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Abstract. Observation-based monitoring of the status of greenhouse gas emissions goals set at the 2015 Paris
Climate Summit is critical to provide timely, accurate and precise information on the progress towards these
goals. Observations also permit the identification of potential deviations from the adopted policies that could
compromise the efforts to reduce the future impact of pollutants on the climate.

Current remote sensing capabilities of atmospheric CO, have demonstrated the ability to estimate emis-
sions from the strongest sources of CO, based on imagery of individual plumes in conjunction with wind
speed estimates. However, a realistic evaluation of the accuracy of the obtained estimates is essential. Here,
we examine how the stochastic nature of daytime atmospheric turbulence affects the estimation of CO; emis-
sions from a lignite coal power plant in Belchatéw, Poland. For this investigation, we use a high-resolution
(400 m x 400 m x 85 levels) atmospheric model set up in a realistic configuration. We demonstrate that persis-
tent structures in the downwind concentration fields of emitted plumes can cause significant uncertainties in
the retrieved fluxes, on the order of 10 % of the total source strength, when the commonly used cross-sectional
mass-flux (CSF) method is applied with short distances between individual estimates. These form a significant
contribution to the overall uncertainty which remains unavoidable in the presence of atmospheric turbulence.

Furthermore, we applied temporally tagged tracers for the decomposition of the plume variability into its
constituent parts. These tracers helped us to explain why spatial scales of variability in plume intensity are far

larger than the size of turbulent eddies — a finding that challenges previous assumptions.

1 Introduction

The importance of greenhouse gases (GHGs) for the Earth’s
climate, particularly CO;, has been established for decades
now. Their emissions to the atmosphere remain high and,
more importantly, above the optimal pathway that would as-
sure limited climate change, represented by a 1.5 °C mean
atmospheric temperature increase by the end of 21th cen-
tury against a 1850-1900 baseline (IPCC, 2023). Over the
last few decades, a range of international policies have been
adopted, aiming to minimize the adverse effects of climate
change, with the 2015 Paris Agreement (UN, 2015) being

the most recent effort coordinated within the United Na-
tions frameworks. Mitigation plans within the agreement are
tightly connected with the annual reporting of the emission
rates through National Inventory Reports (NIRs), prepared
in order to provide accurate and timely information to the in-
ternational community. Common methodologies used within
NIRs are based on bottom-up statistical methods that, in
many cases, rely on indirect (proxy) datasets characterized
by varying degrees of accuracy (Eggleston et al., 2006). In-
consistencies still exist, especially in underdeveloped coun-
tries, which affects our ability to formulate informed and so-
cially acceptable policies to mitigate and adapt to climate
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change. The provision of transparent and accurate NIRs has
a critical impact on building and maintaining societal trust,
which is especially important as emission reduction and cli-
mate mitigation policies can incur significant societal costs,
both monetary and otherwise. Independent, science-based
observations of GHG emissions offer a promising approach
to enhance the confidence of all stakeholders.

Two issues affect our ability to provide accurate regional
budgets of GHGs. First, ground-based networks do not have
sufficient density to feed the models that would help to es-
timate the anthropogenic fluxes at sufficient accuracy where
the strongest emissions occur (China, EU, India and USA;
see Janssens-Maenhout et al., 2019). Second, in developing
countries, where the emissions are smaller but are character-
ized by larger uncertainties, the ground-based observations
are either sparse or missing altogether. Airborne and space-
borne platforms have an important role in filling the obser-
vation gap as they can provide information at high spatial
resolutions in the regions where only limited (or no) ground-
based observations are available. Because of the limitations
in terms of range, high unit costs and sparse temporal cov-
erage, the relevance of airborne observations for direct emis-
sion estimation at the global or regional scales has histori-
cally been largely limited to constraining natural fluxes (Ger-
big et al., 2003) or validation of global models (Gatkowski
et al., 2021), but, in recent years, robust studies covering
larger regions have been conducted, especially concerning
emissions from oil and gas industries (e.g. Sherwin et al.,
2024). Airborne observations of in situ mole fractions have
been successfully used to provide important insights into the
subregional and local sources of anthropogenic GHG emis-
sions, employing either pure data-focused analysis (Lowry
et al., 2001; Turnbull et al., 2011), mass-balance estimations
(Cambaliza et al., 2014; Klausner et al., 2020; Fichn et al.,
2020) or formal inversions of varying complexity (Krings
et al., 2018; Lopez-Coto et al., 2020; Kostinek et al., 2021).

Rapid developments in remote sensing instrumentation
have opened the avenue for direct estimations of GHG emis-
sions. Although remote sensing instruments installed on air-
borne platforms have been used successfully for this pur-
pose in the past (Krings et al., 2013; Thorpe et al., 2016;
Krautwurst et al., 2021; Wolff et al., 2021), satellite obser-
vations offer a distinct advantage due to their global cov-
erage and lower cost per observation. The newest gener-
ation of spaceborne sensors has already demonstrated the
ability to estimate emissions of pollutants from larger emit-
ting regions and also from single sources — if sufficiently
strong. For example, OCO-2 and OCO-3 observations were
used to estimate CO; emissions from selected large cities
and power plants (Nassar et al., 2017; Reuter et al., 2019;
Fuentes Andrade et al., 2024), and satellites like GHGSat-
D and MethaneAir have shown promise in detecting lo-
calized CHy plumes with rapid emission estimation (Jervis
et al., 2021; Chulakadabba et al., 2023). These successful
deployments further motivate the development and use of
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an operational chain of dedicated satellite missions. Early
steps towards such a system were taken through the pro-
posed Earth Explorer mission CarbonSat (Bovensmann et al.,
2010). This work was subsequently expanded and resulted
in the design and approval of CO2M (Copernicus Anthro-
pogenic CO, Monitoring Mission), a constellation of satel-
lites that are to be launched within the current decade (Sierk
et al., 2021) and that will form the backbone of the opera-
tional system with the CO, emission monitoring and veri-
fication support (MVS) capacity, as described by Janssens-
Maenhout et al. (2020).

A variety of methods have been applied to estimate GHG
emissions using either actual remote sensing observations or
synthetic data that emulate such observations. A good gen-
eral description of these methods, their assumptions, and
their respective strengths and weaknesses is available in
Varon et al. (2018). Of the four methods listed in that study,
the Gaussian plume inversion (GPI, Krings et al., 2011; Nas-
sar et al., 2017), the integrated mass enhancement (IME,
Frankenberg et al., 2016) and the cross-sectional flux meth-
ods (CSF, Krings et al., 2011) have been widely used in
practical applications in recent years. Current developments
include improvements in plume detection algorithms, also
by using auxiliary NO; measurements (Kuhlmann et al.,
2019, 2021), robust statistical analyses of emission estimates
from repeated scenes by a single spaceborne instrument
(Nassar et al., 2022; Fuentes Andrade et al., 2024; Santaren
et al., 2025) and detailed bottom-up information for com-
parisons (Nassar et al., 2022; Fuentes Andrade et al., 2024).
Across these studies, the reported total emission uncertainty
estimated from a single satellite image usually remains be-
tween 10 % to 20 % even under the most favourable condi-
tions, i.e. when analysing simple point sources (like power
plants) in a cloud-free atmosphere with small gradients in
the background fields.

Significant variability exists in the methodology of report-
ing uncertainty. Uncertainty associated with wind speed es-
timation has been recognized as one of the most signifi-
cant (Varon et al., 2018), especially under low wind speeds.
No standardized method of uncertainty evaluation has yet
emerged, however, resulting in large discrepancies in re-
ported uncertainty estimates. Fuentes Andrade et al. (2024),
for example, reported that uncertainty in the wind speed esti-
mation contributes between 24 % and 82 % to the total re-
ported emission uncertainty for nine analysed cases with
wind speeds between 3.4 and 9.1 ms~!. In an earlier study
based on 10 OCO-3 scenes, Nassar et al. (2022) reported a
similar range of uncertainties throughout the sample. How-
ever, when only considering the scenes in common with the
study of Fuentes Andrade et al. (2024), significantly dif-
ferent total uncertainties were reported. Other error compo-
nents recognized as significant included the instrument preci-
sion (Varon et al., 2018; Kuhlmann et al., 2019), background
(Kuhlmann et al., 2019, 2020) and plume rise (Nassar et al.,
2022); e.g. Kuhlmann et al. (2020) consider a “method error”
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that represents the intrinsic uncertainties of the method that
arise from simplified assumptions. Large discrepancies be-
tween methodologies of error estimation make it difficult to
realistically estimate the uncertainty ranges for existing and
upcoming satellite missions.

Another major contribution to the reported uncertainty
stems from spatial variability due to stochastic turbulence
present in the daytime atmosphere (which is when virtually
all relevant observations have been collected so far), not ex-
plicitly accounted for in any of the methods applied to space-
borne or airborne data. The first analysis of this spatial vari-
ability in atmospheric CO, was applied to the vertical dis-
tribution of CO; by Gerbig et al. (2003) and augmented by
Lin et al. (2004) to assess representation errors associated
with the spatial grid resolution of transport models typically
used in inverse modelling. A similar approach to the one
used in those studies has been applied in a recent study by
Fuentes Andrade et al. (2024) to estimate the uncertainty
of emission estimates due to turbulent dispersion (dubbed
“dispersion uncertainty”), separating the impact of correlated
structures in the CSF method (see Fig. 5 in that study).

Here, a corresponding method is deployed to assess the
scales of variability at a somewhat higher spatial resolution,
as apparent in partial columns in simulated plumes of CO3,
to assess the impact on the uncertainty of point source emis-
sions and to provide insights into the mechanics influencing
emission estimates from the CSF method. We propose that
there is a connection between the local wind at the emis-
sion point and time and the apparent emissions estimated
downwind. That connection is established at the moment of
emission and remains in the advected CO, signal over dis-
tances larger than the eddy scale. Air parcels under low local
wind would be loaded with higher mole fractions as the dilu-
tion into the atmosphere is lower, while, under higher wind
speeds, the dilution into the atmospheric air parcel is larger.
We further argue that this variability in mole fractions per-
sists in the downwind advected plumes, causing variability
in the apparent emissions reported in the measurements. In
order to shed light on these phenomena, we employ high-
resolution WRF (Weather Research and Forecast)-GHG sim-
ulations over a previously studied point source, enhancing
the modelling system with temporally tagged tracers.

The paper is structured as follows: Sect. 2 is dedicated
to the description of the experimental setup, study area and
model configuration. A detailed description of the temporally
tagged tracer concept and application is provided as well.
Section 3 presents the results, and Sect. 4 presents a discus-
sion of the results. The conclusions and outlook are presented
in Sect. 5.
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2 Methods

2.1 Study area

The Belchatow power plant (BPP) is one of the largest an-
thropogenic CO; point sources globally, relying on lignite
coal for power generation. The nominal capacity of the plant
was 5102 MW of electrical power in 2021, approximately
13 % of the total capacity of the Republic of Poland (https://
pgegiek.pl/Nasze-oddzialy/Elektrownia-Belchatow, last ac-
cess: 30 August 2024). Under both national and EU legis-
lation, accurate information on GHG emissions and opera-
tional status is publicly available, making the BPP an excel-
lent target for developing and testing new instruments and
methods. In fact, the BPP has already been used in several
studies focusing on developing emission estimation methods
(Nassar et al., 2022; Fuentes Andrade et al., 2024) or mod-
elling approaches (Brunner et al., 2023).

The power station is located at 51.267° N, 19.325°E, in
the vicinity of Befchatéw in central Poland. Emissions of
CO» and other compounds are reported through the Euro-
pean Pollutant Release and Transfer Register (E-PRTR). Re-
ported emissions of CO, from 2018 to 2022 varied between
30.1 and 38.4 Mt CO, yr’l, with a minimum in 2020 (EEA,
2023). The topography of the surrounding area is mostly flat
and characterized by minor orographic variability, with no-
table exceptions being the deep (up to approximately 200 m)
open-pit lignite coal mine located directly to the south of
the power plant, neighboured by the coal heap containing
the residue of the mining operation (up to 175 m high) to
the southeast (Fig. 1). The area of the mine pit was approxi-
mately 12 km? in 2020.

2.2 WRF-GHG

The numerical experiment presented here was performed
using the Weather Research and Forecast Eulerian model
WRF (Skamarock et al., 2008) with the Advanced Research
WRF (ARW) core enabled. WRF was developed within a
large collaborative project led by the National Center for At-
mospheric Research (NCAR) and has been augmented over
the years by improvements from a number of community
users. The model integrates the non-hydrostatic, fully com-
pressible flux form Euler equations on a terrain-following
mass-based vertical coordinate and has been successfully ap-
plied for meteorological and tracer transport studies at scales
ranging from global to local thanks to the ability to dynam-
ically downscale the computations through a nesting algo-
rithm.

For our experiment, we employed WRF v3.9.1.1., with
the addition of the GHG module (Beck et al., 2011), im-
plemented within the WRF-Chem (Grell et al., 2005; Ah-
madov et al., 2009). Hereafter we refer to this framework as
WRF-GHG. The module allows for the emission, transport
and mixing of inert CO; tracers, as well as online calcula-
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Figure 1. WRF domains for the simulations superimposed onto a topography map. (a) Extent of parent and nested domains. (b) High-
resolution domain. BPP denotes Betchatéw power plant, the location of which is marked with a white thombus.

tion of photosynthetic and respiration fluxes, although that
feature was not used in the current study. We applied the sys-
tem in a limited-area mode, using meteorological boundary
conditions from the ECMWEF Integrated Forecasting System
HRES run, downloaded at 0.125° x 0.125° horizontal and
L137 vertical resolution (ECMWF, 2022).

The model was run in a one-way nested configuration with
three domains of gradually increasing spatial and temporal
resolution (Fig. 1). The parent domain spanned continen-
tal Europe with a 10km horizontal grid. The intermediate
nested domain covered parts of southern and central Poland
at 2km horizontal resolution, and the final nested domain
was run at 400 m horizontal resolution and spanned a rect-
angular area of 100km x 100km, centred around the BPP.
To ensure model stability, the domains were run with time
steps of 50, 10 and 2s, respectively. We used the classical
mass-based terrain-following 1 coordinate definition, with
the model top set at a constant p = 50 hPa, corresponding
to approximately 20kma.m.s.l. As the vertical transport of
tracers was one of the key phenomena investigated in our ex-
periment, we have also used a high-resolution vertical level
structure in the lower atmosphere, with 85 full-model lev-
els between the surface and the model top. The lowest layer
thickness was set to 25 m, with 38 levels below 3 km altitude.

We have used WRF parameterizations suitable for the
spatio-temporal scales involved, including the Thompson
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microphysics scheme, RRTMG schemes for longwave and
shortwave radiation, the revised MMS5 scheme for surface
layer physics, and the Noah Land Surface Model. Grell
3D cumulus parameterization was enabled in the parent do-
main only. Full-model settings (including all relevant cita-
tions) are provided in Table S1 in the Supplement. As the
nested domains are run at horizontal resolutions in the so-
called “grey zone” (i.e. grids with horizontal spacing be-
tween 0.2 and 6 km; see Honnert et al., 2020), we have ap-
plied the Shin—-Hong PBL (planetary boundary layer) scheme
(Shin and Hong, 2015) for all simulated domains. This
parameterization introduces scale dependency for vertical
transport in the convective PBL and follows the YSU scheme
in the free atmosphere. We have used the default MODIS
land use category maps (at 30”) and elevation maps (at 1’ res-
olution for the parent domain and 30” for nested domains).
Grid nudging was applied in the parent domain to main-
tain wind, temperature and moisture fields consistent with
the driving meteorological data at a continental scale. We
did not apply any nudging to the intermediate and high-
resolution domains to allow the WRF internal parameteri-
zations to drive the tracer transport at smaller scales. The
strength of the nudging coefficient for water vapour was re-
duced to 4.5 x 107> ms~! following Spero et al. (2018).
Prior to data analysis, simulated CO, fields were inter-
polated from WRF’s Lambert Conformal Conic projection
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to a time-varying Cartesian coordinate system centred at
the BPP and oriented towards the direction of the effective
wind (uefr), calculated every minute as an average of local
wind speeds sampled between 200-600 m a.g.1. over a square
area (20 km x 20 km) surrounding the BPP. The height range
was selected as the applied emissions are distributed mostly
in this range (see the following section).

The vertical structure of the original WRF grid was pre-
served exactly, while the horizontal resolution was increased
2-fold in order to better preserve the spatial features of the
modelled plume (200 m x 200 m), using bilinear interpola-
tion. The output grid formed a perpendicular area ranging
from —5 to +40km in the X (along-wind) direction and
—25 to 25km in the Y direction in order to capture the full
width of the plume throughout the period relevant for the
analysis.

2.3 Emissions and tagged tracers

Three individual stacks were responsible for CO, emissions
at the BPP in 2020. Nassar et al. (2022, Table 4) used pub-
licly available data and found that only blocks B2-B12 of
the power plant were operational on 10 April 2020, our
date of interest. These blocks emit CO;, through two tall
(300 m high) stacks located 330 m apart. In our model we
combined both into a single point source as our horizontal
grid size is 400 m. We applied emissions of CO; at the con-
stant rate equal to the average annual emissions officially re-
ported by the BPP for the year 2018, i.e. 38.4 Mt CO, yr~!
(EEA, 2023). Instead of a dedicated plume rise mecha-
nism, we applied an invariable vertical profile in emissions,
with tracer mass distributed along a Gaussian curve centred
at Hees =4/3H, with a standard deviation of oy = 1/3H,
where H is the emitting stack height of 300 m. Examples
of emission profiles and resulting model mole fractions are
given in Fig. S1 in the Supplement.

The emissions from the stack are subsequently advected in
the model throughout the full simulation period. We used this
tracer primarily to monitor the spatial extent over which the
tracers represent the whole plum and to calculate the depen-
dence of emission estimate statistics over variable distances.

We also used 60 additional tracers tagged by the time of
release (temporally tagged tracers) in order to study the ef-
fects of atmospheric turbulence on source estimation infer-
ence. Each tracer corresponds to a short segment of the emit-
ted plume, together encompassing the full emission signal
emitted from the stack over a 3h time period (see the next
section). Segments of 3 min were chosen as a compromise
between the desire for maximum detail and computational
constraints. This time was sufficient to represent wind vari-
ability at the emission point. The numerical tests have shown
only a 1.5 % loss of variance when using 3 min averaged out-
put as compared to instantaneous 1 min output.

The resulting CO, signals are conceptually similar to the
“particles” or “air parcels” used in Lagrangian models. We

https://doi.org/10.5194/acp-25-13831-2025

13835

refer to these emitted plume segments as “puffs”. The distri-
bution of CO, mole fractions for a selection of puffs is pre-
sented in Fig. S2, and an example XCO; from a single puff
is plotted in Fig. 4 (see Sect. 3) against the full plume extent.

Using these short puffs allows us to evaluate the impact of
large eddies interacting with the tracer at the point of emis-
sion, as well as during their advection to further downstream
areas. For this we specifically calculate plume centroids to
follow the motion of each puff (details in Sect. 2.8.1), as well
as the wind speed during the time of the tracer release, which
directly impacts the initial dilution of the tracer when emitted
into the atmosphere (detailed in Sect. 2.8.2).

2.4 Simulated case

For our study, we ran the simulation for a period be-
tween 18:00UTC on 9 April 2020 and 21:00UTC on
10 April 2020. These dates were selected as good candi-
dates as OCO-3 observations from that day displayed char-
acteristic variability of apparent emissions that we investi-
gate in this study. In the model, we emitted 60 puffs be-
tween 09:00 and 12:00 UTC (11:00-14:00LT) in successive
3 min periods. The numerical analysis of the output was per-
formed when the final tracer was emitted completely, i.e. at
12:00 UTC. By that point, the oldest tagged tracers had al-
ready been advected through the modelling domain for 3 h.
We stored the 1 min output for the high-resolution domain
from 09:00 until 21:00 UTC for maximum temporal cover-
age over the analysed day.

2.5 Column-averaged mole fractions

The column-averaged dry-air mole fraction, commonly used
in remote sensing measurements, is a scalar quantity that in-
tegrates trace gas abundances across the whole atmospheric
column. It offers advantages over reporting in mass units as it
reduces the influence of surface pressure and topography on
the retrieved signals. For every output time, WRF-GHG pro-
vides 3D fields of dry-air mole fraction enhancements (des-
ignated as AC for the full plume tracer), from which we cal-
culate column-averaged dry-air mole fraction using the fol-
lowing formula:

AXCij =Y ACijw;ji- (1)
k

Here, AXC;; is the enhancement of the column-averaged
dry-air mole fraction of CO, at coordinate (x;, y;) of the
Eulerian grid. AC;jy is the dry-air mole fraction of CO; at
model grid coordinates (x;, y;, zx), given in mol mol~1, and
w;ji denotes the weights applied to each value, calculated as

[nalije 1

wj jk Stnalye . Ne [nalijk (2)
k
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Here, [ngl;j is the number of moles of dry air in the grid
cell at x;, yj, zx, and Ng is the total number of moles of
dry air throughout the air column. Because our model top
was set at 50 hPa, we applied a correction to account for the
missing atmospheric mass when calculating the weights. The
formulas above are independent of axis orientation, but the
values discussed are in the wind-rotated coordinate system,
with the x axis being oriented along the wind direction.

2.6 Cross-sectional flux method of estimating apparent
emissions

By assuming that the mass of the tracer is conserved (true in
the case of long-lived greenhouse gases advected over short
distances), emission rates at the source can be inferred by
integrating the tracer mass elements passing through a plane
perpendicular (i.e. along the y axis) to the wind direction at a
certain distance x downstream from the source. This can be
described mathematically as follows:

o0

B(x) = tetr / AQ(x, y)dy. 3)

—00

Here, x and y denote coordinates (in m) in the rotated
Cartesian grid, with the x axis being oriented along the wind
direction. ®(x) denotes the estimated emission (further re-
ferred to as the “apparent emission”) at cross-sections com-
puted at x (in kgs~!). AQ(x, y) is the column-integrated en-
hancement of CO; (in kg m_z), and u¢r is the effective wind
speed in the direction along the x axis (given in ms™!). It
should be noted that the equation is true when turbulent flux
along the x axis is small compared to the advective flux char-
acterized by u.fr. An excellent overview of the turbulent and
advective flux terms is available in Conley et al. (2017), who
show that, when winds are close to and below this thresh-
old, upwind-directed fluxes may cause overestimation of the
scalar source strength for near-surface point sources. Varon
et al. (2018) have argued that, for a typical turbulent day,
this condition is met when wind speeds are 2ms~! or higher
and used this value as a lower limit of the applicability of
the CSF method. We follow the approach of previously pub-
lished measurement-driven studies that included the analysed
case (Nassar et al., 2022; Fuentes Andrade et al., 2024) and
assume that the turbulent flux component can be neglected in
the downwind areas.

It can be shown that, for the WRF Eulerian grid,
AQ(x, y) can be discretized as follows:

uNq 2
AQ;j = TAXCU = XZACi./’k[”d]i.jk’ €]
3

where p is the molar mass of CO» (0.044 kg mol~!), A is the
horizontal model cell area in m?, and other symbols are as
before.
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Applying the above to Eq. (3) in its discrete form yields
the apparent emission at a given distance x; as follows:

HUeff
o O ACiInalije, ©)
J.k

P (x;) =

where Ax is the dimension of the model cell along the x axis
(in metres). By calculating the sum over a wide range of
cross-wind distances (y axis, index j), we made certain that
the full plume extent and mass are reproduced in our interpo-
lated fields. Similarly, we also ensured that the plume mass
is fully contained in the vertical direction (index k) over the
analysis area.

We calculate the effective wind speed uefr from horizon-
tal wind fields averaged over altitudes surrounding the peak
in the emission vertical profile. This approach is a hybrid of
those used in the recent studies of Kuhlmann et al. (2021)
and Nassar et al. (2022). In the first study, the mean wind
speed was calculated from the model output winds, weighted
by relative emission strength. The emission profile, how-
ever, was based on statistically averaged profiles and did not
take into account actual stack heights. In the second study,
Nassar et al. (2022) used a Gaussian plume model to simu-
late the plumes from the BPP, with the plume centreline set
at 250 m above the stack height to represent the additional
plume rise (Hefr), following Brunner et al. (2019). Subse-
quently, they used winds from reanalysis datasets extracted
at the same height over the emission point to calculate ucgy.

Here, we calculate u.f as an average of wind speed val-
ues at altitudes between Hg + 20y (200-600m). As we
aim to mimic processing as performed in studies using ac-
tual satellite imagery, we assume a constant ug throughout
the area of interest despite having access to complete mod-
elled wind fields. We also spatially average the wind speeds
over a square area of +20km around the emission point,
which mimics the effect of using a coarse-resolution reanal-
ysis wind dataset like ERAS (as in Nassar et al., 2022) that
does not represent variabilities on smaller scales.

In Sect. 3.3, when analysing the behaviour of the apparent
emissions in relation to the location of the puffs, we make use
of the normalized apparent emission anomaly A (x), defined
as

o)
Ap(x) = = 1, (6)

where @ is the average of ®(x) calculated over the selected
X range.

2.7 Effective number of observations and uncertainty of
emission

To estimate the mean uncertainty of the apparent flux, we cal-
culate the mean value of ® from individual cross-sectional
flux estimates. Due to the existence of autocorrelation in the
CO, enhancement on short spatio-temporal scales, the un-
certainty of the mean apparent emission u(®) is therefore
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also spatially correlated and follows the standard formula for
type-A uncertainty (u#,) as defined in Eq. (3) of Zigba (2010),
who, in turn, follows JCGM (2008). With correlation present,
the basic formula can be modified by a factor dependent on
the effective number of observations ness:

—1

Neff — 1

ua(®) = u(®) (N
where the index “a” denotes that the uncertainty is calculated
for an autocorrelated sample of n observations. The number
of effective observations can be calculated using the autocor-
relation function (ACF) following the formula from Zigba
(2010):
n
Neft = — ) (3)
1+2 ) =*ACF,

k=1

where « is the lag index of the discrete ACF function.

A similar approach to calculating uncertainty for corre-
lated CO, data was applied by Gerbig et al. (2003) for air-
borne vertical profile data and, more recently, by Fuentes An-
drade et al. (2024) to estimate the dispersion error component
in remote-sensing-based flux estimates.

2.8 Decomposition of variability into contributions

To further study the plume dispersion dynamics, we calcu-
late and use two additional auxiliary variables: the location
of plume centroids along the x axis and the wind speed at the
time and location of emission. Their respective definitions
and purposes are given below.

2.8.1 Plume centroids

We define a plume centroid as the first moment of the distri-
bution of the tracer’s mole fraction, thus approximating each
tracer’s centre of mass. The location of the pth tracer cen-
troid along the x axis is calculated as follows:

ZAC?jkxi
Xp = . 9)
P ZAC, k
Here, AClek denotes the CO; dry-air mole fraction en-

hancement of a single tagged tracer at coordinates x;, y;,
Zk, as before. The location of the tracer centroids along the
y axis, yp, is calculated analogously.

To investigate the relationship between the number of
plume centroids at a given distance x; and apparent emis-
sions ®(x;), related to the meandering of the plume, we use
the puff centroid density r(x;), calculated for each x; as the
sum of plume centroids falling within x values in the range

[% (xi—1+xi), % (xi + xi41 )]. Due to the low number of cen-
troids imposed by the computational constraints, we cannot
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estimate r directly at the full resolution of our interpolated
grid. Instead, we follow a two-step procedure: first we bin
centroids at a reduced resolution of 2 km, and then we use a
cubic spline interpolation to obtain the centroid density at a
full 200 m resolution. r(x;) and its spatial average 7 are then
used to calculate the normalized anomaly of the centroid den-
sity A¢, analogously to Eq. (6).

2.8.2 Wind speed at emission point and time

The second auxiliary variable is calculated to study how the
local, highly variable wind speed at the emission location and
time affects the estimates of ®.

In order to investigate the effect of turbulent winds on the
initial dilution mentioned in the Introduction and to assess
the extent of the resulting spatial patterns and their impact
on the apparent emissions estimated downwind, we calculate
wind speed at the emission location: WSepi(x;). WS is used
to avoid confusion with ugr. Because the signal in the plume
is efficiently mixed, the local wind conditions at the emission
point can only be monitored using puffs. Thus, each puff is
allocated a mean wind speed at the stack during its time of
emission (WSemip), and as the puffs are advected along the
plume, the WSepi(x;) can be calculated for any given plume
element by averaging across its constituent puffs, using their
respective mole fractions as weights.

More precisely, for each puff, WSemip is calculated as the
average of the u wind component (i.e. parallel to the x axis)
at the emission point during the 3 min emission time of each
tracer over the vertical extent surrounding the stack height:

Wsem' = ) (10

=

Here, up(zx) denotes 3 min averaged values of the parallel
wind component (in the x direction) at the stack horizontal
coordinates, extracted at altitude z for tracer p. We calculate
the average over the vertical range over which the maximum
emissions occur, i.e. between 200 and 600 m above ground,
and n, denotes the number of model levels whose centres fall
within that range.

In order to link individual puff values with the apparent
emission downwind from the emission point, we use a two-
step algorithm. First, for each spatial point in our model, we
calculate the mean value of WSep; for that point, weighted
by the column-averaged dry-air mole fractions of each puff:

WSemi (xi, ¥)) Zwseml o (11)
where
P
. AX C

w:. =
e ZPAXCP

In the second and final step, we calculate the cross-section
average WSepi(x;) (overbar omitted) by weighting by the
XCO; column-averaged mole fractions:
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WSemi (i) = Y WSemi (xi, y7) ¥ij (12)
J

with the weights v;; being calculated as

AXCyj
Vij = =y

Y AXC; j

J

In the subsequent analysis, we correlate WSepi(x;) with
®(x) in order to assess the imprint of the initial wind speed
on the apparent emissions estimated downwind of the source.
To avoid potential numerical noise caused by calculating ra-
tios for low values, we limited the analysis to those model
grid points for which the total simulated CO, enhancements
were higher than 0.01umol mol~".

3 Results

3.1 Wind speed and direction

The simulated meteorological conditions show a nocturnal
stable atmosphere evolving into a turbulent PBL over the
course of the morning (05:00-11:00 UTC). By 11:00UTC,
the turbulence in the lower atmosphere has already been es-
tablished, with a gentle westerly wind of almost 3ms~! at
the emission point. The local horizontal wind components
show increasingly strong variations against the mean effec-
tive wind from 09:00 UTC onwards (Fig. 2). By 12:00 UTC
the turbulent conditions were fully developed in the lo-
cal atmosphere, with the wind speed variations growing
from 1.5ms~! peak to peak at 10:00UTC to approxi-
mately 3.0m s~ at 12:00 UTC, with a mean horizontal area-
averaged wind of 2.856 4 0.007 ms~!. The simulated local
wind direction deviated northwards from the mean by ap-
proximately 15° between 09:00 and 10:00 UTC. Afterwards,
the oscillations of the wind direction became random, vary-
ing between 300 and 340°, with a frequency similar to the
variations in wind speed.

3.2 Simulated plume structure

In our analysis, we focused on the state of the atmosphere
at 12:00UTC (14:00 CEST), 1h and 14 min after the local
solar noon (10:44 UTC on 10 April 2020), when the PBL
was already well developed and the CO, plume emitted from
the BPP had been advected and mixed for several hours.
This is consistent with typical observation times of passive
remote sensing instruments operated on platforms in sun-
synchronous orbits as overpass times near local solar noon
provide a high signal-to-noise ratio.

Figure 3 presents a set of cross-sections of the simu-
lated CO; plume at 12:00 UTC. As shown, the model sim-
ulates a turbulent plume to a distance of 40km from the
emission source, with significant dispersion in both the
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Figure 2. Simulated horizontal wind speed and direction at the
emission point, averaged over the vertical extent of the majority of
emissions (200-600 m; see Sect. 2.6). Values at the emission point
(local) are shown in blue, and effective wind, averaged over a larger
area, is shown in red. See the Methods section for details. Dashed
lines denote the start and end of the puff tracer emissions. For these,
the model output was stored every 1 min. The black dot at the top of
the second dash denotes the moment at which the simulated scene
was collected.

horizontal (x, y) and vertical (z) directions. High mole
fractions close to the emission source, reaching around
1000 umol mol !, are quickly dispersed by advection and
turbulence, already dropping to below 60 umolmol~! 5km
downwind from the source, and these are further reduced as
dispersion spreads the mass of the tracer perpendicularly to
the main wind direction. Notably, the model predicts very ef-
ficient vertical mixing of the emitted tracer from the surface
to the top of the PBL (located at 1.6 km at 12:00 UTC). When
averaging the plume along the x axis across the whole anal-
ysis area, the tracer mass is distributed almost uniformly up
to the PBL top, distributed primarily around y = 0 across the
plume, with a skew towards positive y values (Fig. 3, lower
right).

We compared the emitted total CO, tracer with the sum of
the 60 puffs to make certain that no notable differences in the
overall plume structure are caused by the numerical effects of
the WRF advection schemes applied. These occur due to dif-
ferent gradients present in the tagged and total tracer fields.
At 12:00 UTC, which marks the end of the period of puff
emissions, the plume is fully represented at distances from
the emission point of Okm down to approximately 22 km.
Local discrepancies between the sum of tagged tracers and
the classical full tracer are caused by the advection scheme.
Point-wise differences in mole fractions of the two plume
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Figure 3. Simulated plume structure at 12:00 UTC on 10 April 2020. (a) Column-averaged CO, emitted from the BPP. Cross-sections
presented on the right are marked with dashed lines. (b) CO; enhancements simulated at cross-sections located 1, 3, 5 and 10 km downwind
from the emission source. (c¢) Cross-section of mole fractions averaged across the X—Z plane. (d) Average CO, mole fraction enhancement

in the Y—Z plane calculated across all distances (—5 to 40 km).

realizations can reach as high as 1000 umol mol~"! in the im-
mediate vicinity of the emission point, while they become
much smaller further downwind from the plume as the mix-
ing effectively reduces spatial gradients in the tracer field
(Fig. S3). To avoid any potential disturbances due to these
numeric effects and also to avoid representation errors due to
insufficient spatial resolution in the near field, we have ex-
cluded data from the first 2km downwind of the BPP from
the analysis. We have found that the model mass conserva-
tion scheme works well, with the total mass of both plume
versions agreeing within 0.035 % at distances between 2 to
22 km; thus, we treat both realizations of the plume as iden-
tical. See Sect. S4 in the Supplement for details.

3.3 Inferring point source rate using cross-sectional
estimates

Undulations are visible in the column-averaged tracer
(Fig. 4), which, in turn, leads to significant variability in
the apparent emission rate calculated across the downwind
distances (Fig. 5). The predicted & values vary between
22.5 and 70.0Mtyr~!, respectively, 59% and 182% of
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the actual emission rate of 38.4 Mtyr—!. While the oldest
puffs have been advected to over 30km downwind from
the source, the range over which they are equal to the full-
signal tracer is only identical up to approximately x = 22 km.
Beyond that distance, a steadily increasing fraction of the
crosswind-aggregated signal comes from CO; emitted before
09:00 UTC. Therefore, we focus on values at downwind dis-
tances between 2 km < x < 22 km for the subsequent quanti-
tative analysis.

Using the simulated fields, we estimated the mean emis-
sion from the source as an average of ®(x) values at individ-
ual cross-sections, yielding 45.4 Mt yr—!. We then calculated
the autocorrelation function of the apparent emission (Fig. 6)
to estimate the n.f. We assumed that the ACF overshoot for
values above 4 km is primarily due to the moderate sample
size and can be ignored. Therefore, for the neg calculation,
we set the terms beyond the first zero-crossing (at approx-
imately x =4 km) to zero, yielding neg equal to 5.56, cor-
responding to an independent measurement occurring every
3.6 km. The calculated 1o uncertainty of the mean emission
is equal to 6.4 Mt yr_1 (14.2 % of the mean); thus, the true

Atmos. Chem. Phys., 25, 13831-13848, 2025
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emission value of 38.4 Mt yr~! falls outside of the calculated
lo range by 0.6 Mtyr—!.

Using the full-tracer signal rather than the sum of tagged
tracers allowed us to also evaluate the effect of calculating
the mean emission rate from different plume subsets: a long

Atmos. Chem. Phys., 25, 13831-13848, 2025

one, with cross-sections taken between 2 and 40km, and
a short subset that was calculated between 20 and 40 km.
This allowed us to test whether increasing the distance over
which apparent emissions are estimated improves the preci-
sion of the emission estimates. Indeed, when the longer seg-
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Table 1. Estimated emission statistics.

13841

Analysed x range  n neff  dindep u(P) ur(®)  ua(®)  ura(P)
Units km Mtyr™ I Mt yr— 1 % Mtyr™ I %
2-22 km 101 5.6 3.6 454 1.4 3.0 6.4 14.2
2-40km 191 9.2 4.1 41.9 0.8 2.0 4.0 9.6
20-40km 101 44 4.6 384 0.6 1.6 33 8.7

Note that n denotes the number of observations; neft denotes the effective number of observations; dipdep denotes the distance

between independent observations; ® denotes the average apparent emission; u(®) denotes the absolute uncertainty of the
mean apparent emission without taking into account autocorrelation; ur(®) is the relative uncertainty of ®; ua(®) denotes the
absolute uncertainty of the mean apparent emission, modified to take autocorrelation into account; and ura(®), as before, is

relative.
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Figure 6. Blue: ACF of ®(x) (blue), calculated for
2 km <x <22km. Red: simplified ACF used for calculating nefs.
The vertical dashed line denotes the distance between independent
observations (dindep) corresponding with the calculated refy.

ment of the plume is analysed, the mean estimated emission
was yielded to be 41.9+4.0Mtyr~! (relative uncertainty
of 9.6 %). An even more accurate emission estimate is ob-
tained when using cross-sections from 20 to 40km plume
fragments, with & = 38.44-3.3 Mt yr—!. The results are sum-
marized in Table 1.

When analysing the spatial distribution of plume centroids
(white crosses in Fig. 4), a meandering pattern is visible,
caused by high-frequency variability in the wind fields down-
wind from the emission source. This meandering results in
an uneven distribution of the centroids along both the x and
y axes (rug marks, Fig. 4). In order to quantify the effect on
apparent emission estimates at given downstream locations,
the normalized anomaly of the puff density A has been cal-
culated as described in Sect. 2.8 and is shown in Fig. 7a.
The centroid density anomaly is positively correlated with
the corresponding apparent emission estimates (R? = 0.54,
Fig. 7b).

We have also analysed the correlation between the ap-
parent estimated emissions and WSep; (shown separately as
a function of x in Fig. 7c). ®(x) is observed to decrease
with WSen; at an average rate of 18.1 Mtyr~! per every
1ms~! of wind (Fig. 7d); however, the correlation of a linear
fitis weak (R? = 0.20).

In order to understand how the dilution of CO, at the emis-
sion point due to local wind variability affects the apparent
emissions, it is worthwhile to consider a simplified 1D theo-
retical model of the relationship between the local horizontal
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wind at the emission point and the apparent emissions. Given
constant emissions (®g) and effective wind speed (uef), the
deduced emissions downwind (which are proportional to the
downwind concentration enhancement, as per Eq. 5) should
be inversely proportional to the instantaneous (turbulent)
wind speed at the time of the emissions (WSem;), i.e.

Ueff

D x O .
Wsemi

13)

We have added the theoretical curve following Eq. (13), as-
suming that the proportionality factor equals exactly 1, as
seen with the yellow line in Fig. 7d, using uef =2.9m g1
(value at 12:00 UTC). We have also added a non-linear least-
squares regression to fit a power curve (¢ = a(WSemi)?) to
the data, yielding an exponent b equal to —1.20 £0.25. As
expected, the empirical formula fits the data better. The dif-
ference between the theoretical curve is expected as the as-
sumptions for such a simple model are not fulfilled in a real-
istic three-dimensional case.

4 Discussion

Our model setup captured the characteristics of the point
source plume structure well. The estimated cross-section
emissions show typical features of the pollutant plume in
terms of horizontal and vertical dispersion. Virtually all of
the CO; plume is contained within 10 km from the main wind
axis, and most of the mass is concentrated within 5 km, simi-
larly to the extent observed by OCO-3 and as reported earlier
(Figs. 3 and 4 here; Nassar et al., 2017; Fuentes Andrade
et al., 2024). It is likely that vertical mixing is overestimated
in the direct vicinity of the emission point, which is at least
partially caused by the use of a Gaussian emission profile
rather than having the plume rise mechanism implemented
directly in the model. This potential inaccuracy becomes
less relevant with distance as vertical mixing efficiently dis-
tributes the tracer throughout the PBL. The variability in the
apparent emissions predicted by the model is similar to that
based on remote sensing observations from the same day,
with a modelled 1og of 4.0 Mt yr_l, calculated here for dis-
tances between 2 and 40km vs. the 3.4 Mtyr~! dispersion

Atmos. Chem. Phys., 25, 13831-13848, 2025
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together with the theoretical curve and fitted hyperbolic curve.

uncertainty (of 6.4 Mtyr~! total) estimated by Fuentes An-
drade et al. (2024).

The number of independent observations appears to be
in good agreement as well, with our modelling framework
predicting an independent @ estimate every 3.6km com-
pared to one every 2.9 km, as estimated by Fuentes Andrade
et al. (2024) using a slightly different approach. Based on the
above, we conclude that the overall plume structure is real-
istic, which gives us confidence that the tagged tracers prop-
agated via the model also realistically depict the distribution
of the tracer mass, confirming the high capability of WRF-
GHG, previously reported by Brunner et al. (2023). This is
an important conclusion as this assumption is virtually im-
possible to test directly in the field.

In order to estimate the influence of the turbulence on
the precision of emission estimation, we have calculated the
mean apparent flux for two plume segments, namely for the
full available plume distance, using the full tracer (2—40 km)
and a shorter one (2-22 km), corresponding to the section of
the plume fully resolved by the tagged tracers. In both in-
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stances, we have estimated the mean emission uncertainty
following the algorithm provided in Sect. 2.7. When the cor-
relation of observations is taken into account, the uncertain-
ties of the emission estimate become significantly higher, in
our case increasing by a factor of 4 (Table 1). The extra un-
certainty stems from correlation in the ®(x;) that occurs due
to turbulent dispersion, and it reduces the number of effec-
tive observations when cross-sections of CSF are selected at
distances lower than dingep. This minimum distance is im-
posed by the physical properties of the system, and uncer-
tainty from a single scene cannot be reduced with an increas-
ing density of cross-sections. A larger number of truly inde-
pendent samples could theoretically reduce the uncertainty,
but, for a single scene, this may mean sampling at distances
where the signal-to-noise ratio becomes too low. Another risk
at large distances is that the assumptions of the CSF method,
specifically regarding the uniformity of the wind speed and
direction, may no longer be fulfilled.

The reduction in the uncertainty when the longest plume
segment is analysed is caused by an increase in the overall

https://doi.org/10.5194/acp-25-13831-2025
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number of observations. However, it is likely to also be re-
lated to the gradual dissipation of the correlated structures in
emitted CO;. Reduced variability in ®(x;) can be observed at
distances larger than 20 km (Fig. 5). To investigate this fur-
ther, we have calculated the mean apparent emission using
cross-sections from 20 to 40 km, applying the same method.
This yields a mean emission rate of 38.4 Mt yr’l , with an un-
correlated uncertainty of 0.6 Mtyr~!, less than half the size
as when cross-sections are sampled between 2-22 km. When
correlations are included, the uncertainty estimate is also
lower, yielding 3.3Mtyr—! (8.7 % relative). This is achieved
despite the increased dingep (4.6 km vs. 3.6 km for 2-22 km).
Our interpretation of this is that our method is still able to
recognize the persistent structures in the downwind plume
even though the variability of individual puff contributions
becomes smoothed out with distance.

The reduction in mean emission uncertainty between esti-
mates for the near- (2-22 km) and far-plume segments (20—
40km) suggests that it is beneficial to apply CSF further
downwind from the source, where the initial field variability
is partially reduced. However, in real-world applications, the
effective measurable signal may go below the detection limit,
especially for weaker sources. Analysing at an increased dis-
tance might, in addition, cause the assumption of the uniform
effective wind speed to become less realistic due to spatial
and temporal variability in the winds. This can be caused by
(1) synoptic changes over the analysed distance, (ii) diurnal-
cycle-driven changes in wind patterns and (iii) local chan-
nelling flows. All of these will cause the error to accumulate
with time and, thus, distance, potentially negating the posi-
tive effect of weaker spatial correlations in the observed sig-
nal.

It is not straightforward to compare the obtained uncer-
tainty estimates against the literature as methodologies of
uncertainty estimation vary widely across studies. In a re-
cent publication focused on estimating BPP emissions using
OCO-3 data using the GPI method, Nassar et al. (2022) re-
ported a range of total uncertainties between 4.1 %-19.9 %
(mean of 12.3 % over 10 analysed cases) but identified that
the largest uncertainty stemmed from either background esti-
mation (in 60 % of cases) or wind speed (40 % of cases), ne-
glecting the correlation in the observational data altogether.
In the study by Fuentes Andrade et al. (2024), a total un-
certainty of 6.38 Mtyr~! was reported for an OCO-3 scene
from 10 April 2020. The contribution of dispersion to the un-
certainty estimate was calculated explicitly and was found to
result in a 10.5 % relative uncertainty in the BPP emission
estimate, consistently with the 9.6 % obtained in our study
(Table 1).

Over the nine scenes reported by Fuentes Andrade et al.
(2024) (all collected from April to October, when convec-
tive activity is common), the relative uncertainty due to dis-
persion was found to be between 7.4 % to 22.0 % of the to-
tal emission, with an average of 14.9 %. For the same set of
scenes, Fuentes Andrade et al. (2024) have estimated an av-
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erage total relative emission uncertainty of 22 %, underlining
the importance of turbulence in the overall emission uncer-
tainty.

Based on the literature and the results of our current
study, we conclude that the presence of turbulence provides
a lower bound to the precision of source estimation that can-
not be overcome when using the CSF method, irrespective
of whether it is applied to spaceborne or airborne measure-
ments. The relative contribution of this error is expected to
be smaller under conditions with weaker turbulence; how-
ever, this causes practical difficulties as these usually occur
in situations suboptimal for satellite remote sensing retrievals
via passive instruments (e.g. nighttime, winter, cloud cover).
As the spatial correlation of the signal reduces the effective
number of measurements (n.f), it is expected that the turbu-
lence will also negatively impact the accuracy of emission
estimates from other methods as well, especially when the
estimates rely on observations collected close to the point
source, where the spatial variability is higher. Because in-
creasing the analysed distance reduces the total uncertainty
in the CSF method, we anticipate that methods that rely
on fitting large numbers of observations (like GPI or IME)
would be less affected, provided that sufficient data regard-
ing downwind observations are available. In a paper recently
published by Santaren et al. (2025), the authors analysed the
performance of multiple estimation methods, including IME,
GPI and CSF. The results showed that the CSF method gener-
ally outperformed the IME method. While the correlations of
turbulent plumes were not taken into account, the uncertainty
estimates are unlikely to be significantly biased as the orig-
inal 1km x 1km resolution of the simulations was further
reduced to mimic CO2M satellite observations (to a spatial
scale of approximately 2 km), with individual cross-sections
at distances of ~ 5km to allow for enough data points for
fitting. A detailed investigation into how the effect of tur-
bulence affects the precision of other methods could be an
interesting avenue for further study, especially when consid-
ering instruments with higher sampling resolution, but this is
outside of the scope of this study.

In the case of airborne measurements, the consequences
of the correlation of ® in CSF on estimation uncertainty can
be even larger as, generally, fewer observations over shorter
distances are available. For example, during one of the flights
during the CoMet 1.0 campaign, only 16 in situ downwind
cross-wind tracks were executed, 2 by HALO (a German re-
search aircraft) and 14 by a smaller Cessna aircraft operated
by DLR (Gatkowski et al., 2021; Brunner et al., 2023). In
general, a certain sampling density is needed to be able to es-
timate the scale of correlation (i.e. the number of independent
observations), or inflated uncertainties related to turbulence
would need to be assumed.

Using tagged tracers, we were able to study closely the
mechanics of the plume dispersion. Based on the simulation
results, the imprint of turbulence on the emitted plume in a
turbulent PBL starts close to or even at the stack, where the

Atmos. Chem. Phys., 25, 13831-13848, 2025



13844

tracer is extremely localized. In general, three mechanisms
occurring near or at the emission location can create a vari-
able structure in the tracer mole fraction fields like the one
observed.

The first is the uneven vertical distribution caused by dif-
ferences in horizontal advection at different altitudes. The ex-
treme case of the effect would occur when updrafts elevate
most of the emitted puff close to the PBL top with the simul-
taneous occurrence of a strong vertical wind gradient, effec-
tively transporting the affected puff quicker than others for a
limited time and likely also altering its direction. No strong
evidence is found for this on this day in our model; however,
while some wind shear was indeed observed in the simulated
tracer distributions, this effect is dampened in our simula-
tion due to the relatively large vertical extent over which the
plume is injected into the model.

The second mechanism is related to variability in the hori-
zontal wind speed at the emission point due to the occurrence
of larger eddies. Variations in the wind speed and direction
associated with such eddies cause dilution or enrichment rel-
ative to the average, depending on whether the local wind
speed is higher or lower than the ueg. Thanks to the simula-
tion of puffs, we were able to investigate the influence of vari-
ability in WS¢, (horizontal wind speed at emission source,
parallel to the x axis) on the resulting plume. If the dilution
at the source was the only mechanism responsible for the
observed variability, the relationship between the & down-
wind and the wind speed at the emission point is given in
Eq. (13) and plotted in yellow in Fig. 7d). The actual spread
over the calculated tagged tracers is much higher, reflecting
previously discussed complexities in the realistic turbulent
flow. The mean relationship does show a decrease in appar-
ent emission with increasing local wind speed WS, with
the non-least square regression suggesting some proportion-
ality in relation to the inverse of WSepy;; albeit, it is clear that
a simple proportionality in relation to horizontal winds is in-
sufficient to explain the relationship.

The third potential source of variability is the coherent
transport of the tracer mass in directions perpendicular to the
mean advection (x axis), which can occur downwind from
the emission point in the presence of large eddies. While it is
unlikely that such coherent across-wind mass transfers play
a significant role at larger distances (where the characteristic
turbulent scale causes only random movements), we observe
such movements close to the emission point, where a signifi-
cant portion of the tracer mass can be transported in the y di-
rection by individual eddy structures. This causes a meander-
ing effect, which can, in some cases, increase the density of
the tracer at a given distance x (and thus add to variability
in @), as seen close to x = 15km (see Figs. 4 and 5).

By following the centres of mass (centroids) of each
tagged tracer, we were able to determine that the relation-
ship between the estimated emission ® and the density of
the mass centroids is approximately linear (Fig. 7a and b,
R? =0.539). A positive correlation is expected as the in-
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crease in density of centroids represents the increased density
of tracer mass per unit distance along the x axis. Departures
from the linearity in this relationship might be attributed to
(a) variability in wind (speed and direction) during the 3 min
release time of each puff, causing additional apparent dif-
fusion, or (b) potential spatial gradients in the wind field in
the area downwind of the plume (e.g. due to divergence or
convergence at larger scales), rendering the assumption of a
constant u.fr in Eq. (5) invalid.

5 Conclusions

Our study corroborates the critical role of turbulence in es-
timating emissions from plume observations. We applied a
realistic model setup to simulate a typical turbulent plume
emitted from a power plant and have shown that coherent
spatial structures in the plume are formed at and near the
emission point and persist across relatively large downwind
distances, likely over 30km (the distance over which we
studied the effect). We then applied a commonly used cross-
sectional flux technique to infer the emission rate of a point
source, mimicking the error-free retrieval of a remote sens-
ing imager of sub-kilometre-scale resolution. We have found
that, in the turbulent atmosphere, even for an idealized case
of observing a strong plume structure emitted from a known
point source with perfectly known background distribution
and wind speed, the uncertainty of the estimated emissions is
limited by the variability caused by large-scale eddies present
in the atmospheric flow. In the analysed case, this uncertainty
was estimated to be 14.2 %, in line with previously reported
contributions from dispersion uncertainty (Fuentes Andrade
et al., 2024). When applied to actual observational data, this
uncertainty can only be higher, primarily due to imperfect
knowledge of the wind fields, inaccuracies in the background
estimation, and errors in the observations. In this study, con-
clusions have been drawn for the application of the cross-
sectional flux method for an idealized remote sensing instru-
ment; however, the conclusions are valid for other methods as
the physics causing the observed signal variability will still
be present. Correlation of the observed signal that reduces the
number of effective observations is of particular importance
here.

It should be noted that the persistent spatial anomaly struc-
ture induced by turbulence is likely to be less severe (a) for
weaker turbulence regimes and (b) when the spatial scales of
the emissions become comparable to the spatial scales of the
eddies present in the atmosphere, preventing the formation of
coherent structures in the downwind signal. Thus estimations
of point sources, like the one discussed (power plant stack),
are affected to a larger degree than, for example, megacities
that spread the emissions over larger areas.

We have attempted to isolate the primary causes of the ob-
served variability in the downwind structure of the plume. By
using temporally tagged tracers, we have managed to relate
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the variability of the downwind structures in the distribution
of tracer mole fractions to the variability in the wind field
at the emission point and found indications that at least part
of the observed variability can be related to the initial dilu-
tion of the tracer into the atmospheric flow along the main
wind direction. The relationship between the parallel wind
speed at emission and the resultant emission estimate is not
straightforward, reflecting the stochastic nature of turbulent
motions within the plume.

Overall, we believe that the results of this study high-
light challenges that emission estimation using modern ob-
servational methods will face in the future. This is directly
related to turbulent motion in the atmosphere, which can-
not be removed or corrected. The instantaneous (turbulent)
winds at or near the point source (at the height correspond-
ing to the effective emission height, including plume rise for
power plants) are chaotic in nature and cannot be predicted.
While it is theoretically possible to observe them at sufficient
temporal resolution and within the necessary vertical extent
(e.g. using 3D wind lidars), the fact that they are only weakly
correlated to the downwind plume structures makes it neces-
sary for the impact of turbulence to be treated as a stochastic
effect. Due to its influence on the uncertainty of emission es-
timates, it needs to be considered both in the currently avail-
able methods and in the design of future satellite and airborne
capabilities targeted at point source emission estimation.
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