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S1. Overview of Vessel Activity in the WSW Channel.

To provide background information on local ship traffic conditions relevant to the observed SO, variations, this
section summarizes key characteristics of vessel activity in the WSW channel based on AIS data from 2018 to 2023.

Figure S1 presents the temporal evolution of daily vessel numbers in the channel, including total ships, moving
ships, and stationary ships. Seasonal reductions in traffic are evident around the time of the Chinese New Year each year,
reflecting holiday-related slowdowns. Throughout the period, the overall number of ship traffic shows a gradual
increasing trend. The vessel type composition is also illustrated, showing that cargo ships and passenger boats have
remained the predominant categories.

Figure S2 shows daily statistics of the main engine (ME) and auxiliary engine (AE) power of vessels passing
through the channel. The ME power is generally much higher than AE power, reflecting the dominant role of propulsion
engines in energy consumption and emissions. The large standard deviations in both ME and AE power reflect the
diversity of ship types in the WSW channel—ranging from large cargo ships and cruise vessels (with ME power up to
50,000-70,000 kW) to small fishing and harbor boats (tens of kW). In recent years, the upper percentiles of both ME
and AE power have increased, suggesting a growing presence of larger or higher-powered vessels in the area.

Vessel speed is another relevant operational parameter. Although instantaneous speed can vary significantly within
a single ship’s trajectory, it is observed that the maximum speed of vessels operating in this region can reach up to 52.6
knots. At the same time, many ships remain stationary near the shore or move slowly within the channel, typically

maintaining speeds around 5—6 knots.
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Figure S1. Temporal dynamics of daily ship traffic and ship type composition in the WSW channel (2018-
2023). (a) Daily number of total ships, moving ships, and stationary ships detected from AIS records. (b)
Percentage composition of different ship types over time, including passenger boats, cargo ships, oil tankers,
shipping boats, harbor ships, and other vessels.
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Figure S2. Temporal statistics of daily main engine and auxiliary engine power of vessels in the WSW
channel (2018-2023). (a) Time series of main engine (ME) power, showing the mean =+ standard deviation
(shaded area) and the 25th, S0th, and 75th percentiles of power (kW). (b) Time series of auxiliary engine

(AE) power, showing the mean = standard deviation (shaded area) and the 25th, S0th, and 75th percentiles
of power (KW).



S2. DOAS measurements and spectral data processing.

The active DOAS system for measuring SO, in Wusong Warf (WSW) is placed in the Wusong Maritime Safety
Administration and the opposite of Huangpu River (the arrow of reflection mirror). While the system for Fudan
University (FDU) is the Environmental Science Building and the southwest corner of campus (the arrow of
reflection mirror). Both systems equipped with a 150 W Xenon lamp (Hamamatsu Photonics (China) Co., Ltd) and
spectrometers (B& W Tek) with wavelength ranges of 185~440 nm. WSW's DOAS equipment can also observe the
concentration changes of NO,, HONO, O3 and HCHO in the channel. To eliminate the effect of dark currents and
atmospheric scattering light on the measurement, we subtracted the background spectrum collected by blocking the
lamp's emitted light from the normally collected spectrum during the measurement spectrum sampling period. The
average time resolution was 5~6 min for FDU’s systems and 1~2 min for WSW’s system. The observation site
characteristics and the experimental setup for SO,, NO,, HONO, HCHO and O3 measurements have been described
in detail in previous studies (Liu et al., 2024; Guo et al., 2020).

The principle of DOAS is to utilize the narrow-band absorption characteristics of trace gases to determine the gas
composition and to infer the concentration of trace gases. DOAS measurements of SO, have been mentioned in
many studies and is a mature monitoring and analysis method (Wang et al., 2019; Jin et al., 2016; Cheng et al.,
2019). In this study, the absorption cross sections of SO,, HCHO, NO,, O3 and the solar spectrum were involved
in SO, spectral fitting, using wavelength range of 299~308 nm. Based on the signal-to-noise ratio at a given optical
path length and integration time, the detection limit in WSW is about 0.13 ppbv for SO, 0.51 ppbv for NO,, 2.51
ppbv for O3, 1.10 ppbv for HCHO, respectively. While the detection limit for SO, in FDU is 0.11 ppbv. The spectral
fitting information of all the trace gas can be referred to Table S1.



Table S1. The detection limits of DOAS retrieval and the analytical residual.

Observed Trace

Station gas

Fitting
window

(nm)

absorption cross sections Polynomial

degree

Detection

limits

Residuals

SO,

NO;

WSwW

0Os

HCHO

299~308

365.3-380.4

280.6-290.6

313~341

SO, (Vandaele et al., 2009),NO,
(Voigt et al., 2002), HONO
(Stutz et al., 2000), HCHO

(Meller and Moortgat, 2000),
and solar spectrum (Kurucz,
1984)

NO; (Voigt et al., 2002), HONO
(Stutz et al., 2000), HCHO
(Meller and Moortgat, 2000), 5
and solar spectrum (Kurucz,
1984)

Os (Voigt et al., 2001a; Voigt et
al., 2001b) , SOz (Vandaele et
al., 1998), HCHO (Meller and 5
Moortgat, 2000), and NO,
(Voigt et al., 2002)

HCHO (Meller and Moortgat,

2000), NO» (Voigt et al., 2002),

SO, (Vandaele et al.,1998), O; 5
(Voigt et al., 2001a), HONO

(Stutz et al.,2000)

0.13 ppbv

0.51 ppbv

2.51 ppbv

1.10 ppbv

0.00054

0.00043

0.00154

0.00057

FDU SO;

299~308

SO, (Vandaele et al., 1998),NO,
(Voigt et al., 2002), HONO
(Stutz et al., 2000), HCHO

(Meller and Moortgat, 2000),
and solar spectrum (Kurucz,
1984)

0.11 ppbv

0.00045




S3. Machine learning data input, model tuning, and performance evaluation.

We selected eight representative models as candidates, including one non-ensemble algorithms
DecisionTreeRegressor (DTR), and seven ensemble models of ExtraTreeRegressor (ETR),
RandomForestRegressor (RF), GradientBoostingRegressor (GBR), BaggingRegressor (BR), AdaBoostRegressor
(ABR), XGBRegressor (XGB) and LGBMRegressor (LGBR). Those above algorithms are integrated in SCIKIT-
LEARN (sklearn), an open-source machine learning library written in PYTHON (Hackeling, 2017). After
performing grid search and 5-fold cross-validation, XGB and ETR were selected as models for filling missing date
and de-meteorologizing according to their Root Mean Squared Error (RMSE) and Coefficient of Determination
(R?).

XGB is an optimized distributed gradient enhancement library designed for efficiency, flexibility, and portability.
It implements machine learning algorithms in the Gradient Boosting framework. Gradient Boosting, proposed by
Friedman (2001), is a large class of algorithms in Boosting. Its idea is borrowed from gradient descent, and its basic
principle is to train newly added weak learners based on the negative gradient information of the loss function of
the current model and then combine the trained learners into the existing model in an accumulative form. The ETR
model not only randomly selects data samples when constructing each decision tree, but also randomly selects
eigenvalues to be partitioned when the nodes split. This extreme randomness reduces the variance of the model,
thus obtaining a better ability to reduce overfitting and improve model stability than Random Forest models (Gall
etal., 2011).

When training the model to fill the missing SO, values at FDU, seven meteorological data (from ERAS), time-
series NO; concentration data observed by DOAS at FDU (representing the emission trends most closely associated
with SO, variations within the FDU campus environment), and SO, data from two nearby stations, Hongkou Station
and Ynagpu Station, during the same period (providing a macroscopic perspective of SO, variation across
Shanghai’s land areas) were utilized. With model R? is 0.86, RMSE is 0.4240.13.

When training the model to fill the missing SO, values at WSW, three categories of input features were incorporated
to comprehensively capture environmental influences from different sources: meteorological conditions, ship
emissions, and urban land-based emissions. Specifically, these consisted of: seven meteorological variables from
the ERAS reanalysis dataset; co-measured pollutant data (including HCHO, HONO, O3, and NO,) obtained via
DOAS at the WSW site—which facilitated indirect capture of ship emission signals through cross-species learning;
and meteorologically normalized SO. data from the FDU site (Deweathered FDU), representing background
variations associated with urban land-based emissions. The model achieved an R? of 0.76 and an RMSE of 0.65 +
0.21. The completed SO2 concentration time series is presented in Figure S3.

The selection of predictor variables to represent ship emissions involved multiple rounds of testing and evaluation.
Initial attempts to incorporate AIS-derived indicators, such as vessel counts and hourly bottom-up emission
inventories within a 4 km radius around the WSW site, showed no significant correlation with observed SO,
concentrations at the hourly scale—their inclusion resulted in negligible improvement in model performance. This
outcome is attributed to the fact that AIS-based ship number do not capture distinctions in ship type, size, or
operational status. For raw bottom-up emission inventories, it’s spatially aggregated and cannot be readily matched
to the high temporal resolution of hourly LP-DOAS measurements. Consequently, the approach shifted toward
using co-measured pollutants (NO,, HCHO, HONO, Os) obtained at the same WSW site, which are strongly
influenced by ship activities.

Figure S4 presents the residual error plots and their frequency distribution between the predicted and observed SO,
concentrations for both sites. Figure S5 shows the scatter plots of the predicted versus observed SO,, along with
the correlation coefficients (R?). The results demonstrate that the mean residuals are negligible (0.0032 ppbv at



WSW and 1.16x10~ ppbv at FDU). The majority of daily residuals (59.36% at WSW and 86.9% at FDU) fall
within £0.2 ppbv, and the high R? values (above 0.9) confirm a strong model-observation agreement at both

locations.

To evaluate the performance of the machine learning-based gap-filling algorithm, a point-to-point comparison was
conducted between predicted and observed SO» concentrations. The evaluation used an independent validation dataset
from 2024, consisting of 641 hourly measurements obtained during naturally continuous observation windows in January,
February, and March. As shown in Figure S6, the gap-filled SO concentrations (Predicted SO,) demonstrate strong
agreement with observed SO,. The model achieved an R? of 0.84, with an RMSE of 0.41 ppbv and MAE of 0.29 ppbv.
The overall mean observed SO, concentration was 1.42 ppbv, compared to a predicted mean of 1.38 ppbv. The model
accurately reproduced observed values across different concentration ranges: within the 1-3 ppbv interval, the predicted
mean (1.74 ppbv) was nearly identical to the observed mean (1.75 ppbv), and for higher concentrations (3—5 ppbv), the
predicted mean (3.88 ppbv) remained close to the observed value (3.66 ppbv). The model’s ability to capture short-term
SO» episodes—critical for characterizing ship plumes—was also evaluated. Among all data points, 1.25% exceeded 5
ppbv. For these high-concentration events, the predicted mean was 4.71 ppbv compared to an observed mean of 5.45
ppbv. The predicted maximum (5.94 ppbv) closely matched the observed maximum (6.08 ppbv). Although the
reconstruction of peak concentrations shows a slight underestimation—Ilikely due to the lower frequency of high-
concentration events limiting training examples—the model overall captures the temporal variations in SO;

concentrations well in the waterway environment.

Deweathered models used seven meteorological data (from ERAS) and time-related variables (Unix time, Julian
day, and day of the week) to capture emission patterns. ERAS meteorological data from the same hour within 14
days before and after each target time was used, providing 1,276 sets of meteorological data for training on the
Observed WSW and Observed FDU series, as showed in Figure S7. The repeated input of over 1,000 sets of real
historical meteorological data can be considered sufficient to effectively account for the impacts of various real-
world meteorological conditions. For the Deweathered models constructed for both WSW and FDU, the RMSE,
R?, are reported as 0.41+0.12 and 0.79 in WSW, 0.32+0.14 and 0.85 in FDU, respectively.
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Figure S3. Time series of SO; for WSW and FDU complemented by DOAS observations and machine
learning models.
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Figure S4. Time series and frequency distribution of residuals (Predicted SO; — Observed SQO,) at the daily
mean scale for (a, c) WSW and (b, d) FDU during 2018-2023.
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Figure S8. Wind direction frequency distribution at WSW and FDU station from 2018 to 2023. (a) The
aggregated wind distribution for all years. (b)—(g) The show annual wind patterns from 2018 to 2023. Wind
direction is plotted in polar coordinates with percentage frequency indicated by concentric circles.
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S4. Matching SO; Peaks with Ships.

The process of matching SO, peaks with ships involves extracting the occurrence time of SO, plume signals
identified by the BEADs algorithm and searching for vessel trajectories in the cleaned AIS dataset that coincide
with the plume occurrence time and intersect the light path. AIS ship track matching logic is as follows:

A straight-line equation is derived using the latitude and longitude coordinates of the DOAS emitter and the
reflector as waypoints. The plume time tyiume i input into the system to determine, for any vessel position, whether
the condition (ti<tpume<tz) N (t2- ti<10mins) N (speed;#0) N (speed27#0) N (trajectory crossing the light
path) is satisfied. For any given peak, multiple vessels may potentially be matched. Assuming uniform velocity
change for the vessel between t; and t.. As showed in Figure S13.
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Figure S13. Schematic Diagram of the Matching Between Ship AIS Data and SO;-rich plume signals. With
ship's positions at two locations (Location ; and Location ;) are shown along with their respective timestamps
(t1and t ) and speed (Speed | and Speed »). The bidirectional arrows indicate the light path of DOAS. t jiume
indicates when the SO»-rich plume appeared. Base map: © OpenStreetMap contributors 2025. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0.
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S5. Comparison Between Observational Data and AIS-Based Ship Emission Inventory.

In the paragraph of this appendix, we compared Ship related SO, derived from DOAS observations with those
estimated by traditional bottom-up ship emission inventories, discussed the similarities and differences in outcome
trends between the two approaches, and identified the underlying causes. AIS data provides detailed information
on ship activities and is commonly used for calculating ship emission inventories on large spatiotemporal scales
(Mao et al., 2020; Zou et al., 2020).

The reason for employing a comprehensive ship emission inventory from AIS, rather than relying on any single
ship parameter (e.g., ship number, engine power, or speed), is as follows: While parameters like ship number, main
engine power, and speed are valuable indicators, they are independently insufficient to accurately represent actual
SO, emissions. This is because emissions are the product of a complex interplay of these factors. For instance: A
high-powered ship moving slowly may emit similarly to a lower-powered ship at high speed; A stationary ship
using its auxiliary engine for onboard services may emit more than a ship maneuvering at low speed with its main
engine at idle; Simply counting all vessels equally ignores the vast differences in emission potential between a
large container ship and a small fishing boat.

Therefore, a bottom-up emission inventory methodology was adopted (Section S6 in the Supplement). This
approach synthesizes the key parameters derived from AIS data—including ship type, instantaneous position and
speed, and installed main and auxiliary engine power—into a holistic framework. By applying standardized
emission algorithms and fuel sulfur content assumptions, this inventory translates dynamic ship activity into
estimated hourly SO, emissions.

The scatter plots in Figure S15 illustrate the correlation (R?) between ship emission inventory-based SO, emissions
and the 14-day mean SO, concentrations based on observation at the WSW site. In the process of removing
meteorological influences and land-based emissions, the correlation between the ship emission inventory and SO»
concentrations progressively improves step by step. For the period from 2018 to 2020, the R? increases from 0.064
(Observed SO3) to 0.154 (Deweathered SOy), and further to 0.32 (Ship_related SO;). Similarly, for the period
from 2021 to 2023, the R? rises from 0.043 (Observed SO») to 0.163 (Deweathered SO,), and ultimately reaches
0.54 (Ship_related SO). This trend underscores the effectiveness of the combined meteorological normalization
and land-based emissions subtraction processes in refining our understanding of Ship related SO, contributions.
Compared with directly observed SO», the emissions inventory explains the trend of Ship _related SO, changes
better.

Figure S16 illustrates the 14-day mean variations of Ship related SO, concentrations and ship emission inventory
in the WSW from 2018 to 2023. During the policy adjustment period (2018-2020), both the Ship related SO, and
the corresponding SO» emissions in the inventory showed a gradual decline. If all ships had complied with the low-
sulfur fuel policy, SO, emissions from ships would have shown a sharp decrease at the early stage of policy
implementation, as illustrated in Figure S16¢. However, due to the presence of non-compliant ships (as discussed
in Sections 3.2 and 3.3), the reduction in SO, emissions from ships has been a gradual process, as shown in Figure
S16a. While the consistency between Ship_related SO, and the inventory improved during the policy stabilization
period (2021-2023) in Figure S15f, which means that the fuel use of ships is closer to the policy requirements.
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Figure S15. Correlations between 14-day mean SO; concentrations (x-axis) at WSW site and ship SO;
inventory (y-axis), divided into three categories: (a, d) Observed SO, concentrations, (b, e)
Deweathered SO, concentrations, and (c, f) Ship_related_SO, concentrations. (a—c) correspond to the policy
adjustment period from 2018 to 2020, while panels (d—f) represent the policy stabilization period from 2021
to 2023.
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Figure S16. 14-day mean variations of Ship_related_SQO; concentrations and emission inventory in the WSW
channel from 2018 to 2023. (a) and (b) represent the 14-day mean Ship related SO, derived from
observations for 2018-2020 and 2021-2023, respectively. (c) and (d) show the corresponding 14-day mean
SO; emissions from the ship emission inventory during the same periods.



S6. Calculation of ship emission inventory based on AIS.

The ship atmospheric pollutant emission inventories used in this study were calculated using a bottom-up ship
emission model based on AIS data. The model was improved upon the studies by Fan et al. (2016) and Feng et al.

(2019). The basic framework and specific parameters of the model are introduced as follows.

The model is primarily divided into three parts: data preprocessing, inventory calculation, and gridded output. The
model has specific format requirements for the AIS data used. Since the raw AIS data contains extensive
information, it is necessary to selectively extract the required information and preprocess it before inputting it into
the model for further calculations. The raw AIS data includes dynamic and static information about ships. The
dynamic information required by the model mainly includes the following: AIS message type (msgtype), Maritime
Mobile Service Identity (MMSI), navigation status (status), current speed (speed), ship's turn direction (turn),
current longitude (lon), current latitude (lat), timestamp (second), actual heading (heading), and date (day). The
static information primarily includes AIS message type (msgtype), Maritime Mobile Service Identity (MMSI),
International Maritime Organization (IMO) number or ship name (shipname), ship type (shiptype), distance from
the positioning antenna to the bow (to_bow), distance to the stern (to_stern), distance to the port side (to_port),
distance to the starboard side (to_starboard), and the current maximum static draught (draught). Before calculations,
the obtained data must be classified and processed. Additionally, the ship's static information needs to be matched

with corresponding basic ship information in the database.

After preprocessing the AIS data, the data is input into the calculation model one by one to compute the ship
pollutant emissions. In this study, the calculation of atmospheric pollutant emissions from ships is divided into two
parts: the main engine and the auxiliary engine. The calculation formula for the pollutant emissions from the main
engine, £, is shown in Equation (S1), while the calculation formula for the pollutant emissions from the auxiliary
engine, F,, is shown in Equation (S2):
Ep, =mP X mLF X T X mEF X mCF X mLLAM x mFCF  (S§1)
E, =aP X aLF XT X aEF X aFCF  (52)
mLF = (AS/MS)3 (S3)
Those parameters are:
mP/aP: Ship main engine/ auxiliary engine power, kW;
mLF /aLF: Main engine /auxiliary engine load factor;
AS: Current speed of ship, knots;
MS': Max speed of ship, knots;
mEF /aEF: Main engine/auxiliary engine emission factor, g’kWh;
mCF: Main engine control factor;
T: Time step, h;
mLLAM: Main engine low load adjustment factor;
mFCF /aFCF: Main engine/ auxiliary engine fuel control factor.

After separately calculating the pollutant emissions from the main and auxiliary engines of the ships, a gridding
program is applied to aggregate the total pollutant emissions from ships within each grid area. The results are then
compiled into the required ship emission inventory for subsequent analysis.

A more detailed description of the emission inventories used in this study can be found in previous articles (Fan et
al., 2016; Yuan et al., 2023; Feng et al., 2019).



S7. Limitations and Uncertainties.

Although this study provides valuable insights into the contribution of maritime shipping to ambient SO; in

Shanghai, several limitations and uncertainties should be acknowledged.

From a data perspective, an additional source of uncertainty lies in the background subtraction method, which
assumes that the FDU site accurately represents the urban land-based SO» level. In China, stringent emission control
policies have led to a substantial reduction in land-based SO,, and our long-term meteorology-adjusted analysis at
FDU confirms that its background concentrations have already declined to relatively low levels with only minor
interannual variability. Nevertheless, some degree of spatial heterogeneity in urban SO, emissions is unavoidable.
As a result, the land-based contributions at FDU and WSW may still differ slightly, introducing potential bias in
the background subtraction. However, such uncertainties are unlikely to affect the robustness of our analysis at
broader temporal scales (e.g., monthly averages).

From a measurement coverage perspective, another source of uncertainty arises from the limited measurements at
the WSW site in 2020 and between July 2022 and July 2023, during which predicted values were used to fill
missing periods. Our validation analysis shows that the gap-filling model reproduces long-term SO, variations
reliably, with a mean residual of —0.0032 ppbv over 2018-2023 (Figures S4, S5, Section S3 in the Supplement),
although short validation samples (e.g., in 2024) suggest that biases of up to —0.04 ppbv may occasionally occur.
Even if the concentrations during 2020-2022 were uniformly adjusted by this margin, the main interannual trends—
a decrease from 2018 to 2020 followed by an increase from 2021 to 2023—would remain unchanged. We note,
however, that the absence of measurements may reduce the number of high-SO, plumes captured during these
years. Because our plume-related analyses in Sections 3.2 and 3.3 are based on relative contributions rather than
absolute plume counts, this influence is expected to be limited, but some degree of bias cannot be fully excluded.

From a model perspective, the Deweathered approach relies on the choice of input variables and on the assumption
that meteorological impacts can be fully captured by the ERAS parameters and time-related covariates. Other
relevant factors, such as local-scale turbulence or unmeasured meteorological drivers, may not be fully represented.

From the experimental design perspective, an important source of uncertainty in this study arises from the vertical
sampling geometry of the DOAS system. The light path was located approximately 10 m above ground level, with
the observation site itself about 6 m above mean sea level. Tidal variation (1—4 m) and ship stack heights mean that
the intercepted section of the SO, plume could vary between individual events—capturing different segments of

the vertical plume profile depending on stack height and tidal level.

However, the DOAS setup and tidal conditions remained broadly consistent during the entire 20182023 period,
and vessel types and traffic patterns did not experience abrupt structural changes. Therefore, this geometric
uncertainty is systematic and comparable across years, and is unlikely to bias the interannual patterns observed in
the plume concentration distributions. Our analysis focuses on the relative frequency of plumes within specific

concentration ranges and their temporal trends, rather than on deriving absolute emission rates for individual vessels.

If a quantitative estimation of individual vessel emissions were to be conducted, obtaining the actual stack height
of ships would be crucial. Unfortunately, such information is not contained in the AIS system. A feasible solution
would be to integrate camera-based observations to capture photographs of vessels passing through the light path
at moments of elevated SO, signals, allowing stack height and plume geometry to be determined more accurately.
This is a direction our group intends to pursue in future work to further reduce the uncertainties associated with
vertical sampling geometry.
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