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Abstract. Long-term data on PM2.5 chemical composition provide essential information for evaluating the ef-
fectiveness of air pollution control measures and understanding the evolving mechanisms of secondary species
formation in the real atmosphere. This study presented field measurements of PM2.5 and its chemical composition
at a regional background site in the Pearl River Delta (PRD) from 2007 to 2020. PM2.5 concentration declined
significantly from 87.1± 15.5 to 34.0± 11.3 µg m−3 (−4.0 µg m−3 yr−1). The proportion of secondary species
increased from 57 % to 73 % with the improvement in air quality. Among these species, sulfate (SO2−

4 ) showed a
sharp decline, while nitrate (NO−3 ) exhibited a moderate decrease. Consequently, the proportion of NO−3 in 2020
doubled relative to 2007. In addition, we further found that SO2−

4 reduction (−10 % yr−1) lagged behind SO2 re-
duction (−13 % yr−1), while NO−3 reduction (−6 % yr−1) outpaced that of NO2 (−3 % yr−1). These contrasting
trends were associated with an increase in sulfur oxidation rate (SOR) and a decrease in nitrogen oxidation rate
(NOR). Changes in PM2.5 chemical composition also influenced aerosol physicochemical properties, such as
aerosol pH (0.04 yr−1), aerosol liquid water content (ALWC, −1.1 µg m−3 yr−1), and the light extinction coeffi-
cient (−21.44 Mm−1 yr−1). Given important roles of aerosol acidity and ALWC in the heterogeneous reactions,
these changes may further inhibit the formation of secondary species in the atmosphere, particularly secondary
organic aerosols.
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1 Introduction

Particulate matter with aerodynamic diameter less than
2.5 µm (PM2.5) is a major air pollutant with significant im-
plications for global climate, air quality, and human health
(Burnett et al., 2018; Chen et al., 2021; Ding et al., 2021;
Pye et al., 2021; Vohra et al., 2022). PM2.5 comprises a com-
plex mixture of primary and secondary components. Primary
components, including primary organic aerosol (POA), ele-
mental carbon (EC), and metal ions (e.g., K+, Ca2+, Na+,
Mg2+), are mostly emitted from anthropogenic activities.
Secondary components, such as secondary organic aerosols
(SOA) and secondary inorganic aerosols (SIA; i.e., sulfate,
nitrate, and ammonium), are formed through oxidation of
gaseous pollutants (SO2, NOx , and VOCs, etc.) and partition
processes. China experienced rapid economic growth and ur-
banization in the past decades. To address severe air pollu-
tion, the Chinese government issued the Air Pollution Pre-
vention and Control Action Plan in 2013 (Geng et al., 2024).
As a result, the chemical composition in PM2.5 over China
changed significantly (Geng et al., 2019). This change has an
important impact on aerosol acidity, ALWC, and light extinc-
tion (Nguyen et al., 2016; Pye et al., 2020; Liu et al., 2022).

Acidity, defined as pH, is a crucial aerosol property that
affects human health, ecosystems and climate (Nenes et al.,
2020; Su et al., 2020; Song et al., 2024). Low pH increases
solubility of metals associated with mineral dust (Fang et al.,
2017). Previous epidemiological studies revealed that expo-
sure to acidic PM2.5 is relevant to high mortality and mor-
bidity (Gwynn et al., 2000; Zhang et al., 2022a). Addition-
ally, aerosol acidity and ALWC regulate the gas–particle par-
titioning of semi–volatile compounds, as well as chemical
reaction rates in the atmosphere, highlighting their impor-
tance for the atmospheric lifetime of pollutants (Pye et al.,
2020; Nenes et al., 2021). Aqueous uptake is an important
formation pathway for secondary species (Yu et al., 2005;
Kawamura and Bikkina, 2016; Liu et al., 2021). As an abun-
dant medium, ALWC can enhance their formation (Carlton
and Turpin, 2013; Zheng et al., 2015). By modifying particle
ability to be activated into cloud condensation nuclei (CCN),
ALWC can further influence the climate system (Duan et al.,
2019). Furthermore, Attwood et al. (2014) reported that the
changes in ALWC significantly influenced the aerosol light
extinction and radiative forcing. Therefore, it is necessary to
explore the trends of pH and ALWC under the changes in
PM2.5 chemical composition.

Aerosol pH and ALWC are determined by the presence of
acidic components (i.e., sulfate and nitrate), alkaline compo-
nents (i.e., ammonium) (Seinfeld et al., 1998), and meteoro-
logical conditions, such as temperature and relative humidity
(Wang et al., 2022a). However, aerosol acidity is more sensi-
tive to dominant chemical species rather than meteorological
conditions (Wu et al., 2023). According to sensitivity tests,

T-H2SO4 (SO2+SO2−
4 ) and T-NH3 (NH3+NH+4 ) have the

most dominant negative and positive contributions to pH
variation, respectively (Wu et al., 2023). The aerosol pH ex-
hibited noticeable spatial heterogeneity. For example, the pH
values in North China (e.g., Beijing (3.0–4.9), Zhengzhou
(4.5), Anyang (4.8)) (Liu et al., 2017; Wang et al., 2020) were
generally higher than those in South China (e.g., Guangzhou
(−0.04–0.81), Shanghai (3.06–3.30), South China Sea (1.7))
(Fu et al., 2015; Wang et al., 2022a; Zhou et al., 2022). This
could be attributed to the higher fraction of sulfate observed
in southern China (Geng et al., 2017; Liu et al., 2023) and
the elevated ammonia emissions in northern China (Liu et
al., 2023). Zhou et al. (2022) reported a downward trend of
pH (from 3.33 to 3.06) at a rate of−0.24 yr−1 in the Yangtze
River Delta (YRD) from 2011 to 2019. Conversely, Fu et
al. (2015) reported an upward trend of pH (from −0.30 to
0.81) in the PRD during 2007–2012. However, this study did
not cover the post–2013 period, a key period for air quality
improvement.

Chemical composition in PM2.5 also affects atmospheric
visibility through light scattering and absorption. Light scat-
tering is dominated by hydrophilic components, such as or-
ganic mass (OM), (NH4)2SO4, and NH4NO3, while light ab-
sorption is largely driven by light–absorbing carbon (Wang et
al., 2012). To estimate the light extinction coefficient (bext),
the first Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) equation was developed by the U.S. Na-
tional Park Service with support from the U.S. Environmen-
tal Protection Agency (EPA) (Malm et al., 1994; EPA, 2003),
but this equation tended to underestimate (overestimate) the
highest (lowest) bext values. Consequently, the revised IM-
PROVE equation was then proposed (Malm and Hand, 2007;
Pitchford et al., 2007). However, the scattering/absorbing ef-
ficiency (MSE/MAE) in the revised equation is an approxi-
mation based on measurements from clean areas. In addition,
the calculation of hygroscopic growth factor (f (RH)) in the
revised equation depends on relative humidity (RH) and par-
ticle size distribution (or aerosols mass), but does not account
for the chemical composition in aerosols, which has been
shown to significantly affect f (RH) (Li et al., 2021). These
simplifications could lead to large discrepancies in polluted
regions. For instance, the deviations between observed and
estimated bext values were reported as 15 %, 36 %, and 37 %
in Xi’an, Shanghai, and Guangzhou, respectively (Jung et al.,
2009; Cao et al., 2012; Cheng et al., 2015). Thus, region-
specific adjustments are necessary to reflect the impact of
particle composition on these parameters from site to site.

Many long-term monitoring programs have been imple-
mented to formulate pollution control strategies and explore
underlying factors of aerosol properties variation. For exam-
ple, the IMPROVE program in the United States, initiated in
1985, tracks visibility trends and their driving factors (Hand
et al., 2024). The Southeastern Aerosol Research and Char-
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acterization (SEARCH) network, established in 1998, pro-
vides detailed insights into aerosol chemistry and precursor
gases (Blanchard et al., 2013). In Europe, the European Mon-
itoring and Evaluation Program (EMEP) has operated since
2004 to address air pollution issues related to acidification,
eutrophication, and climate impacts (EMEP, 2024). In China,
long–term PM2.5 monitoring began in Hong Kong, where
the Environmental Protection Department (HKEPD) initi-
ated comprehensive chemical composition measurements in
1999. Subsequent collaborations expanded the monitoring
network to encompass the Guangdong–Hong Kong–Macao
Greater Bay Area in 2015 (HKEPD, 2021; Chow et al.,
2022).

As one of the most outstanding areas for air pollution
improvement, the PRD region first met National Ambi-
ent Air Quality Standards (AQS) for annual average PM2.5
(35 µg m−3) in 2015 (Department of Ecology and Environ-
ment of Guangdong Province, 2016). PM2.5 in the PRD
(32.2–46.1 µg m−3) was significantly lower than the YRD
(44.8–67.1 µg m−3), the North China Plain (NCP) (64.0–
101.9 µg m−3), and other regions (45.1–65.4 µg m−3) (Zhang
et al., 2019). Regarding chemical composition, nitrate was
the dominant species in the YRD and the NCP. However,
OM constitutes the largest fraction in the PRD, similar to
other low PM2.5 areas worldwide (Zhang et al., 2007; Ming
et al., 2017; Geng et al., 2019; Wang et al., 2022b; Yang
et al., 2023). So far, long-term studies of PM2.5 chemical
components in the PRD remain scarce. Fu et al. (2014) ob-
served substantial reductions in organic carbon (OC) and
SO2−

4 , but relatively stable NO−3 during 2007–2011, along-
side increased aerosol pH and decreased light extinction
(Fu et al., 2014, 2015, 2016). However, this study did not
cover the post–2013 period, a key period for air quality
improvement. Yan et al. (2020) conducted a meta–analysis
(2004–2019), identifying three stages of decline, rise, and
stabilization in the fractions of secondary species. Chow et
al. (2022) reported the reduction in NO−3 (66 %), EC (60 %),
hopanes (75 %), and K+ (60 %) exceeding that of PM2.5
(40 %), confirming effective control of vehicle emissions and
biomass burning in Hong Kong (2008–2017). In addition,
these studies observed an unproportional relationships be-
tween SO2−

4 /SO2, as well as NO−3 /NO2, but the underly-
ing reasons remain unclear. Furthermore, long-term trends
of aerosol acidity, ALWC, and light extinction, which are
highly dependent on PM2.5 chemical composition, were not
fully investigated. These limitations underscore the need for
a more comprehensive, long-term study to explore the under-
lying mechanisms behind these changes in the PRD.

Our study presents a comprehensive analysis of 532 quartz
filter–based PM2.5 samples collected over 14 years (2007–
2020, wintertime) at a regional background station. We ex-
amined the evolving PM2.5 chemical composition, focusing
on both primary and secondary species. The unproportional
relationships between SO2−

4 /SO2, as well as NO−3 /NO2
will be discussed. In addition, we also analyzed variations of

aerosol pH, ALWC, and light extinction under the influence
of changes in PM2.5 chemical composition.

2 Methodology

2.1 Field sampling

The typical Asian monsoon climate influences the PRD re-
gion. In summertime, prevailing southwesterly winds bring
humid and clean air mass from South China Sea or the north-
western Pacific Ocean. In contrast, during the fall and winter,
prevailing northerly winds carry dry and polluted air mass
from northern continent. Additionally, the region is often in-
fluenced by high–pressure ridges in the fall and winter, which
results in a low boundary layer and a high frequency of in-
version. These conditions facilitate the accumulation of pol-
lutants. Consequently, PM2.5 and other pollutants show a
distinct summer–winter contrast, with significantly elevated
pollutant levels in fall and winter (Fu et al., 2014; Chow et
al., 2022). Our field campaigns were mainly conducted from
October to December.

The sampling site, Wanqingsha (WQS; 22.42° N,
113.32° E), is located in a rural area of Guangzhou and
the center of the PRD region (Fig. 1). Local anthropogenic
emissions have limited influence on this site due to low
traffic flow and few factories in the surrounding area.
This makes it an ideal background site for investigating
regional air pollution. Twenty-four-hour sampling was
conducted using a PM2.5 sampler equipped with quartz
filters (20.3 cm× 25.4 cm) at a flow rate of 1.1 m3 min−1.
The quartz filters were pre-baked at 450 °C for four hours
prior to field sampling and stored at −20 °C after sampling
until analysis. Blank samples were collected during the
sampling periods. A total of 532 samples were collected and
analyzed in this study. Gaseous pollutants data (SO2, NO2,
NO, and O3) and meteorological parameters were obtained
from an air quality monitoring station operated at WQS. The
gaseous pollutant data during 2012–2013 were unavailable
because the station was under maintenance.

2.2 Chemical analysis

Because the determination of OC and EC are highly sensi-
tive to analytical conditions, different thermal-optical meth-
ods may lead to discrepancies in the OC /EC measurements
(Khan et al., 2012; Giannoni et al., 2016). To minimize po-
tential measurement biases and enhance data comparabil-
ity, we used the same thermal-optical carbon analyzer and
followed the same analytical protocol throughout the study.
Specifically, the OC and EC were determined by the thermal-
optical transmittance (TOT) method (NIOSH, 1999) using
an OC /EC analyzer (Sunset Laboratory Inc., USA), with
a punch (1.5× 1.0 cm) of the sampled filters. The samples
were analyzed by stepwise heating. First, the sample was
heated sequentially to 870 °C (310 °C for 60 s, 475 °C for
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Figure 1. The PRD region consists of Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Dongguan (DG), Foshan (FS), Huizhou (HZ),
Zhongshan (ZS), Zhaoqing (ZQ), and Jiangmen (JM). The sampling site WQS is located in the central area of this region.

60 s, 620 °C for 60 s, and 870 °C for 90 s) under a pure he-
lium (He) atmosphere. OC was volatilized and a portion of
it underwent pyrolysis, forming pyrolyzed carbon during this
period. After cooling, the sample was reheated under a 2 %
O2 /He atmosphere up to 920 °C (625 °C for 30 s, 700 °C for
30 s, 775 °C for 30 s, 850 °C for 30 s, and 920 °C for 30 s) to
oxidize EC and pyrolyzed carbon.

For the water–soluble inorganic ions, a punch (5.06 cm2)
of the filters was extracted twice with 10 mL ultrapure Milli-
Q water (18.2 M� cm per 25 °C) each for 15 min using an
ultrasonic ice-water bath. The total water extracts (20 mL)
were filtered through a 0.22 µm pore size filter and then
stored in a pre–cleaned HDPE bottle. The cations (i.e., Na+,
NH+4 , K+, Mg2+, and Ca2+) and anions (i.e., Cl−, NO−3 , and
SO2−

4 ) were analyzed with an ion–chromatography system
(Metrohm, 883 Basic IC plus). Due to the negative mass arti-
facts associated with the volatilization of ammonium nitrate,
the measured concentrations of NO−3 and NH+4 may be un-
derestimated (Chow et al., 2005; Yu et al., 2006). Cations
were measured using a Metrohm Metrosep C4–100 column
with 2 mmol L−1 sulfuric acid as the eluent. Anions were
measured using a Metrohm Metrosep A sup 5–150 column
equipped with a suppressor. The anion eluent was a solution
of 3.2 mmol L−1 Na2CO3 and 1.0 mmol L−1 NaHCO3.

2.3 Quality assurance/quality control (QA/QC)

Prior to OC /EC analysis, we calibrated the instrument us-
ing glucose standards at multiple concentrations. The instru-
ment responses were highly linear (R2> 0.99) and the rel-
ative errors between measured and prepared concentrations
were within ±5 %. The method detection limits (MDLs)
were 0.01–0.05 µg m−3 for the OC, EC, cations, and an-
ions. Ion balance was employed as a quality control check
in the anion/cation analysis. A significant linear correlation
(R2
= 0.97) was observed between anions and cations, with

a slope of 0.82 for all PM2.5 samples. This slope, being close
to unity, indicated that all the significant ions were resolved.

Blank samples were analyzed in the same way as field
samples. All the OC /EC and cation/anion data were cor-
rected by subtracting the field blank samples. As shown in
Fig. S1 in the Supplement, all measured components exhib-
ited minimal variability in the blank filter samples. This indi-
cated that the influence of analytical and sampling biases re-
lated to blank subtraction and experimental procedures was
limited, further supporting the reliability of the long-term
trends observed in this study.

Before data analysis, all data were manually inspected and
outliers (i.e.,X75 %+3(X75 %−X25 %)) were removed to rule
out the influence of extreme concentrations on overall trends.
The change rates were calculated using the slopes derived
from Theil–Sen regression and evaluated for statistical sig-
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nificance via the non-parametric Mann–Kendall test, provid-
ing a robust and reliable assessment of temporal variations.

2.4 Estimation of primary organic carbon (POC) and
secondary organic carbon (SOC)

EC is a product of carbon fuel-based combustion pro-
cesses and is exclusively associated with primary emissions,
whereas OC can be formed from both direct emissions and
secondary pathways. Differentiation between POC and SOC
is indispensable for probing atmospheric aging processes of
organic aerosols, but all available methods for estimating
POC and SOC are highly uncertain. The EC–tracer method
was widely used (Turpin and Huntzicker, 1991, 1995). Given
that EC is emitted exclusively from primary combustion
sources (e.g., fossil fuel and biomass burning), it is com-
monly used as a tracer for POC. Under this assumption, POC
is estimated by multiplying EC by a representative primary
OC /EC ratio, and SOC is determined as the residual be-
tween total OC and estimated POC (Eqs. 1–2). One of the
most commonly used approaches to determine (OC /EC)pri
is the minimum OC /EC ratio approach (Castro et al., 1999),
which assumes that the lowest observed OC /EC value cor-
responds to conditions dominated by primary emissions with
negligible SOC formation. In addition, Pio et al. (2011) rec-
ommended using the 5 % percentile of observed OC /EC
values instead, and Wu and Yu (2016) proposed minimum
R squared (MRS) method to obtain (OC /EC)pri.

POC=
(

OC
EC

)
pri
×EC (1)

SOC= OC−POC (2)

However, a previous study revealed that EC–tracer method
relied on the fixed (OC /EC)pri and tended to overestimate
SOC (Kim et al., 2012). Recently, Liao et al. (2023) proposed
Bayesian Inference (BI) approach and suggested it more ac-
curately estimated POC and SOC compared to the conven-
tional method. The BI approach adopts a probabilistic frame-
work that combines prior knowledge (in the form of prior
distributions of the K values) with observational data (OC,
EC, and SIA) to estimate the source contributions to OC.
The BI model assumes that observed OC is a linear com-
bination of contributions from POC and SOC tracers (e.g.,
EC and SO2−

4 ), and it uses the Markov Chain Monte Carlo
(MCMC) technique to derive posterior distributions for the
K values. This treatment allows the approach to update pa-
rameter estimates based on actual measurements and offers
more flexibility. In this study, we used BI approach which has
the convenience of relying only on the commonly available
mass concentrations of EC and SO2−

4 to estimate POC and
SOC. They can be calculated as following:

SOC=KEC×EC+KSO2−
4
×SO2−

4 (3)

POC= OC−SOC (4)

Where KEC and KSO2−
4

are parameters calculated by BI ap-
proach in R language, the details can be found in previous
research (Liao et al., 2023). The K values represent the pro-
portionality constants that link OC to its respective tracers
(e.g., KEC for EC-to-POC and KSO2−

4
for sulfate-to-SOC).

The variations of K value are shown in Fig. S2.
Because SOC represents only the carbonaceous portion of

the organic aerosol, while SOA includes the entire mass of
organic compounds formed through secondary processes, in-
cluding associated non-carbon atoms (e.g., hydrogen, oxy-
gen, nitrogen). To better evaluate the atmospheric mass load-
ing of organic aerosols and their mass proportions in PM2.5,
it is important to convert SOC to SOA. Given intense pho-
tochemical reactions and larger fractions of aged aerosols in
the PRD, a higher conversion factor of 2.4 was employed to
convert SOC to SOA (Yan et al., 2020).

2.5 Prediction of aerosol acidity and ALWC

The thermodynamics model ISORROPIA-II has been widely
used to calculate aerosol pH (Nenes et al., 1998; Fountoukis
and Nenes, 2007; Wen et al., 2018; Zhou et al., 2022). Me-
teorological parameter (temperature and relative humidity),
aerosol phase water-soluble ions (SO2−

4 , NO−3 , Cl−, NH+4 ,
Na+, K+, Mg2+, Ca2+) and gaseous precursors (HNO3,
HCl, NH3) are needed for the model execution. Given high
relative humidity (RH) in the PRD region, the model was run
by assuming aerosol solutions were metastable (only a liq-
uid phase) in forward mode; previous studies suggested this
would produce better performance than the stable state so-
lution (solid + liquid) (Guo et al., 2015; Bougiatioti et al.,
2016). A recent study suggested that the model was run in
the forward mode but did not include gas-phase data, which
may capture the general trend of aerosol acidity but underes-
timate pH (Fang et al., 2025).

We used the data collected in Guangzhou Institute of Geo-
chemistry (GIG) to run the model, and the result (G1) showed
there was a great agreement in gaseous ammonia between
simulation and observation (Fig. S3). Due to the lack of gas-
phase concentrations during our campaign period in WQS,
we ran the model by performing iterations to avoid the under-
estimation of pH. Only aerosol phase data were used as input
for the first run. Then we added the output gas-phase concen-
trations from the first run to the initial aerosol-phase chem-
ical concentrations to derive total (gas and aerosol phase)
concentrations, which serve as input for the second run and
so on. To determine an optimal number of iterations, we ran
GIG data (without gas-phase data) to compare with G1. Our
result indicated four iterations generated the closest outcome
to G1 when gas-phase data was unavailable (Fig. S4).
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3 Results and discussion

3.1 Long-term trends of PM2.5 and its chemical
composition in wintertime

In response to severe particle pollution, the Chinese gov-
ernment issued the Air Pollution Prevention and Control
Action Plan in 2013. Due to the strengthened emission
controls in the PRD, primary pollutants have been re-
duced significantly over the past decades (Bian et al.,
2019). Based on daily PM2.5 concentrations in our sam-
ples, we divided the data into five groups according to
interim targets recommended by the Worle Health Or-
ganization (WHO) in 2021 (World Health Organization,
2021): IT0 (PM2.5> 75 µg m−3), IT1 (75 µg m−3>PM2.5
> 50 µg m−3), IT2 (50 µg m−3>PM2.5> 37.5 µg m−3),
IT3 (37.5 µg m−3>PM2.5> 25 µg m−3), and IT4
(25 µg m−3>PM2.5). The majority of samples fell into
T0 and T1 categories (41 %–100 %) before 2013, while
this ratio quickly decreased (8 %–60 %) during 2013–2020
(Fig. S5), indicating successful implementation of air
pollution mitigation strategies after 2013.

Annual average concentrations of PM2.5 and its chemi-
cal composition are presented in Fig. 2a and Table S1. The
variations in mass fractions of these components are shown
in Fig. S6. It is worth noting that the year 2020 was char-
acterized by unprecedented emission reductions associated
with COVID-19 lockdowns (Wang et al., 2021), which may
have temporarily affected the trends in PM2.5 and its chem-
ical composition. As shown in Table S2, a sensitivity anal-
ysis was conducted to evaluate the uncertainty introduced
by including 2020 in the long-term trends analysis. The re-
sults suggested that this anomalous year would not intro-
duce large bias on the overall long-term trends. From 2007
to 2020, PM2.5 concentrations exhibited a significant de-
cline from 87.1± 15.5 to 34.0± 11.3 µg m−3, at a rate of
−4.0 µg m−3 yr−1 (p< 0.01). This trend aligns with the pre-
vious results from meta–analysis (−3.9 µg m−3 yr−1) and re-
gional simulation (−4.0 µg m−3 yr−1) in the PRD (Zhang et
al., 2019; Yan et al., 2020), affirming WQS can serve as
a regional background site. During this period of air qual-
ity improvement, OM (defined as OC× 1.6) (Yang et al.,
2023) remained the most abundant component (25 %–47 %)
in PM2.5, followed by SO2−

4 (16 %–26 %), NO−3 (7 %–18 %),
NH+4 (7 %–10 %) and EC (3 %–8 %). Other ions, such as
Cl−, Na+, K+, Mg2+, and Ca2+, contributed less than 3 %
each to the mass of PM2.5 (Fig. S6). In China, desulfuriza-
tion regulation for power plants was enforced around 2005,
resulting in a notable decline (−7 %) in the proportion of
SO2−

4 (Fig. 2b–c). However, the installation of denitrifica-
tion devices on power plants began in late 2011 and started to
take effect in 2012. With the delayed implementation of NOx
emissions control measures compared to those for SO2 (Fu
et al., 2014; Reuter et al., 2014; Geng et al., 2017; Qu et al.,
2017), the mass fractions of NO−3 increased by 10 %. By the

end of 2020, the proportion of NO−3 had doubled compared to
2007, approaching the level of SO2−

4 . The proportion of OM
also increased from 35.5 % to 42.7 %. Consequently, future
air pollution control efforts need to focus on reducing OM
and NO−3 concentrations to continue improving air quality in
the PRD region.

The chemical composition of PM2.5 can be categorized
into primary species and secondary species. Primary species
consist of POA, EC, and metal ions (e.g., Cl−, Na+, K+,
Mg2+, Ca2+ etc.). Secondary species include SOA and SIA
(SO2−

4 , NO−3 , and NH+4 ). Our results indicated that sec-
ondary species consistently dominated over primary species
in PM2.5 composition, accounting for 54 % to 79 % of the
total mass (Fig. 3a). Additionally, secondary species de-
clined at a faster rate (−2.45 µg m−3 yr−1, p< 0.01) com-
pared to primary species (−1.48 µg m−3 yr−1, p< 0.01), in-
dicating reduction of secondary species had more contri-
bution in particulate pollution mitigation. Although Yan et
al. (2020) also observed a decline trend in concentrations of
secondary species after 2008 in the PRD, the proportion of
secondary species was stable around 80 %, which was higher
than our study. This might stem from the fact that the EC–
tracer method applied by the previous study would overesti-
mate SOC, which made secondary species increase (Kim et
al., 2012). Our result showed that the average concentration
of SOC estimated by the BI approach was∼ 30 % lower than
that by the EC–tracer method. In addition, the correlation
between oxalic acid (a typical secondary organic molecular
marker) and SOC estimated by the BI approach (r = 0.62,
p< 0.05) was stronger than that with SOC estimated by the
EC-tracer method (r = 0.54, p< 0.05), indicating the esti-
mation from BI approach was more reliable (Fig. S7). We
calculated K values on an annual basis to estimate SOC,
whereas Yan et al. (2020) used a fixed value of (OC /EC)pri
(the minimum value of all collected data) to estimate SOC.
As a result, the proportion of secondary species in this study
showed greater variability than that of Yan et al. (2020). In
addition, we analyzed the proportion of secondary species
under different pollution levels. Figure 3b showed that the
mass fraction of secondary species increased significantly
from 57 % to 73 % with the improvement of air quality (from
IT0 to IT4). This meant secondary species play an increas-
ingly prominent role under lower pollution conditions.

3.2 Annual variations of primary species and secondary
species in wintertime

3.2.1 Primary species

The trends of individual components in PM2.5 can be seen
in Figs. S8–S9. POA exhibited the most significant de-
cline at a rate of −0.97 µg m−3 yr−1 (−9 % yr−1, p< 0.01).
EC serves as a tracer for primary combustion, K+ serves
as a tracer for biomass burning, and Ca2+ could be ap-
plied to track dust-related sources (Turpin and Huntz-
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Figure 2. (a) Trends of PM2.5 and its major components. Bars represent concentrations of chemical compositions and circles represent
concentrations of PM2.5 in different studies. (b, c) The comparison of the mass fractions of major components in 2007 and 2022.

icker, 1991; Zhu et al., 2017). Our result showed that the
relative reductions in EC (−9 % yr−1), K+ (−12 % yr−1)
and Ca2+ (−11 % yr−1) were greater than that of PM2.5
(−7 % yr−1), confirming that control measures for these
sources had been effective. Cl− and Na+ also showed de-
cline trends at rates of −0.10 µg m−3 yr−1 (−10 % yr−1),
−0.05 µg m−3 yr−1 (−9 % yr−1), respectively (p< 0.01).
Marine emission is considered the biggest source of Cl− in
fine particle. However, anthropogenic sources such as coal
combustion and biomass burning also had non–negligible
impacts on it (Luo et al., 2019). After excluding the influence
of anthropogenic sources (Section S1 and Fig. S10), Cl−

showed only a slight decline (−2 % yr−1), suggesting that
the contribution from marine emissions to PM2.5 remained
stable in general.

3.2.2 Secondary species

SO2−
4 showed a clear decrease at a rate of−1.13 µg m−3 yr−1

(−10 % yr−1, p< 0.01), whereas NO−3 and NH+4 showed
moderate declines (−0.40 µg m−3 yr−1, −6 % yr−1;
−0.31 µg m−3 yr−1, −6 % yr−1, respectively, p< 0.05).

Previous studies reported that the volatilization of am-
monium nitrate during sampling can cause negative mass
artifacts, leading to the underestimation of both NO−3
(8 %–16 %) (Chow et al., 2005) and NH+4 (10 %–28 %)
(Yu et al., 2006). The volatilization is highly dependent on
relative humidity and temperature. However, such losses
are expected to be systematic over time and therefore are
unlikely to significantly affect the general trends in this
study, because our measurements were conducted in the
same season. Strong correlations between SO2−

4 /SO2, as
well as between NO−3 /NO2 were observed (Fig. S11),
suggesting that reductions of SO2−

4 and NO−3 were mainly
driven by their gaseous precursors. With RH rising, the
slopes of SO2−

4 /SO2, as well as NO−3 /NO2, increased,
indicating enhanced conversion of primary pollutants to
secondary species. The generally lower intercepts observed
in the NO−3 /NO2 regression compared to those in the
SO2−

4 /SO2 regression can be explained by the semi-volatile
nature of nitrate (Yu et al., 2006). The formation of HNO3,
gaseous precursor of NO−3 , is suppressed under very low
NO2 level. Therefore, the reaction in R2 tends to proceed to
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Figure 3. The variations in primary and secondary species dur-
ing 2007–2020 (a) and their variations under different pollutants
levels (b). Bars represent concentrations of them and circles repre-
sent the mass proportion of secondary species in PM2.5. Secondary
species (account for 54 %–79 %) dominated over primary species.
The proportion of secondary species increased from 57 % to 73 %
with improvement of air quality (From IT0 to IT4). The error bars
represent the standard deviation of the total concentration, calcu-
lated as the sum of primary and secondary species.

the left. This facilitates partitioning of NO−3 into gas phase,
leading to less accumulation of NO−3 in particle phase. In
contrast, sulfate is the least volatile among all the inorganic
aerosol components (Kang et al., 2022), allowing it to be
stably retained in the particle phase once formed. Notably,
SO2−

4 reduction (−10 % yr−1) lagged behind SO2 reduction
(−13 % yr−1), while NO−3 reduction (−6 % yr−1) outpaced
that of NO2 (−3 % yr−1) (Fig. 4). Other studies have also
observed these disproportionate changes, but the reasons
behind remained unclear (Blanchard et al., 2013; Geng et
al., 2019; Yan et al., 2020; Chow et al., 2022).

Here, we calculated SOR and NOR (Li et al., 2023) de-
scribed in Eqs. (5)–(6), where n refers to the molar concen-
tration. The higher SOR and NOR represent more efficient
conversion of gaseous species into secondary aerosols.

SOR=
n
[
SO2−

4

]
n
[
SO2−

4

]
+ n[SO2]

(5)

NOR=
n
[
NO−3

]
n
[
NO−3

]
+ n[NO2]

(6)

Figure 4. (a) Annual variations in SO2−
4 and SO2. (b) Annual vari-

ations in NO−3 and NO2. The shaded region indicates the uncer-
tainty bounds. One asterisk, two asterisks denote p value < 0.05,
0.01, respectively. In the PRD, SO2−

4 and SO2 showed a more

significant decline than NO−3 and NO2. The reduction of SO2−
4

(−10 % yr−1) was slower than SO2 (−13 % yr−1), while reduction
of NO−3 (−6 % yr−1) was faster than NO2 (−3 % yr−1).

As shown in Fig. 5a, the SOR value in 2020 (0.26± 0.09)
was 44 % higher than that in 2007 (0.18± 0.07). In general,
SOR exhibited a significant upward trend during 2007–2020,
increasing at a rate of 0.005 yr−1 (3 % yr−1, p< 0.05). The
more efficient SO2−

4 formation from SO2 oxidation slowed
down the reduction of SO2−

4 alongside decreasing SO2 lev-
els. Gas–phase oxidation of SO2 followed by neutralization
and aerosol phase condensation, is an important SO2−

4 forma-
tion pathway (Berndt et al., 2023). Heterogeneous processes,
including SO2 transfer to the aerosol phase, dissolution, and
oxidation by oxidants such as H2O2 and O3, also contribute
significantly in polluted regions (Wang et al., 2016; Liu et
al., 2021). The solubility and effective Henry’s law constant
of SO2 are positively pH-dependent (Seinfeld et al., 1998).
Higher pH promotes the dissolution of SO2 in water, which
will enhance SO2−

4 formation. ALWC plays a key role in de-
termining the aqueous oxidation rate and mass transfer. In
addition, high temperature can facilitate both gas–phase and
aqueous–phase reactions. As shown in Fig. S12, there were
strong positive correlations between SOR and O3 (r = 0.45),
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temperature (r = 0.48), as well as ALWC (r = 0.23). But
there was no significant correlation between SOR and pH. A
possible explanation is that hydrogen ions facilitate aqueous-
phase oxidation of SO2 by H2O2, which will offset the effect
of reduced SO2 solubility under low pH conditions (Liu et
al., 2021). To assess the impacts of these factors on SOR and
eliminate dimensional and order of magnitude effects, a nor-
malized multiple linear regression was developed as below:

SOR=0.025×O3+ 0.017×ALWC

+ 0.019×Temperature+ 0.190 (7)

The prediction of SOR showed good agreement with the ob-
servations (Fig. S13a). The larger regression coefficients of
O3 and temperature, along with their stronger correlations
with SOR, suggested that the increase of SOR was mainly
driven by the two factors. Our result showed that ALWC ex-
hibited a downward trend (Fig. 6b), which exerted a negative
influence on SOR. Although O3 concentration did not show
an obvious trend at our measurement station (Fig. S14a), a
previous study suggested that there was a rapid increase of
O3 in the PRD after 2013 (Cao et al., 2024). Meanwhile,
the temperature also rose slightly (p< 0.05) during the past
decade (Fig. S14b). Consequently, a significant upward trend
was observed in SOR.

NOR did not show a clear temporal trend. However, the
average NOR values before 2013 (NOR> 0.07) were signif-
icantly higher than those in subsequent years (NOR< 0.07)
(Fig. 5b, t-test, p< 0.01), which explained the greater reduc-
tion in NO−3 compared to NO2. NO−3 can be formed during
both daytime and nighttime. During the day, HNO3 is pro-
duced via the gas–phase reaction between OH and NO2 and
then neutralized by NH3 to produce NO−3 (Reactions R1–
R2) (Calvert and Stockwell, 1983). During nighttime, NO2
can also be oxidized by O3 to generate NO3 which further
reacts with NO2 to produce N2O5. Heterogeneous uptake
of N2O5 is a vital nitrate formation pathway during night-
time (Reactions R3–R5) (Finlayson-Pitts et al., 1989). Fig-
ure S15 showed that there were positive correlations between
NOR and O3 (r = 0.12), pH (r = 0.25), as well as ALWC
(r = 0.55). Different from SOR, higher temperature prevents
N2O5 formation and promotes evaporation of HNO3 from
particle phase to gas phase, resulting a negative correlation
between NOR and temperature (r =−0.18). The result of
normalized multiple linear regression for NOR is as below:

NOR=0.012×O3+ 0.025×ALWC

− 0.011×Temperature+ 0.008× pH+ 0.081 (8)

The prediction of NOR showed good agreement with the
observations (Fig. S13b). The largest regression coefficient
and the strongest correlation between ALWC and NOR sug-
gested that the change in NOR was primarily driven by
ALWC. The lower ALWC levels after 2013 (Fig. 6b) sup-
pressed heterogeneous formation pathway of nitrate and en-
hanced the partitioning of nitrate from particle phase into gas

Figure 5. The variations in SOR (a) and NOR (b). A dramatic in-
crease in SOR was observed (0.005 yr−1, p< 0.05) and the SOR
value in 2020 (0.26± 0.09) was 44 % higher than that in 2007
(0.18± 0.07). Although there was no significant trend in NOR, the
values before 2012 were higher than those after 2013.

phase, leading to the overall lower NOR after 2013.

OH(g)+NO2(g)+M→ HNO3(g)+M (R1)
HNO3(g)+NH3(g)↔ NO−3 (aq)+NH+4 (aq) (R2)
NO2(g)+O3(g)→ NO3(g) (R3)
NO2(g)+NO3(g)+M↔ N2O5(g)+M (R4)

N2O5(g)+H2O(aq)+Cl−(aq)↔

(2−∅)NO−3 (aq)+∅ClNO2 (R5)

The gas-particle conversion of NH3 could be affected
by anions in particle–phase. Due to the decrease in
2× n(SO2−

4 )+ n(NO−3 ) (Fig. S16), less NH3 was needed to
neutralize H2SO4 and HNO3. This resulted in a slight decline
in NH+4 (−0.31 µg m−3 yr−1, p< 0.01), while NH3 emis-
sions remained steady (Geng et al., 2019).

SOA is formed through the oxidation of VOCs, fol-
lowed by partitioning from gas phase to particle phase. Al-
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Figure 6. (a) Annual average pH increased at a rate of
0.04 yr−1. (b) Annual average ALWC decreased at a rate of
−1.1 µg m−3 yr−1.

though VOCs emission kept rising (Bian et al., 2019; Guo
et al., 2024) and concentration of O3 fluctuated during the
past decade, SOA declined significantly (−0.74 µg m−3 yr−1,
p< 0.01). Previous studies have demonstrated that ALWC is
a key factor driving the partitioning of organic compounds
from the gas phase into the particle phase, thereby promot-
ing SOA formation (Ervens et al., 2011; Carlton and Turpin,
2013; Attwood et al., 2014). Nguyen et al. (2015) observed
concurrent decreasing trends in ALWC and OC in the South-
east U.S., and further suggested that anthropogenic inorganic
species modulated SOA formation through ALWC effects.
In addition, higher aerosol acidity has been shown to en-
hance SOA formation via acid-catalyzed reactions (Surratt
et al., 2007). These findings indicated that the reduction in
SOA during our study period aerosol could be attributed to
the changes in acidity and ALWC, which will be discussed
in Sect. 3.3. As SOA accounted for more than 50 % of OM,
more efforts are needed to reduce it.

3.3 Impact of changes of major components on aerosol
pH and ALWC

ISORROPIA II, a thermodynamic equilibrium model for
the K+–Ca2+–Mg2+–NH+4 –Na+–SO2−

4 –NO−3 –Cl−–H2O
aerosol system (Fountoukis and Nenes, 2007), has been
widely applied to estimate aerosol pH and ALWC. Here, we
applied ISORROPIA–II to estimate aerosol pH and ALWC
from 2007 to 2020. Due to the unavailability of gas–phase
concentrations of HNO3, HCl, and NH3 during our cam-
paign period, we conducted four iterations to produce the
result optimally (Sect. 2.5). The annual variations in pH
and ALWC are shown in Fig. 6. As discussed earlier, the
reductions in acidic components (SO2−

4 and NO−3 ) were
greater than that in the alkaline component (NH+4 ), leading
to a significant decrease in acidity. Aerosol pH increased
from 1.51± 1.07 to 2.86± 0.49, at a rate of 0.04 yr−1

(p< 0.05). A sharp increase of aerosol pH occurred during
2007–2012 due to rapid decline of SO2−

4 during this period.
As Fu et al. (2015) did not include the gas–phase data in pH
calculation, the pH values reported by them (−1.11–0.81)
were significantly lower than those in this study (1.51–2.60)
during the same period. The rapid reduction in hygroscopic
components, especially SO2−

4 , led the decline of ALWC
(Attwood et al., 2014). Our results showed that ALWC
decreased from 20.6± 10.0 to 9.5± 3.9 µg m−3, at a rate
of −1.1 µg m−3 yr−1 (p< 0.01). Unexpectedly, low ALWC
was observed in 2008 when SIA concentrations, which en-
hance the hygroscopicity of particulate matter, were at very
high levels. It might be associated with low RH (Table S1).
To eliminate the influence of changes in meteorological
conditions, we used annual average temperature and RH
during the entire campaign period as input to recalculate
pH and ALWC. The results showed a clear enhancement
of ALWC in 2008 (Fig. S17), and the upward trend in
pH and downward trend in ALWC still persisted. This
demonstrated the long-term trends of pH and ALWC were
mainly driven by the changes in chemical composition of
PM2.5. As we discussed in Sect. 3.2.2, ALWC exhibited
positive correlations with SOR and NOR. This indicated
a positive feedback mechanism in which the reductions in
hygroscopic components (e.g., sulfate and nitrate) leaded
to lower ALWC, thereby suppressing SIA formation. Many
studies have demonstrated that high aerosol acidity, ALWC,
and O3 will facilitate SOA formation (Ervens et al., 2011;
Carlton and Turpin, 2013; Nguyen et al., 2015; Zhang et
al., 2022b; Ma et al., 2024; Zhang et al., 2024). Our results
also showed that SOA was positively correlated with ALWC
and O3, but negatively correlated with pH (Fig. S18). In
this study, SOA declined significantly while the emission of
VOCs (Bian et al., 2019; Guo et al., 2024) and O3 (Cao et
al., 2024) kept rising in the PRD. Consequently, the trend of
SOA was mainly driven by the reductions in aerosol acidity
and ALWC.
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We further investigated changes in pH and ALWC under
different pollution levels. As Fig. S19 presented, low pH oc-
curred under elevated pollutant level (IT0), while pH values
were close under other levels (IT1–IT4). Additionally, there
was no significant difference between the recalculated pH
(eliminating the influence of meteorological factors) and the
original one, indicating limited impacts of variations of tem-
perature and RH on aerosol acidity. ALWC showed a clear
decline pattern with decreasing pollutant levels (IT0–IT4). A
significant difference (18 %–35 %, p< 0.01) was observed
between the recalculation and original results under IT2–IT4,
indicating temperature and RH also exerted a significant in-
fluence on ALWC under lower pollution levels.

3.4 Impact of changes in major components on
extinction coefficient

We adopted MSE/MAE suggested by Fu et al. (2016), as well
as relationship between chemical composition and f (RH)
suggested by Li et al. (2021), to reconstruct bext (herein
called local parameter scheme) using Eqs. (9)–(12). [AS],
[AN], [SS], [LAC] refer to mass concentrations (µg m−3)
of NH4SO4, NH4NO3, sea salt, and EC, respectively. The
details of PM2.5 reconstruction method followed the pre-
vious study (Chow et al., 2015), i.e., AS= 1.375×SO2−

4 ,
AN= 1.29×NO−3 , LAC=EC and SS= 1.8×Cl−. RHref
was threshold of high RH, 40 % was used here.

bext =6.5× [OM]+ 2.6× f (RH)× [AS]

+ 2.4× f (RH)× [AN]+ 7.3× f (RH)ss×[SS]
+ 7.7× [LAC] (9)

f (RH)=
[
(1−RH)/(1−RHref)

]−γ (10)
γ = 0.48×F + 0.59 (11)

F = (OC+EC)/
(

OC+EC+SO2−
4 +NO−3 +NH+4

)
(12)

Our results showed that bext in the PRD decreased signif-
icantly at a rate of −21.44 Mm−1 yr−1 (p< 0.01), align-
ing with the overall decline of PM2.5 (Fig. 7). However,
the highest bext was unexpectedly observed in 2009, even
though PM2.5 concentration was lower than 2007 and 2008.
This anomaly could result from the highest RH in 2009.
As illustrated in Fig. S20, OM dominated bext (44 %–61 %),
followed by (NH4)2SO4 (15 %–28 %) and NH4NO3 (6 %–
13 %). The proportion of SIA (F ) fluctuated during 2007–
2020, which leaded to changes in f (RH) and then further in-
fluenced bext. As a result, we found that the chemical budget
of bext from (NH4)2SO4 did not exhibit a continuous decline
trend, while the mass concentration and proportion of SO2−

4
in PM2.5 decreased significantly.

We also calculated bext by the revised IMPROVE equa-
tion proposed in 2007 (Malm and Hand, 2007; Pitch-
ford et al., 2007), and compared to the local parameter
scheme (Fig. S21). Generally, bext estimated by the revised

IMPROVE equation (335.72± 219.64 Mm−1) was signifi-
cantly higher than that estimated by local parameter scheme
(262.67± 143.82 Mm−1). We further investigated this dis-
crepancy under different pollution levels. With the improve-
ment in air quality, the difference between the two schemes
narrowed gradually (p< 0.01). Our results indicated that the
revised IMPROVE equation tended to generate higher bext in
elevated pollution periods. Thus, more site–specific parame-
ters and local parameter scheme are needed in those polluted
areas to predict bext more accurately.

4 Conclusions

In this study, we conducted field measurements of PM2.5
mass concentrations and its chemical composition at the
PRD regional background site during 2007–2020. PM2.5
levels showed a significant decline from 87.1± 15.5 to
34.0± 11.3 µg m−3 at a rate of−4.0 µg m−3 yr−1. Secondary
species (54 %–79 %) dominated over primary species, al-
though the proportion was lower than that reported in a pre-
vious study (∼ 80 %) in the PRD. This discrepancy could be
attributed to an overestimation of SOC caused by the EC-
tracer method employed in the previous study. In addition,
the mass fraction of secondary species increased with the im-
provement in air quality, suggesting greater attention should
be given to them under cleaner conditions. Among primary
species, POA, EC, K+ and Ca2+ exhibited significant de-
clines. This indicated that control measures for combustion
emissions, biomass burning and dust-related sources were
effective. SIA displayed rapid downward trends among sec-
ondary species, particularly for SO2−

4 . Due to the delayed
control of NOx emissions compared to SO2, mass fractions
of SO2−

4 decreased from 26.0 % to 18.6 % while NO−3 in-
creased from 7.7 % to 17.5 %. By the end of 2020, the pro-
portion of NO−3 had doubled compared to 2007, approach-
ing the level of SO2−

4 . Although many previous studies have
observed the disproportionate changes in SO2−

4 /SO2 and
NO−3 /NO2, underlying causes remained unclear. In this
study, we found the disproportionate reductions in SO2−

4
(−10 % yr−1) compared to SO2 (−13 % yr−1), and in NO−3
(−6 % yr−1) compared to NO2 (−3 % yr−1), which were at-
tributed to an increase in SOR and a decrease in NOR, re-
spectively. Correlation analysis indicated that SOR was pri-
marily influenced by O3 and temperature, whereas NOR was
driven by ALWC.

Aerosol pH and ALWC were estimated using
ISORROAPIA–II. Due to the unavailability of gas–
phase concentrations of HNO3, HCl, and NH3 during our
campaign period, we proposed a reliable approach involving
four iterative calculations to obtain optimal results. Our
results showed that aerosol pH increased from 1.51± 1.07 to
2.86± 0.49 at a rate of 0.04 yr−1. Consistent with previous
studies, we found that the impacts of meteorological factors
on aerosol pH were limited, while the changes in PM2.5
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Figure 7. Light extinction coefficient (bext) in WQS during 2007–2020. It declined at a rate of −21.44 Mm−1 yr−1 significantly (p< 0.01)
and its trend aligned with that of PM2.5.

components significantly influence aerosol pH. ALWC
decreased significantly at a rate of −1.1 µg m−3 yr−1 and
showed a clear decline pattern with decreasing pollutant
levels. This might indicate presence of a positive feedback
mechanism between ALWC and hygroscopic components.
Given the critical roles of acidity and ALWC in the for-
mation of secondary species, the reductions in acidity and
ALWC caused by changes in PM2.5 major components may
also suppress the formation of SOA in the atmosphere.

In addition, air visibility greatly improved with decline
of PM2.5 chemical components. We used a local parameter
scheme to calculate bext and demonstrated that it decreased
at a rate of −21.44 Mm−1 yr−1. The revised IMRPOVE for-
mula will generate higher bext values than local parameter
scheme under high pollution conditions. Thus, more site–
specific parameters and local parameter scheme are needed
in polluted areas to predict bext more accurately.

This study highlights that the changes in PM2.5 chemi-
cal composition can significantly affect key aerosol physico-
chemical properties, such as aerosol pH, ALWC, and light
extinction coefficient. The variations in aerosol pH and
ALWC can, in turn, influence the formation of secondary
species. Since the importance of secondary species will be-
come more prominent with continuous air quality improve-
ment, more efforts should focus on them in the future.
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