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Abstract. Air pollution causes millions of premature deaths annually, driving widespread implementation of
clean air interventions. Quantitative evaluation of the efficacy of such interventions is critical in air quality
management. Machine learning-based weather normalization (ML-WN) has been employed to isolate meteo-
rological influences from emission-drive changes; however, it has its own limitations, particularly when abrupt
emission shifts occur, e.g., after an intervention. Here we developed a logical evaluation framework, based on
paired observational datasets and a test of “ML algebra” (i.e., the “commutation” of a normalisation step), to
show that ML-WN significantly underestimates the immediate effects of short-term interventions on nitrogen
oxides (NOx), with discrepancies reaching up to 42 % for 1 week interventions. This finding challenges assump-
tions about the robustness of ML-WN for evaluating short-term policies, such as emergency traffic controls or
episodic pollution events. We propose a refined approach (MacLeWN) that can reduce such underestimation
biases by > 90 % in idealised but plausible cases studies. We applied both approaches to evaluate the impact
of COVID-19 lockdown on NOx as measured at Marylebone Road, London. For the 1 week period after the
lockdown, ML-WN estimates approximately 17 % smaller NOx reductions compared to MacLeWN, and such
underestimation diminishes as policy duration extends, decreasing to∼ 10 % for 1 month and becoming insignif-
icant after 3 months. Our findings indicate the importance of carefully selecting evaluation methodologies for air
quality interventions, suggesting that ML-WN should be complemented or adjusted when assessing short-term
policies. Increasing model interpretability is also crucial for generating trustworthy assessments and improving
policy evaluations.

1 Introduction

Air pollution remains one of the most pressing global envi-
ronmental challenges, responsible for an estimated 4.2 mil-
lion premature deaths annually due to cardiovascular dis-
ease, stroke, lung cancer, and chronic respiratory diseases
(Lee et al., 2020b; Fuller et al., 2022). In response, policy-
makers worldwide have enacted diverse strategies to miti-
gate air pollution, ranging from long-term emission reduc-
tion plans to short-term measures aimed at avoiding acute
pollution episodes. Evaluating the effectiveness of these in-

terventions is critical for ensuring cost-effective policy de-
sign and maintaining public trust in governance. However,
such evaluations are inherently complex due to the dynamic
interplay of emission sources, atmospheric chemistry, depo-
sition processes, and, importantly, meteorological variability
(Seo et al., 2018). Meteorological conditions, in particular,
exert a profound influence on observed pollutant concentra-
tions, often masking or amplifying changes in emissions over
time (Shi et al., 2021). Compounding this challenge, fluctu-
ations in human activities, such as seasonal industrial out-
put or agricultural practices, introduce additional variability
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that can obscure the true impact of specific policy measures.
Consequently, robust methodologies are needed to disentan-
gle the confounding effects of meteorology and periodic an-
thropogenic activities from the signal of emission changes
attributable to policy interventions.

A promising approach to address this challenge is the
machine learning-based weather normalisation (ML-WN)
method developed by Grange et al. (2018). This data-driven
strategy has gained traction for its ability to isolate meteo-
rological influences from observed pollutant concentration
trends, enabling clearer attribution of air quality changes
to emission-related factors. For instance, ML-WN has been
widely applied to assess the transient air quality improve-
ments during COVID-19 lockdowns (Cole et al., 2020; Vu
et al., 2019; Dai et al., 2021) and to investigate the impact of
on ozone (O3) concentrations and particulate matter compo-
sitions (Ding et al., 2023, 2021). Unlike traditional statisti-
cal techniques, which often rely on rigid assumptions about
linear relationships between variables, ML-WN flexibly cap-
tures complex, non-linear interactions between meteorolog-
ical parameters and emissions. This adaptability allows for
more efficient decomposition of weather-driven variability
from policy-driven changes in pollution time series. Fur-
thermore, ML-WN circumvents the computational demands
and inherent simplifications of chemistry-transport models
(CTMs), positioning it as a pragmatic tool for rapid policy
evaluation.

Despite its advantages, the ML-WN framework is not
without limitations. Its reliability depends on the perfor-
mance of the underlying machine learning model, which is
susceptible to overfitting, especially when applied to sparse
or noisy datasets. The selection of input variables, such as
wind speed, temperature, or boundary layer height, intro-
duces potential biases if critical predictors are omitted or re-
dundant ones included. Additionally, while ML-WN excels
at modelling non-linear relationships, its “black-box” nature
complicates interpretability, raising concerns about whether
the model genuinely captures causal mechanisms or merely
correlates superficial patterns in its training data set. A more
fundamental challenge lies in the absence of a definitive
“ground truth” for validating weather-normalized pollution
trends, as real-world systems are subject to concurrent socio-
environmental changes that cannot be fully controlled. These
limitations collectively hinder precise quantification of pol-
icy impacts, risking misinterpretations that could misguide
public health strategies or resource allocation.

To address these gaps, we propose a logical benchmark-
ing framework designed to evaluate the accuracy of weather
normalisation methods in isolating policy-driven changes in
air quality. Focusing on paired nitrogen oxides (NOx) time
series, a key pollutant influenced by both meteorology and
anthropogenic emissions, we systematically test the ability
of the ML-WN approach to recover known policy effects
after removing meteorological noise. Our analysis reveals
a critical shortcoming: as currently implemented, ML-WN

could underestimate the short-term efficacy of interventions,
particularly those with immediate impacts, such as traffic
restrictions or industrial shutdowns. This underestimation
arises from the method’s tendency to over-smooth transient
signals in the data, conflating abrupt policy-driven changes
with stochastic meteorological variability. Left unaddressed,
this bias could lead policymakers to undervalue the bene-
fits of rapid-response measures or misallocate resources to-
ward less effective long-term strategies. In response, we in-
troduce an alternative weather normalisation strategy that ex-
plicitly accounts for transient policy signals by incorporating
intervention-specific covariates into the model architecture.

2 Materials and Methods

2.1 Data Source

To establish a robust baseline of urban air pollution pat-
terns unaffected by the anomalous atmospheric conditions
during the COVID-19 pandemic, hourly nitrogen oxides
(NOx = nitrogen oxide (NO)+ nitrogen dioxide (NO2)) con-
centrations from 2017 to 2019 were analysed. These data
were obtained from two Automatic Urban and Rural Net-
work (AURN) sites in London: Marylebone Road (MR,
UKA00315) and North Kensington (NK, UKA00253). The
MR site, situated within a typical street canyon, represents
a high-traffic urban environment with elevated NOx levels
(Masson et al., 2020; Zhong et al., 2016). In contrast, the
NK site serves as an urban background location within much
less direct traffic influence, reflecting lower baseline pollu-
tion levels (Bigi and Harrison, 2010). Hourly surface me-
teorological variables, including ambient wind speed (ws,
in ms−1) and wind direction (wd, in degrees), air temper-
ature (temp, in °C), relative humidity (RH, in %), surface
pressure (sp, in hPa), and precipitation (precip, in mm) were
obtained from the London Heathrow Airport weather sta-
tion. These data were retrieved using the “worldmet” pack-
age from the National Oceanic and Atmospheric Adminis-
tration (NOAA) Integrated Surface Database (ISD), avail-
able at https://CRAN.R-project.org/package=worldmet (last
access: 20 October 2025). Consistent with previous studies
(Woolley et al., 2024; Betancourt et al., 2023), missing values
in the meteorological and pollutant concentration datasets
were handled by linear interpolation when gaps were less
than three consecutive hours; longer gaps were retained as
missing to avoid introducing excessive bias through over-
interpolation.

2.2 Machine Learning Weather Normalisation

The original machine learning weather normalisation (ML-
WN) approach was introduced by Grange et al. (2018).
Building upon this methodology, we developed an indepen-
dent version of weather normalisation for air pollutants using
a gradient boosting machine (GBM) model within H2O.ai’s
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Automated Machine Learning (AutoML) framework. Au-
toML is a function within the H2O platform – an open-source
R/Python package for data analysis developed by H2O.ai
(Ledell and Poirier, 2020). AutoML automates the iterative
process of hyperparameter selection and streamlines the ma-
chine learning pipeline, including preprocessing, feature en-
gineering, model training, and model evaluation. It enables
systematic comparison of multiple algorithms (e.g., general-
ized linear models, random forest, GBMs) within a prede-
fined computational budget, and it provides a leaderboard
ranking the models based on predefined metrics, such as
model performance and training time.

In this study, AutoML seeks the best function f s,p∗ (.) from
an ensemble of 30 trained models f̂ s,p(.), for which:

, (1)

where Y s,pt is the concentration of pollutant p (i.e., NOx) at
a given time point t and site s; The function f̂ s,p(.) repre-
sents the machine learning models that have been trained for
predicting pollution. The model output is p and input fea-
tures include a time trend T and two matrices of regressors:
Xe
t for temporal variables such as hour of the day and day of

the week, which act as proxies for diurnal and weekly emis-
sion patterns; and Xm

t for meteorological variables (wd, ws,
temp, RH, sp, and precip). Model training utilized 80 % of
the dataset, with the remaining 20 % reserved for evaluation
for each site (Vu et al., 2019; Grange et al., 2018; Goodfel-
low et al., 2016). Full model configurations and performance
metrics are provided in Tables S1 and S2 in the Supplement.

After the training process, the selected GBM model was
applied to generate weather-normalised NOx concentrations
due to its strong predictive performance across both moni-
toring sites, achieving index of agreement (IOA) values of
0.84 (MR) and 0.82 (NK). In the ML-WN method, weather-
normalised concentration Ŷ

s,p
t are derived by resampling

meteorological variable Xm
t while fixing temporal emission

proxies Xe
t :

Ŷ
s,p
t =

1
n

∑n

i=1
f
s,p
∗

(
T ,Xe,Xim

)
, (2)

where Xim is the ith resampled meteorological dataset, and
n is the total number of resampling (without replacement),
determined by the robustness of model predictions and the
practicality of computational costs (e.g., used 300 times here
similar to previous studies; Shi et al., 2021; Vu et al., 2019).
The rationale behind the ML-WN approach is to construct
a reliable machine learning model to capture pollutant con-
centrations under all possible weather conditions based on
historical records. By repeatedly resampling the meteorolog-
ical inputs and averaging the resulting predictions, ideally the
method approximates the conditional expectation of concen-
tration with meteorological variance removed; the residual

signal is then interpreted as arising from changes in emis-
sions.

Here, we also introduce an alternative strategy for weather
normalisation, denoted as MacLeWN, to isolate emission-
drive trends from meteorological variability. Unlike ML-
WN, which averages out meteorological effects while hold-
ing temporal emission proxy’s constant, MacLeWN firstly
filters temporal variations (e.g., hourly, weekly cycles) that
correlate with emission patterns:

Ỹ
s,p
t =

1
n

∑n

i=1
f
s,p
∗

(
T ,Xie,Xm

)
. (3)

Here, Ỹ s,pt represents time-trend-normalised concentrations,
where temporal fluctuations are averaged out. Because the
randomised emission proxies at each time step no longer en-
code emission levels such as rush-hour traffic peaks or week-
end effects, the residual variability in the normalised out-
put Ỹ s,pt reflects how the fixed meteorological conditions in-
fluence averaged emission levels. Similarly, a baseline con-
centration Y

s,p

t at each time step can be calculated by resam-
pling both emission proxies and meteorology while retaining
the long-term trend index T :

Y
s,p

t =
1
n

∑n

i=1
f
s,p
∗

(
T ,Xie,X

i
m

)
(4)

This unperturbed baseline contains only the slow, sec-
ular trend T and no high-frequency fluctuations from ei-
ther emissions or weather. The meteorological impact factor
met_factors,pt is then derived as:

met_factors,pt = 100%×
Y
s,p

t − Ỹ
s,p
t

Y
s,p

t

(5)

Subsequently, weather-normalised concentrations γ̂ s,pt are
calculated as:

γ̂
s,p
t =

observations
1−met_factorpt

(6)

Because the numerator is the measured raw observations
with impacts from emissions and weather and the denom-
inator removes the quantified meteorological multiplier, the
quotient represents the pollutant level under the “normalised”
weather condition.

2.3 Evaluation Methodology

2.3.1 Assessment Using a Theoretical Framework

Evaluating the efficacy of weather normalisation in isolat-
ing emission-driven air quality changes requires scenarios
with well-defined “ground truth” outcomes. However, real-
world policy assessments are often confounded by overlap-
ping variables, making it challenging to disentangle meteo-
rological and anthropogenic effects. To address this, we de-
signed idealised but plausible policy interventions targeting
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NOx reductions at the MR site, a high-traffic location where
NOx concentrations typically exceed urban background lev-
els (NK site) by a quantifiable “road increment” (Harrison
et al., 2021; Bannister et al., 2021). After applying weather
normalisation ML-WN, this increment represents the addi-
tional NOx attributable to traffic emissions, calculated as
the differences between weather-normalised MR (denoted as
MR_wnNOx) and NK (NK_wnNOx) concentrations, as me-
teorological influences are expected to be minimized through
the normalisation process.

In our simulations, interventions temporarily eliminated
the road increment during predefined periods (e.g., 1 week
to 6 months), after which concentrations reverted to base-
line. Practically, we achieved this by replacing MR_wnNOx
concentrations during the intervention periods with the
equivalent-but-lower NK_wnNOx values, generating a syn-
thetic time series (synth_wnNOx) that isolates emission-
driven changes, enabling direct comparison with observed or
re-normalised data (Fig. S1 in the Supplement). While this
approach produces an idealized emission reduction that is
unattainable in practice due to persistent traffic, street canyon
effects, green infrastructure, and complexities of all kinds,
it does provide a precisely defined benchmark time series
against which to test the logic and sensitivity of weather nor-
malisation methods.

The synth_wnNOx data can be used to quantify the abil-
ity of weather normalisation approaches during the policy
window (see Fig. S1, illustrating the difference between
synth_wnNOx and MR_wnNOx). To reintroduce meteoro-
logical variability into the idealised scenarios, we quantified
the hourly meteorological contribution factors (MCF) at the
MR site using the relative difference between observed NOx
and weather-normalised concentrations:

MCFMR_NOx
t = 100 %×

C
MR_wnNOx
t −C

MR_NOx
t

C
MR_wnNOx
t

(7)

C
MR_NOx
t and C

MR_wnNOx
t represent the observed and

weather-normalised NOx concentrations at a time point t ,
respectively. Here, a positive MCF indicates meteorological
conditions enhancing pollutant dispersion (lower observed
NOx), while negative values reflect conditions exacerbating
local accumulation (Fig. S2). These contributions were ap-
plied to synth_wnNOX to simulate “observed” concentra-
tions under policy interventions, denoted as reconstitute NOx
(recon_NOx):

C
recon_NOx
t = C

synth_wnNOX
t ×

(
1−

MCFMR_NOx
t

100%

)
(8)

Outside policy windows, recon_NOx recovers precisely ac-
tual MR observations; during interventions, differences be-
tween recon_NOx and NK_NOx reflect both emission reduc-
tions and site-specific meteorological interactions (Fig. S3),
such as reduced ventilation in the MR street canyon (Jean-
jean et al., 2017; Dai et al., 2022).

One final step completes the assessment of the approaches
to weather normalisation. By reapplying weather normal-
isation to recon_NOx , we generated a re-normalised time
series (wn-recon_NOx). In theory, wn-recon_NOx should
closely match, if not exactly replicate, the synth_wnNOx if
the method perfectly isolates emission effects. That is to say,
ideally, the weather normalisation operation should “com-
mute” algebraically. Discrepancies between the two nor-
malised time series indicate systematic biases in the weather
normalisation process, quantifying over- or underestimation
of policy impacts. This comparison provides, to our knowl-
edge, the first evaluation of the accuracy of machine learning
weather normalisation approaches in assessing the influence
of policy interventions on air quality. The framework de-
scribed above is generalisable to any policy setting in which
the policy impact is masked by weather-like “noise”. Fig-
ure 1 shows the schematic diagram for the whole evaluation
process, and Table 1 provides a comprehensive list of termi-
nology for NOx time series used in this study.

We designed scenarios mimicking diverse real-world poli-
cies, including sustained interventions (1 week–6 months),
phased reductions (3–6 months), and cyclic interventions
(1 month intervals) (Table 2, Fig. S1). These scenarios rep-
resent different types of policy interventions and help as-
sess how the weather normalisation methods perform under
different temporal patterns of emission changes. Although
those sustained 1 week to 6 month cases are idealised “step”
emission reductions, we also include phase-out and cyclic
patterns specifically to emulate more gradual or heteroge-
neous real-world responses (e.g., staggered traffic bans or
variable industrial curtailments), thereby spanning the con-
tinuum from abrupt to progressive interventions. To ensure
that our conclusions are not model-specific, we replicated
our analysis using different machine learning approaches,
including eXtreme Gradient Boosting (XGBoost) and dis-
tributed random forest (DRF) models. Performance metrics
for these models (Tables S7 and S8) and consistent results
across these algorithms (Figs. S11 and S12) indicates the
generalizability of our findings. Following the methodolog-
ical framework described above, we further extend the as-
sessment to the MacLeWN. The weather normalised dataset,
the meteorological factors, and the “original” dataset influ-
enced by both emissions and meteorology were presented in
Figs. S6–S8, respectively.

2.3.2 Application of Weather Normalisation to
COVID-19 Lockdown Data

To further evaluate the performance of the ML-WN and
MacLeWN approaches, we applied both techniques to anal-
yse changes in NOx concentrations during the COVID-19
lockdowns at London Marylebone Road, which will pro-
vide a basis to assess emission reductions under abrupt, real-
world conditions. Prior studies have used weather normali-
sation to isolate lockdown effects, but the lack of a defini-
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Figure 1. The schematic diagram showing the analytics pipeline to quantify the ability of weather normalisation approaches.

Table 1. A summary of the NOx timeseries used in the study.

Name Description

MR_NOx NOx observations at Marylebone Road
NK_NOx NOx observations at North Kensington
MR_wnNOx Weather normalised NOx concentrations at Marylebone Road
NK_wnNOx Weather normalised NOx concentrations at North Kensington
synth_wnNOx NOx at Marylebone Road with “interventions” affected by only emissions
recon_NOx NOx at Marylebone Road with “interventions” affected by emissions and meteorology
wn-recon_NOx NOx at Marylebone Road with “interventions” affected by only emissions (reconstituted)

tive “ground truth” for actual pollutant reductions during
lockdowns makes it challenging to evaluate these methods
absolutely. Our analysis introduces a direct comparison be-
tween the ML-WN and MacLeWN under identical scenar-
ios, allowing us to assess their relative performance in isolat-
ing lockdown-induced emission changes from meteorologi-
cal variability.

The lockdown in London was first announced on
23 March, implemented on 26 March, and eased on 23 June
2020 (Davies et al., 2021). The COVID-19 lockdown mea-
sures led to an acute drop in NOx levels at these sites (Lee
et al., 2020b). We gathered hourly concentrations of NOx
from 2018 to 2021 for Marylebone from AURN. The cor-
responding meteorological data (i.e., wd, ws, RH, temp, sp,
precip) were obtained from Heathrow Airport. The predictive
variables for the machine learning models included temporal
variables and meteorological variables as mentioned above.
Weather-normalised daily NOx concentrations around the

time of the lockdowns are presented in Fig. S10. Figure S13
shows the variable-importance ranking based on mean ab-
solute SHapley Additive exPlanations (SHAP) values and
SHAP contribution plots, whereas Fig. S14 provides partial-
dependence plots for the six most influential predictors.

After weather normalisation, we adopted an analytical
framework to evaluate the effects of the lockdowns on NOx
concentrations as used in Shi et al. (2021). The baseline pe-
riod for the lockdown was defined as the 1 month-to-1 week
preceding each lockdown (i.e., excluding the final transi-
tional week, Fig. S10), with post-lockdown impacts assessed
during the first week of restrictions:

1CNOx ,t = CNOx ,t −CNOx |t (9)

PNOx ,t = 100%×
1CNOx ,t

CNOx
(10)
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Table 2. Overview of air quality intervention durations and strategies for eight test scenarios (S1–S8). In the second part of each scenario
name, “s”= sustained intervention, “p”= phased-out intervention, and “c”= cyclic intervention. Intervention durations are for a number (1,
2, 3, or 6) of weeks (“w”), or months (“m”).

Scenario Intervention period Description

S1_s1w 1–7 August 2018 Sustained intervention for 1 week
S2_s2w 1–14 August 2018 Sustained intervention for 2 weeks
S3_s1m 1–31 August 2018 Sustained intervention for 1 month
S4_s3m 1 August 2018–31 October 2018 Sustained intervention for 3 months
S5_s6m 1 August 2018–31 January 2019 Sustained intervention for 6 months
S6_p3m 1 August 2018–31 October 2018 Phase-out intervention for 3 months
S7_p6m 1 August 2018–31 January 2019 Phase-out intervention for 6 months
S8_c1m 1 August 2018–30 April 2019 Cyclic intervention at 1-month interval

CNOx |t represents the average value of NOx at a given hour
during the baseline period, CNOx ,t represents the NOx con-
centrations at a time t during the first week, 1 month, or
3 months after the lockdown, 1CNOx ,t and PNOx ,t represent
the absolute and percentage changes in NOx concentrations
in 2020, respectively.

Emissions within a given year are subject to temporal
trends, such as gradual policy shifts, economic fluctuations,
or seasonal patterns like reduced heating fuel use during
winter-to-spring transitions. These trends, unrelated to lock-
down measures, risk conflating long-term or cyclical changes
with short-term lockdown effects. To account for this, we
detrended the data by comparing 2020 NOx concentrations
against the averaged values from the corresponding periods
in 2018 and 2019. This 2-year baseline (i.e., for “trend”)
was selected to mitigate the influence of interannual vari-
ability. The lockdown-driven changes in NOx concentration
(C∗NOx ,t ) and their percentage equivalents (1P ∗NOx ,t ) were
calculated as:

1C∗NOx ,t =1CNOx ,t −1C
2018–2019
NOx ,t (11)

1P ∗NOx ,t = 100%×
1C∗NOx ,t

CNOx
(12)

3 Results

3.1 Comparison of two approaches in the theoretical
framework

Figure 2a presents a comparative analysis of NOx reductions,
contrasting the “actual” intervention outcomes (red bars)
with the predicted simulations derived from the ML-WN ap-
proach (blue bars) across eight idealised intervention scenar-
ios (S1–S8, Table 1). The consistent discrepancies between
the red and blue bars indicate that the ML-WN approach sys-
tematically underestimates the effectiveness of policy inter-
ventions, particularly in short-term scenarios. This underes-
timation occurs because the ML-WN method averages each
time-step over meteorological samples drawn from the whole
historical record; such averaging sometimes could be unreal-

istic that “blurs” the sharp drop introduced by the interven-
tion, which is discussed further in the discussion. This under-
estimation has not been reported before, primarily because
it is challenging to detect when comparing a single time se-
ries with and without weather normalisation. Importantly, the
same qualitative pattern (i.e., MacLeWN>ML-WN) holds
also for both phase-out and cyclic scenarios, showing robust-
ness even when the rebound signal after the intervention is
not instantaneous.

Our results show that the underestimation is particularly
significant for short-term interventions. For example, for the
1 week sustained intervention (S1_s1w), the ML-WN ap-
proach underestimates the policy effects by 101.1 µgm−3,
corresponding to a 42.2 % discrepancy. Such substantial un-
derestimations could lead to significant misjudgements of
the short-term air quality improvements and the resultant
health impacts of air pollutants (Meng et al., 2021). As the
duration of the intervention increases to 2 weeks (S2_s2w)
and 1 month (S3_s1m), the underestimation decreases to
54 µgm−3 (23.5 %) and 35.2 µgm−3 (13.8 %), respectively.
This pattern continues for policy interventions sustained
over longer periods, with the underestimation further de-
creasing to 17.9 µgm−3 (6.3 %) for 3 months (S4_s3m) and
7.9 µgm−3 (less than 3 %) for 6 months (S5_s6m). These re-
sults indicate that the ML-WN method becomes more accu-
rate over longer intervention periods, possibly because the
model adjusts to new emission patterns over time.

Furthermore, the degree of underestimation is more asso-
ciated with the duration of policy interventions than with the
type of policy (i.e., sustained, phased out, or cyclic). For ex-
ample, both sustained and phased-out policies spanning three
and 6 months show similar levels of underestimation. In con-
trast, cyclic policies with 1 month intervals (S9_c1m) result
in an underestimation of 16 µgm−3 (4.8 %), which is smaller
compared to the underestimations observed in other policy
types. Although these discrepancies are smaller compared to
short-term interventions, they are still significant when con-
sidering long-term average threshold values for public health
impacts (Faustini et al., 2014).
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Figure 2. Average intervention effects on NOx concentrations at Marylebone Road (MR) under different scenarios, including sustained
interventions lasting from 1 week (S1_s1w) to 6 months (S1_s6m), phased-out interventions over three (S6_p3m) to 6 months (S7_p6m),
and cyclic interventions with a 1 month frequency (S8_c1m). (a, c) The red and green bars represent the “actual” intervention effects based
on the theoretical evaluation framework, while the difference between red bars and effects estimated by weather normalisation approaches
indicates the extent of underestimation. (b, d) The bars represent underestimated average intervention effects at different time periods as a
percentage. Note the different y-axis ranges in panels (b) and (d).

Figure 2b illustrates the time-dependent discrepancies in
the underestimation of policy impacts on NOx concentra-
tions, as estimated by the ML-WN approach under different
intervention scenarios. For example, S6_p3m scenario, rep-
resenting a phased-out policy implemented over 3 months,
has an overall underestimation of 16.6 µgm−3 (6 %, light
green bar) but exhibits a 38.1 µgm−3 (14.4 %) underestima-
tion in the first week (light blue bar). These results show that,
for policies with immediate effects (i.e., sustained policies),
the initial underestimation of their efficacy by the ML-WN
approach is most pronounced in the early stages but dimin-
ishes over time. The extent of this underestimation is in-
versely related to the duration of the policy implementation.
As the duration of the policy extends beyond 1 month, the
discrepancy between the anticipated and “actual” impact in
the initial stages decreases significantly.

Specifically, during the first week after policy implemen-
tation, the underestimation of NOx reduction is 51.9 µgm−3

(13.6 %) for a 2 week policy (S2_s2w), diminishing to
13.4 µgm−3 (5.3 %) for a policy sustained over 6 months
(S5_s6m). Similarly, the net underestimations of NOx re-
duction after 2 weeks are 54 µgm−3 (23.5 %), 33.3 µgm−3

(13 %), 19.4 µgm−3 (7.5 %), and 11 µgm−3 (4.2 %) for
S2_s2w, S3_s1m, S4_s3m, and S5_s6m, respectively. In con-
trast, phased-out policies, which gradually reduce interven-
tions over time, present a different pattern. Although their
cumulative effects align with those of sustained policies, the
initial weeks show a marked underestimation of impact. Fig-
ure 2b shows that a 3 month phased-out policy (S6_p3m) re-
sults in an overall underestimation of 16.6 µgm−3 (6.0 %),

and a 6 month policy (S7_p6m) at 6.4 µgm−3 (1.9 %).
However, the first-week underestimations are 38.1 µgm−3

(14.4 %) and 29.9 µgm−3 (12.1 %), respectively. Similarly,
the cyclic policy (S8_c1m) shows a 7.3 % underestimation
in the first week, which is somewhat higher than the overall
underestimation observed over the 6 month duration (4.8 %).

By employing the updated machine learning approach
(MacLeWN), these underestimations were mitigated, as
shown in Fig. 2c and d. The results show a strong agree-
ment between the “known” NOx reductions resulting from
idealised policy interventions and those simulated by the
MacLeWN approach. While minor discrepancies are ob-
served in the time-dependent analysis in Fig. 2d, these varia-
tions are consistently small, each remaining below 1 %, and
showing improvements of greater than an order of magni-
tude, often by a factor of 20 to 50, compared to the underes-
timations observed with the ML-WN approach as in Fig. 2b.
Further details are provided in Tables S4 and S5, and Figs. S5
and S9.

3.2 Comparison of two approaches in the lockdown
scenario

Figure 3 provides the impact of lockdown measures on
NOx concentrations near the roadside at London Maryle-
bone Road air quality monitoring site. NOx reductions
were assessed over 1 week, 1 month, and 3 months af-
ter the lockdown implementation by using the direct ob-
servations (blue bars), the ML−WN (purple bars), and
the MacLeWN (green bars) approaches, respectively. The
bars depict the average detrended concentrations changes
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Figure 3. Intercomparison of detrended NOx concentration
changes at London Marylebone Road using direct observations,
the weather normalisation (ML-WN), and the updated weather nor-
malisation (MacLeWN) approaches. The bar graphs in the panel
show concentration changes (C∗p) in NOx over 1 week, 1 month,
and 3 months average following lockdown implementation, respec-
tively. Each graph contrasts the raw observation data (dark blue),
ML-WN changes (light purple), and MacLeWN changes (dark
green). For each bar, the average percentage changes (P ∗p ) has been
calculated and presented.

at the MR site over the policy implementation period
following lockdown, and the error bars denote the stan-
dard error of the mean. For 1 week lockdown effects,
the observed NOx decreased from 153.9 to 27.5 µgm−3

(−82.1 %); the ML-WN estimates a decrease from 158.1
to 76.0 µgm−3 (−51.9 %); and the MacLeWN estimates a
decrease from 153.2 to 47.7 µgm−3 (−68.9 %). In the case
of 1 month intervention effect, direct observations indicate
a NOx decrease from 134.3 to 43.6 µgm−3 (−67.5 %), the
ML-WN indicates a decrease from 150.9 to 71.9 µgm−3

(−52.3 %), and the MacLeWN points to a −62.3 % reduc-
tion from 141.3 to 53.2 µgm−3. For 3 month lockdown ef-
fects, NOx reductions through the observations, the ML-
WN, and the MacLeWN are −58.1± 6.6 µgm−3 (−53.7 %),
−71.9± 6.0 µgm−3 (−51.3 %), and −72.8± 8.1 µgm−3

(−57.4 %), respectively (Table 3). These results are consis-
tent with the theoretical evaluation presented above, as the
ML-WN approach estimates around 17 % lower policy im-
pact compared to the MacLeWN approach but decrease with
longer policy implementation time (i.e., about 10 % lower for
1 month lockdown and is insignificant for 3 month effect).

4 Discussion

Accurately assessing the impact of policy interventions on air
quality remains a critical challenge, as meteorological vari-
ability often obscures the signal of emission-driven changes.
While machine learning-based weather normalisation (ML-
WN) has emerged as a powerful tool to disentangle these ef-
fects, our findings reveal its limitations in evaluating short-
term interventions. For example, we showed underestima-

tions of up to 42 % in the quantified effectiveness of 1 week
policies (Figs. 2, S4 and S5), indicating that the ML-WN may
not fully capture abrupt, non-linear changes in emissions fol-
lowing rapid policy implementation. This discrepancy high-
lights a fundamental tension: while ML-WN works well at
isolating long-term meteorological influences, its reliance on
historical patterns may render it less sensitive to transient dis-
ruptions in emission regimes.

The root of these uncertainties lies in the interplay be-
tween model architecture, variable interdependencies, and
real-world complexity. The accuracy of ML-WN depends
on the predictive robustness of its underlying algorithms,
which must generalize beyond training data to capture sud-
den shifts in emissions. However, temporal variables (e.g.,
hour, day, season) and meteorological parameters (e.g., tem-
perature, wind speed) are deeply intertwined in environmen-
tal systems. Temporal indicators generally act as proxies for
human activity-driven emissions, yet they correlate system-
atically with meteorological cycles, such as solar radiation
peaks at midday, atmospheric stability varies diurnally, and
seasonal weather patterns drive recurring emission scenarios
(e.g., heating demand in winter). These collinearities create
a “proxy trap”, where models may conflate emission-driven
trends with weather-driven fluctuations. Tree-based ensem-
bles, while resilient to multicollinearity in prediction tasks,
face interpretability challenges: variable importance metrics
become unstable when predictors are correlated, splitting at-
tribution across redundant features. Consequently, the “brute
force” resampling central to ML-WN (i.e., simulating coun-
terfactual meteorological conditions across time), may inad-
vertently dilute the signal of abrupt policy impacts, particu-
larly when interventions disrupt established correlations be-
tween time and emissions.

Further limitations arise from the fidelity of input data and
the physical plausibility of resampled scenarios (Kilkenny
and Robinson, 2018). ML-WN assumes meteorological vari-
ables can be independently perturbed, yet real-world weather
systems exhibit tightly coupled dynamics (e.g., temperature-
humidity relationships, land-sea breeze cycles). Resampling
risks generating unphysical combinations, for instance, ap-
plying wintertime temperature inversions to summer datasets
could distort ozone chemistry or particulate dispersion path-
ways (Vu et al., 2019). Moreover, meteorological conditions
absent during the model training phase can compromise pre-
dictive accuracy, especially in urban areas subject to complex
and routine meteorological events. In coastal urban areas, for
instance, diurnal breeze patterns regulate pollution advection
(Geddes et al., 2021; Di Bernardino et al., 2021), but mod-
els trained on sparse temporal data may fail to resolve these
mesoscale processes, leading to biased normalisations.

The application of ML-WN and MacLeWN to COVID-19
lockdown data highlights the practical relevance of our find-
ings. Contrary to the uniform emission cuts assumed in the
idealised scenarios, the lockdown produced reductions that
were highly variable in both space and time. The observed
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Table 3. Absolute and percentile COVID-19 lockdown impacts on NOx concentrations at London Marylebone Road, analysed through direct
observations, the weather normalisation (ML-WN), and the refined weather normalisation (MacLeWN) after measures implemented 1 week,
1 month, and 3 months, respectively.

Intervention period Method Concentration (µgm−3) Percentage (%)

1 week Observation −126.0± 9.1 −82.1± 5.9
ML-WN −82.1± 5.5 −51.9± 3.4
MacLeWN −105.0± 8.7 −68.9± 5.6

1 month Observation −90.7± 8.7 −67.5± 6.5
ML-WN −79.0± 6.6 −52.3± 4.4
MacLeWN −88.1± 9.5 −62.3± 6.7

3 months Observation −58.1± 6.6 −53.7± 6.1
ML-WN −71.9± 6.0 −51.3± 4.3
MacLeWN −72.8± 8.1 −57.4± 6.4

Note: In each case, the data are detrended following the method in Sect. 2.3.2; the uncertainties are
expressed as the standard error.

concentration changes represent a convolution of emission
abatement and concurrent meteorological influences. Be-
cause percentile NOx reductions from raw observations con-
sistently exceed those of the weather-normalised estimates
generated by ML-WN and MacLeWN, it indicates that the
lockdown period coincided with meteorological conditions
conducive to pollutant dispersion (Lee et al., 2020a; Acosta-
Ramírez and Higham, 2022; Shi et al., 2021). A direct com-
parison of the two weather-normalised methods shows that
their estimates differ by roughly 17 % for a 1 week lock-
down, narrowing to 10 % for a 1 month lockdown and 6 %
for a 3 month lockdown. These results are consistent with our
simulations under idealised conditions (Fig. 2), where ML-
WN’s smoothing of transient signals could lead to systematic
underestimation and MacLeWN shows clear larger policy
intervention effects under this real-world policy implemen-
tations. Instead of resampling historical weather conditions
while keeping the original emission proxies, MacLeWN esti-
mates the influence from weather for each hour by comparing
observations relative to pollutant neutral, “normalised emis-
sion” baseline, and then it subtracts weather impacts from
observations.

From a regulatory aspect, the foregoing analysis indicates
that for brief measures (less than 4–6 weeks), MacLeWN
scheme should be the preferred approach; for longer pro-
grammes (more than 3 months), ML-WN bias falls below
5 %, well within normal error bounds. Policies of inter-
mediate length merit dual reporting with both approaches,
giving policymakers a clear span of likely outcomes and
sharper grounds for action. It is also important to acknowl-
edge that even the MacLeWN approach may not entirely
capture all high-frequency, weather-like variability of air
quality. The validity of any weather-normalised scheme ul-
timately depends on the reliability of the underlying learn-
ing model. Reliance on temporal variables as proxies for
emissions, rather than direct emission factors, means some

meteorological effects correlated with time (e.g., tempera-
ture variations throughout the day) may still confound the
model; when addressing secondary pollutants such as PM2.5
or O3, the predictor set must include proxies for precursor
abundance so that the algorithm can disentangle chemistry–
meteorology coupling rather than mis-assign chemical pro-
duction to “weather” effects. Model performance also re-
mains context-dependent. In tropical or arid areas, the weak
seasonality, deep convection, and episodic dust plumes can
shorten meteorological autocorrelation and undermine re-
sampling stability, while mountainous terrain introduces lo-
cal circulations that are seldom captured by single-station in-
puts. Nonetheless, MacLeWN represents an improvement in
assessing the immediate impacts of short-term policy inter-
ventions.

5 Conclusions

In this work, our logical analysis shows that the widely
used machine-learning weather normalisation (ML-WN) ap-
proach could markedly underestimate the immediate bene-
fits of short-term air quality interventions. Across eight ide-
alised but plausible NOx-reduction scenarios at London’s
Marylebone Road, the ML-WN framework missed up to
42 % of the 1 week reduction signal and still understated
1 month effects by ∼ 14 %. We proposed a refined weather
normalisation method MacLeWN that significantly reduced
such biases, bringing re-normalised concentrations into near-
identity with the known synthetic truth. When applied to
the real-world COVID-19 lockdown on Marylebone Road,
London, the ML-WN tended to yield more conservative es-
timates compared to MacLeWN, particularly for shorter in-
tervention periods at 1 week (∼ 52 % vs. 69 %). This further
highlight that the ML-WN smooths away a substantial frac-
tion of the abrupt emission signal.
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While the proposed MacLeWN refinement is self-
consistent, and potentially reduces underestimation biases in
weather normalization, its reliability remains contingent on
the explainability of the underlying machine learning mod-
els, necessitating cautious interpretation and continuous eval-
uation. Importantly, improving model transparency can in-
crease confidence in the assessments provided by machine
learning. The performance of machine learning models is
directly influenced by the quality and relevance of their in-
put variables (Geiger et al., 2020). Incorporating specific,
causally relevant predictive variables – such as traffic counts,
fleet compositions, and industrial emission data – can im-
prove both model performance and explainability in air qual-
ity simulations. Strategies such as assessing multicollinearity
using statistical measures like the Variance Inflation Factor
(Thompson et al., 2017), applying dimensionality reduction
techniques like Principal Component Analysis (Abdi and
Williams, 2010), employing alternative importance measures
less sensitive to correlation (e.g., permutation-based meth-
ods) (Mi et al., 2021), and using model interpretation tools
like partial dependence plots (Greenwell, 2017) and SHap-
ley Additive exPlanations (SHAP) values (Gebreyesus et al.,
2023) can be employed. These approaches not only improve
predictive accuracy but also enhance model robustness and
interpretation, making them more reliable tools for evaluat-
ing the effectiveness of environmental policies.

Our findings have significant implications for the evalu-
ation of air quality interventions and formulation of envi-
ronmental policies. Although the underestimation of pollu-
tant reductions by the ML-WN decreases for interventions
sustained over 3 months (< 5 %), the potential to overlook
immediate benefits remains a concern, especially for short-
term and emergency measures that necessitate precise evalu-
ation for timely public health responses. Examples include
policies implemented during events like sports gatherings
and festivals (Yao et al., 2019; Singh et al., 2010; Andrews,
2008), emergency responses to air pollution episode (Tian
et al., 2019), and abrupt air pollution incidents such as fire-
works displays, industrial accidents, volcanic eruptions, war-
fare, and wildfires. Additionally, significant social changes,
such as those observed during the COVID-19 pandemic, have
demonstrated how rapid shifts in human activity can affect
air quality (Zangari et al., 2020; Gualtieri et al., 2020). Un-
derestimation of benefits may lead to underappreciation of
policy measures and improper resource allocation, affecting
public confidence and future support for environmental ini-
tiatives. Moreover, weather normalisation errors propagate
into downstream methodologies like the Synthetic Control
Method (SCM), which constructs a synthetic treated unit
from a combination of control units that were not subjected to
the intervention, aiming to estimate how pollutant concentra-
tions would have evolved in the absence of the policy (Mork
et al., 2024). SCM Controlling for meteorological factors is
important to isolate the effects of the intervention from natu-
ral weather variations that influence pollutant behaviour and

dispersion (Dai et al., 2024). However, if the weather nor-
malisation method introduces inherent underestimation bias
in the treated unit, it would lead to a smaller apparent differ-
ence between the treated and synthetic control units, thereby
skewing the assessment of the true effect of policy interven-
tions (Ben-Michael et al., 2021; Xu, 2017).

Code availability. Code for Machine learning-based Weather
Normalisation is accessible at https://github.com/clnair-ascm/aqpet
(last access: 20 October 2025).
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