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Abstract. Satellite observations of the total column dry-air carbon dioxide (XCO2) have been proven to support
the monitoring and constraining of fossil fuel CO2 (ffCO2) emissions at the urban scale. We utilized the XCO2
retrieval data from China’s first laser carbon satellite dedicated to comprehensive atmospheric environmental
monitoring, DQ-1, in conjunction with a high-resolution transport model and a Bayesian inversion system, to
establish a system for quantifying and detecting CO2 emissions in urban areas. Additionally, we quantified the
impact of uncertainties from satellite measurements, transport models, and biospheric fluxes on emission in-
versions. To address uncertainties from the transport model, we introduced random wind direction and speed
errors to the ffCO2 plumes and conducted 104 simulations to obtain the error distribution. In our pseudo-data
experiments, the inventory overestimated fossil fuel emissions for Beijing and Riyadh, while underestimating
emissions for Cairo. Specifically, we simulated Beijing and leveraged DQ-1’s active remote sensing capabili-
ties, utilizing its rapid day-night revisit ability. We assessed the impact of daily biospheric fluxes on ffXCO2
enhancements and further analyzed the diurnal variations of biospheric flux impacts on local XCO2 enhance-
ments using three-hourly average NEE data. The results of a case study indicate that a significant proportion of
local XCO2 enhancements are notably influenced by biospheric CO2 variations, potentially leading to substan-
tial biases in ffCO2 emission estimates. Moreover, considering biospheric flux variations separately under day
and night conditions can improve simulation accuracy by 20 %–70 %. With appropriate representations of un-
certainty components and a sufficient number of satellite tracks, our constructed system can be used to quantify
and constrain urban ffCO2 emissions effectively.

1 Introduction

More than 170 countries have signed the Paris Agreement,
vowing to keep the global average temperature increase
within 2 °C in this century. Accurate carbon accounting is
the basis for any mitigation measures. Over 70 % of the an-
thropogenic CO2 emissions are from urban areas (Agency,
2009; Birol, 2010). It is thus critical to develop effective
means to estimate urban CO2 emissions accurately. “bottom-

up” (inventory) approaches have shown good performances
in developed countries such as USA and EU (Crippa et al.,
2018; Gurney et al., 2009). However, huge uncertainties in
estimation of anthropogenic CO2 emissions are inevitable
in developing countries such as China and India because of
their rapidly growing economies and imperfect monitoring
systems. For example, the discrepancy between different es-
timations of CO2 emissions of China exceeded 1770 mil-
lion t (20 %) in 2011 (Shan et al., 2016), which is approx-
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imately equal to the Russian Federation’s total emissions in
2011 (Shan et al., 2018). Therefore, “top-down” (inverse) ap-
proaches could play a more significant role in those coun-
tries to estimate and update carbon fluxes. In addition, car-
bon emission inventories with a spatial resolution of 0.1°
are available at the global scale, however, Oda and Maksyu-
tov (2011) warned that available information is insufficient
to fully evaluate the relationship between CO2 emission and
the proxy data, such as population and nightlight (Oda and
Maksyutov, 2011). Consequently, associated errors would in-
crease at finer resolutions. On the other hand, the anthro-
pogenic carbon emissions are assumed to be known quan-
tities and are important as reference for analyzing a budget
of the three fluxes (These three fluxes reflect the respective
contributions to atmospheric CO2 concentrations from fossil
fuel emissions, ocean–atmosphere exchange, and a terrestrial
biosphere assumed to be net carbon neutral.) (Gurney et al.,
2005; Gurney et al., 2002). Therefore, there is an urgent need
to develop novel methods to acquire more robust and accu-
rate surface CO2 fluxes with fine resolution in urban areas
where the majority of anthropogenic CO2 emissions are lo-
cated.

The atmospheric inversion technique has been widely used
to retrieve carbon fluxes at large geographic scales (Bak-
win et al., 2004; Ballantyne et al., 2012; Bousquet et al.,
1999; Gerbig et al., 2003; Myneni et al., 2001; Stephens
et al., 2007; Watson et al., 2009), by using measurements
from the network of ground-based greenhouse gas measure-
ments. Dense and accurate observations of CO2 dry-air mix-
ing ratios (XCO2) are needed to inverse carbon fluxes at a
finer geographic scale (Kaminski et al., 2017; Rayner and
O’Brien, 2001), enabling smaller-scale sources emitting CO2
into the atmosphere to be better quantified (Eldering et al.,
2017a). Remote sensing from space is undoubtedly the most
appropriate means to obtain dense CO2 observations rapidly
in large extents (Buchwitz et al., 2017; Ehret et al., 2008).
GOSAT and OCO-2 provide us an opportunity to retrieve
column-average CO2 (XCO2) globally except in Polar Re-
gions. Recent studies have demonstrated the promising po-
tential of OCO-2 to help scientists identify localized CO2
sources (Schwandner et al., 2017), estimate regional CO2
fluxes (Eldering et al., 2017a) and map the net CO2 uptake
by the biosphere (Köhler et al., 2018; Li et al., 2018; Sun
et al., 2018; Qiu et al., 2024). It is still a challenging mis-
sion to obtain accurate estimates of CO2 fluxes using XCO2
products, especially in urban areas, because the signals re-
ceived by OCO-2/GOSAT need to be attributed unambigu-
ously to variations in atmospheric CO2 concentration, as op-
posed to variations caused by environmental factors such as
aerosols and clouds (Miller et al., 2014). Along with the suc-
cess of passive remote sensing of CO2, USA and China am-
bitiously planned to send their LIDAR (Light Detection and
Ranging) sensors into the orbit to realize monitoring CO2
in all latitudes and in nights (Abshire et al., 2018; Han et
al., 2017). Effect of aerosols and thin clouds on retrievals of

XCO2 can be eliminate through a differential process of sig-
nals from two very close wavelengths (Amediek et al., 2008;
Han et al., 2014; Mao et al., 2018). Therefore, a smaller bias
of retrievals of CO2-IPDA (Integrated Path Differential Ab-
sorption) LIDAR is expected comparing with the passive re-
mote sensing, which is beneficial for inversion of CO2 fluxes.
Previous studies had focused on performance evaluation of
CO2-IPDA LIDAR in terms of systematic errors, random er-
rors as well as the coverage (Ehret et al., 2008; Han et al.,
2017; Kawa et al., 2010). There are evident differences be-
tween XCO2 products of OCO-2 and those of the forthcom-
ing CO2-IPDA LIDAR in terms of coverage patterns (Kawa
et al., 2010; Kiemle et al., 2011).

Though positive relationship between satellite-derived
XCO2 anomalies/enhancements and CO2 emissions has been
witnessed (Hakkarainen et al., 2016), it is by no means a pre-
determined conclusion that CO2 sources and sinks can now
be measured from space at high resolution (Miller et al.,
2014). Atmospheric transport models are indispensable to
build a bridge between CO2 sources/sinks and measured con-
centrations (Rayner and O’Brien, 2001). Stochastic Time-
Inverted Lagrangian Transport (STILT) was invented in 2003
(Lin et al., 2003) and soon was utilized to inverse fluxes of
trace gases (Gerbig et al., 2003; Lin et al., 2004). In 2010,
Weather Research and Forecasting (WRF) model was cou-
pled with STILT (WRF-STILT), offering an attractive tool
for inverse flux estimates (Nehrkorn et al., 2010). Since then,
several studies used this tool to model CO2 distribution and
inverse CO2 fluxes using in-situ measurements (Kort et al.,
2013; Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al.,
2013) as well as satellite observations (Reuter et al., 2014;
Turner et al., 2018; Wang et al., 2014; Che et al., 2024). Re-
cently, STILT was further updated to facilitate modeling of
trace gases with a fine scale (Fasoli et al., 2018). The key
product provided by WRF-STILT is the “footprint” which
describes the sensitivity of measurements (receptors) to sur-
face fluxes in upwind regions. Then, the Bayesian inversion
method can be used along with the footprint and a-priori sur-
face fluxes to estimate a-posterior surface fluxes.

Unlike the passive remote sensing of CO2 that can scan
perpendicular to the direction of the satellite orbit, IPDA
LIDAR in practice has sensors that only operate in point
mode due to the unaffordable power consumption and cost
of implementing a scan mode. Such a difference can be ig-
nored when one tries to estimate large scale CO2 fluxes by
using satellite-derived XCO2 products with a resolution of
1° (or coarser). However, specific inversion methods, which
take the characteristics of LIDAR products into considera-
tions, are urgently needed for inversion of fine scale CO2
fluxes (Kiemle et al., 2017). Our previous work has already
confirmed that it is feasible to retrieve XCO2 in urban ar-
eas using the ACDL (Aerosols and Carbon Dioxide Lidar)
which is onboard on the Atmospheric Environment Moni-
toring Satellite (AEMS) DQ-1 of China (Han et al., 2024).
In this work, an inversion framework is used to inverse fine
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scale (∼ 1 km/0.01°) CO2 fluxes of urban areas using pseudo
XCO2 observations from ACDL. Our main objective is to
determine the ability and potential of ACDL to help us esti-
mate anthropogenic carbon emission in urban areas. In turn,
results of the performance evaluation will be the justification
for improve the configuration of the ongoing ACDL and its
successor which would be sent to the orbit in just 2–3 years
after AEMS.

In this study, we propose a framework based on DQ-1
XCO2 data to periodically assess urban-scale fossil fuel CO2
emissions. We employ Observing System Simulation Exper-
iments (OSSEs) to investigate the performance of DQ-1’s
ACDL XCO2 products in improving CO2 flux estimation
at an enhanced spatial resolution of 0.01°× 0.01° over ur-
ban areas. The OSSE consists of a forward simulation mod-
ule and an inversion framework. The forward module uti-
lizes WRF modeling for high-resolution simulations, allow-
ing us to capture fine-scale trace gas transport characteristics
and variations. We simulate pseudo-measurements and corre-
sponding errors based on hardware configurations, environ-
mental parameters, and physical process simulations within
this module. The inversion framework relies on footprints
calculated by WRF-STILT to estimate urban-scale emission
scaling factors using Bayesian inversion methods. The study
also accounts for the impacts of measurement errors, trans-
port model uncertainties, and biosphere flux uncertainties on
emission estimation uncertainty throughout the OSSE. Ini-
tially, we evaluate emission estimation uncertainty related to
transport model and measurement errors, focusing on three
cities: Beijing, Riyadh, and Cairo, each with distinct topo-
graphical influences. Riyadh and Cairo exhibit negligible lo-
cal biosphere flux impacts on emission estimates due to rela-
tively flat terrain and stable wind fields, categorizing them as
“plume cities” where CO2 emissions are typically captured in
plume forms due to these conditions (Ye et al., 2020). Build-
ing on these simulations, we conduct OSSEs to assess the
potential of using XCO2 data from multiple DQ-1 orbits to
track urban emissions regularly. Leveraging DQ-1’s unique
day-night revisit capability, we also evaluate uncertainties
arising from local biosphere flux variations in Beijing. Un-
like previous inversion studies using OCO-2/3, which pri-
marily sample during daytime, DQ-1’s day-night orbit allows
for more evenly distributed temporal sampling. Furthermore,
combining DQ-1’s day-night revisit capability, we introduce
for the first time an analysis of how biosphere flux variations
between day and night affect emission estimates using for-
ward simulations and Bayesian inversion. Lastly, we summa-
rize the significance of future satellite observations in moni-
toring urban emissions.

2 Data and method

2.1 ACDL XCO2 products

In order to design a device similar to the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) onboard the
CALIPSO satellite, the design of DQ-1 was initially pro-
posed in 2012. It was officially approved in 2017. Distinct
from other environmental monitoring satellites, a notable and
innovative highlight of DQ-1 is the integration of a lidar
payload for space-based top-down CO2 detection, known as
ACDL. In subsequent developments, ACDL underwent a se-
ries of laboratory prototype developments (Zhu et al., 2019)
and airborne prototype testing missions (Wang et al., 2021;
Xiang et al., 2021; Zhu et al., 2020). Finally, ACDL was
launched into a near-Earth sun-synchronous orbit at an al-
titude of approximately 705 km on 18 April 2022. DQ-1, as
a sun-synchronous orbiting satellite, has a stable daily transit
time of approximately 01:00 p.m. local time during the day
and 01:00 a.m. local time at night. ACDL began data collec-
tion in late May 2022 and officially commenced operations.
This study primarily utilizes data from June 2022 to April
2023 for further research.

ACDL employs standard IPDA lidar technology, using dif-
ferential absorption methods to acquire column concentra-
tions of atmospheric carbon dioxide (CO2). A detailed de-
scription of the XCO2 detection algorithms and products is
in preparation. In this paper, we briefly introduce its detec-
tion principles. ACDL emits a pair of nearly simultaneous
observation signals, one with a wavelength located at the
strong absorption position of the R16 line in the CO2 spec-
trum (on-line wavelength 1572.024 nm) and the other at a
weak absorption position of the same line (off-line wave-
length 1572.085 nm). The on-line and off-line wavelengths
are stabilized at 6361.225 and 6360.981 cm−1, correspond-
ing to 1572.024 and 1572.085 nm, respectively. This slight
wavelength difference enables ACDL to counteract interfer-
ence from aerosols and other molecules, excluding water va-
por, through the differential process of the reflected signals.
The detection of XCO2 by ACDL is calculated based on spe-
cific algorithms (see Sect. 2.4.1).

Figure 1 illustrates the detection principle of DQ-1. The
XCO2 products generated by ACDL are similar to those of
GOSAT, adopting a point sampling mode. The lidar oper-
ates in nadir observation mode, with approximately one 70 m
footprint observed every 350 m along the track.

According to Eq. (1), we calculate XCO2 by directly
using the integrated weighting function (IWF). Significant
differences in XCO2 measurements can be observed be-
tween ACDL and OCO-2/3. Currently, passive remote sens-
ing satellites like OCO-2/3 and GOSAT estimate XCO2 by
measuring the solar spectrum and using a priori information
guided by optimal estimation theory to derive XCO2(p), ul-
timately obtaining XCO2 (Miller et al., 2014). In contrast
to these traditional passive optical remote sensing satellites,
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Figure 1. The schematic diagram for DQ-1’s detection principle.

ACDL does not “estimate” xCO2(p) but directly “calculates”
the weighted average column concentration (Zhang et al.,
2024). During the integration phase of ACDL’s development,
we evaluated the WF (Weighting Function) shapes of various
on-line wavelengths and selected one that responds strongly
near the surface and weakly at higher altitudes (Han et al.,
2025). This design allows changes in surface CO2 concentra-
tion, driven by surface CO2 fluxes, to be more prominently
reflected in the column concentration. Therefore, this WF en-
hances the ability to identify surface CO2 variations and pro-
vides more information for subsequent CO2 flux inversion.

Unlike the XCO2 products from passive satellites such
as OCO-2/3, the XCO2 product from DQ-1 (hereafter re-
ferred to as XCO2Lidar to distinguish it from passive satel-
lite XCO2 products) is derived using the differential be-
tween on-wavelength (strong CO2 absorption) and off-
wavelength (weak CO2 absorption) measurements. In this
context, XCO2Lidar is obtained through the differential of the
lidar signals and integration weighting functions described in
Eqs. (1) and (2). Here, WF(p) represents the lidar signal and
p represents the pressure:

XCO2Lidar
==

2 · ln(Voff·Von−0
Von·Voff−0

)∫ p_toa
p_surfaceWF(p)dp

(1)

Here, Von and Voff represent the reflected signal energies at
the on-wavelength and off-wavelength, respectively, while
Von−0 and Voff−0 denote the transmitted signal energies.
psurface indicates the atmospheric pressure at the laser ground
point, and ptop represents the pressure at the TOA of the at-
mosphere.

The denominator of Eq. (1) represents the integration
weighting function, as detailed in the study by (Refaat et al.,

2016):

WF(p)=1σwf(λonλoffp) ·Ndry(p) (2)

Here, 1σwf(λon,λoff,p) denote the CO2 differential absorp-
tion cross-sections at the on-wavelength and off-wavelength,
respectively.Ndry represents the number of dry air molecules
per unit volume in the pressure layer. This formula allows for
the construction of the relationship between XCO2Lidar and
the CO2 profile CO2(p):

XCO2Lidar
=

∫ p_toa
p_surfaceCO2(p)WF(p)∫ p_toa
p_surfaceWF(p)dp

=

WF(p1)
IWF

·CO2(p1)+
WF(p2)

IWF
·CO2(p2)+ ·· · (3)

2.2 Study Area

Considering the available orbital tracks for DQ-1 inversion,
vegetation coverage, and the complexity of meteorological
conditions, this paper selects three cities and regions to high-
light the different sources of uncertainty in emission inver-
sion and the inversion capability of DQ-1. The selected cities
share the following characteristics: (1) high fossil fuel emis-
sions; (2) typical “plume cities” (Ye et al., 2020) character-
ized by ffXCO2 enhancements distributed in plume forms
(Deng et al., 2017). Riyadh, with a population of 8 million,
and Cairo, with a population of 20 million, have significantly
weaker biosphere contributions compared to Beijing. In sub-
sequent research, it is considered that the spatial gradient of
biosphere CO2 flux can be ignored compared to local fossil
fuel emissions.

To assess the impact of biosphere flux uncertainty on the
inversion process and separately evaluate the impact of day-
time and nighttime biosphere flux on the simulated local
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XCO2 enhancement, we selected Beijing, the capital city
of China, with a population of approximately 21.5 million.
Beijing is not only the political center of China but also
one of the most populous cities. Compared to its surround-
ing areas, Beijing has relatively less vegetation. Surround-
ing cities might have better-preserved natural ecological en-
vironments and more abundant vegetation cover due to less
industrialization and urbanization (Che et al., 2022). For in-
stance, the mountainous and suburban areas around Beijing
may have more forests, grasslands, and farmlands, whereas
green spaces within Beijing are often limited to parks, green
belts, and a few nature reserves. As a city with high fos-
sil fuel emissions and active biosphere exchange, Beijing is
well-suited for studying the impact of biosphere flux uncer-
tainty on emission estimates.

2.3 Atmospheric Model Setting

2.3.1 WRF-STILT

The spatial heterogeneity of emissions and dense point
sources (such as power plants) lead to a complex spatial
structure of urban emissions, resulting in intricate ffCO2
plumes combined with local atmospheric dynamics (Wang
et al., 2025). To explore fine-scale urban emission patterns,
this study employs the WRF-STILT model (WRF: Weather
Research and Forecasting, STILT: Stochastic Time-Inverted
Lagrangian Transport). The STILT Lagrangian model driven
by WRF meteorological fields is characterized by a realistic
treatment of convective fluxes and mass conservation prop-
erties, which are crucial for accurate top-down estimates of
CO2 emissions.

In this study’s application of STILT, hourly outputs from
version 4.0 of WRF are used to provide high-resolution me-
teorological fields, with the model grid configured to 51 ver-
tical (eta) layers. The 6-hourly NCEP FNL (Final) global op-
erational analysis data with a resolution of 1° are used as
initial and boundary conditions for meteorological and land
surface fields to provide the initial and boundary conditions
for WRF runs. The simulations run for 30 h, but only the 7th
to 30th hours of each simulation are used to avoid spin-up
effects in the first 6 h.

Each city uses the same one-way WRF nesting at 27, 9,
and 3 km resolutions, with Riyadh (23.7625° N, 45.7625° E
−25.4375° N, 27.4375° E), Cairo (29.1625° N, 30.4125° E–
30.8375° N, 32.0875° E), and Beijing (39.4° N, 115.5° E–
41.075° N, 117.175° E) having their innermost regions used
to filter DQ-1’s orbital data. The study area for STILT is set
to be smaller than the innermost WRF region to eliminate
the marginal effects of WRF. Footprints quantitatively de-
scribe the contribution of surface fluxes from upwind areas to
the total mixing ratio at specific measurement locations, with
units of mixing ratio per unit flux. The footprint used in lidar
satellite inversions is different from that used in general opti-
cal satellites, as detailed in Sect. 2.4.1. STILT (In this study,

we used the STILT model, version 2, to simulate atmospheric
transport processes.) is configured to release 500 particles per
receptor each time, with forward dispersion over 24 h. The
particle release heights for STILT are set within the range of
50–1000 m, with releases every 50, and 1000–2000 m, with
releases every 100 m, the spatial resolution of the STILT sim-
ulations is 1 km× 1 km. Generally, as MAXAGL increases
from 1 to 2 km, the urban enhancement increases and then
stabilizes (Wu et al., 2018).

2.3.2 Inventory of Fossil Fuel Emissions

This article uses The Open-source Data Inventory for An-
thropogenic CO2 (ODIAC) which is a global high-resolution
fossil fuel carbon dioxide emissions (ffCO2) data prod-
uct (Oda and Maksyutov, 2015). The 2023 version of
ODIAC (ODIAC2023, 2000–2022) is based on the Ap-
palachian State University’s Carbon Dioxide Information
Analysis Center (CDIAC) team’s (Gilfillan and Marland,
2021; Hefner et al., 2024) most recent national ffCO2 esti-
mates (2000–2020). The ODIAC emissions inventory pro-
vides 1 km× 1 km global monthly average ffCO2. The spa-
tial decomposition of emissions is accomplished using a va-
riety of spatial proxy data, such as the geographic location of
point sources, satellite observations of night lights, and air-
plane and ship tracks. Seasonality of emissions was obtained
from the CDIAC monthly gridded data product (Andres et
al., 2011) and supplemented using the Carbon Monitor prod-
uct (2020–2022, https://carbonmonitor.org/, last access: 20
October 2025). In this paper, monthly data from ODIAC are
time-allocated, and neither the subsequent modeling nor the
pseudo-data take into account the daily and weekly time-
variation of the ACDL product.

2.3.3 Background XCO2

To extract the XCO2 enhancement for DQ-1 inversion, we
define XCO2 enhancement as entirely driven by fossil fuel
emissions. A classic method for extracting orbital back-
ground concentrations involves selecting another “clean” or-
bit (minimally influenced by fossil fuel emissions) that is
spatially and temporally close, and using averaging or lin-
ear regression to approximate a background concentration
for the orbit under study. In this study, due to the fine-scale
urban area emissions inversion, the study area is small, mak-
ing it challenging to find another clean orbit for calculating
the background concentration.

Previous studies have used inversion methods to derive
background concentrations for orbits (Pei et al., 2022), but
these typically yield a background concentration for a region.
These methods usually produce a value unaffected by geo-
graphic location within a small area. However, for each or-
bit we study, a single, constant background concentration is
clearly unreasonable. Therefore, based on previous research,
we designed a simple and quick method to extract back-
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ground concentrations, generating a background line for each
orbit of interest.

To derive ffXCO2, which represents the enhancement of
XCO2 attributed to fossil fuel emissions, we need to sub-
tract the background XCO2 from the observational data ob-
tained by DQ-1. In the study (Ye et al., 2020), XCO2 is de-
composed into two components: XCO2trend and XCO2local.
Here, XCO2trend represents the non-local trend, while the
standard deviation σlocal of XCO2local indicates variations
at the local scale. We filtered the XCO2 samples with
XCO2< XCO2trend+ 0.5σlocal. These filtered data are des-
ignated as “background samples” (represented by blue tri-
angles in Figs. 3, 5, 7) due to their lower spatial variabil-
ity at the local scale compared to samples affected by ur-
ban ffCO2 emissions. We then performed linear regression
based on the “background samples” to recalculate the lin-
ear regression line, referred to as the “background line”. This
“background line” method accounts for spatial trends in the
background data. Unlike Ye et al. (2020), we utilized the low-
frequency (approximate) coefficients obtained from DWT to
characterize.

2.3.4 Biogenic Carbon Flux

We specifically considered the influence of biogenic flux
on the emission constraints in urban areas for DQ-1.
Two open-source NEE datasets were utilized in our study.
The first dataset is derived from the Carnegie-Ames-
Stanford Approach-Global Fire Emissions Database Version
3 (CASA-GFED3) model (van der Werf et al., 2010), which
provides 3-hourly average net ecosystem exchange (NEE) of
carbon. This dataset incorporates biogenic fluxes as well as
fluxes associated with biomass burning emissions, offering a
global coverage of 3-hourly average NEE.

Additionally, we considered the ODIAC dataset, which
provides advanced data-driven products on global primary
production, net ecosystem exchange, and ecosystem respi-
ration (Zeng, 2020). The ODIAC dataset offers 10 d aver-
age global NEE data and utilizes extensive ecosystem indices
from MODIS and ERA5 to deliver more precise data.

According to the study by Ye et al. (2020), to better de-
scribe the diurnal variations and spatial distribution of bio-
genic fluxes, the MODIS green vegetation fraction (GVF)
was used to downscale the 3-hourly NEE from the origi-
nal grid resolutions (CASA NEE 0.5°× 0.625° and ODIAC
NEE 0.1°× 0.1°) to the WRF domain resolutions (27, 9, and
3 km). This method assumes a linear relationship between
carbon uptake and release and the vegetation canopy cover-
age.

Our application of these datasets and downscaling meth-
ods enables a more accurate representation of biogenic flux
contributions to urban carbon emissions. By integrating high-
resolution biogenic flux data, we can improve the precision
of emission inventories and enhance our understanding of ur-
ban carbon dynamics. This approach allows us to better in-

form urban planning and policy-making aimed at reducing
carbon footprints and mitigating climate change impacts.

2.4 Emission Optimization Method

2.4.1 X-Stochastic Time-Inverted Lagrangian Transport
model (“X-STILT v1”)

XSTILT incorporates satellite profiles and provides com-
prehensive uncertainty estimates of urban XCO2 enhance-
ments on a per sounding basis (Wu et al., 2018). The sim-
ulated enhancement in CO2 emissions due to fossil fu-
els, 1CO2ffCO2(p)=< ffCO2, foot(h)>, can be interpo-
lated from the modeling results of CO2 fluxes and tracer-
tagged footprints. Therefore, a relationship between CO2
fluxes and XCO2Lidar is established:

XCO2Lidar
−XCO2Lidar

background ==
WF(p1)

IWF

·< ffCO2, foot (h1)>+
WF(p2)

IWF
·< ffCO2, foot (h2)>+·· · (4)

Here, XCO2Lidar
ffCO2,obs = XCO2Lidar

−XCO2Lidar
background rep-

resents the XCO2 enhancement extracted from DQ-1 ob-
servational data, and XCO2Lidar

background represents the back-
ground concentration selected from the DQ-1 orbit (detailed
in Sect. 2.3.3). The symbol <,> denotes the inner product
operator, ffCO2 is the prior emission flux, and foot(hn) rep-
resents the simulated footprints at different altitude layers.
This formula establishes the mathematical foundation for in-
version.

By integrating footprints from different release heights
(Sect. 2.3.1 explains the selection of STILT release heights),
we further simplify the above equation. Here, we define
XCO2Lidar

ffCO2,sim as the XCO2 enhancement simulated by the
atmospheric transport model.

XCO2Lidar
ffCO2,sim =< XSTILTLiadrffCO (5)

XSTILTLidar
=

∑n

i=1

WF(pi)
IWF

· foot(hi) (6)

Here, we define XSTILTLidar as the column-averaged foot-
print, corresponding to the column-averaged CO2 concentra-
tion. The inner product of the column-averaged footprint and
the prior emission flux yields the simulated XCO2 enhance-
ment. Thus, we can optimize the fossil fuel CO2 (ffCO2)
emission parameters using the simulated and observed XCO2
enhancements to achieve the best consistency between the
model and observed increments. By achieving this optimiza-
tion, we ensure that the model accurately reflects the ob-
served data, providing a reliable basis for further studies and
policy-making.

Considering previous studies that used OCO-2/3 and
GOSAT for inversion (Patra et al., 2021; Roten et al., 2022;
Wang et al., 2019), we selected one of these inversion meth-
ods (Ye et al., 2020) for comparison with DQ-1 inversions
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and validation using TCCON site data (see Sect. 3.2). The
posterior scaling factor was applied to the ODIAC inventory
flux to simulate XCO2 at TCCON site locations, and these
simulations were compared with TCCON data, assumed to
be the true XCO2 at those locations. ACDL observations
require the use of the IWF to derive X-STILT footprints,
which differ from those used for TCCON sites. The simu-
lated XCO2 for TCCON was obtained using an integration
method provided by TCCON, with 51 altitude levels corre-
sponding to the input levels of our STILT model. The foot-
prints from these 51 altitude levels were integrated using the
integration operator integration_operator_x2019 and the av-
eraging kernel ak_xCO2 to obtain the simulated XCO2.

2.4.2 Optimization of Emission Constraint Factors

We adopted a Bayesian inversion method similar to that used
by Ye et al. (2020), which utilizes OCO-2 observational data
to constrain ffXCO2, aiming to achieve correlation between
the model and observed ffXCO2 increments. Unlike the in-
version of individual emission grids, we optimize emissions
by adjusting a scaling factor (λ) for the entire city’s prior
emissions without modifying each grid’s flux individually.
The observational data along the DQ-1 orbit across all re-
gions of interest serve as constraints for the inversion, which
can be expressed as:

yobs = ysim · λ+ εobs (7)

Here, yobs and ysim represent the observed and simulated
ffXCO2 enhancements, respectively. The term εp denotes the
observational error, which consists of DQ-1 measurement er-
ror, model error, and model parameter error, defined as fol-
lows:

yobs =mean

 time2∫
time1

dXCO2obsdt

 ,
ysim =mean

 time2∫
time1

ffXCO2simdt

 (8)

Here, dXCO2obs represents the DQ-1 XCO2 enhancement
after removing the background concentration. ffXCO2sim
represents the simulated XCO2 enhancement, obtained from
the convolution of the fossil fuel emission inventory and
the footprint. We averaged the DQ-1 data over 1 s intervals
(7 km) along the orbit to obtain ffXCO2obs and correspond-
ing simulated data ffXCO2sim.

According to the Bayesian inversion method, we trans-
form the state vector into a scaling factor (λ), which rep-
resents the constraint ability of pseudo-observations on re-
gional emissions. The Jacobian matrix is given by the sim-
ulated XCO2 enhancement ysim. The observation error vari-
ance σ 2

measurement and model transport error variance σ 2
mod are

considered. We assume that DQ-1 observations are unbiased
with respect to the true values. Random errors were added
to the observations, following a Gaussian distribution with a
standard deviation of 0.5 ppm, representing the lower limit of
observational errors.

The transport model error was obtained by perturbing
wind speed and wind direction errors; more wind observa-
tions help reduce atmospheric transport uncertainties. For ex-
ample, data assimilation systems have proven useful in re-
ducing atmospheric transport errors in data-rich areas like
Los Angeles (Lauvaux et al., 2016). Besides systematic wind
direction errors, some areas exhibit positive/negative wind
direction biases (Ye et al., 2020). The X-STILT model pro-
posed by Wu et al. (2021) can correct wind biases by ro-
tating model trajectories. the transport model error propa-
gates by transforming the model ffXCO2 plumes with added
random wind speed and wind direction errors (by rotating
ffXCO2 plumes). To estimate transport model uncertainty in
the model ffXCO2, we performed multiple (104 times) ran-
dom wind speed and direction perturbations on the model
plume and extracted the uncertainty distribution of ffXCO2
using the 25th and 75th percentiles. We establish the loss
function J (x) to calculate the posterior scaling factor:

J (λ)= (yobs− ysimλ)T S−1
obs(yobs− ysimλ)

+ (λ− λa)2σ−2
sim (9)

σ 2
obs = σ

2
measurement+ σ

2
mod (10)

Here, Sobs represents the observational error covariance ma-
trix. We assume that the observational errors of different
orbits are uncorrelated, so Sobs is a diagonal matrix with
the observational error variances σ 2

obs on the main diagonal.
Since the DQ-1 measurement errors and atmospheric trans-
port model errors are unbiased and uncorrelated, we estimate
σ 2

obs by summing both error variances. λa represents the prior
value of the scaling factor, uniformly set to 1. σsim represents
the uncertainty of prior emissions, derived from previous
studies combined with the emission characteristics of differ-
ent cities. Since the ODIAC product does not provide uncer-
tainty estimates, ODIAC was originally designed for atmo-
spheric CO2 flux calculations to reduce model biases caused
by coarse grid resolution. Considering the simple downscal-
ing based on nightlights in ODIAC, urban emissions derived
from ODIAC are affected by errors related to emission dis-
aggregation. For example, Lauvaux et al. (2016) reported a
20 % difference compared to Gurney et al. (2012) despite
significant differences in emission modeling methods. Gur-
ney et al. (2019) further compared the ODIAC and Hestia
products for four US cities (Los Angeles, Salt Lake City, In-
dianapolis, and Baltimore), finding city-wide emission dif-
ferences ranging from −1.5 % (Los Angeles) to 20.8 % (Salt
Lake City). Empirical values of ODIAC ffCO2 uncertainty
can be obtained by comparing ODIAC inventories with other
emission fluxes, such as those created using high-resolution
top-down satellite products. Smaller temporal scales result in
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Figure 2. Schematic diagram of XSTILT, (a) represents the simulated footprints at each horizontal altitude level we set (one footprint per
50 m below 1000 m, one footprint per 100 m from 1000–2000 m, where MAXAGL represents the highest atmospheric altitude we simulate,
which is 2000 m) and the column average footprints obtained by integrating using the normalized integration function in (b) and (c).

greater empirical value deviations. Considering different city
emission characteristics, such as industrial cities like Cairo
and Riyadh with irregular emissions and large uncertainties
in industrial emissions, we set prior emission uncertainties
for these cities at 45 %. For large cities with distinct and reg-
ular emission characteristics, the uncertainty is set at 25 %,
as their emission estimates are more accurate compared to
industrial cities.

By minimizing the loss function, we obtain the posterior

scaling factor
∧

λ and posterior uncertainty:

= λa + σ
2
simy

T
sim(ysimSobsy

T
sim+ Sobs)−1(yobs− ysimλa) (11)

= (yTsimS
−1
obsysim+ σ

−2
sim)−1 (12)

To evaluate the performance of the scaling factor, we define
the mean kernel (AK= ∂/∂λ):

AK= (yTsimS
−1
obsysim+ σ

−2
sim)−1(yTsimS

−1
obsysim) (13)

The value of AK closer to 1 indicates a more accurate esti-
mation of the scaling factor.

2.5 OSSEs: Optimization of Emissions using Different
DQ-1 Tracks

Given the limited number of DQ-1 overpass tracks and the
impact of atmospheric conditions during overpasses on emis-
sion optimization, we implemented Observing System Sim-

ulation Experiments (OSSEs). These experiments were con-
ducted using multiple DQ-1 tracks to constrain urban fossil
fuel emissions repeatedly and to statistically evaluate DQ-1’s
potential in constraining urban fossil fuel emissions. Specif-
ically, we initially screened all DQ-1 overpass tracks, select-
ing those located downwind of major fossil fuel emission ar-
eas to better utilize DQ-1 data for constraining overall re-
gional fossil fuel emissions. For each city’s overpass track,
we extracted pseudo-observation data and modeling data.

DQ-1 is different from other passive remote sensing satel-
lites in that it is not only capable of night observation, but
also less affected by clouds and aerosols. Therefore, we stud-
ied the relationship between daytime and nighttime observa-
tions and emission estimation uncertainties, as well as the im-
pact of different tracks and the number of tracks on emission
estimates. We used the ODIAC fossil fuel emission inventory
as the prior emissions for the OSSEs, assuming that the prior
emissions are the true emissions and that emissions remain
stable over a short period. It is noteworthy that, in Sect. 3.3,
the prior emissions were constructed by combining ODIAC
fossil fuel data with NEE (Net Ecosystem Exchange).

Pseudo-observation data and modeling data for each city
were derived using the same method. Pseudo-observation
data were obtained by averaging the 1 s detection range of
the selected DQ-1 overpass tracks, with adjacent pseudo-
observation data separated by 7 km (1 s). This method helps
eliminate some of the background noise and wind speed
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impacts on emission optimization. We assumed that DQ-
1 observations are unbiased with respect to the true values
and added random errors to each DQ-1 observation, with
the error following a Gaussian distribution and a standard
deviation of 0.5 ppm. Pseudo-observation data are also un-
biased relative to the true values, with random errors ac-
cumulated over time for each observation data: σ (1 s)=√∑N

i=1σ
2
i,DQ-1

N2 Here, σ represents the random error of each
pseudo-observation data. Modeling data were obtained by
convolving the emission inventory of the area with the tracer
contributions corresponding to the geographic locations.

By using multiple DQ-1 overpass tracks to repeatedly con-
strain urban fossil fuel emissions and analyzing the results
statistically, we assessed the potential of DQ-1 in constrain-
ing fossil fuel emissions in urban areas. This approach al-
lowed us to examine the effectiveness of daytime and night-
time observations, the influence of different overpass tracks,
and the impact of track quantity on emission estimates.

3 Results

3.1 Fossil Fuel Enhancement in Urban Areas

In this section, we summarize the prior ffXCO2 emissions
for each study area. The total monthly emissions for Beijing,
Riyadh, and Cairo during the selected months (The detailed
overpass dates are emissions provided in Table S3) are ap-
proximately 2.4–3.5, 2.3–3.3, and 1.9–2.4 Mt C/month, re-
spectively. We constrain emissions by comparing observed
and simulated ffXCO2 enhancements. Here, ffXCO2 en-
hancement is defined as the increment in XCO2 concentra-
tion caused by local fossil fuel emissions. The prior ffXCO2
enhancement is simulated using the ODIAC prior emission
inventory and the STILT footprint (a summed 24 h column
integrated footprint) convolution. The observed ffXCO2 en-
hancement from DQ-1 is obtained by subtracting the back-
ground concentration from the observational data (as de-
tailed in Sect. 2.3.3 and shown in Fig. 3). By comparing
the prior ffXCO2 enhancement with the observed XCO2 en-
hancement, we evaluate the trends in ffXCO2 changes along
the tracks and explore the sources and detection capabilities
of the ffXCO2 signal.

Figure 3 presents the results of two DQ-1 overpasses over
Riyadh on 2 March 2023, and 20 June 2022, at 11:00 a.m.
Figure 3a and b show the simulated and the observed
XCO2 enhancement as a function of latitude for these two
overpasses. The maximum ffXCO2 enhancements observed
along the two tracks were 8 and 5 ppm, respectively.

In the overpass on 2 March, significant ffXCO2 enhance-
ments were observed by DQ-1 between 24.8 and 25.3° N,
with the simulated ffXCO2 also responding to this enhance-
ment. Although the peak observed values were narrower than
the simulated values, both were of similar magnitudes, with
only slight differences, and their trends were largely consis-

tent. However, the simulated ffXCO2 did not respond to the
observed enhancement in the 24.1 to 24.3° N range, which
may be due to the sensitivity of the STILT footprint to wind
direction.

Compared to the track on 2 March, the track on 20 June
shows better agreement between observations and simula-
tions, along with smaller posterior uncertainties (see Ta-
ble 1). The observed peak and the simulated peak were both
within the 23.8 to 24.6° N range, with a difference of less
than 1 ppm. The differences between the results of the two
tracks may be because the 2 March track passed through
the city’s main emission area and intersected the simulated
plume (Fig. 3c). In this case, the observed ffXCO2 fluctua-
tions were minimal, with values remaining high relative to
the background concentration, making it difficult to detect
significant enhancements. In contrast, the 20 June track was
downwind of the main emission area, making it more sensi-
tive to the city’s fossil fuel emissions and resulting in better
agreement between the simulated and observed values.

For Cairo, we examined ffXCO2 enhancements using six
DQ-1 overpasses on 26 July, 2 August, 16 August, 8 Novem-
ber, 15 November, and 22 November 2022 (Figs. S9–S10
in the Supplement). In contrast to Riyadh, the simulated
ffXCO2 enhancements over Cairo were mostly below 2 ppm,
indicating lower overall emissions in Cairo than in Riyadh.
The simulated ffXCO2 enhancements over Cairo were more
dispersed, showing a multi-point distribution rather than the
concentrated enhancements observed over Riyadh.

The observed XCO2 enhancement over Cairo were gener-
ally higher and narrower than the simulated ones, which were
smoother. Despite these differences, the trends in ffXCO2 en-
hancements between the simulations and observations were
similar and of the same magnitude (The latitudinal distribu-
tion and magnitude of the simulated enhancement (red line)
are generally consistent with those of the observed enhance-
ment (blue triangles)), except for the 26 July simulation,
which did not include some observed enhancements between
30.2 and 30.4° N, and the 8 November overpass, where a spa-
tial shift of approximately 0.2° was observed between the
simulated and observed ffXCO2 enhancements.

Overall, the comparison between DQ-1 observations and
WRF-STILT-based simulations suggests that the DQ-1 satel-
lite is well-suited for fine-scale urban emission optimization.
This indicates that DQ-1 can effectively be used for detailed
monitoring and analysis of urban emissions.

3.2 Comparison of DQ-1 and OCO-2 Restraint
Capabilities

To better compare the inversion results from OCO-2 and
DQ-1, we selected tracks that were spatially and temporally
close and located downwind of major urban emission ar-
eas. Figure 4 shows two pairs of OCO-2 and DQ-1 tracks
over Beijing on 1 December 2022, and 8 April 2023, both at
05:00 UTC, passing through the major emission downwind
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Figure 3. Comparison of the simulated and observed ffXCO2 enhancements from DQ-1 data over Riyadh on 2 March 2023 and 20 June
2022 around 11:00 UTC. Panels (a) and (b) show the DQ-1 XCO2 (black dots and blue triangles) and the simulated XCO2 (red solid line,
sum of simulated ffXCO2 and background concentrations) along the two orbits, averaged over 1 s. The black dots represent the background
concentrations involved in deriving the background. The black dots represent the data involved in the derivation of the background concentra-
tion (black solid line), which are linearly regressed against latitude after a discrete wavelet transform. Panels (c) and (d) show the simulated
ffXCO2 and the observed ffXCO2 obtained from the DQ-1 data. background XCO2 concentrations have been subtracted. The red boxes in
the panels (c) and (d) represent the urban areas. Vectors represent 10 m wind speeds (average wind speed simulated by WRF) and reference
vectors represent 10 m s−1 wind speeds.

area of the city. Figure 5 shows ffXCO2 enhancements and
wind fields at the time of the satellite overpasses. The results
clearly indicate significant ffXCO2 enhancements, exceeding
2 ppm in April, demonstrating that DQ-1 can observe notable
ffXCO2 enhancements from space.

Figure 5c, d, g, h show that the ffXCO2 enhancements
simulated from DQ-1 and OCO-2 overpasses are of similar
magnitude and spatial distribution, with strong spatial consis-
tency across different times due to stable local emissions and
wind fields. Beijing’s topography, with high elevations in the
northwest and low-lying plains in the southeast, influences
the prevailing west-to-east winds, and the flat terrain of the

main urban area means the simulated ffXCO2 is minimally
affected by topography. The smaller ffXCO2 enhancements
observed on 1 December compared to 8 April are primarily
due to wind directions affecting the track within the 40.2–41°
range, making it difficult to simulate emissions.

This comparison highlights the capability of DQ-1 to ef-
fectively observe and simulate urban ffXCO2 enhancements,
supporting its application in fine-scale emission optimiza-
tion.

Figure 5a, b, e, f illustrates the simulated and observed
XCO2 for two pairs of DQ-1 and OCO-2 tracks. The simu-
lated XCO2 (red line in the figures) is derived by adding the
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Figure 4. (a) and (b) show the position and XCO2 data of two pairs of OCO-2 and DQ-1 orbits that we selected for transit to Beijing at
05:00 UTC on 1 December 2022 and 05:00 on 8 April 2023, respectively.

background concentration to the simulated ffXCO2 extracted
along the satellite tracks. Overall, both OCO-2 and DQ-1
observations exhibit similar distributions, with high-value
points located in the same latitude ranges (On 1 December,
both the DQ-1 and OCO-2 overpasses exhibited similarly
strong latitudinal gradients in their background baselines,
with notable enhancements observed and simulated within
the 39.4–39.6° N range. Although the background latitudi-
nal gradients differed between DQ-1 and OCO-2 on 8 April,
both were weak in magnitude, and significant enhancements
were nevertheless consistently detected and simulated be-
tween 40.0 and 40.4° N). DQ-1 observations are generally 4–
8 ppm higher than OCO-2, attributed to the inherent charac-
teristics of the satellites – DQ-1 being an active lidar satellite,
largely unaffected by clouds and aerosols. This systematic
difference can be mitigated during background concentration
extraction due to the overall similarity in data distribution.

On 1 December and 8 April, DQ-1 and OCO-2 ob-
served ffXCO2 enhancements of approximately ∼ 2.5 ppm
and ∼ 1.5 ppm, respectively. Although OCO-2 did not cap-
ture the ffXCO2 enhancement within the 40.2–41° range on
1 December, and there was a ∼ 0.15° spatial shift between
observed and simulated XCO2 peaks on 8 April, the simu-
lated ffXCO2 was of the same magnitude as the observations.
This indicates that DQ-1 performs comparably to OCO-2 in
urban-scale inversions. The peak shift in OCO-2 data might
be due to errors in the horizontal wind field. The back-
ground gradient on 1 December was more pronounced than
on 8 April, and the integrated ffXCO2 enhancement along
the track was consistent with DQ-1 measurements, validating
the latitude gradient-based background extraction method for
urban-scale inversions.

Figure 6 compares TCCON site observations within the
Beijing study area with the simulated results for 1 December

and 8 April. The prior ffXCO2 (blue bars) represents the sim-
ulated ffXCO2 at the TCCON site, obtained using the pre-
viously described simulation method. The posterior ffXCO2
(light green and orange bars) is derived by applying the pos-
terior scaling factors from DQ-1 and OCO-2 overpass tracks
to the prior ffXCO2, with posterior uncertainties indicated.
The true value, provided by TCCON products, is shown by
the dark green bars.

Overall, DQ-1 and OCO-2 inversion results are similar
in magnitude, with DQ-1 results closer to TCCON observa-
tions. The differences between DQ-1 results and TCCON ob-
servations are 0.9 % and 16 % for 1 December and 8 April,
respectively, compared to 10 % and 25 % for OCO-2. This
demonstrates that DQ-1 can effectively constrain urban fossil
fuel emissions, performing comparably to, or even surpass-
ing, OCO-2 in certain tracks.

3.3 Impact of DQ-1 in Estimating Biotic Fluxes using
Daytime vs. Nighttime Tracks

Both biosphere carbon flux and fossil fuel emissions influ-
ence XCO2 variations. This section examines the impact of
biosphere flux on emission estimates. When ffXCO2 signifi-
cantly exceeds biosphere carbon flux, the biosphere’s contri-
bution to XCO2 changes can be negligible (e.g., in Cairo and
Riyadh, where the spatial gradient of NEE is much smaller
than fossil fuel emissions). This study attributes biosphere
carbon flux to vegetation production and human emissions.
This part of carbon emissions varies with the day-night cycle.
During the day, vegetation absorbs CO2 through photosyn-
thesis, which significantly outweighs CO2 release through
respiration. At night, vegetation only undergoes respiration,
releasing CO2.

As the world’s first lidar satellite capable of observing
XCO2 at night, DQ-1 offers groundbreaking potential in
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Figure 5. Similar to Fig. 3, (a)–(d) show the simulated ffXCO2 and measured ffXCO2 for the DQ-1 and OCO-2 orbits transiting Beijing
at 05:00 UTC 1 December 2022 and 05:00 UTC 8 April 2023, and (e)–(h) represent the comparison of the simulated ffXCO2 (colored
shadows) with the observed ffXCO2 enhancement (colored dots, minus background concentrations) from DQ-1 data collected over Beijing
at ∼ 05:00 UTC. Each panel is labeled with the date of observation. The red boxes in the panels (c), (d), (g), (h) represent the urban areas.
Vectors represent 10 m wind speeds and reference vectors represent 10 m s−1 wind speeds.
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Figure 6. TCCON site simulations received ffXCO2 (blue columns
represent simulations using a priori ODIAC lists, bright green
columns represent simulations using a posteriori lists estimated with
DQ-1, orange columns represent simulations using a posteriori lists
estimated with OCO-2, and dark green columns represent ffXCO2
observed by TCCON). The black lines on the columns represent
uncertainties.

studying diurnal variations in urban emissions. This section
leverages this feature to observe the impact of vegetation
rhythm and human activities on XCO2 changes. We com-
pare global three-hourly CASA data and ten-day average
NEE data from ODIAC. ODIAC’s ten-day average data can-
not separate diurnal NEE variations, while the higher tem-
poral resolution of CASA can effectively capture the time
gradient of NEE within the same day. We will illustrate the
impact of NEE on inversion and how this impact changes
between day and night. Previous satellite-based urban flux
inversions lacked night-time data, preventing day-night com-
parisons and separation of nocturnal and diurnal CO2 emis-
sions.

For this study, we selected two tracks on 9 January 2023, at
23:00 and 10 January 2023, at 11:00 (UTC). Given the close
timing of these tracks, we assume the total fossil fuel emis-
sions are the same for both. The 9 January track is approx-
imately 0.5° (about 50 km) downwind from the main urban
emissions, with an average wind speed greater than 3 m s−1.
Thus, the emissions detected by this track are considered to
originate from the previous five hours. The 10 January track
passes through the main urban emission area, capturing emis-
sions effectively. We simulate the previous 8 h gas diffusion
before the overflight (sunset on 9 January at 09:00 and sun-
rise on 10 January at 15:35 UTC). The simulated enhance-
ment for the 9 January track is assumed to come entirely
from night-time emissions, while the 10 January enhance-

ment comes from daytime emissions. Comparing the simu-
lation results with observations, both are of the same magni-
tude, indicating that the forward eight-hour simulation effec-
tively captures the observed ffXCO2 enhancement.

To explore the impact of diurnal biosphere carbon flux
on XCO2 enhancement, we couple prior emissions from
ODIAC with spatially scaled NEE data as the new prior emis-
sions (For the three-hourly NEE data, we matched using foot-
prints within the corresponding time period), then simulate
the XCO2 enhancement (In contrast to Sect. 3.1 and 3.2, here
we used ODIAC emissions combined with NEE as the prior
flux information). Using constant boundary conditions, lati-
tude changes do not need to be considered for background
concentration. Therefore, local XCO2 enhancement is de-
fined as the total XCO2 minus the minimum XCO2 value in
the track (Unlike Sect. 2.3.3). The XCO2 enhancement mea-
sured by DQ-1 is derived using methods outlined in previous
sections.

This approach allows us to accurately account for both
daytime and nighttime variations in XCO2 due to biosphere
activity, providing a comprehensive view of the urban carbon
flux.

Figure 8 presents a comparison of simulated and observed
XCO2 enhancements for two pairs of day and night overpass
tracks over Beijing on 9 January 2023, at 23:00, 10 January
at 05:00, 19 June 2022, at 23:00, and 20 June at 05:00. Over-
all, the simulated XCO2 enhancements that include CASA
NEE (blue line) on 10 January, 20 June, and 19 June, show
better agreement with the observed1XCO2 (black dots) than
simulations driven by fossil fuel emissions alone (red line).

The Fig. 8c shows that the XCO2 enhancements using
CASA’s diurnal NEE data differ significantly from those us-
ing ODIAC’s ten-day average NEE data. The simulation for
the 19 June track at 23:00 indicates that using CASA’s night-
time NEE data (blue line) can accurately simulate the ob-
served XCO2 enhancement, coming closer to the observed
XCO2 enhancement than the ffXCO2 simulation alone. In
contrast, the simulation using ODIAC’s ten-day average NEE
data (green line) shows a notable CO2 uptake in the 40.2–41°
range, starkly different from the CASA results and the ob-
served XCO2 enhancement. This discrepancy arises because
ODIAC’s ten-day average NEE data are insensitive to short-
term temporal variations and cannot reflect diurnal changes
within a day. Moreover, this period is Beijing’s summer, with
vigorous daytime vegetation activity leading to CO2 uptake
and a consequent drop in XCO2 (as seen in Fig. 8d, where
the daytime simulated XCO2 enhancement is much lower
than ffXCO2). According to the 19 June simulation results,
biosphere flux-induced XCO2 changes account for 21.2 %
(CASA) and −54.3 % (ODIAC) of the observed XCO2 en-
hancement.

For the 9 January track at 23:00, both CASA and ODIAC
data show significant XCO2 enhancements. However, the
CASA simulation aligns more closely with the observations.
This difference may be because ODIAC’s ten-day average
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Figure 7. Orbital simulation results for a pair of diurnal observations of the transit of Beijing on 9 January 2023 at about 23:00 (night) and
10 January 2023 at about 11:00 (day) UTC. The red boxes in the panels (c) and (d) represent the urban areas.

data, influenced by daytime data, diminish its accuracy in
night-time scenarios. The simulation results for the 9 January
track show that biosphere flux-induced local XCO2 enhance-
ments account for 13.37 % (CASA) and 7.73 % (ODIAC) of
the observed comprehensive XCO2 enhancement.

Overall, the biosphere flux’s impact on XCO2 enhance-
ment varies significantly between day and night. In urban-
scale inversions, DQ-1’s ability to rapidly revisit both day
and night can further optimize the influence of biosphere flux
on inversion accuracy. This capability highlights DQ-1’s po-
tential to provide more precise urban-scale fossil fuel emis-
sion constraints, especially by distinguishing diurnal varia-
tions in biosphere activity.

3.4 Emission Estimates and a Posteriori Uncertainties

In this section, we present the inversion estimation results for
emissions from Riyadh, Cairo, and Beijing using the DQ-1
tracks shown in Sect. 3.1. The inversion process considers
uncertainties arising from both measurement and transport.

The inversion yields a scaling factor for the total emissions
for each selected city. Specifically, for Beijing, we compare
the inversion results with the simultaneously passing OCO-2
tracks.

Each selected track underwent inversion. Table 1 shows
the posterior emission scaling factors for each track, along
with the uncertainties in the measured and simulated
ffXCO2. These uncertainties were determined using the
methods described in Sect. 2.4. Notably, the prior uncertainty
in the emission scaling factors for Beijing was set at 25 %,
compared to Riyadh and Cairo, reflecting better knowledge
of emissions from such a well characterized megacity (see
Sect. 2.4.2).

For the selected tracks over Riyadh, Cairo, and Beijing,
the posterior scaling factors (An emission factor greater than
1 indicates an underestimation by the prior inventory, while
a factor less than 1 suggests an overestimation.) were 0.75–
0.86, 0.98–1.21, and 0.53–1.06, respectively (Table 1). The
posterior emission scaling factors exhibit significant tempo-
ral variability, influenced by background conditions. As de-
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Figure 8. (a)–(d) represent the contribution of orbital XCO2 enhancement and biospheric fluxes to the local XCO2 enhancement for two
pairs of diurnal observations on 9 and 10 January 2023 and 19 and 20 June 2022, the black dots represent the 1 s averaged observations
(subtracted from the background values) on each orbit, the red solid line represents the simulated ffXCO2, and the green and blue solid lines
represent the simulated 1XCO2 (fossil fuel and biosphere fluxes) using different NEE data for simulated 1XCO2 (fossil fuel and biogenic
fluxes), where the green line uses ten-day averaged ODIAC NEE data and the blue line uses CASA three-hourly NEE data.

Table 1. Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO2 data.

City Overpass Prior total
emission
(Mt C/month)

Prior total
emission uncer-
tainty (σa)

Measurement
uncertainty
(σmeasurement,
units: ppm)

Transport
model
uncertainty
(σModel, units:
ppm)

Scaling
factor(λ)
± posterior
uncertainty σ̂

OCO-2 Scaling
factor/City
mean factor

Riyadh 2 March 2023 2.37 45 % 1.03 2.53 0.75± 0.20 0.80± 0.18
20 June 2022 3.49 0.98 2.58 0.86± 0.16

Beijing 1 December 2022 4.61 25 % 1.88/2.11 2.64 0.98± 0.15 1.09± 0.18
8 April 2023 3.35 1.57/1.93 1.79 0.65± 0.11 0.70± 0.14
9 January 2023
10 January 2023

2.40
2.40

2.01
1.99

3.04
1.45

0.91± 0.12
1.00± 0.14

0.83± 0.13

Cairo 19 June 2022
20 June 2022
26 June 2022
2 August 2022
16 August 2022
8 November 2022
15 November 2022
22 November 2022

3.81
3.81
2.43
2.49
2.49
1.96
1.96
1.96

45 % 1.78
1.52
1.08
1.45
1.67
1.22
0.98
1.11

2.11
1.12
0.56
0.71
0.87
0.36
1.31
0.21

0.96± 0.16
0.53± 0.11
1.06± 0.20
0.98± 0.12
1.21± 0.14
1.15± 0.16
1.19± 0.11
1.06± 0.13

1.10± 0.14

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated information for all selected orbits. Uncertainty components are listed for each track,
including the a priori uncertainty in the scaling factor and the measurement and transport uncertainty in the integral ffXCO2 (some specific track data inverted using OCO-2 data are bolded, and the
average emission scaling factor and a posteriori uncertainty for all tracks in each city are in the last column and highlighted in italics).
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scribed in the previous section, the emissions detected by
the track depend on its distance from the major emission
regions and the domain-averaged wind speed at the time.
The domain-averaged wind speed for the selected tracks was
consistently above 3 m s−1. Based on meteorological condi-
tions, the posterior values represent estimates of city emis-
sions for the hours preceding the overpass time. The poste-
rior uncertainty in the emission scaling factors was 0.16–0.20
for Riyadh, 0.11–0.20 for Cairo, and 0.11–0.16 for Beijing.
Compared to Beijing, the posterior scaling factor uncertain-
ties were generally higher for Riyadh and Cairo.

As discussed in Sect. 2.4, the prior emission uncertainties
were set to reflect measurement and transport errors. Table 1
shows that the relative contributions of observation error and
transport error vary across the three cities. For Riyadh, the
transport error was significantly larger than the observation
error, while for Cairo, the transport error was much smaller
than the observation error. In Beijing, the relative sizes of
transport error and observation error varied. The posterior
scaling factors for Beijing’s two OCO-2 tracks were almost
identical to those from DQ-1, with higher posterior uncer-
tainty due to higher observation error. Overall, Beijing’s pos-
terior uncertainty was lower than that of Cairo and Riyadh,
attributable to more stable prior emission characteristics.

Previous research (Ye et al., 2020) highlighted that the
scarcity of OCO-2 tracks near many cities remains a ma-
jor limitation in regularly quantifying emissions and objec-
tively tracking temporal variations from space. In contrast,
DQ-1’s minimal sensitivity to clouds and aerosols allows for
more tracks available for inversion. Our experiments in Bei-
jing, Cairo, and Riyadh found that, on average, more than six
tracks per month were available for inversion, including day
and night overpasses on the same day, further constraining
city emissions (see Sect. 3.3).

Based on the results in Table 1, we averaged the pos-
terior emission scaling factors and uncertainties for each
city’s tracks, yielding mean scaling factors and uncertain-
ties of 0.80± 0.18 for Riyadh, 1.10± 0.14 for Cairo, and
0.83± 0.13 for Beijing (Detailed monthly emission informa-
tion for different cities is provided in Table S3). This indi-
cates that, for the periods represented by the observations,
the prior monthly ODIAC product overestimates emissions
for Beijing and Riyadh, while underestimating emissions for
Cairo, Our findings in Cairo are consistent with earlier re-
search (Shekhar et al., 2020).

4 Discussion

4.1 Atmospheric Transport Model Errors

Systematic errors in model transport and erroneous statisti-
cal assumptions can significantly diminish the improvements
in land-based uncertainty by approximately a factor of two
(Wang et al., 2014). Hence, it is essential to control sys-
tematic errors and inaccuracies in transport models while

minimizing random errors in DQ-1 observations. In Observ-
ing System Simulation Experiments (OSSEs), we assess the
potential impacts of observational and transport errors on
the entire inversion process. Transport errors of tracers in
the atmosphere can lead to inaccuracies in flux estimates
derived from concentration observations. Typically, “inver-
sion” methods either ignore transport errors or only provide a
rough evaluation of their impact (Lin and Gerbig, 2005). This
section focuses on how uncertainties in atmospheric trans-
port model outputs influence CO2 flux inversion.

In our experiments, we set the prior flux uncertainty to
25 %–45 % based on the emission characteristics of differ-
ent cities. The uncertainty in DQ-1 XCO2 observations was
fixed at 0.5 ppm, representing the lower limit of observational
error. We examined the effects of wind speed and direction
errors on the performance of the inversion method. The errors
in the transport model were propagated by treating them as
conversions of model ffXCO2 plumes. Notably, for the cities
studied, errors were assumed to be unbiased. Wind direction
errors were analyzed by rotating the plumes around the emis-
sion center and incorporating random wind speed errors.

We illustrate these concepts using six tracks over Cairo.
The overall ffXCO2 distribution was generated by applying
random positive and negative wind direction biases (>−10°,
< 10°) to each track’s STILT footprint, rotating it 104 times,
and adding positive/negative wind speed biases (>−1 m s−1,
< 1 m s−1). Overall, the temporal variability in the posterior
emission scaling factors and uncertainties can be attributed
to transport model errors. The transport model error signifi-
cantly influenced the observed ffXCO2 distribution. Specifi-
cally, the track on 15 November was most affected by trans-
port model errors, likely due to its passage through the plume
boundary. In contrast, the track on 16 August experienced
minimal transport model errors, as it was further from the
simulated ffXCO2 plume, making it less sensitive to small
wind direction and speed errors, and The MLH will be higher
in summer days and that may reduce the uncertainties for the
footprints.

4.2 The Challenge of Separating Biological Fluxes in
Day and Night Orbits

In Sect. 3.3, we detailed how DQ-1’s short-term day-night
revisit capability allows for the consideration of diurnal and
nocturnal biogenic fluxes in emission inversions. Typically,
large-scale inversions do not account for uncertainties in fos-
sil fuel emission inventories and treat biogenic fluxes as un-
certainties in prior fluxes (Wang et al., 2014). Studies focused
on urban-scale inversions that do not utilize nocturnal tracks,
while directly considering biogenic flux impacts, have not ac-
counted for the diurnal variation of biogenic fluxes (Ye et al.,
2020). In this study, we leveraged DQ-1’s nocturnal observa-
tions to provide a method for separately considering biogenic
flux effects during day and night. Our results indicate that us-
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Figure 9. Box plots of the modeled integral ffXCO2 enhancement
(
∑

ffXCO2, m) for selected OCO-2 orbits over Cairo at the date la-
beled on the x-axis (2022). For each box, the center line indicates
the median (q2), and the bottom and top edges of the box indi-
cate the 25th and 75th percentiles (q1 and q3), respectively. The
whiskers extend to the maximum and minimum values. The num-
bers are the ratio of the interquartile spacing (q3−q1) to the median
(q2).

ing daytime average NEE data and nighttime NEE data can
result in differences of up to 70 % in inversion outcomes.

However, this approach has limitations in large-scale in-
versions. Separating daytime and nighttime emissions neces-
sitates a limited transport time due to the constraints of the
transport model, which means that simulated particles can-
not travel long distances under limited wind speed and time
conditions. To address this, more frequent overpass tracks,
including those from geostationary carbon cycle observa-
tion satellites such as GeoCarb (Moore et al., 2018), To-
tal Carbon Column Observing Network (TCCON) (Toon et
al., 2009), and MicroCARB, but these instruments are all
limited to daylight observations and therefore cannot sup-
port day–night inversion analyses, only DQ-1 is capable of
enabling such studies. Therefore, an increased availability
of high-precision and high-spatial-resolution nighttime data
is urgently needed. Currently, the number of DQ-1 tracks
does not support large-scale separate day-night inversions. In
large-scale flux inversions, biogenic fluxes are typically used
as prior uncertainty over weekly or monthly periods. Such
long-term and wide-scale data assimilation reduces the im-
pact of diurnal biogenic flux variations on inversion results.
Unlike other satellite measurements that are restricted to
daytime clear-sky conditions, DQ-1’s XCO2 measurements
provide uniform temporal sampling, thus allowing effective
quantification of diurnal variations in emissions.

Accurate downscaling methods for biogenic fluxes, such
as the Solar-Induced Fluorescence Model (SMUrF) (Wu et
al., 2021), and advanced vegetation models, like the Vege-
tation Photosynthesis and Respiration Model (VPRM) (Luo
et al., 2022; Mahadevan et al., 2008; Wei et al., 2022; Win-
bourne et al., 2022; Gourdji et al., 2022; Yang et al., 2024)
are crucial for precise biogenic flux calculations. Radiocar-

bon and land surface solar-induced fluorescence (SIF) data
aid in distinguishing between fossil fuel CO2 and biogenic
CO2 (Fischer et al., 2017). Recent research indicates that SIF
serves as a better indicator or proxy for gross or net primary
production compared to other vegetation indices.

4.3 Insights From Results of the OSSEs

In the emission inversion process, prior emissions are con-
sidered as fully distributed, optimizing regional emissions
for an entire city using a scaling factor, in contrast to grid-
specific inversions. As noted by previous research, using a
single scaling factor for the entire city limits the flexibility
to capture true spatial variations in fluxes compared to grid-
specific inversions. Estimating prior emission uncertainties at
the grid scale is challenging because grid-scale emission un-
certainties are typically much larger than those using scaling
factors (Andres et al., 2012).

Apart from uncertainties in the transport model, DQ-1
measurements, and biogenic fluxes, several additional error
sources may introduce biases in the inversion results. DQ-1
data’s measurement errors are assumed to be spatially un-
correlated due to the lack of high-resolution correlation data.
Additionally, random components of nonlinear and interfer-
ence errors in retrievals may introduce significant errors in
the inversions. In our OSSE, measurement uncertainty is as-
sessed at its lower bound.

Simulation results for Riyadh and Beijing indicate that
the enhancement of ffXCO2 generally exceeds 1.5 ppm and
can reach up to approximately 5 ppm, surpassing the un-
certainties in land-based observations (around 1 ppm) (El-
dering et al., 2017a, b). In contrast, Cairo’s ffXCO2 values
are mostly below 2.0 ppm, with some hotspots near high-
emission industries such as power plants. Detecting CO2
plumes in smaller cities is challenging due to limited de-
tectability of fossil fuel-derived CO2 plumes. Factors lim-
iting detectability include: (1) The number and location
of overpass tracks. (2) Overlap enhancements from nearby
cities or point sources. (3) Low ffCO2 emissions. To improve
the detection of city plumes, more ground-based in situ mea-
surements and high-altitude satellites with enhanced detec-
tion capabilities are necessary.

4.4 Influence of Planetary Boundary Layer Height on
Modeled XCO2 Enhancements

Vertical turbulent mixing, as the dominant process governing
the vertical transport of air parcels, regulates the dilution of
surface emissions within the planetary boundary layer (PBL)
(Li et al., 2025). Uncertainties in vertical mixing or PBL
height can influence both the magnitude and spatial distribu-
tion of atmospheric footprints through variations in horizon-
tal advection at different altitudes (Gerbig et al., 2008). Vari-
ations in the STILT-modeled mixed layer height alter the ver-
tical profiles of turbulent statistics that govern the stochastic
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Figure 10. Panels (a) and (b) illustrate the sensitivity of CO2
and XCO2 enhancements to variations in planetary boundary layer
height (PBLH) at different receptor altitudes, quantified by the co-
efficient of variation (i.e., the standard deviation divided by the
mean). Panel (a) presents the simulated results for three satellite
overpasses: 23:00 on 9 January 2023 (winter night, blue line), 05:00
on 10 January 2023 (winter day, orange line), and 23:00 on 19
June 2022 (summer night, green line). For each case, receptors were
placed at the locations of maximum modeled XCO2 enhancement
along the satellite track, with release heights consistent with prior
STILT configurations. Panel (b) shows the corresponding XCO2 en-
hancement simulations for each date, with the coefficient of varia-
tion annotated at the top of the panel to indicate the overall sensitiv-
ity across varying PBLH scenarios.

motion of Lagrangian air parcels (Lin et al., 2003), thereby
yielding distinct air parcel trajectories under different PBL
height.

In this section, we assess the sensitivity of both horizon-
tal footprints and column-averaged footprints (X-STILT) to
variations in the planetary boundary layer height (PBLH) as
simulated by STILT. Given the pronounced diurnal and sea-
sonal variability of terrestrial PBLH across most latitudes
(Gu et al., 2020), we selected three satellite overpasses across
Beijing to quantitatively evaluate the impact of PBLH on
footprint estimates: 23:00 on 9 January 2023 (winter night-
time), 05:00 on 10 January 2023 (winter daytime), and 23:00
on 19 June 2022 (summer nighttime). For each overpass, the
location (latitude and longitude) corresponding to the largest
modeled XCO2 enhancement along the track was selected as
the receptor location for STILT, with release heights consis-
tent with prior model configurations. Backward simulations
were conducted from the overpass time until local sunrise or
sunset (sunset for nighttime passes and sunrise for daytime
passes). A range of PBLH values from 300 to 1500 m, in
200 m increments, was tested.

Figure 10a illustrates the sensitivity of modeled XCO2 en-
hancements – calculated following the method in Sect. 2.4.1
– to varying PBLH values at different release heights for

three selected receptors. The x-axis, labeled Delta_XCO2
Uncertainty, quantifies this sensitivity as the coefficient
of variation (standard deviation divided by the mean) of
XCO2 enhancements obtained from simulations with differ-
ent PBLH values at the same release height. A higher value
indicates a stronger response of the modeled enhancement
to changes in PBLH. Results in Fig. 10a show that on the
nighttime overpass of 9 January 2023 (blue line), the relative
variation in modeled XCO2 enhancements remains within
∼ 10 % for release heights below 600 m and does not ex-
ceed 13 %, with a minimum of 3.03 % at 50 m. Similarly,
for the daytime overpass on 10 January 2023 (orange line),
relative variations remain below 13 % up to 950 m, with a
minimum of 3.36 % at 450 m. Notably, for this pair of con-
secutive day–night overpasses, nighttime sensitivity is gen-
erally higher than daytime at release heights below 650 m.
The nighttime overpass on 19 June 2022 (green line) ex-
hibits a broader vertical range of valid footprints – unlike
the 9 January case, where no valid footprints were simulated
above 650 m, possibly due to seasonal effects. This case also
shows a stronger dependence on PBLH at higher altitudes,
particularly between 750–1000 m, with the maximum sen-
sitivity reaching 36.6 % at 900 m. Overall, our findings sug-
gest that within the lower troposphere and across the selected
case studies, the influence of PBLH variability on modeled
XCO2 enhancements is generally on the order of 10 %, in-
creasing with receptor altitude. As column-averaged obser-
vations are less sensitive to the vertical distribution of air
parcels (Lauvaux and Davis, 2014), the sensitivity of mod-
eled column XCO2 enhancements to PBLH variations is no-
tably smaller. This is corroborated by Fig. 10b, which shows
modeled XCO2 enhancements as a function of PBLH for
each overpass, with corresponding coefficients of variation
annotated above the lines: 2.1 % (9 January), 2.9 % (10 Jan-
uary), and 2.8 % (19 June) – all lower than the minimum val-
ues observed in Fig. 10a.

Given that ACDL is equipped with an aerosol chan-
nel, it can provide extinction coefficient profiles and plan-
etary boundary layer height (PBLH) products (Dai et al.,
2024). In this study, we utilized ACDL-retrieved PBLH data
for forward simulations, which helps to mitigate errors as-
sociated with inaccurate PBLH settings. Moreover, since
satellite measurements represent column-averaged concen-
trations, they are inherently less sensitive to variations in
PBLH. Therefore, we conclude that PBLH has a negligible
impact on the inversion results presented in this study.

5 Conclusions

This study presents the use of DQ-1’s XCO2 observation
data to constrain fossil fuel emissions in various urban re-
gions and evaluates its capabilities. By coupling WRF and
STILT, a high-resolution forward transport model was de-
veloped to simulate and illustrate the structure and details
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of urban-scale fossil fuel XCO2 plumes and assess the rela-
tionship between simulated and observed XCO2. Throughout
the inversion process, we considered DQ-1’s observational
errors, transport model errors, and the impact of DQ-1’s day-
night observation capability on assessing the temporal vari-
ation of biosphere fluxes in urban emissions. Employing a
Bayesian inversion approach, we optimized CO2 emissions
from fossil fuels in Beijing, Riyadh, and Cairo using DQ-
1 data collected from June 2022 to April 2023, focusing on
downwind tracks in major urban emission areas where sig-
nificant XCO2 enhancements were detected.

Pseudo-data experiments, based on high-resolution for-
ward simulations from real cases, were conducted to evaluate
the potential of using multiple DQ-1 tracks while considering
measurement and transport model errors. Our results showed
that the posterior scaling factors for the three cities ranged
from 0.53 to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively,
with Riyadh exhibiting the highest posterior uncertainty. No-
tably, some simulations revealed that posterior scaling factor
uncertainties are influenced by the relative position of tracks
to plumes and positive or negative wind direction biases in
the region.

Our assessment of spatial and temporal gradients in bio-
sphere fluxes revealed that, at certain times in Beijing, de-
spite significant ffCO2 emissions, a notable portion of the
local XCO2 enhancement (20 % and 13 %, respectively)
was attributable to local biosphere fluxes. This could lead
to an overestimation of total emissions by approximately
33 %± 20 % and 13 %± 7 %. By incorporating CASA and
ODIAC biosphere flux data and examining day-night cross-
ing tracks on the same day, we found that separately consid-
ering day and night biosphere fluxes can improve the accu-
racy of local XCO2 enhancement calculations by 30 %–70 %
compared to using daily average biosphere fluxes. This indi-
cates that leveraging the short-term, rapid day-night crossing
capability of DQ-1, along with more accurate biosphere flux
estimation models, has the potential to reduce uncertainties
in emission estimates due to biosphere fluxes.

For biosphere flux cities with similar total CO2 emissions
but lower fossil fuel emissions, the contribution of biosphere
fluxes is expected to be higher than indicated. Therefore, for
cities in mid-latitude and equatorial regions with significant
local and regional biosphere fluxes, accurately interpreting
XCO2 detection results is crucial. Future improvements in
constraining urban fossil fuel CO2 emissions using DQ-1
data or other polar orbit measurements should consider the
temporal and spatial correlations of previous emission errors,
which were not included in this inversion.

For applying these methods to larger-scale flux inversions,
advanced satellites with shorter revisit cycles and denser
ground-based stations are essential. Additionally, optimiz-
ing city emission scaling factors requires more information
on prior emission uncertainties to better understand spatial
and temporal characteristics of urban-scale emissions. The
appropriate number of constraints for urban emissions will

depend on the spatial and temporal resolution of target city
emissions and the precision required to support policy de-
cisions. Our results demonstrate that DQ-1 or similar mis-
sions have significant potential to constrain overall emissions
from cities with intensified fossil fuel emissions, and utiliz-
ing DQ-1’s unique day-night crossing capability, we can es-
tablish frameworks for rapid day-night flux inversions at the
urban scale. This will further elucidate the spatial and tem-
poral structure of biosphere flux contributions to urban emis-
sions and provide valuable insights for policy-making. We
anticipate that DQ-1 data will effectively enhance the accu-
racy and precision of urban fossil fuel carbon flux estimates,
in conjunction with observations from other platforms to sup-
port emission reduction strategies.

Data availability. The Level 2 OCO-2 XCO2 data used in this
study is archived in permanent repository at NASA’s Goddard
Space Flight Center’s Earth Sciences Data and Information Services
Center (GES-DISC) https://doi.org/10.5067/8E4VLCK16O6Q
(OCO-2/OCO-3 Science Team et al., 2022). The TCCON
data used in this study is the GGG2020 data release of
observations from the TCCON station at Xianghe, China
(https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0, Zhou et
al., 2022). The CASA-GFED3 NEE data used in this study are
archived in repository at NASA’s Goddard Space Flight Center’s
Earth Sciences Data and Information Services Center (GES-DISC)
(https://doi.org/10.5067/5MQJ64JTBQ40, Ott, 2020). NEE data on
A Data-driven Upscale Product of Global Gross Primary Produc-
tion from National Institute for Environmental Studies (Japan) is
freely available online at https://doi.org/10.17595/20200227.001
(Zeng, 2020). Fossil CO2 emission from ODIAC is available online
at https://doi.org/10.17595/20170411.001 (Oda and Maksyutov,
2015). The MODIS data used in this study is the Terra Surface
Reflectance Daily L2G Global 1 km and 500 m SIN Grid V061
(https://doi.org/10.5067/MODIS/MYD09GA.006, Vermote and
Wolfe, 2015a, b). The DQ-1 ACDL productions underlying the
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but may be obtained from the authors upon reasonable request.
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