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Abstract. Understanding the chemical composition and quantifying the sources of organic aerosols (OA) are
crucial for assessing their formation and human-related effects, yet individual mass spectrometry techniques still
struggle to reveal the effects of sources and atmospheric processes on OA composition at the molecular level.
In this study, we combined for the first time a high-resolution time-of-flight aerosol mass spectrometer (AMS),
a thermal-desorption aerosol gas-chromatograph-mass spectrometer (TAG-MS), and an electrospray ionization
high-resolution orbitrap mass spectrometer (HR-MS) to analyze OA at a background site in South China from
bulk to molecular levels. Positive matrix factorization (PMF) analysis based on AMS data and organic tracers
from TAG-MS showed that the low-oxidized oxygenated OA (LO-OOA1) was mainly contributed by biomass
burning-related OA (BB-OA) and gas-phase secondary OA (gas-pSOA), while the high-oxidization degree of
more-oxidized oxygenated OA (MO-OOA) was mainly due to isoprene-derived secondary OA. Using a non-
negative matrix factorization (NMF) approach constrained by PMF source contributions to offline HR-MS data,
we identified molecules associated with each PMF-resolved factor. The NMF resolved cooking-related OA (C-
OAnNmMr) factor exhibited the highest O/C ratio but the lowest double bond equivalent (DBE) value, whereas the
BB-OANMF factor was characterized by the greatest aromaticity and a high abundance of nitroaromatics. For
secondary processes, sulfur additions played a more significant role in gas- pSOA than in secondary inorganic
aerosol-related OA (SIA-OA). Overall, this study enhances our understanding of the sources and formation of
different AMS components, reveals the impact of different sources on the molecular composition of OA, and
underscore the prominent impact of anthropogenic emissions and their photo-oxidation on ambient OA in areas
with low particulate matter pollution but high O3 levels.
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1 Introduction

Organic aerosols (OAs), which make up 20 %—90 % of fine
particulate matter (Jimenez et al., 2009; Kanakidou et al.,
2005), have garnered significant scientific interest due to
their substantial climate forcing (Mahowald, 2011; Szopa et
al., 2021), environmental impacts, and health effects (Dael-
lenbach et al., 2020). These aerosols are complex mix-
tures influenced by primary emissions from both anthro-
pogenic and biogenic sources, as well as secondary chemi-
cal processes involving volatile organic compounds (VOCs)
through multiphase atmospheric reactions (Ziemann and
Atkinson, 2012). Understanding the chemical composition,
origins, and formation mechanisms of OA is crucial for as-
sessing their adverse effects and developing effective control
strategies. However, the chemical complexity of OA, char-
acterized by diverse functional groups and molecular struc-
tures, presents significant analytical challenges (Jimenez et
al., 2009). In recent decades, there have been remarkable
advancements in analytical techniques, evolving from tra-
ditional offline gas/liquid chromatography-mass spectrome-
try (GC/LC-MS) methods that identify limited tracer com-
pounds to state-of-the-art online instruments like extrac-
tive electrospray ionization (EESI-TOF-MS) and chemical
ionization time-of-flight mass spectrometer (CI-TOF-MS),
which enable near-molecular real-time measurements (Er-
vens et al., 2024). High-resolution mass spectrometry (HR-
MS), including orbitrap and Fourier transform ion cyclotron
resonance mass spectrometers, has become widely used for
characterizing chemical composition of OA at molecular
level. These techniques facilitate the detection of thousands
of molecular species, significantly enhancing our under-
standing of OA composition (Noziere et al., 2015; Laskin et
al., 2018).

Current methodologies for source apportionment of OA
primarily employ receptor models such as positive matrix
factorization (PMF). These approaches include: (1) tracer-
based PMF, which relies on a limited set of molecular
markers (Reff et al., 2007), and (2) coupling aerosol mass
spectrometry (AMS)-based chemical composition with PMF
(Jimenez et al., 2009; Ulbrich et al., 2009). The tracer-
based PMF often identifies ambiguous SOA factors (e.g.,
secondary inorganic aerosols) with uncertain chemical mech-
anisms and source contributions (Reff et al., 2007; Wang et
al., 2017a; Lyu et al., 2020). Although AMS-PMF has suc-
cessfully resolved specific OA sources, i.e., biomass burning
and cooking, in certain regions (Zhou et al., 2020), it faces
limitations in achieving chemical specificity for OA from
many other important sources (Zhang et al., 2018). Typi-
cally, AMS-PMF categorizes the predominant OA mass frac-
tion based on oxidative characteristics rather than specific
emission sources, i.e., low-oxidized and more-oxidized oxy-
genated OA (Zhou et al., 2020; Zhang et al., 2018). Emerging
techniques like EESI-TOF-MS now allow for near-molecular
online measurements (Lopez-Hilfiker et al., 2019), and when
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coupled with advanced statistical methods such as bin PMF,
they can explore the components and sources of OA (Zhang
etal., 2019; Nie et al., 2022). However, challenges remain in
offline HR-MS-based source apportionment due to the lack
of structural information for identified compounds, and the
detection of more compounds compared to online TOF-MS.
Different structural isomers from biogenic VOCs (BVOC)
and anthropogenic aromatics often share identical molecu-
lar formulas, complicating molecule-level source apportion-
ments (Zheng et al., 2023).

To address these questions, we conducted a comprehen-
sive study on the composition and sources of OA at a re-
gional background site in Hong Kong during September—
November 2020, a period marked by global lockdowns
due to the COVID-19 outbreak. Advanced analytical tech-
niques including high-resolution AMS (HR-AMS), thermal-
desorption aerosol gas-chromatography coupled with time-
of-flight mass spectrometry (TAG-TOF-MS), and high-
performance liquid chromatography with high-resolution
mass spectrometry (HPLC-HR-MS) were utilized in the
study. Although the composition, origin, and evolution of OA
in Hong Kong have been extensively studied, previous re-
search primarily relied on HR-AMS measurements and anal-
yses based on molecular markers (Li et al., 2013b; Qin et al.,
2016; Lyu et al., 2020; Huo et al., 2024a). Given that OA in
Hong Kong is influenced not only by local emissions, i.e.,
vehicle exhaust and cooking, but also by regional transport
(Lyu et al., 2020; Huo et al., 2024b), the complex interac-
tions of these sources necessitate a deeper understanding of
OA composition and sources at the molecular level.

2 Experimental methods

2.1 Sampling campaign and online measurements

A comprehensive sampling campaign was conducted at
the regional background site Hok Tsui (HT, 22.20°N,
114.253°E) from 29 September to 18 November 2020. This
site is situated on the southeastern tip of Hong Kong Island,
facing the South China Sea. During the campaign, 31 valid
daily fine particulate matter (PM> s) samples were collected
from 7 to 16 November 2020, using a high-volume sampler
(TE-6070, TISCH, U.S) operating at a flow rate of approxi-
mately 1.0 m3 min~! (Table S1 in the Supplement). Prebaked
quartz filters (450° for Sh) were used to capture the par-
ticle matter, and the filters were subsequently wrapped in
pre-baked aluminum foil after sampling. Field blank sam-
ples were also collected to ensure data accuracy. All samples
were transported to the laboratory and stored at —20 °C prior
to analysis.

A suite of online instruments was utilized to simultane-
ously measure gaseous pollutants and the chemical compo-
sition of particulate matter. To align with the PM> 5 sam-
pling periods, the online datasets were filtered for use in
this study. HR-TOF-AMS was used to measure the compo-
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sition of non-refractory submicron particulate matter (PM).
Combing with the PMF method, four OA components were
identified: a hydrocarbon-like OA (HOA), two less-oxidized
oxygenated OAs (LO-OOA1 and LO-O0OAZ2), and a more-
oxidized oxygenated OA (MO-OOA) (Fig. S1 in the Supple-
ment). Additionally, a TAG-TOF-MS was employed to mea-
sure organic markers, while a Proton Transfer Reaction time-
of-flight mass spectrometer (PTR-TOF-MS) was applied to
determine ambient concentrations of VOCs. Detailed infor-
mation on the instrumental settings, calibrations, and data
processing for HR-TOF-AMS (Huo et al., 2024a; Yao et al.,
2022), TAG-TOF-MS (Huo et al., 2024b; Lyu et al., 2020),
and PTR-TOF-MS (Yuan et al., 2024; Lyu et al., 2024) can
be found in previous studies and is also briefly described in
Supplementary text and Table S2. Furthermore, concentra-
tions of PM s, a series of trace gases (CO, NO, NO», O3 and
SO»), and meteorological parameters (temperature, relative
humidity) were continuously monitored.

2.2 HPLC-HR-MS analysis

The molecular composition of OAs in the offline PM; 5 fil-
ters was analyzed using a high-resolution Q-Exactive Or-
bitrap mass spectrometer (Thermo Electron, Inc.) equipped
with a heated electrospray ionization (ESI) source operating
in negative mode. To address potential intermolecular sup-
pression effects during ionization, an ultra-high performance
liquid chromatography system (UHPLC, Dionex UltiMate
3000, Thermo Electron, Inc.) was employed for compound
separation (Zhang et al., 2024; Thoma et al., 2022). Detailed
descriptions of the analysis procedures and instrumental set-
tings are available in the Supplement (Zhang et al., 2024;
Wang et al., 2017b). Briefly, two pieces of PM 5 filters were
punched using a stainless-steel puncher (® =20 mm), and
the dissolved organic matter was extracted with 6 mL of mix-
solvents (2x 3 times, methanol : toluene =1: 1, v/v) using an
ultrasonic cold-water bath for 20 min. The extracts were fil-
tered through a 0.22 um polytetrafluoroethylene membrane,
combined, and evaporated to near dryness under a gentle
stream of high-purity nitrogen. The residue was redissolved
in 150 uL. of methanol and centrifuged, with the supernatant
transferred for subsequent HR-MS analysis. The scanning
range of m/z was set from 50 to 800, with a typical mass
resolution of 140000 at m /z 200.

Non-target compound analysis was performed using the
open-source software MZmine-2.37 (http://mzmine.github.
io, last access: 29 June 2024). The analysis workflow in-
cluded raw data import, peak detection, shoulder peak fil-
tering, chromatogram building, chromatogram deconvolu-
tion, deisotoping, searching for adducts and peak com-
plexes, alignment, gap filling, identification, and duplicate
peak filtering (Wang et al., 2017b). Mass peaks were as-
signed to specific molecules with a mass tolerance of 2 ppm
for ESI-mode. The molecular formulas were constrained to
C1-40H0-10000-40No-5S0-3, with additional criteria applied
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to elemental ratios (e.g., H/C, O/C) and double bond equiv-
alents (DBE) to exclude chemically implausible formulas
(Wang et al., 2017b; Lin et al., 2012). Elemental ratios, DBE,
and modified aromatic index were calculated based on the as-
signed formulas of C.H,O,N,, Sy, where c, h, o, n, and s are
the number of carbon, hydrogen, oxygen, nitrogen and sulfur
atoms, respectively. All reported molecules underwent blank
subtraction, and those with an abundance ratio of less than
5:1 were excluded from the study (Ditto et al., 2018).

2.3 Positive matrix factorization (PMF)

The EPA PMF5.0 model was employed to determine the
relative contributions of different sources to the four AMS-
PMF OAs. The mathematical framework of PMF has been
described in detail in previous studies (Hopke, 2016; Nor-
ris et al., 2014). In brief, we used hourly concentration data
of AMS-PMF OAs and SOA tracers as input for the EPA
PMF model. While incorporating total OA mass along with
chemical tracers in the PMF analysis can help distinguish
the contributions of different sources to OA, it does not pro-
vide detailed source information for these AMS components,
nor does it reveal how atmospheric conditions influence their
oxidation states. The uncertainty u; ; for each species was
calculated using the following equations:

i = \z/(xi,j x EF) + (0.5 x MDL)? (x; ; > MDLs) (1)
5 x MDL

G (xi,j < MDLs) 2)

Ui j=
where x; ; denotes the concentration of species i in sample
J, EF is the error fraction of each specie, and MDLs is the
method detection limits for each species. Given that the con-
centrations of species used in PMF analysis can vary by or-
ders of magnitude, applying the default error fraction may
lead PMF to treat high concentration data as outliers, thereby
reducing model robustness and increasing uncertainty in the
results (Wang et al., 2017a). To address this issue, we adopted
the error fraction of 0.2 for OA components and polar SOA
tracers, and 0.3 for n-alkanes (Wang et al., 2019). The PMF
model decomposes the x; ; matrix into factor profile (fx, ;)
and contribution matrices (g; ) by minimizing the scaled
residue (Q) based on the u; ; matrix. The optimal number
of factors were preliminarily determined by examining the
change in Qure/ Qexp from 2-10 factors (Fig. S2). Bootstrap-
ping (BS) was then applied to test the robustness of each
solution, with factor matching rates above 80 % considered
acceptable (Jiang et al., 2024). Ultimately, a six-factor solu-
tion was adopted, which showed good correlations between
modeled and measured concentrations of each AMS-PMF
derived OA component (r =0.70-0.94), supporting the va-
lidity of using AMS-components as input variables.
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2.4 Non-negative matrix factorization (NMF)

The mathematical frameworks of PMF and NMF are vir-
tually identical, with the key difference being that NMF
only requires input values to be non-negative. Additionally,
the error matrix required for EPA PMF analysis is typi-
cally unnecessary for NMF. These characteristics make NMF
particularly suitable for factor decomposition of HR-MS
data, where determining the detection uncertainty for each
molecule is often challenging (Rund et al., 2023). The NMF
routine was applied to the molecular composition data from
the offline filter samples. However, we observed that com-
pared to previous online TOF-MS analyses, the number of
identified molecules using HR-orbitrap-MS increased signif-
icantly, reaching thousands, with some compounds sharing
the same formulas but potentially having multiple sources.
This complexity poses significant challenges for the inter-
pretability of NMF factors. To address this, daily concen-
tration data for the six factors obtained from the tracer-
based PMF model were also used as constraints in the NMF
model. This approach not only enhances the interpretability
of NMF factors but also helps elucidate the molecular forma-
tion mechanisms underlying the PMF factors. Specifically,
the contribution matrix of PMF factors was combined with
the intensity-normalized data of HR-MS molecules to form a
comprehensive input matrix, X.

X~GxF 3

The NMF analysis was conducted using a R package
“NNLM,” which tests the performance of 2—10 factors. The
function of “nnmf” decomposes the input matrix X into two
non-negative matrices, G and F, by minimizing the root-
mean squared residual (RMSE) between X and its approx-
imation, GF. Through this approach, both the percentages of
PMF factors contributing to each NMF factor and the inten-
sity fraction of each NMF factor relative to the total molec-
ular intensity can be derived from the reconstructed matrix
of GF. To determine the optimal number of factors, we plot-
ted the variation of RMSE against the number of factors and
selected the optimal value based on the Elbow rule (i.e., the
point at which the RMSE reaches a minimum). We also cal-
culated the global relevance between X and GF, following
the method described by Rund et al. (2023), to identify the
number of factors that best explain the variance. Further-
more, consensus cluster analysis was performed using the
R package “ConsensusClusterPlus” (Monti et al., 2003) to
further support the selection of the appropriate number of
factors. By integrating all these evaluation criteria, we deter-
mined that five-factor was the optimal choice, as this was the
smallest number that explained 99 % of the variance in the
input data matrix (Fig. S3). It is noteworthy that the modeled
factor concentrations showed good correlations with the in-
put values, with average uncertainties ranging from 0.1 % to
1.5 %.
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2.5 Trajectory Cluster Analysis

To assess the potential influences of regional transport on
the composition of OAs during the sampling campaign,
we used the National Oceanic and Atmospheric Admin-
istration (NOAA) Hybrid Single Particle Lagrangian In-
tegrated Trajectory (HYSPLIT) model (https://www.ready.
noaa.gov/HYSPLIT.php, last access: 1 July 2022) to cal-
culate 120h backward trajectories at 100 m heights using
archived Global Data Assimilation System meteorological
data (ftp://arlftp.arlhg.noaa.gov/pub/archives/gdas1, the link
can only be opened using FTP software, last access: 1 July
2022). These hourly trajectories were clustered into three cat-
egories (C1-C3, Fig. S4) based on their origins and trans-
port pathways. Category C3 (41 %) consisted of short-range
continental air masses originating from central and northern
China, reaching Hong Kong after traversing the Pearl River
Delta (PRD) region. Category C2 (37 %) originated from
North China and arrived in Hong Kong after passing through
the East China Sea and coastal cities in southern China. The
origins of Category C1 (22 %) could be traced to Mongolia,
with air masses transported to Hong Kong along eastern and
southern coastal cities. Additionally, a potential source con-
tribution function (PSCF) analysis was conducted to evalu-
ate possible source regions of PMF-derived source factors
(Jiang et al., 2024). The PSCF analysis was performed using
the open software Meteolnfo, with the 50th percentile of OA
concentrations set as the threshold for PSCF calculations.

3 Results and discussion

3.1 OA composition and influencing factors

It should be noted that although our previous study (Huo
et al., 2024a) reported AMS results, the differing time win-
dows between the two studies may lead to different con-
clusions. To ensure consistency with the offline PMj; 5 sam-
ples analyzed in this study, only the AMS data correspond-
ing to the same sampling period were selected and reana-
lyzed. Notably, even though the sampling campaign occurred
during a period influenced by both continental and costal
air masses from mainland China, the observed PMj 5 con-
centrations remained relatively low (11-35ugm™3, mean:
18 £5.0ugm™). This level was notably lower than his-
torical urban measurements in Hong Kong (Wu et al.,
2018). Yet, it still substantially exceeded the WHO guideline
of Sugm™3. The reduction in PM, 5 concentrations could
be attributed to decreased anthropogenic emissions during
the COVID-19 lockdown period (Huo et al., 2024a). Or-
ganic matter (OM = 1.8 x OC) (Gao et al., 2016) constituted
34 4 16 % of the PM, 5 mass, with its fractional contribution
increasing to 52 & 5.1 % in PMj, as quantified by AMS (Fig.
1a), underscoring the critical role of OA in particulate matter
formation. In our previous study, four OA components were
identified in PM; using the AMS-PMF method throughout
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the sampling period, including one HOA and three OOA fac-
tors (Huo et al., 2024a). As shown in Fig. la, the temporal
variation of OA concentrations was predominantly driven by
LO-O0A1 (44 + 12 %) and MO-OOA (32 +9.7 %), both in-
fluenced by regional transport, particularly LO-OOA1. For
example, the highest OA concentrations were observed on
the evening of 6 November, influenced by C3 air masses
from central/northern China, with LO-OOA1 contributing up
to ~70 % of the OA, indicating regional transport as a po-
tential driver of OA variation. For MO-OOA, back trajec-
tory analysis revealed that air masses originating from con-
tinental China (C3) were associated with ~ 17 % enhance-
ments in MO-OOA concentrations (Fig. S4b). In contrast,
HOA and LO-OOA2 exhibited limited temporal variation
(each comprising ~ 12 % of total OA) and varied less across
air mass clusters, reinforcing their characterization as back-
ground OA components at this site. Our previous investiga-
tion identified photochemical processing as the dominant for-
mation pathway for LO-OOA1 and MO-OOA compared to
aqueous-phase reactions throughout the whole sampling pe-
riod, evidenced by their differential correlation responses to
oxidant levels and relative humidity (Huo et al., 2024a). In
addition, photochemical reactions involving anthropogenic
emissions have been shown to play a particularly important
role in the formation of LO-OOA1, whereas MO-OOA is
more influenced by biogenic emissions. However, during the
focused sampling period in this study, LO-OOA1 exhibited
strong associations with gas-phase photochemical reactions
involving both biogenic and anthropogenic VOCs species,
as well as NO, (Fig. S5). In contrast, MO-OOA was more
closely associated with SOA formation processes driven by
ozone oxidation of BVOCs, as evidenced by strong correla-
tions between MO-OOA and both O3 and biogenic SOA trac-
ers (r > 0.50, p <0.01). For another OA component, LO-
OOA2, only a limited number of species (e.g., hydroxyglu-
taric acids and adipic acid) showed good correlations with its
concentrations, suggesting distinct secondary processes in its
formation. Strong correlations were observed between HOA
and anthropogenic species related to primary emissions, such
as toluene, benzene/ethylbenzene fragments, NO, and high-
molecular-weight alkanes (> Cps). HOA was generally con-
sidered to relate to vehicle emissions. While vehicle emis-
sions are important sources of benzene-like species and NO,
(Yuan et al., 2024), they predominantly emit low-molecular-
weight alkanes (< Cpg) (Geng et al., 2019; Fu et al., 2011).
The high-molecular-weight alkanes are mainly derived from
higher plants, but particles from primary biological emis-
sions are typically in the coarse mode (Fu et al., 2011). Thus,
our results suggest that HOA might also be influenced by
anthropogenic emissions associated with biogenic materials,
such as biomass burning or cooking. The presence of m/z 55,
57 and CO;‘ in the mass spectra of HOA supports these spec-
ulations (Zhou et al., 2020).
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3.2 Source contributions and origins of OA

To elucidate source-specific contributions to AMS-resolved
OA components, we performed PMF analysis by integrat-
ing AMS-OA components, SOA tracers from TAG-TOF-
MS, and VOC data from PTR-TOF-MS. Despite differences
in particle cut-off sizes between AMS and TAG-TOF-MS,
the AMS-derived OA mass was 110% (62 %-230 %) of
the OC/EC-based estimation in PMj 5, confirming substan-
tial organic matter enrichment in PM;. The positive corre-
lation between the results obtained from these two meth-
ods further supports the integration of the datasets (Fig. S6,
r =0.54, p < 0.01). This combined approach has been suc-
cessfully applied in several previous studies to determine OA
sources (Huo et al., 2024a; Huang et al., 2021). Based on the
chemical species loading in each factor, we tentatively at-
tributed the PMF-derived six factors to biomass burning re-
lated OA (BB-OA), cooking-related OA (C-OA), isoprene-
derived SOA (Iso-SOA), monoterpene-derived SOA (MT-
SOA), secondary inorganic aerosol-related OA (SIA-OA),
and gas-phase photochemical SOA (gas- pSOA), respectively
(Fig. S7). Figure 2c—i also presents the diurnal variations of
OA concentrations contributed by each PMF factor.

The BB-OA and C-OA factors were predominantly com-
posed of levoglucosan isomers (Simoneit, 2002) and oleic
acid (Rogge et al., 1991), respectively. The OA concentra-
tions from these factors exhibited similar diurnal patterns,
peaking in the morning, declining during the daytime, and
rising again in the evening (Fig. 2c—d). Notably, the C-
OA factor also demonstrated high loadings of toluene and
C8 aromatics, consistent with previous studies indicating
that cooking processes can emit significant fractions of aro-
matic compounds formed through the cyclization of unsatu-
rated fatty acids (Song et al., 2022, 2023). The two biogenic
SOA factors, Iso-SOA and MT-SOA, were characterized by
high loadings of 2-methylglyceric acid and C5-alkenetriols
for Iso-SOA, and 3-methyl-1,2,3-butanetricarboxylic acid
and Pinic acid for MT-SOA (Li et al., 2013a; Ding et al.,
2016). The diurnal variations of OA contributed by these
factors showed distinct patterns, with Iso-SOA peaking in
the afternoon (14:00-15:00LT) and MT-SOA reaching its
highest values at noon, suggesting differences in their forma-
tion mechanisms. Comparisons with the diurnal variations of
NO;, O3, and jNO; (the photolysis frequency of NO,) sug-
gest that [so-SOA may be related to O3 oxidation, whereas
MT-SOA is associated with NO, photocatalytic oxidation.
Both factors showed positive correlations with temperature
(r > 0.50, p <0.01), consistent with previous studies indi-
cating that elevated temperatures can enhance the emission
of biogenic VOCs (Ding et al., 2016, 2011). The gas-pSOA
factor exhibited high loadings of VOCs species, includ-
ing photochemical products from both biogenic and anthro-
pogenic species, supporting its association with gas-phase
photochemical processes. This factor was less abundant in
particle-phase SOA tracers, implying that gas-pSOA would
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Figure 1. (a) Temporal variations in the mass concentrations of AMS-PM; components and PM; 5. The pie chart illustrates the average pro-
portions of each species contributing to the total PMj. (b) Air mass clusters based on 120 h backward trajectories arriving at the sampling site
during the study period. (¢) Temporal variations in the mass concentrations and average proportions of AMS-PMF derived OA components.

produce less-oxidized or first-generation SOA products. The
synchronous diurnal variation of gas-pSOA-contributed OA
with O3 suggested that gas-phase oxidation by O3 was the
main formation pathway, rather than oxidation by NO> pho-
tolysis (Fig. 2). SIA-OA was characterized by high load-
ings of nitrates, sulfates, and ammonium, along with an-
thropogenic SOA tracers such as m-/o-phthalic acid, hy-
droxylated benzoic acids, and low-molecular-weight alka-
nes (< Cyg), suggesting influences from anthropogenic emis-
sions such as biomass burning and vehicle emissions (Fu et
al., 2011). The SIA-OA showed low values at noon but in-
creased in the afternoon, peaking at 20:00, with a diurnal
pattern similar to RH but opposite to jNO>. As NO, pho-
tolysis weakens and RH increases, heterogeneous processes
could promote the formation of SIA. Furthermore, noctur-
nal oxidation of VOCs initiated by the NO3* radical and O3
might be an important source of STA-OA, as nighttime oxida-
tion has been reported as a major pathway of SOA formation
globally, particularly through NOs3* radical-initiated oxida-
tion (Pye et al., 2010; Hoyle et al., 2007; Liu et al., 2024).
Figure 2a shows the time series of OA concentrations con-
tributed by each factor. Overall, variations in OA concen-
trations during the sampling period were mainly associated
with gas-pSOA, BB-OA, and SIA-OA, contributing 29 %,
22 %, and 20 % to the total OA, respectively. Biogenic SOA-
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related processes and C-OA accounted for 18 % and 11 %
of OA, respectively. Figure 2b illustrates the contributions of
PMF factors to each AMS-OA component. For LO-OOA1
and MO-OOA, which were the two main components driv-
ing OA variations throughout the sampling period, different
contributions from SOA factors were evident. The combined
contributions of gas-pSOA and BB-OA to LO-OOAL1 ex-
ceeded 70 %, while SIA-OA’s contribution was negligible.
In contrast, the contribution of gas-pSOA to MO-OOA de-
creased to 21 %, with SIA-OA having the highest contribu-
tion to MO-OOA at 38 %, followed by biogenic SOA pro-
cesses (Iso-SOA: 22 % and MT-SOA: 11 %). Therefore, the
relatively higher oxidation degree of MO-OOA compared to
LO-OO0A1 could be attributed to greater contributions from
SIA-OA and/or biogenic SOA processes. However, given
that LO-OOA?2 has an even higher proportion of SIA-OA
(46 %) than MO-OOA, along with similar contributions from
gas-pSOA, this suggests that the formation of highly oxi-
dized organic compounds in MO-OOA might not be primar-
ily driven by SIA-OA. Instead, it appeared to be more closely
associated with biogenic SOA processes, particularly those
involving Iso-SOA.

A PSCF analysis was conducted to identify the poten-
tial source regions for each OA factor obtained from the
tracer-based PMF analysis during the sampling period. As
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shown in Fig. S8, one of the major source regions for BB-
OA was central-northern China, including Henan and Shanxi
provinces, where straw burning was an important source of
PM; 5 during the harvest season. Another source region for
BB-OA was northern China and the Korean Peninsula, with
fire maps (Fig. S9) indicating intense open BB activities in
these regions during periods of elevated BB-OA. Southern
China, including local emissions, was identified as a medium
to high potential region for both biogenic SOA (Iso-SOA
and MT-SOA) and C-OA, due to high biogenic emissions
and cooking contributions in these regions (Zhang et al.,
2025; Yao et al., 2021). However, coastal regions, including
northern China and the Korean Peninsula, were also poten-
tial source regions for Iso-SOA, indicating that combustion-
related sources might also play a significant role (Zhang et
al., 2025). For OA related to gas-pSOA and SIA-OA, the
medium to high potential source regions for gas-pSOA were
coastal cities in eastern and southern China. In contrast, the
potential source regions for SIA-OA also included north-
western China, such as Shanxi and Shaanxi provinces, where
these regions often experienced high NO, and STA-OA con-
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centrations due to anthropogenic emissions, e.g., coal com-
bustion (An et al., 2019).

3.3 Molecular composition of OA

The integration of molecular tracers with AMS analysis pro-
vides an effective approach for elucidating the sources of
OA, emphasizing the significant role of SOA processes in
OA formation in South China. However, the molecular trans-
formation mechanisms underlying the PMF-resolved fac-
tors, particularly for SOA, remain unclear. Thus, the molec-
ular composition of OA was analyzed using an ESI-HPLC-
HRMS based on offline daily PM; 5 samples collected dur-
ing the sampling period. A total of 10012 unique molecular
formulas were identified across all samples, among which
CHO compound accounted for 30 £ 2.7 % of formular num-
ber, but their relative intensity was 67 + 4.9 % (Fig. 3a). Cor-
respondingly, CHON compounds accounted for 42 £ 6.1 %
of the formular number, but their contribution to total inten-
sity was only 15 % 3.2 %. Additionally, the measured sulfur-
containing organic compounds (CHOS+CHONS) accounted
for 18 +5.4% of the total intensity. Unlike many studies
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conducted in mainland China, which are substantially influ-
enced by anthropogenic emissions or liquid-phase reactions,
high proportions of nitrogen-containing or sulfur-containing
compounds were frequently observed (Li et al., 2024; Han
et al., 2023; Zhang et al., 2024; Jiang et al., 2023). Nitrogen-
containing or sulfur-containing compounds are typically con-
sidered anthropogenic primary emissions or classes of rela-
tively stable compounds in SOA that related terminal oxi-
dation for oxygenated OA under high-NO, conditions (Han
et al., 2023; Fan et al., 2022; Jiang et al., 2023). In fact,
as the NO, concentration during the entire sampling pe-
riod was less than 10% of Os, our results may indicate
that the oxidation processes cannot effectively transform the
oxygenated OA into nitrogen-containing or sulfur-containing
compounds.

Previous studies have indicated that ESI- is more inclined
to detect oxidized and polar compounds (Lin et al., 2012;
Jiang et al., 2016). Figures 3b—d and S10 show the molec-
ular distribution of compound groups detected in this study.
Among the detected CHO compounds, C8—12 species are the
most abundant, accounting for over 50 % of the total inten-
sity. Several high-intensity compounds, such as CgH204_g,
CgH1005, CoH1405_¢, and C19H;605 have been commonly
detected in laboratory simulation studies and environmental
samples and are considered monoterpene-SOA components
(Table S3) (Romonosky et al., 2015; Xu et al., 2021). How-
ever, compounds with the same molecular formulas have also
been identified in biomass burning aerosols (Wang et al.,
2017¢) and SOA derived from aromatic oxidation (Mehra
et al., 2020; Kumar et al., 2023). In this study, positive cor-
relations were observed not only between these compounds
and biogenic species (Fig. S11) but also with anthropogenic
VOCs and SOA tracers, indicating their multiple sources.
Even if these compounds were derived from the oxidation
of biogenic VOCs, the influence of anthropogenic emissions
could not be ruled out, as biomass burning and cooking are
also important sources of biogenic VOCs (Zhang et al., 2025;
Song et al., 2022). The intensities of these compounds were
positively correlated with typical tracers for cooking and its
atmospheric oxidation products (i.e., oleic and azelaic acids)
(Xu et al., 2023; Bikkina et al., 2014), but not with lev-
oglucosan, supporting the potential origins from cooking for
these compounds. Due to the lack of corresponding struc-
tural information, it is challenging to determine the specific
sources of these compounds.

It is important to note that the oxidation of aromatic VOCs
is an important source of OA in this study. A series of
anthropogenic-related compounds were detected in our sam-
ples, exhibiting high abundance, such as C;HgO,, CsHgO4,
and C7H0Os5. Additionally, abundant CHON compounds
were detected, with C¢—Cj¢ nitroaromatic compounds dom-
inating the total intensity. Nitroaromatic compounds are
widely observed in environmental aerosols and are primarily
derived from the oxidation of anthropogenic-related VOCs,
particularly those associated with biomass burning OAs (Xie
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et al., 2017; Li et al., 2019; Cai et al., 2022). Overall,
molecular-level analysis based on offline HR-MS data in-
dicated that secondary SOA formation from both anthro-
pogenic and biogenic emissions was the main source of OA
during the study period. This highlights the complex inter-
play between different emission sources and the transforma-
tion processes contributing to OA composition.

3.4 Molecular associations with sources and SOA
processes

Although previous source apportionment methods using
molecular composition data from various online mass spec-
trometers (e.g., EESI-TOF-MS) have been widely applied to
determine the source of OA (Ge et al., 2024), these meth-
ods have primarily focused on specific fractions of OA, such
as CHO and CHON compounds, due to their importance as
precursors of particle SOA (Zheng et al., 2023; Ge et al.,
2024). To further understand the impact of PMF-resolved
sources and SOA processes on OA formation at the molecu-
lar level, a constrained-NMF model was applied by simulta-
neously incorporating the six PMF factors and the molecules
identified by HR-MS analysis. It is noteworthy that while
the hourly concentrations of each PMF factor are indepen-
dent, significant correlations were found between the daily-
average concentrations of MT-SOA, Iso-SOA, and C-OA,
aligning with the time windows of PMj 5 samples. As a re-
sult, an independent MT-SOA factor could not be obtained in
our constrained-NMF model (Fig. 4), as it was mainly shared
by the NMF factors of Iso-SOA and C-OA (referred as Iso-
SOANME and C-OAnmE, same for other factors). However,
the model effectively distinguished the BB-OA, gas-pSOA,
and SIA-OA factors resolved by tracer-based PMF model.
Overall, the five-factor solution explained over 99 % of the
total variance, allowing for the identification of molecules
associated with each tracer-based PMF factor. It should be
noted that the mass spectra of all factors resolved by the
constrained-NMF model might differ from those of source
samples or laboratory-generated SOA, as our results primar-
ily reflected the characteristics of each tracer-based PMF
factor observed in the real ambient atmosphere (Mo et al.,
2024). The compounds identified in each NMF factor may
not fully correspond to the names of the PMF factors, as
PMF factors represent not only specific sources but also
indicate that certain compounds may share similar forma-
tion pathways with the atmospheric processes implied by
the factor names. For example, in the Iso-SOAnmF fac-
tor, many anthropogenic-related compounds might also be
present alongside biogenic SOA, suggesting that these an-
thropogenic compounds could have similar atmospheric for-
mation pathways as biogenic SOA.
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Figure 4 presents the mass spectra for each factor obtained
from the constrained-NMF analysis, with several highly in-
tense species also indicated. As shown in Table S4, which
summarizes the average chemical parameters of each NMF
factor, the C-OAnMr was featured by the highest O/C ra-
tio and the lowest DBE value. Within this factor, a series of
highly abundant compounds, including CgH12,05, CgH;0Os5,
CgH1204, C9H140s5, CgH1206, C1oH1605 and Cy9Hy4Oe,
were observed. As previously mentioned, these compounds
may originate from the oxidation of monoterpenes emitted
from both biological sources and cooking. Previous studies
have suggested that although alkanals, alkenals, and alka-
dienals are identified as the main types of emissions from
cooking, their proportion in household cooking emissions in
China is relatively small. This indicates that the precursors
and SOA formed from cooking oil heating emissions may
not fully represent the precursors and SOA formed from real-
world cooking emissions (Yu et al., 2022; Song et al., 2022).
A recent study has shown that even during the cooking pro-
cess of fried foods, emissions of oleic acid and linoleic acid
are relatively low compared to aromatic hydrocarbons (Song
et al., 2022, 2023). Therefore, the presence of some high-
abundance aromatic compounds, such as C7HgO3, in this
factor is reasonable. Additionally, oxygen-containing com-
pounds, especially short-chain acids and aldehydes (i.e., hex-
anoic acid, hexanal, and nonanal), are abundant in cook-
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ing vapor. These short-chain acids can react with SO, in
the atmosphere to form organosulfates (Passananti et al.,
2016; Zhu et al., 2019), which explains the high abun-
dance of C6 organosulfate compounds observed in the C-
OAnNMF factor. Notably, we also observed a high abundance
of C1pH17NSOy7, a typical nitrooxy organosulfate generated
by the atmospheric oxidation of monoterpenes (Surratt et al.,
2008).

The Iso-SOANME exhibited an O/C ratio similar to that
of C-OAnMF but had the highest effective oxidation number
(nOefr) values among all NMF factors (Table S4). This ob-
servation supports our earlier speculation that the elevated
oxidation level of MO-OOA in AMS-PMF derived OA com-
ponents could be attributed to significant contributions from
Iso-SOA. In addition to several highly intense monoterpene
SOA species, a series of C5 oxygen-containing compounds,
such as CsHg_gO4 and CsHg_gOs, also displayed high in-
tensity in the Iso-SOANMmF factor (Fig. 4). However, due to
the lower ionization efficiency of ESI- for compounds with
fewer than six carbon atoms (Kebarle and Tang, 1993), the
abundance of these Cs compounds is not as high as that of
Ce_g compounds.

The BB-OAnMmF factor showed the lowest O/C and H/C
ratios but the highest DBE and Al values compared to other
NMEF factors (Table S4), indicating its high aromaticity. This
factor contained not only monoterpene SOA but was also rich

Atmos. Chem. Phys., 25, 13711-13727, 2025
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in oxygen-containing aromatic compounds (e.g., C7HgO»_3,
CgHgO3, and CgHgO4-_5). These compounds are potential
phenolic substances that may originate from the pyrolysis
of lignin (Siemens et al., 2023; Kawamoto, 2017; Lin et al.,
2016). Importantly, the mass spectrum of this factor included
a large fraction of nitrogen-containing compounds, partic-
ularly nitrophenols (e.g., CeHsNO3, CcH5NO4, C7H5NOs,
and CgH7NOs). Nitrophenols have been widely reported in
both fresh and aged biomass burning OAs, primarily formed
by the reaction of phenolic compounds from lignin pyroly-
sis with inorganic nitrogen (Li et al., 2019; Lin et al., 2017,
Song et al., 2018).

The gas-pSOANMF factor contained a high abundance of
aromatic-CHO compounds, nitroaromatic compounds, and
CHOS compounds (Fig. 4). The chemical processes involved
in gas-phase reactions are relatively complex. On one hand,
the high abundance of C8—C10 aromatic-CHO compounds
may result from the photo-oxidation of PAHs (Keyte et al.,
2013), and some nitroaromatic compounds can also be gen-
erated through gas-phase photochemical reactions (Cai et

Atmos. Chem. Phys., 25, 13711-13727, 2025

al., 2022; Fan et al., 2022). Given the high RH during the
sampling period, the uptake of SO, by VOCs in the gas
phase is a primary pathway for the generation of organosul-
fates (Bruggemann et al., 2020; Ye et al., 2018). Although
the atmospheric SIA formation processes are also complex
and may partially overlap with gas-pSOA processes, gas-
phase oxidation (both daytime "OH oxidation and night-
time NO3* oxidation) remains a major formation pathway
for STA (Zhu et al., 2023). Our results indicated that sul-
fur additions were less significant compared to gas-pSOA
processes. As mentioned earlier, we found that variations in
SIA-OA were potentially affected by the nocturnal oxidation
of VOCs (NOs3°/O3 oxidation). Notably, nighttime organic
nitrates generally formed through reactions between NO3*
and alkenes in the gas phase, with NO3* adding to the double
bond of unsaturated VOCs to generate alkene-like organic ni-
trates (Ng et al., 2017; Fan et al., 2022). A higher proportion
of alkene-like CHON compounds was observed in the STA-
OANME (21 %) compared to the gas- pSOANMmF factor (8 %),
with the compound CoH7NO3 (DBE = 2) showing the high-
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est average intensity in SIA-OAnmMr. These findings collec-
tively support the influence of nocturnal oxidation on the for-
mation of SIA-OA.

Figure 5 illustrates the relative abundance of molecules
identified by the PMF factor-constrained NMF method as
a proportion of the total identified compounds. Notably, the
contributions of biogenic SOA, cooking and BB to OA de-
rived from the molecular composition-based NMF analysis
aligned with the results from the tracer-based PMF model.
However, the contribution of gas-pSOA to OA from the
NMF method was 1.4 times that of the PMF model, while
the contribution of SIA-OA to OA was only 1/3 of the PMF
model’s estimate. Although the tracer-based PMF model can
mathematically separate atmospheric SOA processes into
SIA and gas-pSOA, these categories may still partially over-
lap in real-world conditions. As discussed above, gas-phase
oxidation, particularly nocturnal oxidation, is a major path-
way for SIA formation. Our results suggest that, in the
NMF analysis, many compounds associated with SIA pro-
cesses may have been over-attributed to gas- pSOA, poten-
tially leading to an underestimation of the contribution of
nocturnal oxidation to SOA formation. However, given the
relatively stable levels of SIA-OA observed during the sam-
pling period, and considering that misclassification between
SIA-related and gas- pSOA-related species did not affect the
contributions from other sources (BB, biogenic SOA, and
cooking) or the total SOA contributions, the results from the
molecule-based NMF analysis remain reasonably robust. Im-
portantly, both methods consistently indicated that gas-phase
oxidation of VOCs was a significant pathway for OA for-
mation throughout the study period, particularly for anthro-
pogenic VOCs. This is evidenced by the relative abundance
of potential aromatic compounds (DBE > 4), which ranged
from 45 % to 61 % in the NMF factors, highlighting the sub-
stantial impact of anthropogenic emissions on OA formation
in this study.

https://doi.org/10.5194/acp-25-13711-2025

4 Conclusions

This study offers a comprehensive understanding of the
sources and formation pathways of OA at a background site
in Hong Kong by integrating OA composition data from on-
line AMS, SOA tracers from TAG-TOF-MS analysis, and
molecular composition from offline HR-MS. Our findings in-
dicate that biomass burning and gas-pSOA were the main
sources of LO-OOA during the COVID-19 lockdown, influ-
enced by air mass transport from mainland China. In con-
trast, SIA-OA, gas-pSOA and biogenic SOA accounted for
over 90 % of MO-OOA, with Iso-SOA being a dominant con-
tributor to the high oxidation level. HR-MS analysis revealed
that CHO and CHON compounds were significant compo-
nents of OA, contributing over 60 % of the total intensity and
over 40 % of the formula count, respectively. This suggests
that atmospheric oxidation processes significantly led to the
accumulation of a few CHO compounds, while nitrogen-
addition reactions increased the diversity of the molecular
composition.

Given the complexity of atmospheric chemical processes
and the diverse sources of OA substances, relying solely
on non-targeted molecular composition for PMF analysis
can pose challenges in factor interpretation. The molecular
composition-based NMF model, constrained by PMF fac-
tors, enhances the interpretability of these factors and further
elucidates the intrinsic molecular composition differences
among sources and formation pathways. For instance, our
analysis revealed that gas- pSOA is more conducive to form-
ing S-containing organic compounds, whereas the SIA pro-
cess tends to produce more nonaromatic CHON compounds.
Ultimately, the source apportionment results from the NMF
analysis showed strong consistency with those from the PMF
analysis, both underscoring the significant impact of anthro-
pogenic emissions on OA formation during the sampling pe-
riod.

Hong Kong, a highly developed city with a dense popu-
lation, has maintained relatively low PM> s concentrations
compared to mainland China. However, further reducing
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PM; 5 levels to meet WHO standards remains a big chal-
lenge. Our findings indicate that regional transport of anthro-
pogenic emissions from mainland China continues to be a
major factor influencing OA formation in Hong Kong. Dur-
ing autumn days with frequent photochemical reactions, the
combination of anthropogenic pollutants and local biogenic
VOCs contributes to SOA generation. Therefore, effectively
reducing PM, 5 pollution in Hong Kong requires not only lo-
cal emission reductions but also regional cooperation. Given
China’s substantial progress in mitigating PM» 5 pollution
and the anticipated further decreases in atmospheric PM; 5
concentrations with the implementation of policies such as
the Double-Carbon Policy, this research offers valuable in-
sights into the sources and formation of OA under low PM
pollution conditions. These insights are crucial for develop-
ing effective PM, 5 control measures in the future.
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