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S1. Overview of Vessel Activity in the WSW Channel. 

To provide background information on local ship traffic conditions relevant to the observed SO2 variations, this 

section summarizes key characteristics of vessel activity in the WSW channel based on AIS data from 2018 to 2023. 

Figure S1 presents the temporal evolution of daily vessel numbers in the channel, including total ships, moving 

ships, and stationary ships. Seasonal reductions in traffic are evident around the time of the Chinese New Year each year, 

reflecting holiday-related slowdowns. Throughout the period, the overall number of ship traffic shows a gradual 

increasing trend. The vessel type composition is also illustrated, showing that cargo ships and passenger boats have 

remained the predominant categories. 

Figure S2 shows daily statistics of the main engine (ME) and auxiliary engine (AE) power of vessels passing 

through the channel. The ME power is generally much higher than AE power, reflecting the dominant role of propulsion 

engines in energy consumption and emissions. The large standard deviations in both ME and AE power reflect the 

diversity of ship types in the WSW channel—ranging from large cargo ships and cruise vessels (with ME power up to 

50,000–70,000 kW) to small fishing and harbor boats (tens of kW). In recent years, the upper percentiles of both ME 

and AE power have increased, suggesting a growing presence of larger or higher-powered vessels in the area. 

Vessel speed is another relevant operational parameter. Although instantaneous speed can vary significantly within 

a single ship’s trajectory, it is observed that the maximum speed of vessels operating in this region can reach up to 52.6 

knots. At the same time, many ships remain stationary near the shore or move slowly within the channel, typically 

maintaining speeds around 5–6 knots. 

 

  



 

Figure S1. Temporal dynamics of daily ship traffic and ship type composition in the WSW channel (2018–

2023). (a) Daily number of total ships, moving ships, and stationary ships detected from AIS records. (b) 

Percentage composition of different ship types over time, including passenger boats, cargo ships, oil tankers, 

shipping boats, harbor ships, and other vessels. 

 

 

Figure S2. Temporal statistics of daily main engine and auxiliary engine power of vessels in the WSW 

channel (2018–2023). (a) Time series of main engine (ME) power, showing the mean ± standard deviation 

(shaded area) and the 25th, 50th, and 75th percentiles of power (kW). (b) Time series of auxiliary engine 

(AE) power, showing the mean ± standard deviation (shaded area) and the 25th, 50th, and 75th percentiles 

of power (kW).  



S2. DOAS measurements and spectral data processing. 

The active DOAS system for measuring SO2 in Wusong Warf (WSW) is placed in the Wusong Maritime Safety 

Administration and the opposite of Huangpu River (the arrow of reflection mirror). While the system for Fudan 

University (FDU) is the Environmental Science Building and the southwest corner of campus (the arrow of 

reflection mirror). Both systems equipped with a 150 W Xenon lamp (Hamamatsu Photonics (China) Co., Ltd) and 

spectrometers (B&W Tek) with wavelength ranges of 185~440 nm. WSW's DOAS equipment can also observe the 

concentration changes of NO2, HONO, O3 and HCHO in the channel. To eliminate the effect of dark currents and 

atmospheric scattering light on the measurement, we subtracted the background spectrum collected by blocking the 

lamp's emitted light from the normally collected spectrum during the measurement spectrum sampling period. The 

average time resolution was 5~6 min for FDU’s systems and 1~2 min for WSW’s system. The observation site 

characteristics and the experimental setup for SO2, NO2, HONO, HCHO and O3 measurements have been described 

in detail in previous studies (Liu et al., 2024; Guo et al., 2020). 

The principle of DOAS is to utilize the narrow-band absorption characteristics of trace gases to determine the gas 

composition and to infer the concentration of trace gases. DOAS measurements of SO2 have been mentioned in 

many studies and is a mature monitoring and analysis method (Wang et al., 2019; Jin et al., 2016; Cheng et al., 

2019). In this study, the absorption cross sections of SO2, HCHO, NO2, O3 and the solar spectrum were involved 

in SO2 spectral fitting, using wavelength range of 299~308 nm. Based on the signal-to-noise ratio at a given optical 

path length and integration time, the detection limit in WSW is about 0.13 ppbv for SO2, 0.51 ppbv for NO2, 2.51 

ppbv for O3, 1.10 ppbv for HCHO, respectively. While the detection limit for SO2 in FDU is 0.11 ppbv. The spectral 

fitting information of all the trace gas can be referred to Table S1. 

 

  



Table S1. The detection limits of DOAS retrieval and the analytical residual. 

  

 

 

  

Observed 

Station 

Trace 

gas 

Fitting 

window 

(nm) 

absorption cross sections Polynomial 

degree 

Detection 

limits 

Residuals 

WSW 

SO2 299~308 

SO2 (Vandaele et al., 2009),NO2 

(Voigt et al., 2002), HONO 

(Stutz et al., 2000), HCHO 

(Meller and Moortgat, 2000), 

and solar spectrum (Kurucz, 

1984) 

5 0.13 ppbv 0.00054 

NO2 365.3-380.4 

NO2 (Voigt et al., 2002), HONO 

(Stutz et al., 2000), HCHO 

(Meller and Moortgat, 2000), 

and solar spectrum (Kurucz, 

1984) 

5 0.51 ppbv 0.00043 

O3 280.6-290.6 

O3 (Voigt et al., 2001a; Voigt et 

al., 2001b) , SO2 (Vandaele et 

al., 1998), HCHO (Meller and 

Moortgat, 2000), and NO2 

(Voigt et al., 2002) 

5 2.51 ppbv 0.00154 

HCHO 313~341  

HCHO (Meller and Moortgat, 

2000), NO2 (Voigt et al., 2002), 

SO2 (Vandaele et al.,1998), O3 

(Voigt et al., 2001a), HONO 

(Stutz et al.,2000) 

5 1.10 ppbv 0.00057 

FDU SO2 299~308 

SO2 (Vandaele et al., 1998),NO2 

(Voigt et al., 2002), HONO 

(Stutz et al., 2000), HCHO 

(Meller and Moortgat, 2000), 

and solar spectrum (Kurucz, 

1984) 

5 0.11 ppbv 0.00045 



S3. Machine learning data input, model tuning, and performance evaluation. 

We selected eight representative models as candidates, including one non-ensemble algorithms 

DecisionTreeRegressor (DTR), and seven ensemble models of ExtraTreeRegressor (ETR), 

RandomForestRegressor (RF), GradientBoostingRegressor (GBR), BaggingRegressor (BR), AdaBoostRegressor 

(ABR), XGBRegressor (XGB) and LGBMRegressor (LGBR). Those above algorithms are integrated in SCIKIT-

LEARN (sklearn), an open-source machine learning library written in PYTHON (Hackeling, 2017). After 

performing grid search and 5-fold cross-validation, XGB and ETR were selected as models for filling missing date 

and de-meteorologizing according to their Root Mean Squared Error (RMSE) and Coefficient of Determination 

(R²).  

XGB is an optimized distributed gradient enhancement library designed for efficiency, flexibility, and portability. 

It implements machine learning algorithms in the Gradient Boosting framework. Gradient Boosting, proposed by 

Friedman (2001), is a large class of algorithms in Boosting. Its idea is borrowed from gradient descent, and its basic 

principle is to train newly added weak learners based on the negative gradient information of the loss function of 

the current model and then combine the trained learners into the existing model in an accumulative form. The ETR 

model not only randomly selects data samples when constructing each decision tree, but also randomly selects 

eigenvalues to be partitioned when the nodes split. This extreme randomness reduces the variance of the model, 

thus obtaining a better ability to reduce overfitting and improve model stability than Random Forest models (Gall 

et al., 2011). 

When training the model to fill the missing SO2 values at FDU, seven meteorological data (from ERA5), time-

series NO2 concentration data observed by DOAS at FDU (representing the emission trends most closely associated 

with SO2 variations within the FDU campus environment), and SO2 data from two nearby stations, Hongkou Station 

and Ynagpu Station, during the same period (providing a macroscopic perspective of SO2 variation across 

Shanghai’s land areas) were utilized. With model R2 is 0.86, RMSE is 0.42±0.13. 

When training the model to fill the missing SO2 values at WSW, three categories of input features were incorporated 

to comprehensively capture environmental influences from different sources: meteorological conditions, ship 

emissions, and urban land-based emissions. Specifically, these consisted of: seven meteorological variables from 

the ERA5 reanalysis dataset; co-measured pollutant data (including HCHO, HONO, O3, and NO2) obtained via 

DOAS at the WSW site—which facilitated indirect capture of ship emission signals through cross-species learning; 

and meteorologically normalized SO₂ data from the FDU site (Deweathered_FDU), representing background 

variations associated with urban land-based emissions. The model achieved an R2 of 0.76 and an RMSE of 0.65 ± 

0.21. The completed SO₂ concentration time series is presented in Figure S3. 

The selection of predictor variables to represent ship emissions involved multiple rounds of testing and evaluation. 

Initial attempts to incorporate AIS-derived indicators, such as vessel counts and hourly bottom-up emission 

inventories within a 4 km radius around the WSW site, showed no significant correlation with observed SO2 

concentrations at the hourly scale—their inclusion resulted in negligible improvement in model performance. This 

outcome is attributed to the fact that AIS-based ship number do not capture distinctions in ship type, size, or 

operational status. For raw bottom-up emission inventories, it’s spatially aggregated and cannot be readily matched 

to the high temporal resolution of hourly LP-DOAS measurements. Consequently, the approach shifted toward 

using co-measured pollutants (NO2, HCHO, HONO, O3) obtained at the same WSW site, which are strongly 

influenced by ship activities.  

Figure S4 presents the residual error plots and their frequency distribution between the predicted and observed SO2 

concentrations for both sites. Figure S5 shows the scatter plots of the predicted versus observed SO2, along with 

the correlation coefficients (R2). The results demonstrate that the mean residuals are negligible (0.0032 ppbv at 



WSW and 1.16×10⁻⁵ ppbv at FDU). The majority of daily residuals (59.36% at WSW and 86.9% at FDU) fall 

within ±0.2 ppbv, and the high R2 values (above 0.9) confirm a strong model-observation agreement at both 

locations. 

To evaluate the performance of the machine learning-based gap-filling algorithm, a point-to-point comparison was 

conducted between predicted and observed SO2 concentrations. The evaluation used an independent validation dataset 

from 2024, consisting of 641 hourly measurements obtained during naturally continuous observation windows in January, 

February, and March. As shown in Figure S6, the gap-filled SO2 concentrations (Predicted SO2) demonstrate strong 

agreement with observed SO2. The model achieved an R2 of 0.84, with an RMSE of 0.41 ppbv and MAE of 0.29 ppbv. 

The overall mean observed SO2 concentration was 1.42 ppbv, compared to a predicted mean of 1.38 ppbv. The model 

accurately reproduced observed values across different concentration ranges: within the 1–3 ppbv interval, the predicted 

mean (1.74 ppbv) was nearly identical to the observed mean (1.75 ppbv), and for higher concentrations (3–5 ppbv), the 

predicted mean (3.88 ppbv) remained close to the observed value (3.66 ppbv). The model’s ability to capture short-term 

SO2 episodes—critical for characterizing ship plumes—was also evaluated. Among all data points, 1.25% exceeded 5 

ppbv. For these high-concentration events, the predicted mean was 4.71 ppbv compared to an observed mean of 5.45 

ppbv. The predicted maximum (5.94 ppbv) closely matched the observed maximum (6.08 ppbv). Although the 

reconstruction of peak concentrations shows a slight underestimation—likely due to the lower frequency of high‐

concentration events limiting training examples—the model overall captures the temporal variations in SO2 

concentrations well in the waterway environment. 

Deweathered models used seven meteorological data (from ERA5) and time-related variables (Unix time, Julian 

day, and day of the week) to capture emission patterns. ERA5 meteorological data from the same hour within 14 

days before and after each target time was used, providing 1,276 sets of meteorological data for training on the 

Observed_WSW and Observed_FDU series, as showed in Figure S7. The repeated input of over 1,000 sets of real 

historical meteorological data can be considered sufficient to effectively account for the impacts of various real-

world meteorological conditions. For the Deweathered models constructed for both WSW and FDU, the RMSE, 

R2, are reported as 0.41±0.12 and 0.79 in WSW, 0.32±0.14 and 0.85 in FDU, respectively. 

  



 

  

Figure S3. Time series of SO2 for WSW and FDU complemented by DOAS observations and machine 

learning models. 

 

 

Figure S4. Time series and frequency distribution of residuals (Predicted SO2 – Observed SO2) at the daily 

mean scale for (a, c) WSW and (b, d) FDU during 2018–2023. 

 



 

Figure S5. Scatter plots between predicted and observed SO2 concentrations at the daily mean scale for (a) 

WSW and (b) FDU. 

 

 

Figure S6. Comparison between observed and machine learning-predicted hourly SO2 concentrations at 

WSW in 2024. (a) Temporal variation using ordered sample index. (b) Regression plot showing strong 

agreement (R2 = 0.848) between predicted and observed values. 

 



 

Figure S7. Deweathered model training. First train the models of Observed_WSW and Observed_FDU with 

temporal and meteorological feature parameters respectively for 6 years; then use the models to train the 

meteorological parameters for specified time periods from 1980 to 2023 and normalize the results. 

 

 

Figure S8. Wind direction frequency distribution at WSW and FDU station from 2018 to 2023. (a) The 

aggregated wind distribution for all years. (b)–(g) The show annual wind patterns from 2018 to 2023. Wind 

direction is plotted in polar coordinates with percentage frequency indicated by concentric circles. 

 



  

Figure S9. Yearly average SO2 concentrations at two sites from 2018 to 2023. (a) Observed and deweathered 

SO2 concentrations at the WSW site, with the contribution of ship-related SO2. The orange bars represent 

observed SO2 concentrations (Observed_WSW), the blue bars represent deweathered SO2 

(Deweathered_WSW), and the green line with stars shows ship-related SO2. (b) Observed and deweathered 

SO2 concentrations at the FDU site. The pink bars represent observed SO2 (Observed_FDU), while the 

orange bars represent deweathered SO2 (Deweathered_FDU). Error bars represent the standard deviation 

across hourly mean values. 

 

 

Figure S10. Monthly average values of SO2 from residential and land-based transportation sources in 

Shanghai from 2018-2020 in China's Multi-Resolution Emission Inventory (MEIC).  

  



 

 

Figure S11. Variable importance plot for SO2 at (a) WSW and (b) FDU between 2018 and 2023 calculated 

by 50 ETR models. The Mean Squared Error (MSE) increase quantifies how much predictive accuracy 

depends on each variable; a higher value denotes greater importance. 

 

 

 

Figure S12. Annual variation of shipping activity in the channel from 2018 to 2023. (a) Monthly total number 

of ships and annual mean values. (b) Yearly ship number by ship type (cargo, oil tanker, passenger boat, 

fishing boat, and harbor boat). (For a more robust parameter of activity, a ship emission inventory (Section 

S5 in the Supplement) was created, incorporating ship number, type, ME & AEpower, and speed for 

comparison with Ship_related_SO2). 

  



S4. Matching SO2 Peaks with Ships. 

The process of matching SO2 peaks with ships involves extracting the occurrence time of SO2 plume signals 

identified by the BEADS algorithm and searching for vessel trajectories in the cleaned AIS dataset that coincide 

with the plume occurrence time and intersect the light path. AIS ship track matching logic is as follows: 

A straight-line equation is derived using the latitude and longitude coordinates of the DOAS emitter and the 

reflector as waypoints. The plume time tplume is input into the system to determine, for any vessel position, whether 

the condition (t1<tplume<t2) ∩ (t2- t1<10mins) ∩ (speed1≠0) ∩ (speed2≠0) ∩ (trajectory crossing the light 

path) is satisfied. For any given peak, multiple vessels may potentially be matched. Assuming uniform velocity 

change for the vessel between t1 and t2. As showed in Figure S13. 

 

 

Figure S13. Schematic Diagram of the Matching Between Ship AIS Data and SO2-rich plume signals. With 

ship's positions at two locations (Location 1 and Location 2) are shown along with their respective timestamps 

(t 1 and t 2) and speed (Speed 1 and Speed 2). The bidirectional arrows indicate the light path of DOAS. t plume 

indicates when the SO2-rich plume appeared. Base map: © OpenStreetMap contributors 2025. Distributed 

under the Open Data Commons Open Database License (ODbL) v1.0. 

 

 



 

Figure S14. Proportional distribution of Fastest-Matching ship types corresponding to different peak SO2 

values during (a) the policy adjustment period (2018–2020) and (b) the policy stabilization period (2021–

2023). The ship types include harbor ships, fishing boats, cargo ships, passenger boats, oil tankers, and other 

ships. 

  



 

S5. Comparison Between Observational Data and AIS-Based Ship Emission Inventory. 

In the paragraph of this appendix, we compared Ship_related_SO2 derived from DOAS observations with those 

estimated by traditional bottom-up ship emission inventories, discussed the similarities and differences in outcome 

trends between the two approaches, and identified the underlying causes. AIS data provides detailed information 

on ship activities and is commonly used for calculating ship emission inventories on large spatiotemporal scales 

(Mao et al., 2020; Zou et al., 2020).  

The reason for employing a comprehensive ship emission inventory from AIS, rather than relying on any single 

ship parameter (e.g., ship number, engine power, or speed), is as follows: While parameters like ship number, main 

engine power, and speed are valuable indicators, they are independently insufficient to accurately represent actual 

SO2 emissions. This is because emissions are the product of a complex interplay of these factors. For instance: A 

high-powered ship moving slowly may emit similarly to a lower-powered ship at high speed; A stationary ship 

using its auxiliary engine for onboard services may emit more than a ship maneuvering at low speed with its main 

engine at idle; Simply counting all vessels equally ignores the vast differences in emission potential between a 

large container ship and a small fishing boat.  

Therefore, a bottom-up emission inventory methodology was adopted (Section S6 in the Supplement). This 

approach synthesizes the key parameters derived from AIS data—including ship type, instantaneous position and 

speed, and installed main and auxiliary engine power—into a holistic framework. By applying standardized 

emission algorithms and fuel sulfur content assumptions, this inventory translates dynamic ship activity into 

estimated hourly SO2 emissions.  

The scatter plots in Figure S15 illustrate the correlation (R2) between ship emission inventory-based SO2 emissions 

and the 14-day mean SO2 concentrations based on observation at the WSW site. In the process of removing 

meteorological influences and land-based emissions, the correlation between the ship emission inventory and SO2 

concentrations progressively improves step by step. For the period from 2018 to 2020, the R2 increases from 0.064 

(Observed_SO2) to 0.154 (Deweathered_SO2), and further to 0.32 (Ship_related_SO2). Similarly, for the period 

from 2021 to 2023, the R2 rises from 0.043 (Observed_SO2) to 0.163 (Deweathered_SO2), and ultimately reaches 

0.54 (Ship_related_SO2). This trend underscores the effectiveness of the combined meteorological normalization 

and land-based emissions subtraction processes in refining our understanding of Ship_related_SO2 contributions. 

Compared with directly observed_SO2, the emissions inventory explains the trend of Ship_related_SO2 changes 

better. 

Figure S16 illustrates the 14-day mean variations of Ship_related_SO2 concentrations and ship emission inventory 

in the WSW from 2018 to 2023. During the policy adjustment period (2018–2020), both the Ship_related_SO2 and 

the corresponding SO2 emissions in the inventory showed a gradual decline. If all ships had complied with the low-

sulfur fuel policy, SO2 emissions from ships would have shown a sharp decrease at the early stage of policy 

implementation, as illustrated in Figure S16c. However, due to the presence of non-compliant ships (as discussed 

in Sections 3.2 and 3.3), the reduction in SO2 emissions from ships has been a gradual process, as shown in Figure 

S16a. While the consistency between Ship_related_SO2 and the inventory improved during the policy stabilization 

period (2021–2023) in Figure S15f, which means that the fuel use of ships is closer to the policy requirements.  

 



 

Figure S15. Correlations between 14-day mean SO2 concentrations (x-axis) at WSW site and ship SO2 

inventory (y-axis), divided into three categories: (a, d) Observed_SO2 concentrations, (b, e) 

Deweathered_SO2 concentrations, and (c, f) Ship_related_SO2 concentrations. (a–c) correspond to the policy 

adjustment period from 2018 to 2020, while panels (d–f) represent the policy stabilization period from 2021 

to 2023. 

 

 



 

Figure S16. 14-day mean variations of Ship_related_SO2 concentrations and emission inventory in the WSW 

channel from 2018 to 2023. (a) and (b) represent the 14-day mean Ship_related_SO2 derived from 

observations for 2018–2020 and 2021–2023, respectively. (c) and (d) show the corresponding 14-day mean 

SO2 emissions from the ship emission inventory during the same periods.  

 

  



S6. Calculation of ship emission inventory based on AIS. 

The ship atmospheric pollutant emission inventories used in this study were calculated using a bottom-up ship 

emission model based on AIS data. The model was improved upon the studies by Fan et al. (2016) and Feng et al. 

(2019). The basic framework and specific parameters of the model are introduced as follows. 

The model is primarily divided into three parts: data preprocessing, inventory calculation, and gridded output. The 

model has specific format requirements for the AIS data used. Since the raw AIS data contains extensive 

information, it is necessary to selectively extract the required information and preprocess it before inputting it into 

the model for further calculations. The raw AIS data includes dynamic and static information about ships. The 

dynamic information required by the model mainly includes the following: AIS message type (msgtype), Maritime 

Mobile Service Identity (MMSI), navigation status (status), current speed (speed), ship's turn direction (turn), 

current longitude (lon), current latitude (lat), timestamp (second), actual heading (heading), and date (day). The 

static information primarily includes AIS message type (msgtype), Maritime Mobile Service Identity (MMSI), 

International Maritime Organization (IMO) number or ship name (shipname), ship type (shiptype), distance from 

the positioning antenna to the bow (to_bow), distance to the stern (to_stern), distance to the port side (to_port), 

distance to the starboard side (to_starboard), and the current maximum static draught (draught). Before calculations, 

the obtained data must be classified and processed. Additionally, the ship's static information needs to be matched 

with corresponding basic ship information in the database. 

After preprocessing the AIS data, the data is input into the calculation model one by one to compute the ship 

pollutant emissions. In this study, the calculation of atmospheric pollutant emissions from ships is divided into two 

parts: the main engine and the auxiliary engine. The calculation formula for the pollutant emissions from the main 

engine, Em, is shown in Equation (S1), while the calculation formula for the pollutant emissions from the auxiliary 

engine, Ea, is shown in Equation (S2): 

𝐸𝑚 = 𝑚𝑃 × 𝑚𝐿𝐹 × 𝑇 × 𝑚𝐸𝐹 × 𝑚𝐶𝐹 × 𝑚𝐿𝐿𝐴𝑀 × 𝑚𝐹𝐶𝐹        (𝑆1) 

𝐸𝑎 = 𝑎𝑃 × 𝑎𝐿𝐹 × 𝑇 × 𝑎𝐸𝐹 × 𝑎𝐹𝐶𝐹        (𝑆2) 

𝑚𝐿𝐹 = (𝐴𝑆/𝑀𝑆)3        (𝑆3) 

Those parameters are: 

𝑚𝑃/aP: Ship main engine/ auxiliary engine power, kW; 

𝑚𝐿𝐹/𝑎𝐿𝐹: Main engine /auxiliary engine load factor; 

𝐴𝑆: Current speed of ship, knots; 

𝑀𝑆: Max speed of ship, knots; 

𝑚𝐸𝐹/𝑎𝐸𝐹: Main engine/auxiliary engine emission factor, g/kWh; 

𝑚𝐶𝐹: Main engine control factor; 

𝑇: Time step, h; 

𝑚𝐿𝐿𝐴𝑀: Main engine low load adjustment factor; 

𝑚𝐹𝐶𝐹/𝑎𝐹𝐶𝐹: Main engine/ auxiliary engine fuel control factor. 

After separately calculating the pollutant emissions from the main and auxiliary engines of the ships, a gridding 

program is applied to aggregate the total pollutant emissions from ships within each grid area. The results are then 

compiled into the required ship emission inventory for subsequent analysis. 

A more detailed description of the emission inventories used in this study can be found in previous articles (Fan et 

al., 2016; Yuan et al., 2023; Feng et al., 2019). 

  



S7. Limitations and Uncertainties. 

Although this study provides valuable insights into the contribution of maritime shipping to ambient SO2 in 

Shanghai, several limitations and uncertainties should be acknowledged. 

From a data perspective, an additional source of uncertainty lies in the background subtraction method, which 

assumes that the FDU site accurately represents the urban land-based SO2 level. In China, stringent emission control 

policies have led to a substantial reduction in land-based SO2, and our long-term meteorology-adjusted analysis at 

FDU confirms that its background concentrations have already declined to relatively low levels with only minor 

interannual variability. Nevertheless, some degree of spatial heterogeneity in urban SO2 emissions is unavoidable. 

As a result, the land-based contributions at FDU and WSW may still differ slightly, introducing potential bias in 

the background subtraction. However, such uncertainties are unlikely to affect the robustness of our analysis at 

broader temporal scales (e.g., monthly averages). 

From a measurement coverage perspective, another source of uncertainty arises from the limited measurements at 

the WSW site in 2020 and between July 2022 and July 2023, during which predicted values were used to fill 

missing periods. Our validation analysis shows that the gap-filling model reproduces long-term SO2 variations 

reliably, with a mean residual of –0.0032 ppbv over 2018–2023 (Figures S4, S5, Section S3 in the Supplement), 

although short validation samples (e.g., in 2024) suggest that biases of up to –0.04 ppbv may occasionally occur. 

Even if the concentrations during 2020–2022 were uniformly adjusted by this margin, the main interannual trends—

a decrease from 2018 to 2020 followed by an increase from 2021 to 2023—would remain unchanged. We note, 

however, that the absence of measurements may reduce the number of high-SO2 plumes captured during these 

years. Because our plume-related analyses in Sections 3.2 and 3.3 are based on relative contributions rather than 

absolute plume counts, this influence is expected to be limited, but some degree of bias cannot be fully excluded. 

From a model perspective, the Deweathered approach relies on the choice of input variables and on the assumption 

that meteorological impacts can be fully captured by the ERA5 parameters and time-related covariates. Other 

relevant factors, such as local-scale turbulence or unmeasured meteorological drivers, may not be fully represented. 

From the experimental design perspective, an important source of uncertainty in this study arises from the vertical 

sampling geometry of the DOAS system. The light path was located approximately 10 m above ground level, with 

the observation site itself about 6 m above mean sea level. Tidal variation (1–4 m) and ship stack heights mean that 

the intercepted section of the SO2 plume could vary between individual events—capturing different segments of 

the vertical plume profile depending on stack height and tidal level. 

However, the DOAS setup and tidal conditions remained broadly consistent during the entire 2018–2023 period, 

and vessel types and traffic patterns did not experience abrupt structural changes. Therefore, this geometric 

uncertainty is systematic and comparable across years, and is unlikely to bias the interannual patterns observed in 

the plume concentration distributions. Our analysis focuses on the relative frequency of plumes within specific 

concentration ranges and their temporal trends, rather than on deriving absolute emission rates for individual vessels. 

If a quantitative estimation of individual vessel emissions were to be conducted, obtaining the actual stack height 

of ships would be crucial. Unfortunately, such information is not contained in the AIS system. A feasible solution 

would be to integrate camera-based observations to capture photographs of vessels passing through the light path 

at moments of elevated SO2 signals, allowing stack height and plume geometry to be determined more accurately. 

This is a direction our group intends to pursue in future work to further reduce the uncertainties associated with 

vertical sampling geometry. 
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