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Abstract. Understanding the vertical distribution of cloud condensation nuclei (CCN) concentrations is crucial
for reducing uncertainty associated with aerosol–cloud interactions (ACIs) and their effective radiative forcing.
Many studies take advantage of widely available remote sensing observations to develop proxies, parameter-
izations, and relationships between CCN concentration and aerosol optical properties (AOPs). Such methods
generally provide a good constraint for CCN concentration, but many uncertainties and limitations exist, gen-
erally related to high relative humidity (RH), environments with internal or external mixtures of several dif-
ferent aerosol types, and differences in parts of the aerosol size distribution relevant to both CCN and AOPs.
In this study, we use in situ observations of the aerosol size distribution and chemical composition in a re-
cent airborne field campaign to inform theoretical calculations of CCN concentration (CCNtheory) and aerosol
backscatter at 532 nm (BSCtheory) with the purpose of understanding the dominant governing factors of the
CCNtheory–BSCtheory relationship. Estimates from random forest models indicate that, for smoke, marine, and
urban aerosols, the aerosol size distribution, as parameterized by the effective radius (Reff), is the most important
predictor of the CCNtheory–BSCtheory relationship. We further investigate how Reff impacts CCNtheory :BSCtheory
and find an exponential relationship between the parameters. We find that modeling CCNtheory :BSCtheory using
this exponential Reff relationship can explain about 68 %–79 % of the variance in the CCNtheory–BSCtheory re-
lationship. These findings suggest that including information about aerosol size is critical for future studies in
constraining CCN concentration from AOPs.
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1 Introduction

Natural and anthropogenic atmospheric aerosols and their
interactions with clouds and radiation have a significant
role in climate change and uncertainties in future climate
predictions. Specifically, the highest uncertainties compared
to other climate forcings are attributed to effective radia-
tive forcing due to interactions between aerosols and clouds
(ERFaci; Forster et al., 2021). Much of the uncertainty in
aerosol–cloud interactions (ACIs) is due to limited process-
level understanding (Boucher et al., 2013) and observing
methods. For example, there is limited ability for passive
satellite instruments to retrieve cloud and aerosol proper-
ties simultaneously in the same environment. Hygroscopic
aerosol growth in high-relative-humidity (RH) environments
can also complicate observations (Rosenfeld et al., 2014).
Additionally, varying observational scales and meteorolog-
ical conditions may buffer the responses of clouds to aerosol
perturbations (Stevens and Feingold, 2009).

Untangling the impact of ACIs from such observational
complications requires information on the distribution of
those aerosols that interact with clouds by nucleating cloud
droplets, i.e., cloud condensation nuclei (CCN). More specif-
ically, knowledge of the vertical distribution of CCN concen-
tration relative to clouds is needed to properly assess and un-
derstand ACIs. The main challenge in understanding the ver-
tical distribution of CCN lies in the sparsity of in situ obser-
vations. Ground-based observations are useful in terms of the
length of available observations, but they lack vertical extent.
Alternatively, aircraft-based observations can provide obser-
vations of CCN closer to the cloud base over shorter cam-
paign periods, but these observations are expensive and less
frequently available. Therefore, many studies have developed
parameterizations, proxies, and retrieval methods to deter-
mine CCN from more commonly available remotely sensed
observations of aerosol optical properties (AOPs).

One of the most widely used proxies for CCN concen-
tration is aerosol optical depth (AOD), a column-integrated
measure of aerosol extinction (EXT). While AOD may ap-
proximate CCN concentration over large spatiotemporal ex-
tents (Stier, 2016), it often cannot fully explain CCN variance
(Andreae, 2009; Shinozuka et al., 2015; Stier, 2016; Choud-
hury and Tesche, 2022a; Choudhury and Tesche, 2022b),
lacks any information about the vertical distribution of CCN,
and is subject to effects of aerosol swelling and cloud con-
tamination (Rosenfeld et al., 2016; Patel et al., 2024). Sev-
eral studies have related CCN to a combination of other
AOPs from lidar and satellite such as aerosol extinction,
scattering and backscattering coefficients, backscatter frac-
tion, which is the ratio of backscattering to total scattering,
single-scattering albedo (SSA), scattering Ångström expo-
nent, and aerosol index (AI), with the latter being the prod-
uct of Ångström exponent and extinction (Ghan and Collins,
2004; Ghan et al., 2006; Kapustin et al., 2006; Shinozuka et
al., 2009; Jefferson, 2010; Liu and Li, 2014; Shinozuka et

al., 2015; Mamouri and Ansmann, 2016; Stier, 2016; Tskeri
et al., 2017; Lv et al., 2018; Haarig et al., 2019; Shen et
al., 2019; Choudhury and Tesche, 2022a; Choudhury and
Tesche, 2022b; Lenhardt et al., 2023; Patel et al., 2024; Re-
demann and Gao, 2024). Among such approaches, AOPs can
provide constraints for CCN, but several underlying uncer-
tainties and limitations exist.

One fundamental issue in relating CCN concentration to
AOPs is that particles that act as CCN are generally smaller
than particles that have a more significant impact on AOPs
when measured at visible wavelengths. Most CCN fall in the
Aitken and accumulation modes of the aerosol size distribu-
tion, and studies have shown that changes in the aerosol size
distribution are the primary drivers of changes in the CCN
spectrum (Dusek et al., 2006; Miao et al., 2015; Perkins et
al., 2022). In terms of AOPs, many are dominated by coarse-
mode particles (Shinozuka et al., 2015), and optical measure-
ments tend to be insensitive to small particles that activate as
CCN (Jefferson, 2010), causing further uncertainty in corre-
lating both measurements. Another common issue in relating
CCN to AOPs is hygroscopic growth of aerosols at high am-
bient RH. Hygroscopic growth increases aerosol size, thus
increasing their light scattering. However, the lack of a cor-
responding increase in CCN concentration (Shinozuka et al.,
2015) causes CCN–AOP relationships to change rapidly at
high RH (Liu and Li, 2014; Shinozuka et al., 2015; Stier,
2016; Wang et al., 2025). Since CCN are of particular in-
terest in humid environments near the cloud base, this issue
can become problematic for ACI applicability. Additionally,
aerosol chemical composition influences both CCN concen-
tration and AOPs and their relationship. Some studies have
found that CCN–AOP relationships are more uncertain for
observations of marine aerosols (Liu and Li, 2014; Shen et
al., 2019; Choudhury et al., 2025), which may be related
to their more dominant coarse mode and the tendency for
marine aerosol shapes to be non-spherical (Fitzgerald, 1991;
von Hoyningen-Huene and Posse, 1997; Bi et al., 2018). In
summary, the three most common sources of potential er-
ror when relating CCN to AOPs are related to high ambient
RH, the shape of the aerosol size distribution, and the aerosol
chemical composition.

While each of these sources of uncertainty and poten-
tially weak correlation have been noted by numerous stud-
ies, many that investigate underlying causes of error focus
on each source individually. Additionally, many studies that
take a modeling or calculation-based approach to investigat-
ing CCN and/or AOPs often use idealized, generated, or av-
erage size distributions as a starting point (Li et al., 2015;
Lowe et al., 2016; Shen et al., 2019) or vary individual ob-
served size distributions in terms of concentration but not the
functional shape (Chuang et al., 2000). While this approach
avoids the uncertainties inherent to in situ aerosol size distri-
bution observations, it also does not capture the full range of
variability seen in observed size distributions.
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In this study, we investigate the collective impact of ambi-
ent RH, aerosol size distribution, and aerosol chemical com-
position on CCN–AOP relationships using a broad range of
actual observed aerosol properties. Specifically, we follow
and expand on Lenhardt et al. (2023), hereafter L23, by ap-
plying the same methodology to multiple aerosol types un-
der a variety of ambient RH conditions observed during the
Aerosol Cloud meTeorology Interactions oVer the western
ATlantic Experiment (ACTIVATE) campaign (Sect. 2). L23
focused on optimizing a linear regression model between in
situ CCN concentration and aerosol extinction and backscat-
ter from the High Spectral Resolution Lidar 2 (HSRL-2) for
observations of smoke in mostly dry (RH≤ 50 %) conditions
during the ObseRvations of Aerosols above CLouds and their
intEractionS (ORACLES) campaign. In this study, we per-
form an L23-motivated analysis and follow it with a more
in-depth investigation of the underlying factors that govern
how CCN concentration and backscatter at 532 nm (BSC) are
related to understand which one may be the most important
predictor. To achieve this, we perform observation-informed
theoretical calculations of CCN (CCNtheory) and aerosol BSC
(BSCtheory) using in situ-observed aerosol size distributions
and chemical compositions as inputs into both the κ–Köhler
and Mie theories (Sects. 3 and 4). Throughout the study, all
observations and calculations of BSC will be at 532 nm. Req-
uisite input data for both calculations come from ACTIVATE
in situ observations, meaning that we do not assume average
values for the hygroscopicity parameter or use a singular ide-
alized, representative aerosol size distribution. This approach
allows us to capture the observation-informed variability in
aerosol size and composition to investigate how such vari-
ability impacts the theoretical relationship between CCN and
BSC.

2 Field deployment background and motivation for
the present study

The National Aeronautics and Space Administration
(NASA) ACTIVATE campaign took place between February
2020 and June 2022 across six deployments over the north-
western Atlantic Ocean and generated a unique in situ and
remote sensing data set relevant for investigating aerosol–
cloud–meteorology interactions. Unlike subtropical regions
frequently chosen for ACI-related campaigns, the northwest-
ern Atlantic features numerous cloud types, including warm
and mixed-phase cumulus, that are less well-understood than
stratocumulus cloud decks (Sorooshian et al., 2023). Addi-
tionally, observations over different seasons allow for the
analysis of a wide range of aerosol and meteorological con-
ditions. Data were collected using coordinated flights of the
NASA Langley Research Center HU-25 Falcon for in situ
measurements and King Air aircraft for remote sensing ob-
servations. In this study, we collocate in situ and remote sens-
ing observations from both aircraft. The study region and

the locations of these collocated data points, broken down
by aerosol type, are shown in Fig. 1.

During the ACTIVATE campaign, the HU-25 Falcon air-
craft conducted profiling flights within, above, and below
boundary layer clouds while collecting in situ observations,
and the spatially coordinated King Air flew above the Fal-
con (∼ 9 km), conducting remote sensing observations and
launching dropsondes (Sorooshian et al., 2023). Following
the methodology of L23, our first step is a direct comparison
between observed CCN concentration (CCNobs) and BSC at
532 nm (BSCobs), the instrumentation for which is described
in Sect. 3.1. Due to the different spatiotemporal resolutions
of the in situ and remote sensing data sets, we first collo-
cate both data sets to enable a one-to-one comparison. For-
tunately, ACTIVATE prioritized systematic and spatially co-
ordinated flights between both aircraft, with approximately
73 % of the cumulative data set having the two aircraft within
6 km and 5 min of one another (Schlosser et al., 2024). There-
fore, collocation between both aircraft results in many collo-
cated data points for the remaining analyses. Our collocation
process uses three independent collocation criteria to find
in situ measurements that fall within a set amount of time
(dt =±0.1 h) from when an HSRL-2 profile was measured,
within a set horizontal distance (dd =±0.01° or±∼1.1 km)
from the profile, and within set vertical bins (dh= 45 m). Af-
ter these criteria have been applied, in situ observations that
meet all three criteria are averaged to enable a one-to-one
comparison with HSRL-2 BSC. For more details on our sen-
sitivity testing method to determine appropriate values for
dt , dd , and dh and for a schematic describing the collocation
process, see L23.

We analyze the correlation between collocated CCNobs
and BSCobs separated by aerosol type (Fig. 2), indicated
by the HSRL-2 Aerosol ID product (Sect. 3.1.2). In this
study, we combine smoke with fresh smoke (SFS) and ma-
rine with polluted marine (MPM) due to similarity in their
optical properties. We also consider the urban or pollution
(URB) aerosol type. Following L23, we fit all relationships
using a bisector regression to account for both variables be-
ing measured with observational uncertainty. Additionally,
we show the coefficient of determination (R2), a measure of
the proportion of variation in CCNobs that is explained by the
variation in BSCobs; the root mean square error (RMSE), a
measure of the average difference between linear-regression-
predicted CCN and CCNobs; and the number of data points
(n). Observations are limited to a small supersaturation range
of 0.36 %–0.38 %, and marker colors correspond to ambient
RH. One of our primary findings in L23 was that the correla-
tion between CCNobs and BSCobs was strongest at low ambi-
ent RH (≤50 %). Therefore, we show separate statistics and
regression lines for all observations and the subset observed
at RH≤ 50 %.
R2 values for all aerosol types across the full RH spectrum

range from 0.0014 to 0.14, and those for RH≤ 50 % range
from 0.0023 to 0.038, suggesting that there is no aerosol
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Figure 1. Maps showing the ACTIVATE study area and locations of collocated data points for observations of (a) smoke and fresh smoke,
(b) marine and polluted marine, and (c) urban aerosols. Langley Research Center (LaRC) in Hampton, Virginia, and Bermuda, the two major
bases of operations, are also shown.

type for which variations in CCNobs are well-explained by
changes in BSCobs. For all RH values, R2 is strongest for
URB, while smoke has the highestR2 under limited-RH con-
ditions. For SFS and URB, R2 decreases when limiting the
data set to low RH, contrary to the findings of L23. In the case
of the SFS and MPM analyses, RMSE increases when limit-
ing the data set to low RH. Overall, RMSE varies from 342 to
592 cm−3, and these values are significantly higher than the
median CCNobs uncertainty of approximately 150 cm−3 for
this data set (assuming a relative uncertainty of 10 %, as re-
ported in the data). Additionally, we see the impact of hygro-
scopic growth most clearly in the MPM results, where several
observations made at RH> 80 % show increased BSCobs as-
sociated with nearly constant and low CCNobs values. This
aerosol type is primarily influenced by sea salt, one of the
most hygroscopic aerosols with a high growth factor and
kappa that can range from 0.91 to 1.33 (Petters and Kreiden-
weis, 2007). If we consider, as an example, the subset of SFS
CCNobs with BSCobs between 0.0006–0.0008 km−1 sr−1 and
RH between 80 %–90 %, both small ranges that capture the
peak of observed conditions for SFS aerosols, CCNobs ranges
from 25 to 2128 cm−3. While this range captures the max-
imum observed variability, similar magnitudes can also be
seen for MPM and URB aerosols within similar small ranges
of BSCobs and RH.

Unlike in L23, the direct relationship between CCNobs
and BSCobs in the ACTIVATE data cannot be represented
well using a linear approximation. We find that, even when
limiting the data set to observations made at low ambient
RH, the correlation is weak, and scatter around the regres-
sion line is high. Additionally, we find that within individual
aerosol types and for small ranges of BSCobs and ambient
RH, the magnitude of CCNobs can vary by nearly 2 orders
of magnitude. Another difference between this analysis and
the ORACLES results is the relatively low frequency of ob-
servations made in low-RH environments. While more than

half of the smoke plume observations in ORACLES were
made at low RH, only about 2 %–10 % of the observations in
Fig. 2 were observed at low RH since the HU-25 Falcon pri-
marily sampled in the marine boundary layer (MBL) during
ACTIVATE. This observed non-linearity between CCNobs
and BSCobs in the ACTIVATE data (Fig. 2) serves as mo-
tivation for the rest of this study – unlike L23, we do not
try to optimize a linear relationship between CCNobs and
BSCobs. Rather, we perform calculations of CCNtheory and
BSCtheory based on actual observations of aerosol size distri-
bution and chemical composition to understand this observed
non-linearity and to determine which factors dominate in
governing the CCNtheory–BSCtheory relationship. The goal of
this theoretical investigation is to use observations from AC-
TIVATE as a basis to determine what additional information
is most important in constraining CCN concentration from
remotely sensed AOPs such as lidar aerosol backscatter.

3 Data and theoretical calculation methods

The four primary ACTIVATE data sets used in this study
are described in Sect. 3.1 and summarized in Table 1.
Our methodologies for the calculation of CCNtheory and
BSCtheory are outlined in Sect. 3.2 and 3.3, respectively.
Lastly, we describe pre-analysis data-filtering steps in
Sect. 3.4.

3.1 Instrumentation

3.1.1 Droplet Measurement Technologies (DMT) CCN
counter

The Droplet Measurement Technologies (DMT) CCN
counter measures in situ CCN concentration at multiple lev-
els of water vapor supersaturation (S) and can be run in
constant S or scanning S modes (Moore and Nenes, 2009),
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Figure 2. Bisector regression of CCNobs vs. BSCobs at 532 nm for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban
aerosols. This combined data set covers all years of ACTIVATE and represents 76 flight days. Supersaturation for these observations ranges
between 0.36 %–0.38 %. The number of collocated data points (n) is given, as well as the R2 value and root mean square error (RMSE).
Statistics are given for the full data set (black-outlined box), as well as the subset of data observed at RH≤ 50 % (blue-outlined box). The
solid black line of best fit applies to the full data set, and the dashed blue line of best fit applies to the low-RH subset of data.

with most observations from ACTIVATE being made at ap-
proximately S = 0.37 %. This instrument is designed as a
continuous-flow streamwise thermal-gradient chamber (CF-
STGC; Roberts and Nenes, 2005), where a quasi-uniform
supersaturation is generated in the center of a cylindrical
flow chamber as heat and water vapor are continuously trans-
ported from wetted walls under a temperature gradient. Su-
persaturation levels vary based on the instrument pressure,
flow rate, and imposed column temperature gradient. The
continuous-flow feature enables quick (1 Hz frequency) sam-
pling (Roberts and Nenes, 2005), which is important for
airborne observations in quickly evolving environments. At
the end of the growth chamber, aerosols that activated into
droplets with a radius greater than 0.5 µm are counted as
CCN. The uncertainty reported for CCN concentration is
±10 %, with a supersaturation uncertainty of±0.04 % (Rose
et al., 2008).

3.1.2 High Spectral Resolution Lidar 2 (HSRL-2)

The NASA Langley Research Center HSRL-2 measures
aerosol backscatter and depolarization at 355, 532, and
1064 nm and aerosol extinction via the HSRL technique at
355 and 532 nm (Shipley et al., 1983; Hair et al., 2008; Bur-
ton et al., 2018). Using the spectral distribution of the re-
turn signal, the HSRL measurement technique enables sep-
aration of aerosol and molecular backscatter signals, which,
in turn, allows for independent, accurate retrieval of aerosol
backscatter and extinction profiles without reliance on exter-
nal assumptions such as the value of the lidar ratio, as is com-
mon for basic elastic backscatter lidars (Hair et al., 2008). In
this study, we focus on particulate backscatter at 532 nm. The

532 nm wavelength is more frequently available in the data
set, and results from L23 suggested that, when directly relat-
ing CCN concentration with HSRL-2 backscatter and extinc-
tion at 355 and 532 nm, there was no substantial difference
in performance between either product or wavelength. Ad-
ditionally, BSC at 532 nm is broadly applicable to existing
ground-based and spaceborne lidars and may also be more
applicable to observations from a Raman lidar potentially in-
cluded in the future NASA Atmosphere Observing System
(AOS) mission. Uncertainty in the HSRL-2 observables de-
pends on factors such as contrast ratio and aerosol loading,
but uncertainties within 5 % can be achieved under certain
conditions (Burton et al., 2018).

Additionally, since we are interested in the impact of dif-
ferent aerosol types on the CCN–BSC relationship, we also
use the HSRL-2 Aerosol ID variable from the observed data
set. This Aerosol ID is a qualitative indication of aerosol
type from a classification scheme based on HSRL-2 measure-
ments of aerosol intensive parameters including lidar ratio at
532 nm, 1064-to-532 nm backscatter color ratio, depolariza-
tion at 532 nm, and depolarization spectral ratio (Burton et
al., 2012). The method categorizes eight particle types, which
include ice, dusty mix, marine, urban or pollution, smoke,
fresh smoke, polluted marine, and dust. As in Sect. 2, we
combine smoke with fresh smoke (SFS) and marine with pol-
luted marine (MPM) due to similarity in their optical proper-
ties. We also consider the urban or pollution (URB) aerosol
type. These three aerosol types are the most frequently avail-
able in the ACTIVATE data. We do not consider observations
categorized as ice, dusty mix, or dust in this study. Optically
thin ice is infrequently detected by the HSRL-2 in ACTI-
VATE and does not designate an aerosol type relevant for
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CCN activation. Aerosols characterized as dust or dusty mix
are also infrequently observed, making up only about 9 %
of the data points with a valid Aerosol ID, which does not
permit a statistically relevant consideration of dust-related
aerosol types. Implications regarding the applicability of this
analysis for dust contributions to aerosol mixtures will be
discussed in Sect. 5.3.

3.1.3 Scanning Mobility Particle Sizer (SMPS) and
Laser Aerosol Spectrometer (LAS)

In situ aerosol size distributions come from a combina-
tion of the Scanning Mobility Particle Sizer (SMPS) and
Laser Aerosol Spectrometer (LAS), both part of the Langley
Aerosol Research Group Experiment (LARGE) instrument
suite. The uncertainty reported for data from the SMPS and
LAS in ACTIVATE is 20 % (Sorooshian et al., 2023).

The SMPS uses a soft X-ray aerosol charger (TSI model
no. 3088) to impart an aerosol sample with a known charge
distribution and classifies the electric mobility of charged
particles with a nano-column differential mobility analyzer
(DMA; TSI model no. 3085). The particle concentration of
aerosols between 0.003–0.089 µm midpoint diameter is then
measured using an ultrafine condensation particle counter
(CPC; TSI model no. 3776; Moore et al., 2017). The resultant
size-resolved particle number size distribution is reported to
be dN/dlogDp at standard temperature and pressure (STP;
0 and 1013.25 mb) with 45 s time resolution. Size-dependent
corrections have been applied based on laboratory calibration
that result in excellent closure with total number concentra-
tions measured by an independent CPC (Sorooshian et al.,
2023).

The LAS measures the particle number size distribution
(dN/dlogDp) of aerosols with midpoint diameters between
0.1–3.5 µm using an optical method where light intensity
scattered from a laser is used to measure particle size (TSI
model no. 3340; Moore et al., 2021). Unlike less sophisti-
cated optical instruments, a wide-angle scattering technique
allows for a monotonic response to the intensity of light scat-
tering to resolve Mie scatter sizing issues. Additionally, an
intracavity helium-neon laser design allows for higher light
scattering sensitivity at lower laser power. The LAS is cali-
brated with monodisperse ammonium sulfate particles owing
to a refractive index (n= 1.52) close to that of many ambi-
ent aerosols (Shingler et al., 2016). Concentrations are re-
ported at STP and with 1 Hz time response. The combination
of SMPS and LAS measurements provides a continuous size
distribution.

3.1.4 Aerodyne high-resolution time-of-flight aerosol
mass spectrometer (AMS)

The Aerodyne high-resolution time-of-flight (HR-ToF)
aerosol mass spectrometer (AMS) measures submicron, non-
refractory composition, including mass concentrations of

sulfate, nitrate, ammonium chloride, and organic aerosols,
as well as several mass spectral markers (DeCarlo et al.,
2008; Sorooshian et al., 2023). The AMS uses an aerody-
namic lens to focus particles into a narrow beam within a
vacuum chamber, and particles are then impacted onto a
600 °C vaporizer. This results in flash vaporization and ion-
ization of non-refractory aerosol components. Ion extraction
then allows for the generation of a complete mass spectrum
(Jimenez et al., 2003; Drewnick et al., 2005). Refractory
components including black carbon, sea salts, and crustal
species are not measured efficiently by the AMS (Jimenez et
al., 2003; Cai et al., 2018). Additionally, AMS measurements
apply to aerosols with an aerodynamic diameter of approx-
imately 60–600 nm, where transmission efficiencies can be
nearly 100 % (Jimenez et al., 2003). Although this size range
does not cover the full aerosol size distribution, it covers sizes
that make up the majority of CCN, and so uncertainty due to
particle sizes covered by the AMS is small. The AMS was
operated at 1 Hz in FastMS mode (i.e., 25 s open, 5 s closed)
and averaged to 30 s resolution for the data archive. The un-
certainty of AMS observations measured during ACTIVATE
is reported to be up to 50 % based on processing assumptions
related to collection efficiency.

3.2 κ–Köhler theory

The activation of aerosols into cloud droplets is described by
Köhler theory, in which the water vapor supersaturation in
stable equilibrium with a condensed water droplet is a func-
tion of the particle radius. For a constant water vapor super-
saturation, particles larger than a critical diameter will expe-
rience uncontrolled water condensation and growth to form a
cloud droplet (Köhler, 1936). For calculations of CCNtheory
in this study, we use κ–Köhler theory, which uses a single,
bulk hygroscopicity parameter kappa (κ) to represent the rel-
ative hygroscopicities of individual aerosol components (Pet-
ters and Kreidenweis, 2007). Using this methodology, the
critical diameter (Dcrit) of activation can be calculated with
Eq. (1):

Dcrit =

(
4A3

27κln2Sc

)1/3

, (1)

where Sc is the specified instrument supersaturation during
ACTIVATE, and A is defined as

A=
4σs/aMw

RT ρw
, (2)

where σs/a is droplet surface tension, which is assumed to
be a constant equivalent to that of pure water (0.0728 N m−1;
Petters and Kreidenweis, 2007); Mw is the molecular weight
of water (18.01528 g mol−1); R is the universal gas constant
(8.3145 J mol−1 K−1); T is temperature (298.15 K); and ρw
is the density of water (1000 kg m−3).
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Table 1. List of instruments and data sets used in this study, including their respective resolution, measurement type, and aircraft location.

Instrument Variables Resolution
(temporal/vertical)

Measurement type Aircraft

DMT cloud condensation
nuclei (CCN) counter

CCN concentration at given
supersaturation (S)

1 s In situ HU-25 Falcon

High Spectral Resolution
Lidar 2 (HSRL-2)

Aerosol backscatter coeffi-
cient (532 nm), Aerosol ID

10 s/15 m Remote sensing King Air

Scanning Mobility Particle
Sizer (SMPS)

Aerosol size distribution
(diameter = 0.003–0.1 µm)

45 s In situ HU-25 Falcon

Laser Aerosol Spectrome-
ter (LAS)

Aerosol size distribution
(diameter = 0.1–3.5 µm)

1 s In situ HU-25 Falcon

Aerodyne high-resolution
time-of-flight
aerosol mass spectrometer
(HR-ToF-AMS)

Non-refractory chemically
resolved mass concentra-
tion

30 s In situ HU-25 Falcon

Diode Laser Hygrometer
(DLH)

Ambient relative humidity
(RH)

1 s In situ HU-25 Falcon

3.2.1 Kappa calculations from AMS data

As shown in Eq. (1), Dcrit depends on a bulk kappa value
representing aerosol chemical composition, and we calcu-
late it using AMS observations and the Zdanovskii–Stokes–
Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes and
Robinson, 1966) given in Eq. (3):

κ =
∑

i
εiκi, (3)

where εi represents the volume fraction of each chemical
component, and κi is the hygroscopicity value of each com-
ponent. This set of calculations is done using the collocation-
averaged AMS data associated with each collocated data
point (Appendix A), and a histogram of calculated kappa val-
ues for all three aerosol types is given in Fig. 3. Additionally,
we show a literature-averaged kappa range for each aerosol
type, along with the standard deviation for each end of the
range. These values are calculated using six literature values
per aerosol type, including SFS (Carrico et al., 2008; Pet-
ters et al., 2009; Cerully et al., 2011; Engelhart et al., 2012;
Bougiatioti et al., 2016; Gomez et al., 2018; Twohy et al.,
2021), MPM (Andreae and Rosenfeld, 2008; Pringle et al.,
2010; Gaston et al., 2018; Quinn et al., 2019; Miyazaki et
al., 2020; Gong et al., 2023), and URB (Andreae and Rosen-
feld, 2008; Pringle et al., 2010; Hung et al., 2014; Kim et
al., 2017; Cai et al., 2018; Zamora et al., 2019). Note that
Cerully et al. (2011) and Engelhart et al. (2012) provide the
same range for SFS, but this value is only counted once in the
average. Overall, calculations tend to agree well with those
seen in the literature. Typical kappa values for marine and
polluted marine aerosols can vary widely depending on the
amount of pollution in a region or if observations are made
in cleaner, more remote areas.

Figure 3. Distribution of kappa values calculated using the method-
ology in Sect. 2.3.1 for each aerosol type. Literature-averaged
ranges, with the standard deviation, for each aerosol type are given
in parentheses.

3.2.2 Critical diameter (Dcrit) and CCNtheory calculation

After calculating kappa following the methodology in
Sect. 3.2.1, we use Eq. (1) to calculateDcrit, and we calculate
CCNtheory using Eq. (4):

CCNtheory(S)=
∫ Dmax

Dcrit

dN
dlogDp

dlogDp, (4)

whereDmax signifies the diameter of the largest bin from the
combined SMPS and LAS number size distribution (Schmale
et al., 2018; Patel et al., 2024), dN/dlogDp represents the
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number concentration of aerosols in each bin of the com-
bined size distribution, and S is the CCN counter super-
saturation. For direct comparisons between CCNtheory and
CCNobs, we use the exact CCN counter supersaturation
value reported for each collocated data point within a small
range of 0.36 %–0.38 % (Sect. 4.1). For analyses using only
CCNtheory without a comparison to CCNobs, we use a con-
stant 0.37 % supersaturation (Sect. 4.2–4.3).

3.3 Mie calculations

The properties of light scattered by atmospheric aerosols are
described by Mie theory, where aerosols are assumed to be
homogeneous and spherical and to have a diameter approx-
imately equal to the wavelength of incident radiation (Mie,
1908). For our calculations of BSCtheory, we calculate size-
resolved particle backscattering efficiencies (Qbsc) using the
Mie scattering program by Bohren and Huffman (1998), im-
plemented in the libRadtran library of radiative transfer rou-
tines and programs (Emde et al., 2016). The three inputs
needed to calculate Qbsc are particle size, complex refrac-
tive index, and wavelength. To correspond to BSCobs, we
only use a wavelength of 532 nm. We use typical refractive
index values as retrieved by the Aerosol Robotic Network
(AERONET) for different aerosol types to inform our refrac-
tive index selection (Dubovik et al., 2002), with exact values
given in Table B1.

For particle size input, we use the SMPS and LAS size dis-
tribution bin diameters. However, here we must account for
a significant difference in terms of how in situ and HSRL-2
observations are made. With these BSCtheory calculations, we
want to model ambient BSCobs from the HSRL-2 to under-
stand the relationship with in situ CCNobs. However, since in
situ instruments dry ambient air before collecting measure-
ments, we need to account for the change in particle diame-
ters due to water uptake at ambient RH conditions since par-
ticle size has a significant impact on the magnitude of light
scattered. Calculations made to account for changes in parti-
cle diameter and refractive index due to hygroscopic growth
are outlined in Appendix B. After these adjustments, humid-
ified bin diameters (Dwet) and refractive index components
(mwet and nwet) are the final inputs into the Mie scattering
calculations run in libRadtran. The size-resolved Qbsc val-
ues returned from these calculations are used to calculate
BSCtheory at 532 nm from the full aerosol size distribution,
as shown in Eq. (5):

BSCtheory =

∫ rn

r1

πr2
wetQbscn (rwet)drwet, (5)

where rwet is each humidified bin radius, n(rwet)drwet repre-
sents the aerosol number concentration in each bin, and rn
represents the largest bin in the SMPS and LAS combined
and humidified size distribution. This set of calculations is
done using the collocation-averaged size distribution data as-
sociated with each collocated data point.

3.4 Data filtering

All input data for κ–Köhler and Mie calculations come from
the collocated data set used for the observational analysis
in Sect. 2. Each collocated data point contains an average
value of CCNobs and BSCobs, as well as an average com-
bined SMPS and LAS size distribution and set of AMS ob-
servations. Therefore, to enable a direct comparison between
CCNtheory and CCNobs, as well as between BSCtheory and
BSCobs, this collocated data set is used throughout the en-
tirety of the study. In this section, we describe several filter-
ing steps that are performed to minimize potential errors in
the subsequent analyses. Some are motivated by the observa-
tional methodology taken in L23, and others are specific to
the CCNtheory and BSCtheory calculations. All steps are sum-
marized in Fig. 4.

We begin with the filtering criteria applied to data in the
CCNobs–BSCobs relationships shown in Sect. 2. Since these
data points are the basis for the rest of the analysis, each
of these filtering steps also applies to data used for calcu-
lating CCNtheory and BSCtheory. As we are analyzing these
relationships by aerosol type, we start by removing observa-
tions from the collocated data set where an HSRL-2 Aerosol
ID is not determined, which typically occurs if the full set
of HSRL-2 observables is not available. This step removed
51 % of the collocated data set. Additionally, we remove
any points where the collocation method averages across
varying Aerosol IDs to avoid introducing additional uncer-
tainty into the aerosol type. Similarly, we remove points
where the standard deviation is greater than the mean of the
CCN concentration that falls within our collocation criteria
to avoid potential errors due to large variability or gradients
in aerosol concentration. Lastly, we remove any collocated
points where fewer than two samples comprise the average.
This is done to reduce potential noise in the data set, espe-
cially for the in situ size distribution data that have a critical
role in both sets of theoretical calculations. In general, col-
located data points represent an average of 10 observations
from the 1 s merged in situ data files, some of which have
a lower original resolution (Table 1). Each of these filtering
steps is applied to all of the data in this study, and the impact
of each step on the total number of collocated data points is
shown in Fig. 4.

In L23, we found that the correlation between CCN con-
centration and HSRL-2 observations was strongest for super-
saturations greater than 0.25 %. Additionally, since CCN de-
pends strongly on supersaturation, we limit observations to
a small range of supersaturation values to reduce additional
variability. Therefore, for analyses that are strictly observa-
tional (Sect. 2) or that compare theoretical calculations with
observations (Sect. 4.1), we limit our collocated data set to a
supersaturation range of 0.36 %–0.38 %. This range was cho-
sen due to the fact that a supersaturation of 0.37 % is the most
frequent value used during ACTIVATE. This step is only ap-
plied to analyses that include observations because, for cal-
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culations of CCNtheory, we apply a constant supersaturation
of 0.37 % to any observed size distribution. That is, we do not
unnecessarily limit the data used for theoretical calculations
by filtering according to CCN counter supersaturation.

The last data-filtering step serves as a check of CCNtheory
calculations. In addition to using Eq. (1) to calculateDcrit, as
described in Sect. 3.2, we also use an estimation method to
validate κ–Köhler calculated values. This method integrates
the combined SMPS and LAS number size distribution from
the largest to smallest bin diameters until the difference be-
tween the summed aerosol concentration and observed CCN
concentration reaches a minimum. We refer to the bin di-
ameter where this difference reaches a minimum as the es-
timated Dcrit (Dcrit,est). We compare these values to the κ–
Köhler calculated values (Dcrit,calc) and require that Dcrit,calc
values fall within ±20 % of the Dcrit,est values. This step en-
sures that our calculated CCNtheory values will closely match
CCNobs values and removes size distributions that may have
higher noise or several bins with missing concentrations. The
threshold of±20 % is chosen to correspond to the SMPS and
LAS reported uncertainty that impacts the accuracy of the
Dcrit,est value. This step applies to all analyses involving cal-
culations of CCNtheory and BSCtheory (Sect. 4).

As seen in Fig. 4, some of these steps remove a signifi-
cant amount of data from the analysis. While the amount of
data removed was taken into consideration at each step, all
steps were taken as a precaution against introducing anoma-
lous variation and uncertainty into the analysis. The appli-
cation of slightly different combinations of filtering steps to
the analyses in Sect. 4 was done intentionally to allow for
as much data as possible to be included in each step. There-
fore, while the Dcrit agreement filtering step is applied ev-
erywhere where we calculate CCNtheory and BSCtheory, the
CCN counter supersaturation filter is only applied where it
needs to be used to control the supersaturation dependence
of CCNobs. Since the goal of this study is to understand
the relationship between CCNobs–BSCobs through the lens of
the theoretical calculations, removal of extraneous noise and
variability from the input data allows for analyses to more ac-
curately determine the true underlying factors governing the
CCNtheory–BSCtheory relationship. We discuss a comparison
between observed and theoretically calculated CCN and BSC
in Sect. 4.1, but a detailed discussion of closure for these vari-
ables is beyond the scope of this study.

4 Results

4.1 CCN and BSC observations vs. calculations

We first calculate CCNtheory and BSCtheory under observed
ambient conditions and compare calculations to observa-
tions. CCNtheory is calculated for all data using the corre-
sponding CCN counter supersaturation, and BSCtheory is cal-
culated from humidified aerosol size distributions using the
corresponding observed RH value. Since this step involves

theoretical calculations and comparison with observations,
we limit the data set to observations made at CCN counter
supersaturation between 0.36 %–0.38 % and apply the Dcrit
agreement filtering step (Fig. 4).

The comparison between CCNobs and CCNtheory is given
in Fig. 5. We show results requiring a Dcrit agreement out-
lined in gray, while calculations without this requirement are
plotted in the background. Results for calculations not re-
quiring Dcrit agreement are shown to demonstrate how this
requirement impacts the data set. Results of a linear regres-
sion between CCNobs and CCNtheory for data requiring the
Dcrit agreement show that, for all aerosol types, R2 ranges
from 0.91 to 0.94, and RMSE ranges from 87 to 133 cm−3.
These RMSE values are very close to the approximate me-
dian value of CCN uncertainty of 150 cm−3. Data are gener-
ally clustered very close to the 1 : 1 line for all aerosol types,
and the lines of best fit also fall close to the 1 : 1 line. Over-
all, this analysis gives us confidence that our methodology
accurately calculates CCNtheory as a necessary precursor for
the correlation analysis with BSCtheory.

The same statistics are shown for our comparison between
BSCobs and BSCtheory at 532 nm in Fig. 6, where marker col-
ors correspond to RH to show the impact of hygroscopic
growth on calculated BSCtheory. Here, our R2 values range
from 0.45 to 0.75, and RMSE ranges from 2.7× 10−4 to
1.6× 10−3 km−1 sr−1. We find that the performance of our
calculations does not appear to systematically decline for
observations made at high RH, providing confidence in our
humidification calculation methods. The R2 and RMSE val-
ues indicate a weaker correlation between observations and
calculations than for CCN, but data remain primarily clus-
tered around the 1 : 1 line. While the use of the Dcrit filter-
ing step for this analysis and subsequent removal of size dis-
tributions with higher noise or missing concentrations does
benefit BSCtheory calculations, this does not force a degree of
agreement between BSCobs and BSCtheory in the same way as
it does for agreement between CCNobs and CCNtheory. Addi-
tionally, CCNobs and the inputs for the CCNtheory calculation
all come from in situ observations, while the BSCtheory cal-
culation uses in situ observations as input but is compared
to BSCobs from remote sensing instrumentation on a sepa-
rate platform. Varying resolutions and collocation averaging
between in situ and HSRL-2 observations may cause discrep-
ancies between BSCobs and BSCtheory. Other discrepancies in
the BSCtheory calculation may come from approximations in-
cluding the Mie theory assumption of spherical particles and
our use of literature-averaged refractive index values for dif-
ferent aerosol types. As with the CCN comparison (Fig. 5),
this analysis also gives us confidence that our methodology
results in BSCtheory values of a similar magnitude as BSCobs.

4.2 Estimating predictor importance

In investigating the CCNobs–BSCobs relationship for differ-
ent aerosol types, we determined that a linear regression is
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Figure 4. Flowchart describing the data-filtering steps applied to data for all analyses and filtering steps applied to data for specific analyses.
The number of points remaining after each step (n) is given in parentheses. Therefore, approximately 25 % of the original number of
collocated samples remain for the observational analysis in Sect. 2, 5 % remain for analyses comparing observations and theoretical values
in Sect. 4.1, and 7 % remain for purely theoretical analyses in Sect. 4.2 and 4.3.

Figure 5. CCNobs vs. CCNtheory for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban aerosols. The 1 : 1 lines
are dashed, and the lines of best fit for the linear regressions between both variables are solid. Markers outlined in gray denote results for
calculations requiring a certain level ofDcrit agreement. Results for calculations not requiring aDcrit agreement are shown in the background
with lighter transparency to demonstrate how this requirement impacts the data set.

not an appropriate model for the ACTIVATE data (Fig. 2).
Additionally, we have shown reasonable agreement between
CCNobs and CCNtheory and between BSCobs and BSCtheory
at ambient conditions. Next, we use the theoretical calcula-
tions to investigate and interpret the causes of scatter and
non-linearity in the CCNobs–BSCobs relationship. Analyses
in this and the next section use CCNtheory calculated at a con-
stant supersaturation of 0.37 %.

Recall that the three main factors influencing how CCN
concentration relates to AOPs are ambient RH, the shape of
the aerosol size distribution, and aerosol chemical composi-

tion. Due to the highly interconnected nature of these factors
and their relationships with CCN and BSC, we use random
forest (RF) models to determine the relative importance of
each factor in controlling the CCNtheory–BSCtheory relation-
ship. A random forest is an ensemble of decision trees where
each tree is created using the best split from a randomly se-
lected subset of predictors. The final prediction comes from a
majority vote among individual trees (Breiman, 2001; Hu et
al., 2017). This method was chosen due to its high accuracy,
generalization capability, ability to handle non-linear rela-
tionships between features, and ability to provide estimates
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Figure 6. BSCobs vs. BSCtheory at 532 nm for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban aerosols. The 1 : 1
lines are dashed, and the lines of best fit for the linear regressions between both variables are solid. Marker colors correspond to ambient RH
that was observed by each BSCobs and applied to calculate each corresponding BSCtheory.

of predictor importance. Another benefit of this method is the
ability to consider all input variables collectively as opposed
to investigating or perturbing individual input variables one
at a time. For each model, we use 200 ensemble learning cy-
cles and specify that all predictor variables are used at each
node to ensure that each tree uses all predictor variables. Ad-
ditionally, 10-fold cross-validation is used during training to
prevent overfitting by any single model. The final predictor
importance is determined by averaging the importance es-
timates across the 10 models, and the standard deviation is
used to reflect the variations in the final calculated predic-
tor importance estimates. Additionally, we do not separate
our data into training and testing subsets because our pur-
pose is not to train and refine a model that predicts CCNtheory
or the CCNtheory–BSCtheory relationship. Redemann and Gao
(2024) provide a well-tested machine learning method with
which CCN concentration is predicted from several HSRL-2
and reanalysis input variables. Rather, here, we use RF pre-
dictor importance as a tool to help investigate the impact that
ambient RH, aerosol size distribution, and aerosol chemical
composition each have on the CCNtheory–BSCtheory relation-
ship.

We use a combination of observed effective radius (Reff),
geometric mean radius (GMR), RH, and kappa as predictors
of the CCNtheory :BSCtheory ratio in our RF models. Effec-
tive radius is the ratio of the third and second moments of the
aerosol size distribution, sometimes called the area-weighted
mean radius. This makes it useful for optical measurements
as the energy removed from light by an aerosol is propor-
tional to its area. Effective radius is calculated using Eq. (6):

Reff =

∫
∞

0 πr3
wetn (rwet)drwet∫

∞

0 πr2
wetn (rwet)drwet

, (6)

where rwet is the humidified particle radius, and n(rwet)drwet
is the aerosol concentration within each bin of the humidified

size distribution. The geometric mean radius is the mean of
the humidified aerosol size distribution in log space, as given
by Eq. (7):

GMR=

(∫
∞

0 lnrwet n (rwet)drwet

N0

)
, (7)

where N0 is the total number of particles in the size distri-
bution. It is important to note that the predictors used in this
analysis are not fully independent. For example, RH impacts
Reff depending on the corresponding kappa value, mean-
ing that the influence of RH on the CCNtheory–BSCtheory re-
lationship may be captured through Reff. However, we in-
clude both parameters separately to investigate if one of these
variables is more important than the other in constraining
the CCNtheory–BSCtheory relationship. Additionally, bothReff
and GMR capture the shape of the size distribution and can
be related through functional relationships. We use Reff and
GMR separately because of their different information con-
tent. The weighting of Reff toward larger particles increases
its relevance for AOPs, while GMR tends to fall within the
fine mode of the size distribution closer to Dcrit and aerosol
sizes relevant for CCN activation. Therefore, based on this
combination of input variables, we train the RF models to
predict the ratio of CCNtheory :BSCtheory.

First, we train a model for all aerosol types combined.
Here, the Aerosol ID from our collocated in situ and remote
sensing data set is added as an additional predictor to test
the dependence of CCNtheory :BSCtheory on lidar-indicated
aerosol type. Average relative predictor importance estimates
across all 10 folds are shown in Fig. 7a, with a standard devi-
ation designated for each average. Overall,Reff is determined
to be the most important predictor of CCNtheory :BSCtheory,
followed by RH. Aerosol ID is the third most important pre-
dictor, and GMR and kappa are approximately equal as the
fourth and fifth most important predictors, respectively.
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Next, we train three individual models that predict
CCNtheory :BSCtheory for each individual aerosol type as sep-
arated by Aerosol ID and again average the relative predictor
importance estimates across all 10 folds (Fig. 7b). We find
that, after separating aerosol types, Reff remains the most
important predictor of CCNtheory :BSCtheory for all aerosol
types. Kappa ranking least important for each aerosol type
indicates that separating aerosol types using the Aerosol ID
adequately constrains the impact of aerosol chemical compo-
sition on the CCNtheory–BSCtheory relationship. These sepa-
rate models also indicate that RH is the second most impor-
tant predictor for all aerosol types. The relatively low impor-
tance of Aerosol ID and kappa in these models is expected
considering the fact that BSCtheory is primarily determined
by aerosol size and that CCN activation is also more sensi-
tive to size than to aerosol chemical composition (Dusek et
al., 2006).

4.3 Modeling CCNtheory :BSCtheory using effective
radius

Based on the RF predictor importance estimate indication
that Reff is the most important predictor for the CCNtheory–
BSCtheory relationship compared to RH, kappa, and GMR
(Fig. 7), we now investigate the physical relationship be-
tween Reff and the CCNtheory :BSCtheory ratio. We focus on
Reff to further explore and understand the RF indication of
its high importance compared to the other predictors and to
understand how much variance in CCNtheory :BSCtheory can
be explained by Reff alone.

We start by humidifying each dry aerosol size distribution
at 10 % RH increments from 10 % to 99 % and calculating
CCNtheory, BSCtheory, and Reff from each humidified size
distribution. This process allows us to model all variables
for a wide range of plausible environmental RH values that
are not constrained to observed ambient conditions and to
form a more comprehensive understanding of the underlying
physical relationship betweenReff and CCNtheory :BSCtheory.
When comparing CCNtheory :BSCtheory and Reff, we fit two-
term exponential curves for each aerosol type to represent the
relationship (Fig. 8). A two-term exponential was chosen for
each aerosol type due to a slightly higher R2, lower RMSE,
and better visual fit to the larger Reff values than a one-term
exponential fit. For each aerosol type, we provide the R2 and
RMSE (Fig. 8), and fit coefficients are provided in Table 2.

Next, we use each of these two-term exponential fits to
calculate CCN :BSC from values of Reff in our ambient col-
located data set and compare to CCNtheory :BSCtheory. Here,
we refer to CCN :BSC modeled using the two-term Reff ex-
ponential fits as (CCN :BSC)model to capture the fact that the
ratio itself is modeled using Reff and not each term individ-
ually and to distinguish it from CCNtheory :BSCtheory. This
comparison is shown in Fig. 9, where we find that, overall,
most data are clustered around the 1 : 1 line for each aerosol
type. We see that RMSE and mean relative error (MRE) are

lowest for the URB category and highest for MPM. Addition-
ally, SFS and URB have many data points at or slightly below
the 1 : 1 line, and a majority of (CCN :BSC)model ratios have
magnitudes of about 2× 106 to 4× 106 cm−3 per km−1 sr−1,
while most values for MPM are less than 2× 106 cm−3 per
km−1 sr−1. TheR2 values for all aerosol types range between
0.68–0.79.

5 Discussion

Several recent studies have used lidar-observed aerosol op-
tical properties to develop physics-based or ML (machine
learning)-based parameterizations and retrieval methods for
the CCN concentration of different aerosol types (Mamouri
and Ansmann, 2016; Lv et al., 2018; Haarig et al., 2019;
Choudhury and Tesche, 2022a; Patel et al., 2024; Redemann
and Gao, 2024). In this study, we have included in situ-
observed aerosol size and chemical composition informa-
tion to determine which factors most strongly govern the
CCNtheory–BSCtheory relationship. Therefore, this analysis
provides a broad theoretical context in which relationships
between observed CCN and aerosol optical properties can
be interpreted. In this section, we discuss the physical inter-
pretation of the relationships found, implications for future
remote sensing techniques, and a summary of the sources of
uncertainty and limitations of the study.

5.1 Physical relationships

Based on a set of predictors for the CCNtheory :BSCtheory re-
lationship, including Reff, GMR, kappa, and RH, RF predic-
tor importance estimates indicated that Reff was the most
important predictor for all three aerosol types of interest in
this study. Therefore, we investigated further the relationship
between CCNtheory :BSCtheory and Reff for a wide range of
plausible environmental RH conditions and found a two-term
exponential relationship. In further understanding this pat-
tern, it is important to recall that Reff is influenced more sig-
nificantly by coarse-mode particles than by fine-mode parti-
cles. As the coarse-mode number concentration increases, we
expect BSCtheory to increase more compared to CCNtheory,
thus decreasing the CCNtheory :BSCtheory ratio. This find-
ing is similar to that of Shen et al. (2019), where an expo-
nential relationship was found between the CCN :AOP ra-
tio and the geometric mean diameter of generated lognormal
unimodal size distributions. Additionally, here, the exponen-
tial fits show a steeper decrease in CCNtheory :BSCtheory with
Reff for MPM aerosols compared to other aerosol types (Ta-
ble 2). Since MPM aerosols are expected to have a more sig-
nificant coarse-mode contribution, it appears that the effect of
BSCtheory increasing more than CCNtheory with Reff is more
pronounced for this aerosol type. As previously mentioned,
RH also has an impact on Reff that depends on kappa. The
indication that Reff is the most important predictor suggests
that understanding the CCNtheory :BSCtheory relationship as
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Figure 7. Average random forest predictor importance estimates across 10-fold cross-validation for (a) the model run for all three aerosol
types combined and (b) individual models run for the three different aerosol types. Each model predicted the CCNtheory :BSCtheory ratio
based on the observed input variables listed on each x axis. All importance estimates are relative. Error bars designate standard deviation
across the 10-fold cross-validation.

Figure 8. CCNtheory :BSCtheory vs. Reff for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban aerosols. Marker
colors correspond to the density of surrounding points, with red shades indicating high density and blue shades indicating lower density. The
black line represents the two-term exponential curve fit for each aerosol type. The R2, RMSE, mean relative error (MRE), and number of
data points (n) for each exponential fit are also provided.

based on ACTIVATE observations is not as straightforward
as simply constraining RH, as could be done in L23. Rather,
the impact of RH on the aerosol size distribution is more im-
portant in determining how CCNtheory and BSCtheory are re-
lated.

Based on the R2 values of 0.68–0.79 in our comparison
of CCNtheory :BSCtheory and (CCN :BSC)model (Fig. 9), we
find that modeling CCNtheory :BSCtheory using two-term ex-
ponentialReff relationships can explain approximately 68 %–
79 % of the variance in the CCNtheory–BSCtheory relationship.
While we previously hypothesized in L23 that aerosol hygro-
scopic growth at high ambient RH may be the leading cause
of variability when relating CCNobs and BSCobs, here, we
find that most variability is attributable to differences in Reff.
Furthermore, this analysis also speaks to inherent differences

in how CCNtheory relates to BSCtheory for different aerosol
types. We find that, when using a large set of actually ob-
served aerosol size distributions as the input into theoretical
calculations, there is a significant difference in the range of
possible Reff values for each aerosol type (Fig. 8). For exam-
ple, many MPM observations span a wide range of Reff be-
tween approximately 0.1–0.5 µm, while SFS and URB, even
at wide range of possible ambient RH, primarily see Reff val-
ues limited to a small range between 0.1–0.2 µm. Addition-
ally, when we look at the magnitude of CCNtheory :BSCtheory
values for each aerosol type, MPM tends to have much lower
values than SFS and URB (Fig. 9). Higher Reff values, in
addition to a higher likelihood for hygroscopic growth in
humid marine environments, act to increase BSCtheory more
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Table 2. Coefficients for the two-term exponential curves fit to each aerosol type to model the CCNtheory :BSCtheory–Reff relationship. All
fit equations take the form of y = a1 exp(b1x)+a2 exp(b2x), where y corresponds to the CCNtheory :BSCtheory ratio in cm−3 per km−1 sr−1,
and x corresponds to Reff in µm. Relative uncertainties for each coefficient are given in parentheses, estimated using 95 % confidence bounds.

a1 (cm−3/km−1 sr−1) b1 (µm−1) a2 (cm−3/km−1 sr−1) b2 (µm−1)

Smoke + fresh smoke 1.417E09 (26.4 %) −75.64 (4.2 %) 7.627× 106 (1.4 %) −5.512 (1.4 %)
Marine + polluted marine 6.134E08 (1.3 %) −62.01 (0.6 %) 6.028× 106 (1.1 %) −3.846 (1.4 %)
Urban 7.032E08 (21.3 %) −65.73 (3.9 %) 6.919× 106 (2.4 %) −7.231 (1.9 %)

Figure 9. Comparison of CCNtheory :BSCtheory to (CCN :BSC)model for (a) smoke and fresh smoke, (b) marine and polluted marine, and
(c) urban aerosols. (CCN :BSC)model values come from the two-term exponential fits shown in Fig. 8 and defined in Table 2. The units for
both axes are cm−3 per km−1 sr−1. Marker colors correspond to the density of surrounding points, with red shades indicating high density
and blue shades indicating lower density. The dashed line on each panel is the 1 : 1 line. The R2, RMSE, MRE, and number of data points
(n) for each exponential fit are also provided.

than CCNtheory, thus decreasing the CCNtheory :BSCtheory ra-
tio more than for other aerosol types.

Here, we present three CCNtheory :BSCtheory–Reff expo-
nential fits as a methodology for explaining variance in
the CCNtheory–BSCtheory relationship. The exact functional
forms presented in Fig. 8 are most appropriate for ACTI-
VATE observations, and the coefficients would likely need
to be adjusted before applying to other data sets. While we
expect the general exponential pattern to hold for other data
sets, any differences in observed aerosol size distribution or
chemical composition would likely change the exact fit coef-
ficients.

5.2 Implications for remote sensing techniques

This study indicates several important considerations for fu-
ture work constraining CCN concentrations from remote
sensing observations and future spaceborne lidar data sets.
Most importantly, given our finding that particle size, as
parameterized by Reff, is the most important predictor in
determining the CCNtheory–BSCtheory relationship, two key
points are suggested. First, a simple linear approximation
with BSCobs will not constrain CCNobs well in most cases
in the ACTIVATE data set. Many previous studies have sug-

gested that the relationship between CCN concentration and
various AOPs is often non-linear, specifically for AOD. Con-
sidering this background, the results presented here suggest
that variations in aerosol size distribution may be a lead-
ing cause of non-linearity when using AOD as a proxy for
CCN concentration. Seemingly in contrast with the results
presented here, in L23, we investigated the relationship be-
tween CCN concentration and aerosol index (AI), an indi-
cator of particle size, and found little to no difference be-
tween CCN–AI and the CCN–EXT or CCN–BSC relation-
ships. Therefore, for observations of smoke at low RH over
the ORACLES region, we concluded that there was a very
small variation in aerosol size in the observations. With min-
imal differences in aerosol size and with most smoke plume
observations being made at low ambient RH, conditions per-
mitted a simple linear approximation to relate CCNobs and
BSCobs. On the contrary, the larger data set from the AC-
TIVATE campaign is characterized not only by a variety of
aerosol types but also by a wider range of aerosol size dis-
tributions and a higher fraction of observations made at high
ambient RH in the MBL, all of which contribute to increased
non-linearity between CCNobs and BSCobs.
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Related to this non-linearity, a second key point from this
analysis is that, in most cases, efforts to constrain CCN con-
centration using AOPs need to include a measure of the
aerosol size distribution to accurately represent variability in
the relationship. Here, we have taken advantage of the avail-
ability of in situ aerosol size distributions and represented
them using Reff. However, to constrain CCN concentration
solely from spaceborne lidar observations, our findings sug-
gest that either satellite retrievals of Reff would need to be
collocated with lidar observations or a different lidar-derived
indicator of aerosol size would need to be used. For exam-
ple, AI can be calculated using two wavelengths of aerosol
extinction from lidar, and other multi-wavelength parame-
ters such as the lidar ratio or backscatter color ratio con-
tain information about aerosol size that could be tested in
place of Reff for future methods based solely on a space-
borne lidar system. Additionally, Reff retrievals from the re-
cently launched SPEXone multi-angle polarimeter on board
the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem
(PACE) mission (Hasekamp et al., 2019) are another option
for quantifying aerosol size in CCN concentration estimates.

Lastly, when predicting CCNtheory :BSCtheory for all
aerosol types combined, the RF predictor importance es-
timates indicated that aerosol type, as represented by the
HSRL-2 Aerosol ID, is the third most important predictor
(Fig. 7a). Since the Aerosol ID product categorizes aerosol
types based on HSRL-2 optical properties, such as BSC, this
may explain why Aerosol ID is estimated to be a more impor-
tant predictor of CCNtheory :BSCtheory than kappa in terms
of aerosol type and chemical composition. This finding, in
addition to the qualitative differences seen in the impact of
high RH between aerosol types (Fig. 4), suggests that, while
Aerosol ID is not the most important predictor, separately
analyzing the CCN–BSC relationship for different aerosol
types provides insight into physical differences in CCN–AOP
relationships between aerosol types.

5.3 Sources of uncertainty and limitations

There are several assumptions underlying both κ–Köhler and
Mie theories in addition to uncertainties associated with the
observations used as input. Individual instrument uncertain-
ties are discussed in Sect. 2.1, and calculation assumptions
are discussed in Sect. 2.3 and 2.4. Here, we acknowledge the
primary sources of uncertainty underlying this analysis and
the limitations in its applicability.

First, the most significant sources of uncertainty come
from uncertainty associated with in situ observations. For ex-
ample, we use AMS observations to calculate a bulk kappa
value needed for κ–Köhler calculations. While we find that
our calculated values are generally close to those found in
the literature for all three aerosol types (Fig. 2), there are
a variety of factors that may cause discrepancies. For ex-
ample, the fraction of mass observed at sizes close to Dcrit
is generally small, meaning that AMS sensitivity to chemi-

cal composition at relevant CCN sizes can be limited. Ad-
ditionally, κ–Köhler theory assumes that chemical composi-
tion is fixed across all aerosol sizes (Petters and Kreidenweis,
2007), which may cause discrepancies between CCNobs and
CCNtheory. Additionally, Kim et al. (2017) found that CCN
closure using AMS-calculated kappa values was less accu-
rate than when using kappa calculated from humidified tan-
dem differential mobility analyzer (HTDMA) observations.

We also consider observational uncertainty associated
with in situ size distributions that impact both CCNtheory and
BSCtheory calculations. For example, when considering the
comparison between BSCobs and BSCtheory, we see the low-
est R2 for the MPM comparison (Fig. 6b), for which we
present two possible causes. First, marine aerosols have a
greater tendency compared to smoke and urban aerosols to
be non-spherical in shape, as was observed over Barbados by
Haarig et al. (2017) and as has been discussed for the AC-
TIVATE data set by Ferrare et al. (2023), while Mie theory
assumes that particles are spherical (von Hoyningen-Huene
and Posse, 1997; Bi et al., 2018). Second, in situ aerosol size
distributions tend to underrepresent coarse-mode aerosols
due to inefficient sampling at large sizes (McMurry, 2000;
Ryder et al., 2018; Kangasluoma et al., 2020). Since ma-
rine aerosols tend to have a dominant coarse mode that con-
tributes significantly to light scattering and since this coarse
mode is likely to be underrepresented by the in situ size
distributions used as input into Mie calculations, this may
be another cause of the discrepancy between BSCobs and
BSCtheory. Lastly, aerosols may be undersized due to the loss
of volatile aerosol components that occurs during the heating
and drying of in situ observations during inlet transmission
(Shrestha et al., 2018; Sandvik et al., 2019), and this may be
another source of uncertainty in BSCtheory and CCNtheory cal-
culations. However, overall, Figs. 5 and 6 provide confidence
that the combination of uncertainties in the size distributions
and other input variables does not prohibit reasonable agree-
ment between CCNobs and CCNtheory or between BSCobs and
BSCtheory. Therefore, while uncertainties in the in situ data
are likely to cause errors in our theoretical calculations, the
intermediate comparison between observations and calcula-
tions provides confidence that these uncertainties do not un-
dermine the validity of this study.

Lastly, there are a few important considerations for the
applicability and limitations of this study. While the ACTI-
VATE campaign collected one of the most complete airborne
data sets in terms of the range of aerosol types and mete-
orological conditions, our findings are limited to the cam-
paign study area and the encountered aerosol mixtures; they
have not been tested on other data sets. For example, since
we are unable to include dust in the analysis due to obser-
vational constraints, our results cannot speak to differences
in the CCNtheory–BSCtheory relationship for aerosol mixtures
with large proportions of dust. We would expect the results
shown here to differ for observations of dust due, in part,
to its hydrophobic nature and large, generally non-spherical
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sizes and shapes that are not easily represented using Mie
theory. Recent studies have started using lidar products to
better model and understand dust aerosol optical properties
(Saito and Yang, 2021; Haarig et al., 2022), but more work
is needed to understand the relationship between dust optical
properties and its ability to activate as CCN. Additionally, as
previously mentioned, we would also expect the general ex-
ponential relationship between CCNtheory :BSCtheory–Reff to
hold for other non-dust data sets, but the exact fit coefficients
would likely need to be adjusted.

6 Conclusions

To improve our understanding of CCN distributions, many
techniques have developed proxies and parameterizations
using remotely sensed AOPs. Such strategies often pro-
vide a good constraint for CCN, but challenges remain due
to factors such as aerosol hygroscopic growth and varia-
tions in the aerosol size distribution. In this study, we in-
vestigate the dominant governing factors of the CCNtheory–
BSCtheory relationship at 532 nm for different aerosol types
using observation-informed theoretical calculations and find
that Reff is the most important predictor for smoke, marine,
and urban aerosols.

This dependence of CCNtheory–BSCtheory on the aerosol
size distribution explains why, as expected, a linear approxi-
mation is generally not an appropriate method for represent-
ing the relationship well. Rather, this approach only works
in limited, specific cases. For example, when analyzing the
CCNobs–BSCobs relationship for observations of smoke at
low ambient RH with a narrow range of aerosol sizes in
ORACLES, a linear regression performed well. However, in
cases such as ACTIVATE, where (i) most observations are
made at high ambient RH, (ii) there is a variety of aerosol
types present, and (iii) there exists a wider range of ob-
served aerosol size distributions, this approach is not possi-
ble. Through these observation-informed analyses, we have
provided a theoretical framework for understanding the im-
pact of different governing factors on the CCNobs–BSCobs re-
lationship and the relative importance of the size distribution
compared to chemical composition and hygroscopic growth
at high ambient RH.

Our findings suggest a few key takeaways for future stud-
ies using spaceborne remote sensing instrumentation, such
as CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation) or other future spaceborne lidar ob-
servations, to retrieve CCN concentrations at cloud-relevant
altitudes. Most importantly, we found through using a wide
range of in situ-observed size distributions that Reff cap-
tures well the strong dependence of the CCNtheory–BSCtheory
relationship on the aerosol size distribution for non-dust
aerosol mixtures. That is, for areas with a wide variety of
observed size distributions, CCN cannot be estimated well
from BSC without including aerosol size. Therefore, future

remote sensing methods based on estimatingNCCN from par-
ticulate backscatter would require a lidar capable of provid-
ing Reff, a backscatter lidar in combination with a polarime-
ter, or collocated satellite retrievals ofReff. Overall, we found
that there is great benefit in using a wide variety of in situ-
observed aerosol size distributions as input for CCNtheory
and BSCtheory calculations to understand, in detail, how the
size distribution impacts the relationship between CCN and
AOPs.

Appendix A

The AMS-measured ion concentrations of NH+4 , SO2−
4 , and

NO−3 must first be converted into volume fractions as re-
quired by Eq. (3). For this conversion, we first use the sim-
plified ion pairing scheme developed by Gysel et al. (2007)
to calculate the number of moles (n) of ammonium ni-
trate (NH4NO3), sulfuric acid (H2SO4), ammonium bisulfate
(NH4HSO4), and ammonium sulfate ((NH4)2SO4), as out-
lined in Eqs. (A1)–(A5):

nNH4NO3 = nNO−3
, (A1)

nH2SO4 =max(0,nSO2−
4
− nNH+4

+ nNO−3
), (A2)

nNH4HSO4 =min(2nSO2−
4
− nNH+4

+ nNO−3
,nNH+4

− nNO−3
),

(A3)

n(NH4)2SO4 =max(nNH+4
− nNO−3

− nSO2−
4
,0), (A4)

nHNO3 = 0, (A5)

where the number of moles of NH+4 , SO2−
4 , and NO−3 is

calculated using their AMS-observed ion concentrations and
molar mass values. Next, the number of moles of ammonium
nitrate, sulfuric acid, ammonium bisulfate, and ammonium
sulfate is converted into units of mass. After this step, their
dry densities, as given in Table A1 (Gysel et al., 2007; Kuang
et al., 2020), are used to convert each mass into a volume.
During this step, the AMS-measured concentration of organ-
ics is also converted into a volume. The five resultant vol-
umes are summed, and the total volume is used to calculate
the volume fraction (εi) of each component. Following this
step, the individual volume fractions and κi values given in
Table A1 (Cai et al., 2018; Kuang et al., 2020) are used in
Eq. (3) to calculate a bulk kappa.
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Table A1. Density and hygroscopicity constants of individual chemical components used to calculate bulk hygroscopicity value.

Compound NH4NO3 H2SO4 NH4HSO4 (NH4)2SO4 Organics

Density ρ (kg m−3) 1720 1830 1780 1769 1400
κi 0.58 0.90 0.56 0.48 0.10

Appendix B

The change in particle diameter is described using a hygro-
scopic growth factor g(RH), as defined in Eq. (B1):

g (RH)=
Dwet(RH)
Ddry

. (B1)

Here, Ddry is the dry particle diameter from the SMPS-
and LAS-observed size distribution, and Dwet is the adjusted
particle diameter at a given RH. To calculate Dwet, we fol-
low the methodology of Zieger et al. (2013), who note that
the RH dependence of Eq. (9) can be parameterized using a
relationship introduced by Petters and Kreidenweis (2007),
as given in Eq. (B2):

g (aw)=
(

1+ κ
aw

1− aw

)1/3

, (B2)

where aw is water activity, and κ is the bulk hygroscopic-
ity parameter as calculated in Sect. 2.3.1. If the Kelvin ef-
fect can be neglected, aw can be replaced with RH. Since the
Kelvin term of the Köhler equation is small for large par-
ticles (D> 80 nm), we make this replacement moving for-
ward since particles larger than 80 nm contribute most to
BSC compared to smaller particles. Therefore, we calculate
humidified aerosol sizes using Eq. (B3):

Table B1. Dry refractive indices for each aerosol type. The two bottom rows represent the two combined aerosol types used in this study.
Their refractive indices are calculated using an average of both components from both aerosol types (i.e., the real and imaginary components
for SFS are an average of the real and imaginary components for smoke and fresh smoke).

Aerosol type Real component (mdry) Imaginary component (ndry)

Smoke 1.505 2.005E-02
Fresh smoke 1.425 2.005E-02
Marine 1.389 1.005E-03
Polluted marine 1.407 5.050E-04
Urban (URB) 1.475 5.500E-03
Smoke + fresh smoke (SFS) 1.465 2.005E-02
Marine + polluted marine (MPM) 1.398 7.550E-04

Dwet (RH)=Ddry

(
1+ κ

RH
1−RH

)1/3

. (B3)

Additionally, the change in the refractive index due to hygro-
scopic growth is calculated using Eqs. (B4) and (B5) for the
real (mwet) and imaginary (nwet) components, respectively:

mwet (RH)=
mdry+mH2O(g(RH)3

− 1)
g(RH)3 , (B4)

nwet (RH)=
ndry+ nH2O(g(RH)3

− 1)
g(RH)3 . (B5)

Here, mdry and ndry are the dry real and imaginary refrac-
tive indices for each aerosol type, as given in Table B1 and
informed by Dubovik et al. (2002). Additionally, mH2O and
nH2O are the real (1.33) and imaginary (0) refractive indices
for water.
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