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S1. Eliminating anthropogenic impact on Cl- by XGBoost (eXtreme Gradient Boosting) 

XGBoost, a promising tool in machine learning (ML), has recently been used in atmospheric research. The performance 

of XGBoost surpasses that of traditional analysis methods for both nonlinear and linear questions. (Hou et al., 2022). The 

introduction and Python package is available online (https://github.com/dmlc/xgboost). In this study, we used this method to 

decouple the impacts of anthropogenic sources on Cl- in PM2.5 as much as possible. A total of 6 independent variables, 5 

including levoglucosan (biomass burning marker), picene (coal combustion marker), meteorological parameters (wind speed, 

temperature, RH, and solar radiation, representing marine activity) and one dependent variable, Cl-, were fed to the model. All 

these samples were randomly divided into two groups: a training set accounting for 70% and a testing set accounting for 30% 

(R2 = 0.41). Then, we replaced daily concentrations of levoglucosan and picene with their average concentrations in 2007-

2020 to eliminate changes in anthropogenic sources on Cl-. As shown in Fig S10, it decreased slightly at a rate of –2% yr–1, 10 

indicating that the influence of marine emissions on PM2.5 had been almost unchanged. 

https://github.com/dmlc/xgboost


 

2 

 

Table S1. The variations in PM2.5 main components, meteorological parameters, and other species from 2007 to 2020. 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Ⅰ. Gaseous pollutants (μg m-3) 

SO2 71.3 ± 21.4 73.5 ± 20.1 59.8 ± 20.3 49.5 ± 20.3 35.6 ± 9.9   32.4 ± 11.0 23.8 ± 8.8 20.8 ± 7.1 26.4 ± 6.3 18.3 ± 3.9 14.0 ± 3.2 12.2 ± 3.5 

NO2 58.3 ± 10.3 72.1 ± 28.0 71.0 ± 16.5 49.6 ± 16.3 59.0 ± 14.8   54.2 ± 17.8 49.1 ± 17.3 40.6 ± 19.9 54.8 ± 19.8 53.4 ± 16.3 47.6 ± 19.7 44.7 ± 13.5 

O3 75.3 ± 31.4 63.2 ± 17.3 51.6 ± 25.0 69.1 ± 27.0 54.3 ± 22.8   53.0 ± 18.1 78.9 ± 37.0 59.9 ± 31.2 72.0 ± 38.7 60.1 ± 27.7 105.1 ± 21.9 74.5 ± 37.5 

Ⅱ. PM2.5 main components (μg m-3) 

PM2.5 87.1 ± 15.5 81.2 ± 18.0 72.4 ± 21.3 73.7 ± 37.5 64.2 ± 13.6 47.1 ± 14.0 65.4 ± 24.2 53.2 ± 14.6 43.0 ± 17.9 33.8 ± 12.8 49.1 ± 18.2 36.0 ± 9.6 40.2 ± 11.2 34.0 ± 11.3 

OM 30.9 ± 7.6 36.3 ± 12.6 27.5 ± 11.2 26.9 ± 12.7 24.3 ± 8.7 15.6 ± 6.9 30.4 ± 14.1 16.7 ± 6.1 10.6 ± 5.1 9.5 ± 4.1 14.7 ± 4.9 13.2 ± 4.8 13.7 ± 3.6 14.6 ± 4.3 

POC 10.4 ± 3.1 13.5 ± 3.4 10.9 ± 4.5 11.0 ± 4.9 9.4 ± 3.1 4.5 ± 1.4 11.0 ± 3.6 8.2 ± 4.6 4.4 ±1.9 4.4 ± 1.7 4.3 ± 2.1 5.0 ± 2.1 4.3 ± 1.8 4.4 ± 1.1 

SOC 7.7 ± 2.2 7.2 ± 2.4 5.4 ± 1.9 4.4 ± 2.0 4.7 ± 1.5 3.9 ± 1.6 6.0 ± 4.3 1.6 ± 0.5 1.6 ± 0.7 1.1 ± 0.4 4.7 ± 2.0 2.5 ± 0.9 4.0 ± 1.2 3.9 ± 1.7 

EC 3.6 ± 1.1 4.2 ± 1.1 5.5 ± 2.3 3.1 ± 1.4 3.1 ± 1.0 1.9 ± 0.6 2.5 ± 0.8 3.0 ± 1.7 1.4 ± 0.6 2.3 ± 0.9 1.9 ± 0.9 1.7 ± 0.7 1.4 ± 0.6 1.6 ± 0.4 

SO4
2- 22.2 ± 6.0 17.1 ± 5.5 17.0 ± 5.9 16.3 ± 6.5 14.2 ± 4.7 10.5 ± 4.4 13.1 ± 9.1 9.7 ± 3.2 10.1 ± 4.6 8.0 ± 2.7 8.1 ± 3.4 6.1 ± 2.0 6.4 ±1.9 6.6 ±2.9 

NO3
- 6.7 ± 3.1 9.2 ± 4.2 11.5 ± 4.6 8.4 ± 4.8 9.6 ± 4.0 5.8 ± 5.4 9.6 ± 8.4 3.6 ± 2.3 5.6 ± 5.2 4.6 ± 3.8 5.5 ± 3.8 5.3 ± 2.9 3.1 ± 2.2 6.3 ± 3.4 

NH4
+ 6.6 ± 1.7 4.9 ± 2.4 7.1 ± 2.3 6.9 ± 3.8 6.6 ± 2.3 4.8 ± 2.1 6.6 ± 4.4 3.7 ± 1.4 4.5 ± 2.4 3.4 ± 1.7 4.0 ± 1.7 3.1 ± 1.3 3.0 ± 0.9 3.4 ± 1.4 

Cl- 1.01 ± 0.54 1.61 ± 1.27 1.80 ± 1.03 1.49 ± 1.16 1.46 ± 0.93 1.21 ± 0.74 1.44 ± 1.12 0.38 ± 0.33 0.55 ± 0.37 0.52 ± 0.34 0.75 ± 0.66 0.75 ± 0.72 0.36 ± 0.36 0.39 ± 0.15 

Na+ 0.97 ± 0.66 0.93 ± 0.61 0.89 ± 0.18 0.60 ± 0.29 0.56 ± 0.16 0.40 ± 0.14 0.56 ± 0.26 0.36 ± 0.10 0.27 ± 0.08 0.25 ± 0.14 0.34 ± 0.14 0.52 ± 0.34 0.27 ± 0.14 0.48 ± 0.20 

K+ 1.49 ± 0.57 2.23 ± 0.01 0.97 ± 0.41 1.20 ± 0.61 1.14 ± 0.46 0.69 ± 0.32 1.13 ± 0.81 0.60 ± 0.21 0.49 ± 0.25 0.30 ± 0.13 0.59 ± 0.24 0.35 ± 0.15 0.46 ± 0.15 0.48 ± 0.22 

Mg2+ 0.15 ± 0.05 0.11 ± 0.05 0.23 ± 0.09 0.04 ± 0.04 0.08 ± 0.02 0.07 ± 0.03 0.10 ± 0.05 0.07 ± 0.02 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 0.21 ± 0.12 

Ca2+ 1.30 ± 0.57 1.46 ± 0.72 0.27 ± 0.17 0.33 ± 0.14 0.53 ± 0.12 0.47 ± 0.35 0.85 ± 0.49 0.64 ± 0.16 0.27 ± 0.21 0.26 ± 0.13 0.52 ± 0.22 0.45 ± 0.15 0.27 ± 0.14 0.10 ± 0.03 

Ⅲ. Meteorological parameters 

Temperature (℃) 22.2 ± 2.1 17.2 ± 2.9 17.0 ± 3.1 19.7 ± 3.2 19.9 ± 3.8 22.1 ± 1.4 20.9 ± 1.1 20.2 ± 4.4 25.1 ± 2.4 23.8 ± 3.8 21.3 ± 3.2 22.4 ± 2.9 21.7 ± 2.7 20.2 ± 5.1 

RH (%) 57 ± 11 47 ± 12 67 ± 13 64 ± 11 57 ± 11 61 ± 7 50 ± 13 57 ± 14 63 ± 8 67 ± 7 56 ± 13 63 ± 12 48 ± 11 55 ± 13 

SSR (W m-2) 161.3 ± 41.3 156.5± 28.3 135.2 ± 36.3 141.8 ± 51.4 134.7 ± 36.9 101.2 ± 40.4 125.2 ± 46.2 95.3 ± 49.1 149.0 ± 36.2 122.4 ± 44.0 128.9 ± 53.1 122.2 ± 39.9 165.0 ± 29.4 145.5 ± 31.9 

Wind speed (m s-1) 1.3 ± 0.2 1.3 ± 0.4 1.7 ± 0.5 1.7 ± 0.7 1.8 ± 0.9 1.2 ± 0.6 1.3 ± 0.3 1.9 ± 0.6 1.5 ± 0.3 1.6 ± 0.4 1.7 ± 0.4 1.6 ± 0.5 1.6 ± 0.3 1.7 ± 0.4 

Ⅳ. Other species 

ALWC (μg m-3) 20.6 ± 10.0 11.3 ± 7.9 28.8 ± 11.4 22.0 ± 10.8 19.3 ± 9.9 13.5 ± 5.6 12.0 ± 7.5 10.8 ± 5.4 12.5 ± 6.2 12.0 ± 7.3 9.9 ± 6.5 11.0 ± 6.7 5.1 ± 2.5 9.5 ± 3.9 

pH 1.51 ± 1.07  2.60 ± 0.71 1.94 ± 0.29 1.97 ± 1.00 2.54 ± 0.37 2.55 ± 0.43 2.69 ± 0.42 2.29 ± 0.33 2.13 ± 0.33 2.05 ± 0.46 2.60 ± 0.45 2.66 ± 0.37 2.31 ± 0.63 2.86 ± 0.49 
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Table S2. Sensitivity analysis of long-term trends with and without the year 2020. 

One asterisk, two asterisks denote p value < 0.05, 0.01, respectively. Blank cells denote p value > 0.05. The uncertainty was calculated as: 15 

𝑼𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 =  
|𝑺𝒍𝒐𝒑𝒆𝒘𝒊𝒕𝒉− 𝑺𝒍𝒐𝒑𝒆𝒘𝒊𝒕𝒉𝒐𝒖𝒕|

|𝑺𝒍𝒐𝒑𝒆𝒘𝒊𝒕𝒉|
.  

 

 Slope (with 2020) Slope (without 2020) Uncertainty 

PM2.5 -4.0 ** -4.2 ** 4% 

OM -1.70 ** -1.91 ** 12% 

EC -0.23 ** -0.25 ** 9% 

SO4
2- -1.13 ** -1.21 ** 7% 

NO3
- -0.40 ** -0.47 ** 18% 

NH4
+ -0.31 ** -0.33 ** 6% 

Cl- -0.10 ** -0.10 ** 1% 

Na+ -0.05 ** -0.06 ** 20% 

K+ -0.10 ** -0.12 ** 16% 

Mg2+  -0.01 *  

Ca2+ -0.06 * -0.06 * 3% 
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Figure S1. Annual variations of measured components in blank filter samples. 20 
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Figure S2. Variations of K values for EC and SO4

2–, calculated by Bayesian Inference approach. 
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 25 

Figure S3. Observations and ISORROPIA-Ⅱ simulation of gas-phase NH3 in GIG. 
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r = 0.98, p < 0.01
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Figure S4. Comparison of predicted pH, ALWC with and without gas-phase input in GIG. (a) Sim0 represents results with gas-

phase input, Sim1, Sim4, Sim80 represent results without gas-phase input and performed one, four, and eighty iterations respectively. 

It showed predicted aerosol pH rose as number of iterations increased. Four iterations without gas-phase input would generate the 30 
optimal result. (b) and (c) showed pH and ALWC calculated by this way had the greatest agreement with the one which has gas-

phase input. 
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Figure S5. Percent of different polluted days in WQS from 2007 to 2020. 35 
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Figure S6. The variations in mass fraction of PM2.5 chemical composition. 

 



 

10 

 

 40 

Figure S7. Oxalic acid, a typical secondary organic molecular tracer, exhibited a significant correlation (p < 0.01) with SOC estimated 

using both Bayesian Inference approach (a) and EC–tracer method (b). The Pearson’s correlation coefficient for the Bayesian 

Inference approach (0.62) was higher than that for the EC–tracer method (0.54), suggesting that SOC derived from the Bayesian 

Inference approach was more reliable. In addition, the average SOC concentration estimated by the Bayesian Inference approach 

(4.1 ± 2.6 μg m-3) was lower than that by the EC–tracer method (5.8 ± 4.2 μg m-3) (c).45 
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Figure S8. Concentrations of PM2.5 primary species during 2007-2020. 
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Figure S9. Concentrations of PM2.5 secondary species during 2007-2020.50 
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Figure S10. The observation (red) and prediction (blue) concentration of Cl-. After eliminating variations in anthropogenic sources 

on Cl-, it decreased slightly at a rate of –2% yr–1 during 2007-2020 (blue).
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Figure S11. Correlations between SO4
2−/SO2 (a), as well as NO3

−/NO2 (b). Two asterisks denote p value less than 0.01. All samples 55 
were categorized into four groups according to the quartile ranges of RH. The slope became greater with rising RH, indicating 

conversion of primary pollutants to secondary species was more efficient. 
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Figure S12. Correlations between sulfur oxidation rate (SOR) and O3 (a), temperature (b), pH (c), as well as ALWC (d). 60 
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Figure S13. Correlations between predictions and observations of SOR (a) and NOR (b). Solid line is 1:1. 
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Figure S14. Variations of O3 (a) and temperature (b) during 2007-2020. 
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Figure S15. Correlations between nitrogen oxidation rate (NOR) and O3 (a), temperature (b), pH (c), as well as ALWC (d).
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Figure S16. Variations in 2 × n(SO4
2–) + n(NO3

–). 
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Figure S17. Recalculation of pH (a) and ALWC(b) using average temperature and RH as model input. The upward trend in pH and 

downward trend in ALWC still exist. 

 



 

21 

 

 75 

Figure S18. Correlations between SOA and pH, ALWC, as well as O3. 
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Figure S19. Variations in pH (a) and ALWC (b) under different pollutant levels. The dark color bars represented original model 

prediction, while the light color bars represented recalculation by average temperature and RH. A low pH occurred under high 

pollutant level (IT0). With decrease of pollutant levels (IT0-IT4), ALWC exhibited a downward trend. 80 
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Figure S20. Chemical budget of bext from different components in PM2.5. 
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 85 

Figure S21. The difference of bext under different pollutant levels. Bars represent bext and circles represent differences between Local 

scheme and the revised IMPROVE scheme. When pollutant levels were high (IT0), the difference was above 30%, while the 

difference was under 10% when pollutant levels were low (IT4). 
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