ 50 PMF solutions, which are averaged to arrive at the final answer. In the 

sections below, we present the Quality metrics for the 4-, 5-, and 6-factor rolling PMF solutions. 

S1.3 Quality metrics for the 4-factor rolling PMF solution 

For the 4-factor solution, we computed the standard deviations at each time point to estimate the relative PMF error, as defined in 80 

Canonaco et al. (2021) as shown in Fig. S6. The centers of the log-normal fits are ±25%, ±11%, ±23%, and ±21% for HOA, MT-

SOA, isoprene-SOA and OOA respectively. 
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Figure S6. Uncertainty analysis for 4-factor rolling PMF solution. (a) HOA, (b) MT-SOA, (c) isoprene-SOA, (d) OOA. 

The averaged time series and factor profiles can be used together with the organic matrix and its uncertainty matrix to calculate 85 

the residual matrix E (equation (1)) and scaled residuals (Eij/σij). Those are plotted as total histograms and statistics over the m/z 

and time in Fig. S7. The scaled residuals are distributed around 0, not revealing any systematic over- or under-estimation. The 

distribution of the scaled residuals almost always falls between ±3, with ±3 being a reasonable range for scaled residuals as defined 

in Paatero and Hopke, (2009). 

 90 
Figure S7. Residuals for the 4-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual 
matrix (Eij/σij). (c) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are 
75% confidence level. 

S1.4 Quality metrics for the 5-factor rolling PMF solution 

In the 5-factor solution, the two OOA factors are ordered prior to averaging so that OOA1 always has lower f44 (less aged) than 95 

OOA2. Similarly as for the 4-factor solution, we compute the standard deviations at each time point to estimate the relative PMF 

error, as defined in Canonaco et al. (2021) as shown in Fig. S8. The centers of the log-normal fits are ±23%, ±15%, ±32%, ±68% 

and ±20% for HOA, MT-SOA, isoprene-SOA, OOA1 and OOA2 respectively. 
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Figure S8. Uncertainty analysis for 5-factor rolling PMF solution. (a) HOA, (b) MT-SOA, (c) isoprene-SOA, (d) OOA1, (e) OOA2. 100 

Fig. S9 shows the residual analysis for the 5-factor solution. As with the 4-factor solution, the distribution of the scaled residuals 

tends to fall between ±3. 

 

 
Figure S9. Residuals for the 5-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual 105 
matrix (Eij/σij). (c) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are 
75% confidence level. 

S1.5 Quality metrics for the 6-factor rolling PMF solution 

In the 6-factor solution, the three OOA factors are ordered prior to averaging so that shipping-OOA always has the lowest f44 (least 

aged), OOA2 always has the highest f44 (most aged), and OOA1 has intermediate f44. Similarly as for the 4-factor and 5-factor 110 

solutions, we compute the standard deviations at each time point to estimate the relative PMF error, as defined in Canonaco et al. 

(2021) as shown in Fig. S10. The centers of the log-normal fits are ±21%, ±13%, ±28%, ±59%, ±43%, and ±25% for HOA, MT-

SOA, isoprene-SOA, shipping-OOA, OOA1 and OOA2 respectively. 
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Figure S10. Uncertainty analysis for 6-factor rolling PMF solution. (a) HOA, (b) MT-SOA, (c) isoprene-SOA, (d) shipping-OOA, (e) OOA1, 115 
(f) OOA2. 

Fig. S11 shows the residual analysis for the 6-factor solution. As with the 4-factor and 5-factor solutions, the distribution of the 

scaled residuals tends to fall between ±3. 

 
Figure S11. Residuals for the 6-factor rolling PMF solution. (a) Histogram of the residual matrix (E). (b) Histogram of the scaled residual 120 
matrix (Eij/σij). (c) Residual statistics over m/z. (d) Residual statistics over time. In (c) and (d), the whiskers are 90% confidence level, boxes are 
75% confidence level. 

S1.6 Comparison of 3 rolling PMF solutions 

We consider the 6-factor solution optimal based on the mass spectral profiles and the correlations of the components with time 

series for tracer species. First, the mass spectral profiles of HOA are different in 3 solutions. The HOA factor in 6-factor solution 125 

exhibits a low O:C ratio (0.14, Fig. 5), consistent with previous studies (Docherty et al., 2011; Mohr et al., 2012). In contrast, the 

HOA factors in the 4- and 5-factor solutions have much higher O:C ratio of 0.61 and 0.64 (Fig. S12a and Fig. S13a), respectively. 

Second, compared to 4-factor solutions, the 6-factor solution provides a more refined separation of OOA factors, yielding three 
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distinct factors with different O:C ratios. Specifically, it resolves one factor associated with shipping emissions (shipping-OOA) 

and two more oxidized secondary organic aerosol factors (OOA1 and OOA2). In contrast, the OOA factor in the 4-factor solution 130 

does not exhibit the characteristic signal as shipping-OOA in the 6-factor solution. Third, in the 6-factor solution, the correlation 

coefficient R2 between isoprene-SOA and sulfate is 0.36, higher than those in the 4- and 5-factor solutions (0.25 and 0.27, 

respectively). Therefore, we consider the 6-factor solution to be the most physically meaningful and interpretable result for 

characterizing the organic aerosol sources in this study. 

 135 
Figure S122. For 4-factor solution. (a-d) Mass spectra of PMF OA factors and (e-h) Time series of OA factors. The correlations between OA 
factors and relevant species are also shown (f, g). (i) Mass fraction of PMF OA factors over IOP. (j) Diurnal variations of OA factors mass 
concentrations during the IOP. 
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 140 
Figure S133. For 5-factor solution. (a-e) Mass spectra of PMF OA factors and (f-j) Time series of OA factors. The correlations between OA 
factors and relevant species are also shown (g, h). (k) Mass fraction of PMF OA factors over IOP. (l) Diurnal variations of OA factors mass 
concentrations during the IOP. 

Section 2. Figures 

 145 
Figure S14.  Criteria of the air masses classification. 
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Figure S15. Diurnal variations of particle size distributions in marine and urban air masses observed at the ANC site during the  IOP. 
 150 

 

 
Figure S16. Diurnal variations of planetary boundary layer height (PBLH) of (a) marine, (b) urban, and (c) unseparated (all) air masses. 
The dashed line represents the median value, while the gray shaded area shows the interquartile range (25th to 75th percentile). 

 155 

 
Figure S17. Wind pattern dependence of OA factors. (a) Wind-rose plots of OA factors in urban and marine air masses. Top row: urban. 
Bottom row: marine. (b-c) Normalized average mass concentration of OA factors as a function of wind direction in (b) urban and (c) marine air 
masses. OOA1 and OOA2 mass concentrations are largely independent of wind direction in urban and marine air masses.  
 160 
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Figure S18. (a-b) f43 vs. f82 and f43 vs. f91 for all the PMF factors. 

 

 
Figure S19. Diurnal variations of hourly averaged OOA2 mass concentrations vs. PBLH for unseparated air masses. The dashed line 165 
represents the least square linear regression. 
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Figure S20. Correlation of the mass spectrum of shipping-OOA in this study with that of heavy shipping emission organics from 
Schulze et al. (2018). 170 

 

Figure S21. CWT analysis of shipping-OOA in marine air masses. The red square marks Freeport.  
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Figure S22. CWT analysis in the urban air mass of (a) OOA1 and (b) OOA2. The red triangle marks the sampling site.  175 

 

 
Figure S23. The sensitivity test of the 1-D box model (Same as Fig. 9 in the main text except that k1, k2, and k3 are set to 2.5×10-12, 5×10-

13, and 5×10-14 cm3 molecule−1 s−1, which are 50% lower than base values). (a, b, c) Diurnal variations of observed and modeled OOA2 mass 
concentrations in marine (a), urban (b), and unseparated (c) air masses from left to right. (d, e, f) Simulated contributions from different processes 180 
(mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA2 within the PBLH in the marine (d), urban (e), 
and unseparated (f) air mass from left to right. 
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Figure S24. The sensitivity test of the 1-D box model (Same as Fig. 9 in the main text except that k1, k2, and k3 are set to 7.5×10-12, 1.5×10-

12, and 1.5×10-13 cm3 molecule−1 s−1, which are 50% higher than base values). (a, b, c) Diurnal variations of observed and modeled OOA2 185 
mass concentrations in marine (a), urban (b), and unseparated (c) air masses from left to right. (d, e, f) Simulated contributions from different 
processes (mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA2 within the PBLH in the marine (d), 
urban (e), and unseparated (f) air mass from left to right. 
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Figure S25. The circulation of land-sea/bay breezes increases the time of air mass over land and the fraction of urban air 190 

mass type observed at the ANC site midday. (a) Averaged diurnal variations of wind direction and wind speed over days with 

air mass changes during the IOP. (b) Percentage of time spent by the air mass over the land during the 24-hour period before 

arriving at the ANC site. The backward trajectories are derived from the diurnal variations of wind direction and speed averaged 

over days with air mass changes during IOP (i.e. Fig. S25a). (c-d) Derived backward trajectories at local times (c) 13:00 and (d) 

21:00. ANC site is marked by the cyan star. .195 
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Section 3. Tables 

Table S1. Instruments deployed at the ANC site during the TRACER IOP and measurements that are related to this study.  

Measurement type Instruments Variable Data available 

time (Local Time) 

Time resolution 

Meteorology Vaisala automatic weather 

station 

Surface wind speed, 

wind direction, air 

temperature, relative 

humidity, air pressure 

05/29/2022-

09/29/2022 

1 min 

Clouds Ceilometer Planetary boundary layer 

heights 

06/30/2022-

09/29/2022 

16 s 

Aerosol Aerosol Chemical 

Speciation Monitor 

(ACSM) 

Chemical compositions 

of aerosol particles 

05/29/2022-

09/29/2022 

10 min 

Scanning Mobility Particle 

Sizer (SMPS) 

Aerosol size distribution 05/29/2022-

09/29/2022 

5 min 

Condensation Particle 

Counter (CPC) 

Total particle number 

concentration 

05/29/2022-

09/29/2022 

1 min 

 
Table S2. Correlation coefficients R2 of NR-PM1 chemical compositions. 

 NO3 Org SO4 NH4 

NO3 1.00 0.54 0.09 0.24 

Org  1.00 0.23 0.33 

SO4   1.00 0.83 

NH4    1.00 

200 
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Table S3. Comparison of OA mass spectra with those from earlier laboratory and field studies.  

PMF 

Factors 
Mass Spectra Comparison Potential Sources 

Potential 

Formation 

Pathways 

ACSM Database 

numbers and 

References 

HOA 

 

Road traffic 

(Barcelona, Spain) 

Primary emission: 

Fossil fuel 

combustion 

dominated by 

diesel exhaust 

256_DAURE 

campaign_2009_HO

A; 

 
(Mohr et al., 2012) 

 

Road traffic 

(Riverside, USA) 

Primary emission: 

Fuel and 

lubricating oil 

combustion 

 

242_SOAR-

1_Campaign_2005_

HOA 

 

(Docherty et al., 

2011) 

MT-SOA 

 

Lab experiment 

Oxidation product 

of limonene by 

nitrate 

 

380_Chamber 

limonene_Nitrate_ 

AS_LIM-2 

 

(Boyd et al., 2015) 

 

Lab experiment 

Sequentially 

oxidation product 

of a-pinene and 

limonene by 

nitrate 

382_Chamber α-

pinene+limonene_Nit

rate_ AS_dry_SEQ-1 

 

(Takeuchi et al., 

2022) 

isoprene-

SOA 

 

Tropical rainforest 

(Danum Valley, 

Borneo, Malaysia) 

Isoprene 

oxidation 

93_Borneo 

Rainforest_Fac82 

 

(Robinson et al., 

2011) 

 

Forest 

(SE US forest) 
isoprene oxidation 

124_SOAS 

campaign_2013_IEP

OX_SOA 

 

(Hu et al., 2015) 
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PMF 

Factors 
Mass Spectra Comparison Potential Sources 

Potential 

Formation 

Pathways 

ACSM Database 

numbers and 

References 

shipping-

OOA 

 

Urban area 

(Pasadena, CA, USA) 

Photochemical 

formation of 

traffic emissions 

292_CalNex 

campaign_2010_SV

OOA 

 

(Hayes et al., 2013) 

 

Urban area 

(Beijing, China) 

VOC 

photochemical 

product 

302_Beijing urban 

area_2011_LOOOA 

 

(Hu et al., 2016) 

OOA1 

 Urban area 

[Average of spectra 

in Beijing, Tokyo 

(summer), Pittsburgh, 

Riverside, New York 

City (summer), and 

Zurich] 

VOC 

photochemical 

product 

79_LVOOA_avg 

 

(Ng et al., 2011) 

 

Downwind of 

pollution sources 

(Changdao island, 

China) 

VOC 

photochemical 

product 

299_Changdao 

island_2011_LVOO

A 

 

(Hu et al., 2013) 

OOA2 

 

Urban area 

(Zurich, Switzerland) 

Highly aged 

OOA; mass 

spectrum similar 

to fulvic acid 

65_Zurich_summer_

2005_OOA_I 

 

(Lanz et al., 2007) 

 

Urban area 

(Pittsburgh) 

Highly aged 

OOA; well 

correlated to aged 

rural organic 

aerosols 

64_Pittsburgh_OOA 

 

(Zhang et al., 2005) 
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Table S4. Correlation coefficients R2 of OA factors with NO3 and SO4. 

 NO3 SO4 

HOA 0.28 0.07 

MT-SOA 0.58 0.05 

isoprene-SOA 0.40 0.36 

shipping-OOA 0.42 0.17 

OOA1 0.42 0.24 

OOA2 0.36 0.25 
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Table S5. Comparison of the mass concentrations of key aerosol components with those reported by prior studies in the Houston region.  205 

 Location Air mass 
Total 

(µg·m-3) 

Org 

(µg·m-3) 

SO4 

(µg·m-3) 

NH4 

(µg·m-3) 

NO3 

(µg·m-3) 

HOA 

(µg·m-3) 

SOA 

(µg·m-3) 

This study Guy 
Marine 3.55 1.42 1.47 0.50 0.16 0.07 1.29 

Urban 9.96 6.58 2.15 0.74 0.49 0.24 5.87 

Yoon 2021 Manvel Croix       0.41 3.74 

Dai 2019 Sugar Land  3.58 1.7 1.3 0.5 0.08 0.2 1.0 

Wallace 2018 Manchester St.  10.8 5.5 2.5 1.3 1.5 0.67 1.93 

Schulze 2018 Southwest of Galveston 
Marine 3.82 0.7 2.4 0.7 0.02 0.05 0.64 

Urban 9.8 7.2 1.9 0.6 0.1 0.16 7.06 

Al-Naiema 2018 Houston Ship Channel  2.86 1.14 1.29 0.4 0.03 0.42 0.72 

Cleveland 2012 
University of 

Houston 
 10.9 5.5 4.1 0.9 0.4 1.7 3.7 
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