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Abstract. Supercooled liquid-containing clouds (sLCCs) play a significant role in Earth’s radiative budget and
the hydrological cycle, especially through surface snowfall production. Evaluating state-of-the-art climate mod-
els with respect to their ability to simulate the frequency of occurrence of sLCCs and the frequency with which
they produce snow is, therefore, critically important. Here, we compare these quantities as derived from satellite
observations, reanalysis datasets, and Earth system models from Phase 6 of the Coupled Model Intercompari-
son Project (CMIP6) and find significant discrepancies between the datasets for mid- and high latitudes in both
hemispheres. Specifically, we find that the ERA5 reanalysis and 10 CMIP6 models consistently overestimate
the frequency of sLCCs and snowfall frequencies from sLCCs compared to CloudSat–CALIPSO satellite ob-
servations. The biases are very similar for ERA5 and the CMIP6 models, which indicates that the discrepancies
in cloud phase and snowfall stem from differences in the representation of cloud microphysics rather than the
representation of meteorological conditions. This, in turn, highlights the need for refinements in the models’
parameterizations of cloud microphysics in order for them to represent cloud phase and snowfall accurately. The
thermodynamic phase of clouds and precipitation has a strong influence on simulated climate feedbacks and,
thus, projections of future climate. Understanding the origin(s) of the biases identified here is, therefore, crucial
for improving the overall reliability of climate models.

1 Introduction

Snowfall and snow cover have a significant impact on the
Earth’s energy budget and the hydrological cycle, espe-
cially in mid- and high-latitudes and thereby strongly im-
pact ecosystems and human societies. Snow cover influences
vegetation growth, animal populations, and ecosystem pro-
cesses, while also impacting economic activities, infrastruc-
ture, and health (Callaghan et al., 2011; Bokhorst et al.,
2016). Indeed, snowfall is also an important water resource
globally (Barnett et al., 2005), and snow cover increases the
surface albedo, reducing the absorption of incoming solar en-
ergy (Zhang, 2005). However, heavy snowfall events have the
potential to negatively impact local communities and infras-

tructure (Eisenberg and Warner, 2005; Scott et al., 2008; Fox
et al., 2023).

Cloud phase determines the formation process of snow.
Snow can originate from pure ice clouds, as well as super-
cooled liquid-containing clouds (sLCCs), where both super-
cooled water droplets and ice crystals coexist at temperatures
between − 40 and 0°C (Jiusto and Weickmann, 1973; Ko-
rolev et al., 2017). These sLCCs dominate at latitudes higher
than 45° and cover up to 20 %–30 % of the Earth, depend-
ing on the season (Warren et al., 1988; Matus and L’Ecuyer,
2017). The cloud phase affects not only the rate and inten-
sity of snowfall but also the microphysical properties of the
snowflakes that reach the ground (Jiusto and Weickmann,
1973; Liu, 2008). Clouds reflect solar radiation (cooling the
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surface) and trap terrestrial radiation (warming the surface).
The balance between the two effects is partly influenced by
the phase composition of the clouds due to distinct scatter-
ing properties of liquid and ice (Shupe and Intrieri, 2004;
Ehrlich et al., 2009; Cesana et al., 2012). Despite having sim-
ilar properties otherwise, a cloud with more liquid reflects
more solar radiation back to space. Therefore, representing
the cloud phase correctly in Earth system models (ESMs) has
substantial implications for the simulation of cloud radiative
properties (Matus and L’Ecuyer, 2017), especially in future
climate projections with a warmer climate. This represents an
important component of the cloud feedback, i.e., how clouds
respond to changes in surface air temperature and how these
changes, in turn, influence temperature. The cloud feedback
is, at present, the most uncertain physical climate feedback,
significantly contributing to the spread of climate sensitiv-
ity in ESMs (Zelinka et al., 2020). Among the most poorly
understood cloud feedbacks is the one associated with cloud-
phase changes (Bjordal et al., 2020; Zelinka et al., 2020).

Atmospheric warming can lead to cloud-phase changes
through two different pathways: less cloud ice due to higher
temperatures or more ice due to potentially more ice-
nucleating particles (INPs). INPs are microscopic particles
present in the air that serve as the starting point for ice crys-
tal formation in clouds (DeMott et al., 2010). Several studies,
including Murray et al. (2021), showed that increased tem-
peratures, especially in polar regions, have caused a shift in
the mixed-phase clouds towards higher latitudes and altitudes
due to the ice reduction in the atmosphere in these regions.
The shift in cloud phase towards more liquid and less ice
leads to a reduction in the fraction of precipitation falling as
snow in previously snowy areas in the Northern Hemisphere
(NH), but snowfall events will happen further north in the fu-
ture (Chen et al., 2020). This shift would result in an expected
decrease in snowfall events and duration of the snowfall sea-
son for most regions in the NH (Danco et al., 2016; Chen
et al., 2020). However, potentially partly counteracting this,
the reduction in Arctic sea ice may also facilitate local emis-
sion of INPs (Carlsen and David, 2022). Furthermore, the
well-established general increase in total precipitation with
warming may also lead to increased snowfall in some re-
gions (Douville et al., 2023). Hence, cloud phase, snowfall
amounts, and snowfall frequency of occurrence will likely
change with warming in ways that are both complex and cur-
rently poorly understood (Danco et al., 2016; Chen et al.,
2020; Quante et al., 2021).

There are several processes governing snow formation
within sLCCs. The transition from a fully liquid to a com-
pletely frozen cloud can follow various pathways (Costa
et al., 2017) driven by differences in the saturation vapor
pressures of ice and liquid at temperatures below 0°C (We-
gener, 1912; Bergeron, 1928; Findeisen, 1938), where ice
crystals will grow at the expense of supercooled liquid wa-
ter (Korolev and Mazin, 2003; Korolev, 2007; Storelvmo
and Tan, 2015; Korolev et al., 2017). This phenomenon is

called the Wegener–Bergeron–Findeisen (WBF) process and
can lead to the rapid growth of ice crystals, which eventu-
ally fall out as snow. Increasing INP concentrations can cause
cloud glaciation, amplified by the WBF process, increasing
the precipitation at the surface and consequently shorten-
ing the cloud lifetime (Lohmann and Diehl, 2006; Rosen-
feld et al., 2011; Storelvmo and Tan, 2015). Furthermore, ice
crystals can be introduced into this sLCC by either falling
into it from above (e.g., Proske et al., 2021) or by turbulent
mixing.

The microphysical processes described above occur on
scales smaller than the grid resolution used in ESMs, and
their influence on cloud macroscopic properties must there-
fore be parameterized. Cloud microphysical parameteriza-
tions in ESMs are known to often be overly crude and sim-
plistic. For example, ESMs generally assume that liquid and
ice are uniformly mixed within a grid box, while observa-
tions have shown that sLCCs typically consist of cloud pock-
ets exclusively composed of liquid or ice (Korolev and Mil-
brandt, 2022). Additionally, the treatment of primary ice pro-
duction has an influence on the amount of supercooled liq-
uid water in climate models (Vergara-Temprado et al., 2018).
Only a small number of ESMs include parameterizations
of primary ice production that depend on the presence of
aerosols with the ability to act as INPs, while the majority
include simpler parameterizations that rely only on tempera-
ture. Cesana et al. (2015) found that models with more com-
plex microphysics (e.g., prognostic ice and liquid water con-
tent, heterogeneous freezing, riming, accretion, and the WBF
process) tend to provide a more accurate representation of
the ice phase. Similarly, Komurcu et al. (2014) noted that the
variability in the cloud phase among models was influenced
by the specific ice nucleation scheme used and the represen-
tation of other microphysical processes associated with ice.

ESMs have previously been shown to not represent the
cloud phase accurately by often underestimating liquid and
overestimating ice compared to satellite measurements. This
has particularly been the case for high-latitude regions (Ko-
murcu et al., 2014; Cesana et al., 2015; Tan and Storelvmo,
2016; Kay et al., 2016; McIlhattan et al., 2017; Bruno et al.,
2021; Shaw et al., 2022). However, most studies to date were
conducted based on the previous generation of ESMs (Cou-
pled Model Intercomparison Project Phase 5 (CMIP5); Tay-
lor et al., 2012), and a wide range of different cloud-phase
metrics have been applied in the past, often without a clear
strategy that allows like-for-like comparison with satellite
observations. In other words, uncertainties remain in under-
standing the complex processes governing cloud phase and
their representation in ESMs (Komurcu et al., 2014). Be-
cause cloud phase and snowfall are tightly linked through
the processes outlined earlier, any inaccuracies in represent-
ing cloud phase could lead to biases in the simulation of snow
growth, formation, and the precipitation reaching the ground
in solid or liquid form (Mülmenstädt et al., 2021; Stanford
et al., 2023). It is important to note, however, that while such
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biases in cloud-phase representation might exist, other com-
pensating model biases could nevertheless lead to accurate
precipitation simulations.

CloudSat (Stephens et al., 2002) and the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO; Winker et al., 2010), flying in the afternoon train
constellation, have provided global estimates of cloud prop-
erties and snowfall since 2006. CloudSat is equipped with a
cloud-profiling radar (CPR) that detects large cloud and pre-
cipitation particles, while CALIPSO, with its Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP; Winker et al.,
2007), can, among other things, determine the phase of cloud
layers. The CloudSat–CALIPSO constellation overpasses the
same regions approximately every 16 d, providing long-term
periodic monitoring of cloud and snowfall characteristics
across the globe. Previous studies have contributed to a better
understanding of the uncertainties associated with satellite
measurements of clouds and precipitation (e.g., Stephens and
Kummerow, 2007; Hiley et al., 2011). For example, Stephens
and Kummerow (2007) identified two primary sources of un-
certainty in retrieval methods, namely errors in distinguish-
ing between cloudy and clear-sky scenes and between pre-
cipitating and non-precipitating clouds. Furthermore, the for-
ward models used are highly sensitive to their input parame-
ters, particularly the radiative transfer and atmospheric mod-
els. Hiley et al. (2011) demonstrated that snowfall retrievals
are also influenced by retrieval assumptions and the use of
different ice particle models, which can significantly affect
the estimated snowfall rates. Despite limitations, the value
of satellite data like CloudSat and CALIPSO for validat-
ing reanalysis and ESM data, which both rely on parame-
terized microphysics (Forbes and Ahlgrimm, 2014; McIlhat-
tan et al., 2017; Milani et al., 2018; Edel et al., 2020; Daloz
et al., 2020), is well established. Previous studies suggest that
there is a notable difference in snowfall estimates between
ESMs and satellite observations. For example, Heymsfield
et al. (2020) found that the Met Office Unified Model and
the Community Atmosphere Model 6 produce double the
amount of snowfall relative to satellite observations. Addi-
tionally, Roussel et al. (2020) discovered that the ensemble
median of CMIP5 experiments tends to show a positive bias
in snowfall rates compared to the CloudSat average. Of par-
ticular relevance for the analysis presented here is the study
by McIlhattan et al. (2017), who investigated the causes and
impacts of liquid-containing cloud (LCC) biases in the Arc-
tic region. They found that the Community Earth System
Model Large Ensemble (CESM-LE) underestimates the fre-
quency of Arctic LCCs compared to observations. Moreover,
the CESM-LE overestimated the snowfall frequency from
these clouds, possibly indicating an overactive WBF process
leading to snowfall that is too frequent and cloud lifetimes
that are too short (McIlhattan et al., 2017). In a comparable
study of the Southern Hemisphere (SH), Roussel et al. (2020)
showed a weak annual cycle of snowfall rates in the Antarc-
tic plateau regions and found that the CMIP5 and CMIP6

(Eyring et al., 2016) simulations tended to overestimate the
average precipitation rate in Antarctica. Despite the improve-
ments in surface temperature representation from CMIP5 to
CMIP6, there is no corresponding improvement in the rep-
resentation of large-scale mean precipitation rate and sea-
sonality in the region (Roussel et al., 2020). Precipitation er-
rors in ESMs are not primarily driven by first-order physical
links but by atmospheric circulation and cloud microphysics
(Roussel et al., 2020). Antarctica and the surrounding ocean
are also known to be a region in which ESMs have large bi-
ases, which are thought to be attributable to cloud-phase bi-
ases (e.g., Vergara-Temprado et al., 2018). These persistent
discrepancies between ESMs and observations further high-
light the importance of understanding the link between cloud
phase and solid precipitation on different scales and improv-
ing the representation of cloud phase in ESMs.

Reanalysis products employ numerical weather prediction
models that assimilate various observations to generate a
continuous spatial and temporal dataset. The European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis datasets use data collected from satellites, weather sta-
tions, and ocean buoys to combine with a numerical weather
prediction model to provide a comprehensive view of the
global atmospheric climate. Nonetheless, the precision in
depicting cloud and surface snowfall relies on the underly-
ing model and the assimilated dataset (Boisvert et al., 2018;
Daloz et al., 2020; Boisvert et al., 2020). Challenges may
arise due to limited spatial resolution and sparse observa-
tions, particularly in remote and complex topographical re-
gions (Boisvert et al., 2018; Daloz et al., 2020; Boisvert
et al., 2020). Wang et al. (2019) studied snowfall within two
ECMWF reanalysis datasets, namely ERA-Interim (Sim-
mons et al., 2007; Dee et al., 2011) and ERA5 (Hersbach
et al., 2020). The latter includes higher horizontal resolution,
improvements to the numerical model, improved data as-
similation, and different cloud physics schemes (Forbes and
Ahlgrimm, 2014). Wang et al. (2019) showed that ERA5 led
to a better representation of snowfall than ERA-Interim. Nev-
ertheless, Milani et al. (2018) concluded that ERA-Interim
reanalysis data produce mean annual snowfall patterns sim-
ilar in magnitude to CloudSat over Antarctica. In the Arc-
tic, the ERA-Interim data qualitatively represented the inter-
annual snowfall rates and seasonal cycle well but underes-
timated high snowfall rates significantly during summer and
overestimated weak snowfall rates over open water compared
to CloudSat (Edel et al., 2020). Seasonal biases tended to
be higher in colder months when heavier snowfall occurred
(Edel et al., 2020). Boisvert et al. (2020) compared different
reanalysis products, including ERA-Interim and ERA5, and
focused on snowfall in the Southern Ocean. They found sim-
ilar spatial and interannual snowfall patterns, where ERA-
Interim produced the least snowfall compared to ERA5 and
the other reanalysis datasets. Sea ice representation, atmo-
spheric moisture content, temperature, cloud microphysics
schemes, and data assimilation used in the reanalysis were all
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identified to contribute to the disagreement regarding snow-
fall magnitude at lower latitudes (north of the Antarctic conti-
nent; Boisvert et al., 2020). They also showed that the differ-
ence between subsequent reanalysis iterations is due to these
factors and model resolution changes. However, it is chal-
lenging to attribute the differences further to specific factors.

This study adds to the previous literature discussed above
by connecting cloud phase and surface snowfall in ERA5 re-
analysis, CMIP6 models, and CloudSat–CALIPSO observa-
tions through the analyses of the frequency of occurrence of
sLCCs and associated surface snowfall in these datasets. The
frequency of sLCC occurrence (fsLCC) represents the fraction
of time (in percent) that sLCCs are observed, while the fre-
quency of snowfall from sLCC (fsnow) denotes the percentage
of time that sLCCs are snowing. This information is crucial
for understanding when and where sLCCs produce snowfall
and is vital for predicting and modeling precipitation pat-
terns in high-altitude and latitudinal areas. By studying the
fsnow, valuable insights into the occurrence of snowfall can
be gained, further enhancing our understanding of its role in
the water cycle, as well as the representation of the WBF
process in reanalysis and ESMs.

Another novel contribution is the assessment of cloud-
phase biases based on a relatively new cloud-phase metric
that aims for a like-for-like comparison with satellite re-
trievals to the extent possible and the relation of these bi-
ases to associated snowfall biases in reanalysis and ESMs.
The study area spans the latitudinal ranges of 45–82° N and
45–82° S. We select these regions because they cover the
mid-latitudes and polar areas in which mixed-phase clouds
and surface snowfall are predominantly observed (Warren
et al., 1988; Komurcu et al., 2014; Korolev et al., 2017; Ma-
tus and L’Ecuyer, 2017; Chen et al., 2020). The central re-
search questions of this study are as follows: what are the
cloud-phase biases in the NH and SH mid-to-high latitudes in
ERA5 and “historical” simulations from CMIP6 with respect
to the relatively new cloud-phase metrics, and how do these
biases relate to snowfall biases? By addressing these research
questions, we aim to improve our understanding of cloud-
phase representation and its connection to snowfall and ul-
timately contribute to the advancement of climate modeling
and prediction.

In the subsequent sections, we will investigate the fre-
quency and geographic distribution of sLCCs and associ-
ated snowfall in order to distinguish their contribution to the
overall snowfall patterns. Section 2 of this paper includes
a description of the datasets and methodologies utilized in
this study. Section 3 presents the results for the fsLCC and
fsnow values for the NH and SH mid-to-high latitudes be-
tween 2007 and 2010. Section 4 is a discussion on CloudSat–
CALIPSO and the use of different time sampling for the var-
ious datasets. In Sect. 5, the connection between cloud-phase
and snowfall biases is discussed, and possible next steps for
future studies are given.

2 Data and methods

Our primary emphasis is on sLCCs in the mid-to-high lati-
tudes and understanding how frequently and where they pro-
duce snowfall. We utilize CloudSat–CALIPSO satellite ob-
servations, ERA5 reanalysis, and CMIP6 simulations to as-
sess biases in the spatial distribution and frequency of oc-
currence of sLCCs, as well as their respective snowfall fre-
quency. This section introduces the different datasets and
presents the statistical methods used for the cloud-phase and
snowfall analysis. Table 1 lists the units and data properties
for the variables used from CloudSat–CALIPSO, ERA5, and
CMIP6, respectively.

2.1 CloudSat–CALIPSO satellite retrievals

In our investigation of the relationship between sLCCs and
surface snowfall biases, we rely on satellite observations
from CloudSat and CALIPSO for the comparison with ERA5
and CMIP6 models. Specifically, we use Release 5 (R05)
versions of the 2B-CLDCLASS-LIDAR product (Sassen
et al., 2008) for cloud-phase determination, the 2C-SNOW-
PROFILE product (Wood and L’Ecuyer, 2018) for the sur-
face snowfall rate estimation, and 2 m temperatures from the
ECMWF-AUX dataset that contains ancillary ECMWF state
variable data interpolated to each vertical radar bin (see Ta-
ble 1).

The 2B-CLDCLASS-LIDAR product utilizes the
CALIOP lidar and the CPR on CloudSat and their different
sensitivities to liquid droplets and ice crystals in order to
retrieve the phase of a cloudy layer. The algorithm uses a
temperature-dependent radar reflectivity threshold (Zhang
et al., 2010), the integrated attenuated lidar backscattering
coefficient, and cloud-base and cloud-top temperatures from
atmospheric reanalysis data to discriminate between ice,
mixed, or liquid water clouds (Wang and Sassen, 2019).
In accordance with McIlhattan et al. (2017), we focus on
the phase of the bottom cloud layer within the atmospheric
column and neglect the cloud-phase quality flag, irrespective
of the confidence level indicated. The rationale for the
latter is the lidar’s ability to robustly detect any liquid
(liquid or mixed), and a low-confidence value for the
phase determination could stem from the uncertainty in the
distinction between purely liquid clouds and mixed-phase
clouds. This is particularly true for the frequent structure of
polar mixed-phase clouds with the liquid layer at cloud top
(McIlhattan et al., 2017).

To estimate the surface snowfall rate, we use the 2C-
SNOW-PROFILE product (Wood and L’Ecuyer, 2018),
which is based on an optimal estimation algorithm to retrieve
profiles of parameters of the snow size distribution. The opti-
mal estimation uses the radar reflectivity profile of the snow
layer, ancillary meteorological information, and assumptions
about snow microphysical and scattering properties. As the
CPR cannot reliably measure near-surface reflectivities due
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Table 1. Overview of variable and original data field name, units, and data properties for CloudSat–CALIPSO, ERA5, and CMIP6 datasets.
CMIP6 model variables represent variable short names.

Variable Data field name Units Variable property

CloudSat–CALIPSO

Cloud-phase flag CloudPhase Ice, mixed, liquid From 2B-CLDCLASS-LIDAR
2 m temperature Temperature_2m K From ECMWF-AUX
Surface snowfall rate snowfall_rate_sfc mmh−1 From 2C-SNOW-PROFILE

ERA5

Total column cloud liquid water tclw kgm−2 Instantaneous
Total column rainwater tcrw kgm−2 Instantaneous
2 m temperature 2t K Instantaneous
Mean snowfall rate msr kgm−2 s−1 Mean rate

CMIP6

Mass fraction of cloud liquid water clw kgkg−1 Model level
Near-surface air temperature tas K Single level
Snowfall flux prsn kgm−2 s−1 Single level
Pressure on model half-levels phalf Pa Model half-level
Grid cell area for atmospheric grid variables areacella m2 Single level

to ground clutter, the surface snowfall rate is estimated based
on the lowest clutter-free radar bin (Wood et al., 2014). The
truncation height of the snow profile due to ground clut-
ter is surface-dependent (two range bins above surface and
over ocean (∼ 500 m); four range bins over land and sea ice
(∼ 1000m); Wood et al., 2014).

We focus on the years 2007 to 2010 before CloudSat
switched to daytime-only operations due to a battery mal-
function. Furthermore, we exclude September 2008 and De-
cember 2009 due to insufficient CALIOP data and the Cloud-
Sat battery failure (Keys, 2010). We aggregate the profile-
by-profile data to a horizontal grid with a resolution of
3.75°× 1.9° for each month. Subsequently, we calculate the
monthly fsLCC and fsnow, as described in Sect. 2.4.

The sea ice concentration (SIC) data used in this study are
obtained from the Institute of Environmental Physics, Uni-
versity of Bremen. The data are derived using the ARTIST
Sea Ice (ASI) algorithm developed by Spreen et al. (2008).
The ASI retrieval method utilizes microwave radiometer data
from the Advanced Microwave Scanning Radiometer for the
Earth Observing System (EOS) instrument on the Aqua satel-
lite and the Advanced Microwave Scanning Radiometer 2 in-
strument on the Global Change Observation Mission–Water
(GCOM-W1) satellite. Both datasets were reprocessed in
2018 with the same parameters. To present the 20% SIC, a
seasonal average of the SIC is calculated for the years 2007
to 2010 and then gridded onto the 3.75°× 1.9° grid using
bilinear interpolation.

2.2 ERA5 reanalysis

The ERA5 reanalysis data employ the 4D-Var data assim-
ilation of the ECMWF Integrated Forecast System. ERA5
incorporates an improved stratiform cloud and precipita-
tion scheme, enhancing the representation of mixed-phase
clouds compared to ERA-Interim (Hersbach et al., 2020)
and includes prognostic variables for both rain and snow
(Forbes et al., 2011; Forbes and Tompkins, 2011; Forbes and
Ahlgrimm, 2014). The meteorological values are output at a
resolution of 0.25× 0.25°.

In order to detect the presence of sLCCs in ERA5 data,
specific criteria involving the 2 m temperature (T2m) thresh-
old and liquid water path (LWP) threshold must be met (see
Sect. 2.4). However, it is worth noting that ERA5 does not
readily provide LWP values. Therefore, we calculated the
LWP using the total column cloud liquid water (tclw) and
the total column rainwater (tcrw; expressed in kgm−2; Ta-
ble 1). We incorporate tcrw with the T2m threshold below
0°C as this threshold is used to exclude any rainwater below
the melting layer. Using daily mean values of tclw and tcrw
and applying the daily man temperature threshold, we can an-
alyze the role of supercooled liquid water within clouds and
the contribution of liquid water to the snowfall precipitation
process in ERA5.

To calculate the fsnow, we rely on the mean snowfall rate
variable (msr, Table 1). The mean snowfall rate (expressed
in units of kgm−2 s−1) provides a combined measurement
of both large-scale and convective snowfall. It is calculated
as an average over 24 h. Here we use the ERA5 Climate
Data Store tool to average all of the output variables into
daily mean values based on hourly data (Cucchi et al., 2021;
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Copernicus Climate Change Service, 2018). It is important
to note that 2t, tclw, and tcrw (Table 1) are reported as in-
stantaneous values every hour, meaning that when they are
averaged to obtain daily mean values, they may not accu-
rately represent the actual daily mean values. Nevertheless,
a non-zero model daily mean LWP means that there was an
sLCC in the grid box at some point during the day. In con-
trast, the mean snowfall rate is reported as a temporal average
and accurately represents the daily mean snowfall rate.

2.3 CMIP6 models

Our intermodel comparison relies on data from CMIP6, in-
volving simulations from various modeling centers. Specif-
ically, we focus on the “historical” simulations (1850–near-
present; Eyring et al., 2016), selecting 10 models with daily
mean outputs from different ensemble members, as outlined
in Table A1. In most of the figures shown in this study, we
present the CMIP6 multimodel mean.

In our analysis, we consider the following variables (Ta-
ble 1): the mass mixing ratio of cloud liquid water (clw) en-
compassing liquid water in both large-scale and convective
clouds provided at each model level (in units of kgkg−1).
Precipitating hydrometeors within the clw variable are in-
cluded only if they affect the model’s radiative transfer cal-
culations. Near-surface air temperature (tas), reflecting the
temperature at a height of 2 m above the surface (measured
in K), and snowfall flux (prsn), representing precipitation in
all forms of frozen water (expressed in kgm−2 s−1) are also
considered.

As none of the models listed in Table A1 directly provides
LWP as a daily output variable, we derive LWP based on
clw. To calculate the LWP, we interpolate the CMIP6 hy-
brid sigma pressure to isobaric pressure (Appendix A). The
UKESM1-0-LL and HadGEM3-GC31-LL models provide
values on orographic vertical coordinates. Consequently, for
these models, we use the CMIP6 variable phalf (Table 1) in-
stead of calculating isobaric pressure levels. Subsequently,
we utilize the hydrostatic equation to calculate the liquid wa-
ter content for each vertical grid box. The liquid water con-
tent is then summed up over the vertical to obtain the LWP
for each horizontal grid box (see Appendix A).

CMIP6 data are gathered from 2006 to 2009 as these years
represent the closest available overlapping time range for all
CMIP6 models (some models ended the simulations by De-
cember 2009 and are marked with an asterisk in Table A1).
The slight mismatch in the time range is of limited relevance
as CMIP6 model simulations are not designed to reproduce
the exact temporal evolution of past weather but instead gen-
erate their own internal variability (e.g., El Niño–Southern
Oscillation (ENSO) cycles), so they should only be viewed
as generally representative of the time period in question.

2.4 Calculation of fsLCC and fsnow

The instrument sensitivities of the CPR and CALIOP, as well
as their different temporal and spatial sampling in contrast to
the gridded ERA5 and CMIP6 data, require different metrics
that ensure a like-for-like comparison to the extent possible.
In the following, we describe the calculation of these metrics
(fsLCC and fsnow) and call attention to differences between
the satellite observations and ERA5 or CMIP6. For ERA5
and for CMIP6 models, we remap all models to the coarsest
resolution of 3.75°× 1.9°, which corresponds to the grid of
IPSL-CM5A2-INCA (Table A1), with a nominal resolution
of approximately 500km. We use area-weighted averages for
both the NH and SH to calculate spatial means.

2.4.1 Frequency of sLCC

We defined the occurrence of an sLCC in a cloudy CloudSat–
CALIPSO profile when the lidar detected any liquid in
the lowermost cloud layer (phase flag “liquid” or “mixed”)
and when the surface temperature was below freezing
(Temperature_2m≤ 0°C). The temperature threshold was
applied to ensure that the clouds were supercooled. In ERA5
and CMIP6, we applied the same temperature threshold and
defined an sLCC when the LWP is above 5gm−2. This is in
accordance with McIlhattan et al. (2017) and based on their
sensitivity estimate when comparing CloudSat with ground-
based microwave radiometer observations at Summit, Green-
land. This definition of sLCCs is likely a very conservative
estimate of the actual frequency of clouds containing super-
cooled liquid in the atmosphere because we require temper-
atures below freezing at the surface, while, in reality, there
could still be supercooled liquid even if the surface is above
freezing. However, as we are investigating the frequency of
snowing sLCCs in the second part of this study, we want to
ensure that any precipitation from the sLCCs is primarily in
the form of snow.

In ERA5 and CMIP6, we calculate fsLCC as the number
of days with sLCCs present (N_sLCC) divided by the to-
tal number of days (N_all) over a specific time period (see
Table 2). However, we cannot utilize daily statistics on a
global scale from CloudSat–CALIPSO due to their transect-
based sampling in combination with a revisit time of 16 d
and, consequently, insufficient horizontal coverage (e.g., Ko-
tarba, 2022; von Lerber et al., 2022). Thus, after aggregating
the CloudSat–CALIPSO profiles to the same grid as ERA5
and CMIP6, we calculate fsLCC from satellite data by divid-
ing the number of profiles in that month with an sLCC by the
total number of profiles (see Table 2).

2.4.2 Frequency of snowfall in sLCCs

For the occurrence of snowfall from sLCCs, we define a
snowfall threshold of 0.01kgm−2 h−1. Again, this is based
on McIlhattan et al. (2017) and aims to mitigate biases due
to instrument sensitivities. The fsnow in ERA5 and CMIP6
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Table 2. Calculation of fsLCC and fsnow and overview of applied thresholds. The first row corresponds to CMIP6/ERA5 metrics, while rows
denoted with “CC” describe CloudSat–CALIPSO metrics.

Variable name Description Thresholds and equations

N_all Number of all days
CC: number of all observations

N_sLCC Number of days with sLCCs T2m≤ 0°C, LWP≥ 5 g m−2

CC: number of observations with sLCCs T2m≤ 0°C, phase flag liquid/mixed

N_sLCC_sf Number of days with snowing sLCCs sf≥ 0.01kgm−2 h−1

CC: number of observations with snowing sLCCs sf≥ 0.01kgm−2 h−1

fsLCC (%) Frequency of sLCCs N_sLCC /N_all
fsnow (%) Frequency of snowing sLCCs N_sLCC_sf /N_sLCC

is then calculated as the number of days with snowfall
(N_sLCC_sf) divided by the total number of days with
sLCCs present (N_sLCC; see Table 2). The ERA5 and
CMIP6 snowfall rates and T2m are given as daily mean val-
ues. It is important to note that as fsLCC is calculated us-
ing daily mean values, the simulated precipitation can, in
principle, occur as rain (or supercooled rain), depending on
the temperature at the time of the precipitation. However,
as no additional information is available, we here assume
that all precipitation from sLCCs is in the form of snow. To
ensure comparability among the three datasets (CloudSat–
CALIPSO, ERA5, and CMIP6), we perform a unit transfor-
mation, as outlined in Appendix B.

To account for the differences in sampling in space and
time, we calculate fsnow from CloudSat–CALIPSO as the
number of observations with snowing sLCCs divided by the
number of observations with sLCCs (Table 2).

3 Results

The following subsections examine and intercompare fsLCC
and fsnow, respectively, from the three datasets examined
(CloudSat–CALIPSO, ERA5, and the CMIP6 models).

3.1 Frequency of sLCCs

Figure 1a–d present the seasonal variability in fsLCC ob-
served by CloudSat–CALIPSO in the mid-to-high latitudes
of the NH. Evident from the figure is a clear seasonal
progression in the spatial distribution of fsLCC. In summer
(June–August, JJA), fsLCC reaches its minimum spatial aver-
age, with non-negligible values primarily within the Arctic
basin. In NH autumn (September–November, SON), fsLCC
values increase significantly in the Arctic basin but also
spread poleward to land areas at about 60°N. In boreal win-
ter (December–February, DJF), maximum values shift away
from the Arctic basin and are instead found over the ocean
close to the average seasonal sea ice edge (Fig. 1a; red line).

The Greenland ice sheet (GRIS) is a region of partic-
ular interest for this study, as sLCCs have been proposed
to accelerate GRIS surface melt (Bennartz et al., 2013;
Hofer et al., 2019), while snowfall represents the primary
ice sheet growth mechanism. The GRIS, which is charac-
terized by its high elevation and snow-covered surface, ex-
periences numerous sLCCs during boreal summer and au-
tumn due to sufficient moisture and temperatures below 0°C
in the CloudSat–CALIPSO observations (Fig. 1c, d). How-
ever, during boreal winter and spring (March–May, MAM),
the fsLCC is low (< 15 %) as the region becomes too dry and
cold (Shupe et al., 2013) to support the formation of sLCCs.
The seasonal cycle of the fsLCC as observed by CloudSat–
CALIPSO is largely what would be expected from the com-
bined seasonal influence of atmospheric circulation, moisture
availability, and temperature conditions in the mid-to-high-
latitudes in the NH.

Comparing the CloudSat–CALIPSO observations with
ERA5 and the CMIP6 model mean, we generally observe
that ERA5 and the CMIP6 models show a similar seasonal
progression of fsLCC to that seen in the satellite observa-
tions. However, both ERA5 and the CMIP6 mean overesti-
mate fsLCC to various extents during all seasons. The most
significant discrepancy is observed during boreal spring,
with area-weighted-averaged differences between CloudSat–
CALIPSO and ERA5 and the CMIP6 model mean of −11%
and −14%, respectively (Fig. C1f, j). Nevertheless, the spa-
tial extent of areas with fsLCC amounts larger than 0%
in CloudSat–CALIPSO is replicated well in ERA5 and
the CMIP6 model mean (Fig. 1). Although ERA5 and the
CMIP6 models have remarkably similar spatial patterns of
fsLCC, the CMIP6 model mean generally exhibits slightly
larger area-weighted biases in the NH (6 %–14 %, Fig. C1i–
l) than ERA5 (1 %–11 %, Fig. C1e–h) when compared to
CloudSat–CALIPSO.

The fact that these discrepancies are about equally present
in both ERA5 and the CMIP6 models provides valuable in-
sights into their potential causes. They are most likely linked
to the microphysical parameterizations of cloud processes
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Figure 1. The NH mid-to-high-latitude seasonal averages of fsLCC. Panels (a)–(d) show CloudSat–CALIPSO, panels (e)–(h) display ERA5
data, and panels (i)–(l) show the CMIP6 model mean. Each map includes an area-weighted average for the study area (lower-left corner).
These averages are calculated for areas in which CloudSat–CALIPSO have valid observations (between 45–82° N) and exclude the dotted
area (e–l). The dashed black line represents the seasonal mean 2m temperature 0°C isotherm for each individual product. The red line (a–d)
shows the average sea ice edge of 20% sea ice concentration (SIC) between 2007 and 2010 for the given season.

that govern the cloud phase in ERA5 and CMIP6 mod-
els. It is reasonable to assume that the temperature in the
ECMWF-AUX product used in CloudSat–CALIPSO is quite
similar to the ERA5 daily mean as indicated by the sea-
sonal mean 0°C isotherm in Figs. 1 and 2. However, ERA5
shows a slight variation in the 0°C isotherm line over central
Europe during DJF compared to ECMWF-AUX (Fig. 1e).
Furthermore, a comparison of the 2m temperature between
ECMWF-AUX and ERA5 shows a latitudinal average differ-
ence of 0.24K ± 0.22K (Fig. D1). Atmospheric circulation
and overall cloud cover should be well constrained by the ob-
servations used in the ERA5 reanalysis. However, the cloud
phase is not as evident in the identified biases. This finding
will be discussed in greater depth in Sect. 5.1.

Unlike the NH mid-to-high latitudes, the SH does not ex-
perience significant seasonal variations in fsLCC, according to
the CloudSat–CALIPSO observations (Fig. 2a–d). The fsLCC
remains relatively constant across all seasons and is the high-
est in a band bounded by the Antarctic continent in the south
and approximately the 60° parallel in the north, with val-
ues between 17 %–24 %. However, the area-weighted aver-
ages of fsLCC in the SH are generally higher than in the NH.
The relatively constant fsLCC indicates that a more persistent
cloud regime exists in the SH, with extensive sLCC cover

present all year round. This is consistent with the previous
literature reporting that the Southern Ocean is the region of
the world with the most extensive mixed-phase cloud cover
(Matus and L’Ecuyer, 2017).

Like the GRIS, the Antarctic ice sheet has a low fsLCC
amount, with the lowest frequency in austral winter (JJA;
≤ 15%). With its high elevations, the East Antarctic Ice
Sheet exhibits a lower fsLCC amount than the flatter West
Antarctic Ice Sheet during austral summer (DJF), autumn
(MAM), and spring (SON). Just like the NH, the SH shows
a reduced area of the fsLCC in austral summer (Fig. 2c) but
with a larger extent towards lower latitudes (NH: > 70° N;
SH: > 60° S). In all seasons, fsLCC activities are observed
primarily southward of the Antarctic Circumpolar Current,
which may be due to the presence of warm water that results
in surface temperatures above the sLCC threshold (Fig. 2a–
d).

In ERA5 and the CMIP6 model mean, there is a promi-
nent gradient of sLCCs between the Southern Ocean and the
Antarctic ice sheet, with fsLCC of up to 100% over the South-
ern Ocean and < 15 % over the Antarctic ice sheet. For the
SH spatial mean, ERA5 and the CMIP6 model mean moder-
ately overestimate fsLCC (1 %–8 %), with the CMIP6 model
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mean, in general, performing slightly better than ERA5 in
comparison to CloudSat–CALIPSO (Fig. C2).

The biases in ERA5 and the CMIP6 models regarding
fsLCC, relative to CloudSat–CALIPSO, are further demon-
strated through the area-weighted averages for each month
in both hemispheres (Fig. 3). For the area-weighted aver-
ages, we consider only the locations for which CloudSat–
CALIPSO provided valid data (values between |45°–82°|).
CMIP6 models generate a large spread of fsLCC, with both
CloudSat–CALIPSO and ERA5 falling within the range of
the model maximum and minimum values (green dots in
Fig. 3). Again, it is evident that ERA5 and the CMIP6
model mean have higher fsLCC than CloudSat–CALIPSO in
the NH (Fig. 3a). The SH area-weighted averages show a
better agreement between CloudSat–CALIPSO, ERA5, and
the CMIP6 model mean than in the NH (Fig. 3b). The
CMIP6 model mean underestimates fsLCC in comparison to
CloudSat–CALIPSO during austral summer and autumn but
overestimates during winter and spring, while ERA5 overes-
timates fsLCC to various degrees all year round in the SH.

Finally, to assess the model performance relative to
CloudSat–CALIPSO for ERA5 and the individual CMIP6
models for fsLCC, we analyze the difference in the seasonal
and spatial averages for each of the 11 models (Fig. 4) for the
NH and SH mid-to-high latitudes. The most significant dis-
crepancy is seen in boreal winter and spring for AWI-ESM-
1-1-LR, MPI-ESM1-2-LR, and IPSL-CM6A-LR with a neg-
ative difference > 15 % (Fig. 4a). In the NH, MPI-ESM1-
2-LR is generally the model with the larger overestimation
(> 15 %), despite a difference of < 10 % in boreal summer.
IPSL-CM5A2-INCA has a low difference, < 5 %, in boreal
summer, autumn, and winter. As previously highlighted, the
difference values for fsLCC are lower in the SH (Fig. 4b),
and none of the models stands out in terms of overall per-
formance in either direction.

3.2 Frequency of snowfall from sLCC

To assess the ability of ERA5 reanalysis and the CMIP6
models to represent snowfall processes, we compare the fsnow
between them and the CloudSat–CALIPSO observations.
Based on CloudSat–CALIPSO observations, NH sLCCs fre-
quently produce snowfall, as can be seen by the non-zero val-
ues of fsnow in Fig. 5a–d. However, during boreal summer,
the majority of sLCCs rarely produces snowfall, as shown
by the relative increase in the areal extent of zero fsnow val-
ues (Fig. 5c). Notably, during boreal winter, spring, and au-
tumn, the seasonal average fsnow is highest over open-ocean
regions, such as the Greenland, Norwegian, and Barents seas
(30 %–65 %), the Labrador Sea (40 %–80 %), and the Bering
Sea (40 %–100 %; Fig. 5a, b, d). This is likely due to plen-
tiful available moisture for snowfall to occur and is possi-
bly linked to cold-air outbreaks (CAOs; Young et al., 2017).
CAOs arise when cold and dry air flows over warmer and
moist sea surfaces. CAOs occur frequently in the North At-

lantic in boreal winter and spring, and the clouds associated
with them are predominantly sLCCs (Fletcher et al., 2016;
Papritz and Sodemann, 2018; Geerts et al., 2022; Mateling
et al., 2023). While the influence of CAOs is also visible in
the fsnow patterns across various seasons, with the exception
of boreal summer, the fsnow values over land areas tend to
be lower. Although it is possible that the higher minimum
height bin of the radar used over land (∼ 1000m) may lead
to the 2C-SNOW-PROFILE product missing some of the pre-
cipitation over land, the variability in the fsnow values in re-
gions where similar cloud types are expected suggests that
this land–sea contrast is likely a representative feature. This
discrepancy can be attributed to the limited moisture content
and shallower boundary layer over land during winter, re-
sulting in lower fsnow compared to ocean areas where CAOs
provide deeper moisture-rich clouds. Once clouds embedded
in CAOs reach a certain distance from the sea ice, they fre-
quently produce precipitation (e.g., Abel et al., 2017). In con-
trast, during the winter months, northern Europe is often cov-
ered by non-precipitating supercooled stratus clouds (Cesana
et al., 2012; McIlhattan et al., 2017). The models also show
a lower fsnow over land, supporting the idea that the observed
land–sea contrast is a genuine characteristic rather than an
artifact of measurement techniques.

In contrast to the CloudSat–CALIPSO observations, both
ERA5 and the CMIP6 model mean have much higher fsnow
values (> 60 %), which are evenly distributed over the NH
mid-to-high latitudes, without a significant seasonal variabil-
ity. In regions where all three datasets have sLCCs, ERA5
and the CMIP6 model mean overestimate the fsnow by ∼
50% (Fig. C3). This indicates that ERA5 and the CMIP6
models produce snowfall much more frequently from sLCCs
than observed. It is important to note that since fsnow accounts
for the number of sLCCs, ERA5 and the CMIP6 models are
too efficient at producing snowfall, regardless of the number
of sLCCs that are simulated/assessed.

Regarding the SH mid-to-high latitudes, the CloudSat–
CALIPSO observations show that there is no significant sea-
sonal variation in fsnow, with spatially averaged values of
∼ 20% for all seasons (Fig. 6a–d). However, when compar-
ing the results from ERA5 and the CMIP6 model mean with
observations from CloudSat–CALIPSO, we find that simi-
lar to the NH, the simulated fsnow values are much higher
than those observed (Fig. 6). When only considering re-
gions where CloudSat–CALIPSO observe fsnow (45–82° S),
the area-weighted seasonal average of fsnow is approximately
60 %–70 % higher in ERA5 and the CMIP6 model mean
(Fig. C4). The high simulated values of fsnow in both the
NH and SH indicate that ERA5 and the CMIP6 models pro-
duce snowfall far too frequently from sLCCs compared to the
satellite observations. In fact, when sLCCs are present, snow
is produced practically all of the time (between 70 % and
90 %). This bears resemblance to a well-established bias in
ESMs, namely the persistent “perpetual drizzle” problem for
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Figure 2. The SH mid-to-high-latitude seasonal averages of fsLCC. Panels (a)–(d) show CloudSat–CALIPSO, panels (e)–(h) display ERA5
data, and panels (i)–(l) show the CMIP6 model mean. Each map includes an area-weighted average for the study area (lower-left corner).
These averages are calculated for areas in which CloudSat–CALIPSO have valid observations (between 45–82° S) and exclude the dotted
area (e–l). The dashed black line represents the seasonal mean 2m temperature 0 °C isotherm for each individual product. The red line (a–d)
shows the average sea ice edge of 20% sea ice concentration (SIC) between 2007 and 2010 for the given season.

Figure 3. The annual cycle of monthly fsLCC for (a) NH (45–82°N) and (b) SH (45 and 82°S). Shown are area-weighted averages for
CloudSat–CALIPSO (black), ERA5 (pink), and the CMIP6 model mean (green). Each box represents the interquartile range (IQR) from
the 25th (Q1) to the 75th (Q3) percentile. The whiskers extend to the minimum and maximum values, defined as Q1− 1.5× IQR and
Q3+ 1.5× IQR, respectively. Any points falling outside these whiskers are considered outliers and are marked with crosses. The green dots
represent the minimum and maximum CMIP6 model values over all years.
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Figure 4. Magnitude of seasonal area-weighted averages (be-
tween |45–82°|) of the fsLCC for CloudSat–CALIPSO, ERA5, and
the CMIP6 models (numbers). The heatmap colors correspond to
the differences in the area-weighted averages of fsLCC between
CloudSat–CALIPSO and ERA5 and CMIP6 models. Green (pink)
values indicate the underestimation (overestimation) of the individ-
ual model with respect to CloudSat–CALIPSO. Panel (a) shows
the mid-to-high-latitude NH, and panel (b) shows the mid-to-high-
latitude SH. Per season, the smallest (largest) seasonal and spatial
differences are outlined with blue (red) lines.

warm liquid clouds (Mülmenstädt et al., 2020; Lavers et al.,
2021).

To investigate the annual cycle of fsnow and the inter-
annual variation between 2007 and 2010, we present the
area-averaged data based on grid boxes in which CloudSat–
CALIPSO is capable of making observations (|45°–82°|;
Fig. 7). CloudSat–CALIPSO displays a relatively clear sea-
sonal cycle in fsnow in the NH but not in the SH. The differ-
ence in the fsnow between boreal summer months and the rest
of the year in the NH is 15%, while the SH value is constant
around 20% throughout the year. In contrast, ERA5 and the
CMIP6 model mean display a more significant seasonal cy-
cle, with a difference of 25% between boreal summer and
winter months (Fig. 7a). Also, in the SH, there is more of
a seasonal cycle evident for ERA5 and the CMIP6 model
mean. Also worth noting is that ERA5 shows more pro-
nounced interannual variability in both hemispheres of fsnow
for a given month, meaning that the year-to-year fluctua-
tions are larger than for CloudSat–CALIPSO and the CMIP6
model mean.

The comparison of the magnitude and model differences
for fsnow in Fig. 8 indicates how well the individual ESMs
represent the frequency of occurrence for snow and if the
same models that perform well for fsLCC (Fig. 4) do so for
surface snowfall as well. Among the models, AWI-ESM-
1-1-LR and MPI-ESM1-2-LR come closest to matching
CloudSat–CALIPSO observations, but their fsnow values are
still much too high (NH:∼ 30%; SH:∼ 45%; Fig. 8). At the

same time, IPSL-CM5A2-INCA deviates the most for fsnow
in the NH and SH, having a negative difference of ∼ 65%
and ∼ 75%, respectively. Interestingly, it appears that some
models that perform well for fsLCC perform poorly for fsnow.
This could be an indication that models that are able to sim-
ulate the right frequency of occurrence for sLCCs can do so
because they are converting cloud condensate to snow too
readily. In other words, the models may be getting the right
answer for the wrong reason.

4 Sensitivity tests

In the previous section, we examined the frequency of occur-
rence of sLCCs (fsLCC) and the frequency of occurrence of
surface snowfall (fsnow) from sLCCs in CloudSat–CALIPSO,
ERA5, and CMIP6 data. We found that the reanalysis and
ESMs overestimate sLCCs and the frequency of surface
snowfall in comparison to CloudSat–CALIPSO. These bi-
ases in the CMIP6 mean values have potentially significant
implications for our ability to predict how sLCCs and snow-
fall might change with future warming. At the same time,
it is important to note that although the CMIP6 multimodel
mean has this overestimation, some of the individual ESMs
are much closer to the observations (green dots in Fig. 3),
suggesting that these members may have more representa-
tive changes in clouds and snowfall in the future. It is there-
fore important to ensure that these findings are robust and
not overly reliant on subjective decisions or limitations in
the design of the comparison. In the following subsections,
we investigate whether the identified discrepancies between
the observations on the one hand and ERA5 and the CMIP6
models on the other hand can be explained by sampling bi-
ases or instrument sensitivity.

It is important to acknowledge that CloudSat–CALIPSO
data come with inherent uncertainties, including those as-
sociated with snowfall retrievals (Stephens and Kummerow,
2007; Hiley et al., 2011; Schirmacher et al., 2023). Cloud-
Sat surface snowfall is subject to sampling biases and ground
clutter issues and also relies on ECMWF temperature data to
differentiate between snowfall and rainfall (Boisvert et al.,
2020). Milani et al. (2018) found that applying adjustments
and a temperature threshold to the CloudSat snowfall re-
trieval led to a decrease in the estimated occurrence of snow-
fall events by up to 30%, primarily in the ocean regions
surrounding Antarctica. Although these adjustments did not
have the same effects everywhere, this highlights the sen-
sitivity of the CloudSat retrievals to the assumptions made
within them.

In addition to the uncertainties in the assumptions used
in retrievals, comparing satellite observations with ESMs is
challenging due to several factors linked to the sampling
bias of the CloudSat–CALIPSO mission. Numerous con-
siderations come into play when deriving climate statistics
from satellite transects (Kotarba, 2022). These encompass
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Figure 5. The figure presents the seasonal averages of fsnow in the NH mid-to-high latitudes. The layout and area-weighted averages are
calculated the same as those shown in Fig. 1.

Figure 6. The figure presents the seasonal averages of the fsnow in the SH study region. The layout and area-weighted averages are calculated
in the same way as for those shown in Fig. 1.
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Figure 7. Annual cycle of fsnow for (a) the NH, which is defined here as the region between 45 and 82°N and (b) SH, defined here as the
region between 45 and 82°S. Colors and boxplots are identical to Fig. 3.

Figure 8. Magnitude of seasonal area-weighted averages (between
|45–82°|) of fsnow for CloudSat–CALIPSO, ERA5, and the CMIP6
models (numbers). The heatmap colors correspond to the differ-
ences in the area-weighted averages of fsnow between CloudSat–
CALIPSO and ERA5 and the CMIP6 models. Green (pink) values
indicate underestimation (overestimation) of the individual model
with respect to CloudSat–CALIPSO. Panel (a) shows the mid-to-
high-latitude NH, and panel (b) shows the mid-to-high-latitude SH.
Per season, the smallest (largest) seasonal and spatial differences
are outlined with blue (red) lines.

the narrow swath coverage, infrequent revisits, and latitude-
dependent ground track density (Kotarba, 2022; von Ler-
ber et al., 2022). Varying the domain size and timescales
of CloudSat observations showed that data on smaller scales
or shorter time periods can introduce significant uncertain-
ties associated with cloud, aerosol, or atmospheric properties
(Henderson et al., 2013). However, instantaneous errors (us-
ing satellite data on smaller scales or shorter periods) tend
to cancel out over longer time periods (Henderson et al.,

2013; von Lerber et al., 2022). Another limitation of space-
based remote-sensing observations is the uncertainty associ-
ated with the retrieval method employed to derive the snow-
fall rate from radar reflectivity measurements (Kulie and
Bennartz, 2009; Milani et al., 2018). However, in our study,
we examine the frequencies of occurrence and only use the
surface snowfall amount to classify if an sLCC is snowing
(sf ≥ 0.01kgm−2 h−1) or not. Such a binary variable should
be less sensitive to the exact snowfall rate retrieval. Edel et al.
(2020) presented a CloudSat snowfall climatology, the fre-
quency of snow, and snowfall rates over the Arctic. They
found that the distribution of snowfall rate does not always
match the distribution of the snowfall frequency in CloudSat.
Nevertheless, future modeling studies should ideally use the
Cloud Feedback Model Intercomparison Project Observation
Simulator Package (COSP; Bodas-Salcedo et al., 2011) to
make satellite observations and model datasets more com-
parable. At present, the COSP output is not available for a
sufficient number of models and at a high enough temporal
resolution to be useful for the present study.

Nevertheless, these satellite observations serve as valuable
tools for identifying potential biases in reanalysis and ESMs,
as demonstrated by previous studies (e.g., McIlhattan et al.,
2017; Milani et al., 2018; Daloz et al., 2020; Heymsfield
et al., 2020; Boisvert et al., 2020). To test the robustness of
the overall findings of this study to our comparison approach,
next we want to show how different temporal resolutions of
ERA5, as well as different LWP thresholds applied to the
CMIP6 data, impact the results.

4.1 Sensitivity to ERA5 temporal resolution

In the comparison by McIlhattan et al. (2017), the analysis
was performed on a 6 h instantaneous model output to de-
fine the occurrence of LCCs in CESM-LE. As we compare
ERA5 and CMIP6 models to CloudSat–CALIPSO, we only
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have daily means of LWP available. Thus, instead of four in-
stantaneous values per day for a given model grid box, we
use only one daily mean value of the LWP. In this way, we
are comparing 30 daily values from ERA5 and CMIP6 mod-
els with thousands of CloudSat–CALIPSO profiles within
each grid box to calculate fsLCC. Due to the 16 d repeat cy-
cle of CloudSat–CALIPSO, we cannot perform the satellite
analysis on a daily temporal resolution at the given spatial
resolution of the models. While CMIP6 output is not avail-
able at a higher temporal resolution, for ERA5, we can ac-
tually test the sensitivity using an even higher time resolu-
tion than McIlhattan et al. (2017). We take the hourly out-
puts from ERA5 from July and November 2007 to 2010 and
create monthly mean values. July and November are chosen
as these are the months with the lowest and highest fsLCC in
CloudSat–CALIPSO (Fig. 3a). We find that the fsLCC values
emerging from ERA5 data are not very sensitive to the output
frequency, as shown in Fig. 9d–e and i–j. The area-weighted
difference between CloudSat–CALIPSO and ERA5 hourly
values is negligible in July (1%) and∼ 15% in the inner Arc-
tic and reduces from 12% overestimation to 7% in Novem-
ber. However, the conclusion that ERA5 overestimates the
fsLCC does not change by changing to a higher time resolu-
tion (Fig. 9). While the sensitivity analysis for ERA5 data in-
dicates that changes in output frequency do not significantly
affect the results, the same conclusions cannot be directly
extrapolated to CMIP6 models. However, based on our anal-
ysis, it is reasonable to assume that similar results could be
observed for individual ESMs within CMIP6, although this
cannot be confirmed.

4.2 Sensitivity to LWP threshold for CMIP6 models

McIlhattan et al. (2017) conducted a similar analysis to that
in this study by examining the frequency of Arctic LCCs
and fsnow. They experimented with different LWP thresholds.
Specifically, they used the 5 and 0.01gm−2 thresholds and
based their LWP threshold of 5gm−2 on the approximate re-
trieval uncertainty in the LWP from ground-based microwave
radiometer observations. We performed sensitivity tests in
which we varied the threshold between 3, 5, 10, and 15gm−2

(Fig. 10). While some of these values are unreasonably high,
it is nevertheless useful to test how adjusting the LWP thresh-
old value affects the identified bias between the observations
and simulations. As expected, Figs. 10 and E1 indicate that
as the LWP threshold increases, the overestimation of fsLCC
decreases in the NH and SH. However, unless we increase the
LWP threshold in ERA5 and in the CMIP6 models to an un-
realistically high value, the general findings and conclusions
hold – ERA5 and the CMIP6 model mean still overestimate
the occurrence of sLCCs in the study area in comparison to
CloudSat–CALIPSO.

5 Discussion and conclusion

We find that mid-to-high-latitude sLCCs and snowfall are
produced more frequently in ERA5 and CMIP6 than in
CloudSat–CALIPSO. While previous studies have focused
on the underestimation of the supercooled liquid fraction
(SLF) in mixed-phase clouds (Komurcu et al., 2014; Ce-
sana et al., 2015; Tan and Storelvmo, 2016; Kay et al., 2016;
Bruno et al., 2021; Shaw et al., 2022), this research focuses
on the frequency of occurrence of sLCCs. This difference in
the cloud-phase metric can lead to seemingly contradicting
conclusions. We illustrate why our results do not necessar-
ily contradict previous findings with the following example:
if an ESM consistently predicts a low percentage of liquid
in clouds, while satellite observations suggest that liquid oc-
curs only 50% of the time but with a high liquid percentage
when it does occur, then it can create a discrepancy between
the metric used here and other cloud-phase metrics like SLF.
Even though the model would then have an sLCC frequency
of occurrence of 100%, the amount of supercooled liquid
could still very well be underestimated. When combined with
previous studies finding that ESMs generally underestimate
SLF, our findings suggest that models too frequently simulate
genuinely mixed-phase clouds with both phases present at
the same time and point, while observations more frequently
reveal conditionally mixed conditions in which ice and liquid
are separated in time and/or space (Korolev and Milbrandt,
2022).

Previous studies not only use different metrics but also, in
some cases, evaluate different generations of climate mod-
els, each with distinct cloud characteristics. For instance,
many models included in CMIP5 were found to have too
few sLCCs (Cesana et al., 2012, 2015; Tan and Storelvmo,
2016; Kay et al., 2016; Lenaerts et al., 2017; McIlhattan
et al., 2017). This deficiency was addressed in several of the
next-generation models used in CMIP6, resulting in an in-
crease in the simulated SLF (Mülmenstädt et al., 2021). Al-
though some CMIP6 models used in this study still over-
or underestimate the traditional SLF metrics compared to
CALIPSO observations, models such as CNRM-CM6-1 and
CNRM-ESM2-1 are within 1 standard deviation of the satel-
lite observations (Fig. F1). Studies focusing on high lati-
tudes have shown that comparing individual CMIP5 mod-
els with CMIP6 models reveal improved cloud representa-
tion, more closely aligning with observations due to micro-
physical adjustments in the newer model versions (Lenaerts
et al., 2020; McIlhattan et al., 2020). Indeed, McIlhattan
et al. (2020) showed that when going from the CMIP5 to
the CMIP6 version of CESM, the frequency of the LCC
bias switched direction and overestimated in comparison
to CloudSat–CALIPSO. Lenaerts et al. (2020) showed that
cloud coverage increased and is slightly overestimated in the
CMIP6 version of CESM but still underestimates the ice wa-
ter path. Consequently, some of the differences between our
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Figure 9. NH mid-to-high-latitude monthly averages of fsLCC for July (a–e) and November (f–j) 2007 to 2010. The columns show the
CloudSat–CALIPSO (CC) monthly means (a, f), ERA5 monthly means based on daily average values (b, g), and ERA5 monthly means based
on hourly values (c, h). The fourth and fifth columns are the difference plots between CloudSat–CALIPSO and the ERA5 daily averages (d,
i) and ERA5 hourly values (e, j), respectively. In the last two columns, green (pink) values indicate underestimation (overestimation) with
respect to the reference used. Area-weighted averages for the study area (45–82° N) are located in the lower-left corner of each map and
exclude the dotted area (b, c, g, h).

Figure 10. Annual average difference plots (CloudSat–CALIPSO (CC) minus model) for fsLCC in the NH mid-to-high latitudes. The first
row represents ERA5 data (a–d), and the second row shows the CMIP6 model mean (e–h) difference. LWP thresholds of 3gm−2 (a, e),
5 g m−2 (b, f), 10gm−2 (c, g), and 15gm−2 (d, h) were applied. The analysis in this study focuses on the LWP threshold of 5gm−2. The
maps in each row are accompanied by area-weighted averages for the study area (located in the lower-left corner of each map). The averages
are calculated for areas where CloudSat–CALIPSO observations have valid fsLCC values.
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findings and those from previous studies may be attributed to
these improvements in the newer model generations.

5.1 Links between biases in fsLCC and fsnow

We find that ERA5 and CMIP6 overestimate the magnitude
of fsLCC and fsnow in the mid-to-high latitudes of both hemi-
spheres when compared to CloudSat–CALIPSO. In contrast,
McIlhattan et al. (2017) showed that the CESM-LE underes-
timates the fLCC by ∼ 17% and overestimates the fsnow by
∼ 57% in the Arctic. However, since we utilize a different
metric (sLCC instead of LCC), there is no reason to expect
the model biases to be identical. Nevertheless, in a further
study by McIlhattan et al. (2020), it was shown that the LCC
frequency in the newer CESM version is more aligned with
the satellite observations, except for in the summer months,
where it overestimates the LCC frequency.

Similarly, we generally observe that ERA5 and the CMIP6
mean overestimate the fsLCC to various extents during all
seasons. These overestimations are likely linked to the mi-
crophysical parameterizations of cloud processes that govern
the cloud phase. This finding aligns with McIlhattan et al.
(2020), indicating that while newer model versions have ad-
vanced in representing LCC frequencies more accurately,
they can still overestimate cloud occurrences, particularly in
specific seasons. Precipitation in the new CESM version is
more frequent but lighter overall compared to the previous
version, which is similar to our findings, indicating that the
models’s sLCCs produce continuous snowfall, analogous to
the “perpetual drizzle” problem (Mülmenstädt et al., 2020;
Lavers et al., 2021).

Furthermore, while McIlhattan et al. (2017, 2020) con-
sidered a single ESM, our study considers an ensemble of
CMIP6 models. Nevertheless, the insights from McIlhattan
et al. (2017, 2020) provide a relevant context for our finding
that ERA5 and the CMIP6 model mean produce sLCCs more
frequently than observed in the NH and SH mid-to-high lati-
tudes, especially over the sea ice and land, depending on the
season (Figs. C1 and C2). In these regions, not only is the
frequency of occurrence of sLCCs too high, but the sLCCs
are too efficient at producing snowfall in ERA5 and CMIP6
models (Figs. 5 and 6). The latter finding is consistent with
the findings of McIlhattan et al. (2017), who showed that
LCCs produce snow too frequently in the CESM-LE model.

McIlhattan et al. (2017) explained the overestimation of
fsnow from LCC by exploring one potential microphysical
pathway for removing supercooled cloud liquid – the WBF
process. An overactive WBF process and the subsequent re-
moval of cloud ice from the cloud through snow formation
in ERA5 and CMIP6 models could also explain the large
overestimation of fsLCC and fsnow in ERA5 and the CMIP6
model mean. ERA5 and the CMIP6 models may thus have
more frequent but lighter snowfall events that lead to a higher
fsnow, while maintaining the clouds for longer compared to
the CloudSat–CALIPSO observations. However, for some

ESMs, there is no explicit simulation of the WBF process but
rather a simple temperature-dependent partitioning of cloud
condensate into liquid and ice. For such crude parameteriza-
tion schemes, the identified biases are inevitable, as clouds at
a given mixed-phase temperature would always have some
liquid present (hence a very high fsLCC) and at the same time
always have ice available that could be converted to snow
(hence a very high fsnow).

The difference in the simulated fsLCC and fsnow compared
to CloudSat–CALIPSO in the NH and SH could, in theory,
result from differences in surface conditions and/or weather
patterns and thereby differences in moisture availability for
the formation of sLCCs (McIlhattan et al., 2017). However,
the fact that very similar biases to those in the reanaly-
sis are found in the CMIP6 models might suggest that sur-
face conditions and weather patterns are not the main expla-
nation for the identified biases. That being said, reanalysis
products are known to be less reliable at high latitudes (Liu
and Key, 2016). We therefore cannot rule out differences in
weather patterns as a partial cause of the biases discussed
above but maintain that deficiencies in the model represen-
tation of cloud microphysics is the more likely culprit. The
inclusion of both ERA5 and CMIP6 models in this analysis
is thus beneficial as it helps highlight potential root causes
of the identified biases, although it should be noted that in-
dividual CMIP6 models do not all show biases that match
ERA5 (Figs. 4 and 8). As stated above, we cannot entirely
rule out a modest contribution to the biases from circulation
differences, even for the reanalysis. For example, according
to Boisvert et al. (2020), all reanalysis products show lower
precipitation amounts in the southern Ross Sea and Weddell
Sea embayments near the ice shelves. They explain that this
is due to persistent cold and dry katabatic wind blowing from
the continent across the ice shelves and out over the sea ice,
which is not beneficial for precipitation formation and not
captured well by the reanalyses.

Under the assumption that the overall weather patterns and
surface conditions are accurate in ERA5, the most plausible
root causes of the biases in fsLCC and fsnow are linked to the
microphysical parameterizations in the reanalysis and ESMs
(Kiszler et al., 2024).

Boisvert et al. (2020) suggest that the difference in tem-
perature and temperature threshold among various reanalysis
microphysical products may explain the latitudinal inequal-
ity in the snowfall amount observed between CloudSat and
the reanalysis products. But, here, no strong latitudinal de-
pendence is observed in Fig. 6 as we investigate fsnow instead
of the snowfall amount. The same principle should apply to
ERA5 and the CMIP6 models as they rely on microphysi-
cal parameterizations. For the most part, the 0°C isotherm
shown in Figs. 1 and 2 supports our argument that the pri-
mary issue with the ERA5 and CMIP6 datasets lies not with
the simulated temperature itself but with the representation
of cloud properties and microphysics. This distinction high-
lights that the observed deviations in fsLCC and fsnow are
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driven more by inaccuracies in cloud simulation than by tem-
perature discrepancies. Exceptions occur over central Europe
during DJF between ECMWF-AUX, ERA5, and the CMIP6
ensemble mean (Fig. 1a, e, i). However, more notable is the
difference in the CMIP6 ensemble mean over the central
Arctic during summer (Fig. 1k), where simulated tempera-
tures appear to be too cold. In this specific case, the cloud
bias could stem from a temperature bias, suggesting a poten-
tial link between temperature inaccuracies and cloud simu-
lation in the CMIP6 ensemble mean for this region and sea-
son. Figures 4 and 8 show some models performing better
than others for fsLCC and fsnow in comparison to CloudSat–
CALIPSO. As discussed above, many models have a simple
temperature-dependent cloud phase that would almost cer-
tainly cause them to overestimate the fsLCC and fsnow. A
follow-up study will investigate the SLF by isotherms for
mixed-phase clouds of several CMIP6 models. Figure F1
shows that some of the CMIP6 models have a more variable
SLF in time and space (e.g., AWI-ESM-1-1-LR and MPI-
ESM1-2-LR), which might be an indication that they could
have more sophisticated microphysics and could, therefore,
perform better in terms of sLCC and surface snowfall oc-
currence. However, it is not immediately clear which mod-
els use a purely temperature-dependent cloud-phase parti-
tioning. From the interquartile range (IQR; Fig. F2) CNRM-
CM6-1, CNRM-ESM2-1, and IPSL-CM6A-LR are assumed
to have a simple temperature-dependent cloud phase due to
the smaller IQR of the temperature at various SLF. It is inter-
esting to note that these models with the simpler temperature-
dependent schemes are the most poorly performing models
for fsnow (Fig. 8).

Imura and Michibata (2022) studied the effect of changing
the microphysical parameterization scheme from the tradi-
tional diagnostic scheme used in MIROC6, and participat-
ing in CMIP6, to a prognostic scheme. They found that the
prognostic scheme improved cloud coverage and snowfall in
the Arctic. In our study, MIROC6 is one of the models with
the largest overestimation of fsLCC in the SH and the model
with the smallest difference in boreal spring (Fig. 4). Fur-
thermore, MIROC6, with the diagnostic scheme used here,
has a large negative difference in fsnow (45 %–60 %) that is
independent of hemisphere and season (Fig. 8). However,
the MIROC6 with the prognostic parameterization scheme
in Imura and Michibata (2022) produced light snowfall too
frequently, which is in agreement with the results presented
here, despite the use of a different microphysical scheme.

ERA5 and the CMIP6 model mean are not able to repro-
duce fsnow in comparison to CloudSat–CALIPSO. The over-
estimation in ERA5 could be related to the global average
wet bias of up to 0.27mmd−1 in the ECMWF product used
in ERA5 (Lavers et al., 2021). If the modeled sLCCs are
practically always snowing, then the sLCCs should have a
shorter lifetime and subsequently have a lower fsLCC than ob-
servations suggest. However, ERA5 and the CMIP6 model
mean seem to have sLCCs that produce a little bit of snow

all the time and, at the same time, maintain the sLCCs in the
atmosphere. This bias may be the sLCC’s counterpart to the
“perpetual drizzle problem” that has been identified in ESMs
for warm liquid clouds (Mülmenstädt et al., 2020).

5.2 Implications for modeling and future projections

An overestimation of the snowfall frequency can have signif-
icant effects on the Earth’s radiative budget. The fact that the
models seem to snow a little bit all the time instead of pro-
ducing occasional heavy snowfall events, as well as periods
with no snowfall, is therefore concerning. One implication
is that fresh snow will be deposited too frequently on top
of the snowpack, ice sheets, sea ice, and land surfaces, with
consequences for the surface albedo. With time, the aging
snow surfaces darken due to snow/ice metamorphism pro-
cesses and the deposition of absorbing aerosols (e.g., Picard
et al., 2012; Carlsen et al., 2017). Continuous light snowfall
in the model could thus lead to a simulated overestimation of
the surface brightness, which in turn could limit sea ice melt
in ESMs. Indeed, only ESMs that simulate excessive Arctic
warming are able to reproduce the observed sea ice loss in
recent decades (Notz and Stroeve, 2016).

The overestimations of fsLCC and fsnow could stem from
how models handle cloud microphysical processes, partic-
ularly the WBF process and the partitioning of cloud con-
densates into the liquid and ice phases. Some identified bi-
ases in ESMs may be due to the specific parameterization
schemes used in the models, which could rely on simple
temperature-dependent cloud-phase partitioning. For exam-
ple, models with a temperature-dependent cloud phase could
simulate a fixed liquid fraction at a given temperature within
the mixed-phase range, making it impossible for them to
simulate an all-ice or all-liquid cloud in that range. Conse-
quently, these models could tend to under- or overestimate
the occurrence of sLCCs.

Interestingly, models with more sophisticated micro-
physics schemes (Figs. F1 and F2) do not necessarily per-
form better (Figs. 4 and 8). Larger biases in cloud phase can
still occur, for example, if these models do not accurately
represent INPs. This underscores how generational advance-
ments and implementations of observational constraints can
significantly influence the comparison and interpretation of
cloud and precipitation patterns.

Continuing work should be performed on the comparison
between ESMs, reanalysis, and observations at specific loca-
tions to better understand microphysical processes and their
representation in ESMs and reanalysis data. Cloud micro-
physical scheme development should, therefore, focus on im-
proving these processes in order to reduce cloud-phase and
surface snowfall biases. More sophisticated schemes should
be explored, and ensemble studies with varied microphysical
model parameterizations can provide insights into how dif-
ferent parameterizations affect the representation of sLCCs
and snowfall in climate simulations.
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Ground and aircraft observations in connection with field
campaigns at specific locations should, therefore, be in-
creased, especially to improve our understanding of cloud
phase, liquid and ice water content, and cloud-top temper-
atures in regions where sLCCs form. These field campaigns
should also focus on the processes responsible for snowfall
from these clouds.

Finally, as shown in the present study, satellite observa-
tions are an essential validation tool for assessing the repre-
sentations of clouds and precipitation in ESMs. To ensure
that future model generations are as accurate as possible,
continuous improvements to satellite retrievals are required
to further refine our understanding of cloud and snowfall
properties, especially in high-latitude regions where limita-
tions in the Sun angle and ground track are prevalent. The
accurate representation of these cloud and snowfall processes
in models, validated through enhanced satellite observations,
is essential for reliable simulations of weather and climate.
This accuracy is particularly important for making future pre-
dictions of the hydrological cycle, which are essential for un-
derstanding and mitigating the impacts of climate change.

Appendix A: CMIP6 models and LWP calculation

The daily averages of the total mass of liquid water (LWP)
in a grid box are calculated using the hydrostatic equa-
tion in the CMIP6 models, apart from the models from the
modeling institute, MOHC (the UK Meteorological Office).
First, isobaric pressure levels are retrieved with the individ-
ual CMIP6 hybrid sigma model formula found in Table A1.
The terms hyam and hybm represent the vertical coordinate
formula term along the dimension Nlev. psfc(i, j) is the sur-
face air pressure for each latitude (i) and longitude (j) grid
box, and p0(Nlev) is the vertical coordinate formula term
for the reference pressure (both in Pa) for the individual
model. For CMIP6 models with orographic vertical coordi-
nates (UKESM1-0-LL and HadGEM3-GC31-LL; Table A1)
representing bm(Nlev), the vertical coordinate formula term
and orog(i, j) the surface altitude are given in units of meters.

After retrieving the pressure coordinate on half-isobaric-
pressure levels (p(i,j,Nlev− (k±1/2))) and clw(i,j,Nlev)
on the full-isobaric-pressure levels (Nlev) in CMIP6 the
lwp(i,j,Nlev) in each vertical grid box can be calculated
with the hydrostatic equation.

1p

1Z
=−ρair(i,j,Nlev) · g

ρair(i,j,Nlev) is the density of the air mass at full-isobaric-
pressure level. 1Z depicts the height difference between the
half-isobaric- pressure levels, and g = 9.81 m s−2 is the grav-
ity acceleration. After the American Meteorological Society
(AMS) Glossary of Meteorology, the lwp(i,j,Nlev) is de-

fined as

lwp(i,j,Nlev)=

∞∫
z=0

ρair(i,j,Nlev) · clw(i,j,Nlev) · dz

=

p=p0∫
0

ρair(i,j,Nlev) · clw(i,j,Nlev)

·

(
−

dp
ρair · g

)

lwp(i,j,Nlev)=

p=p
(
i,j,Nlev−(k+1/2)

)∫
p=p(i,j,Nlev−(k−1/2))

clw(i,j,Nlev)
g

· dp.

The LWP(i,j ) can then be calculated by summing the in-
dividual lwp(i,j,Nlev) per vertical grid box from the surface
to the top of the atmosphere. And the following applies for
the daily mean total liquid water path per column air in each
pixel:

LWP(i,j )=
NLEV+1∑
k=0

lwp(i,j,Nlev), (A1)

=−
1
g

NLEV+1∑
k=0

clw(i,j,Nlev)

·

[
p
(
i,j,Nlev− (k− 1/2)

)
−p

(
i,j,Nlev− (k+ 1/2)

)]
. (A2)
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Appendix B: Variable unit transformation

To compare ERA5 and CMIP6 snowfall (kgm−2 h−1; Ta-
ble 1) to CloudSat–CALIPSO (sfCC), we apply the following
multiplication to achieve the satellite surface snowfall rate
(in mmh−1; Table 1). The density of water (ρwater) is about
1000 kg m−3 and 1000 mm are 1 m.

sfCC =
mm

h
·

1m
1000mm

· ρwater =
m
h
·

1000kg
1000m3 =

kg
m2 h

(B1)

In the ERA5 reanalysis data, the daily mean of msr has
units of kgm−2 s−1 (Table 1). To make ERA5 snowfall daily
means comparable to CloudSat and CMIP6 snowfall rate, we
apply the following multiplication to achieve the mean snow-
fall rate per hour (msr), where we know that 1 h has 3600 s.

sfERA =
kg

m2 s
·

3600s
h
=

kg
m2 h
· 3600 (B2)

The same is done for the CMIP6 snowfall flux parameter
(prsn; Table 1).

sfCMIP6 =
kg

m2 s
·

3600s
h=

kg
m2 h
· 3600 (B3)
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Appendix C: Spatial distribution of fsLCC and fsnow

Figure C1. Seasonal averages of fsLCC in the NH mid-to-high latitudes between 2007 and 2010. Combined CloudSat and CALIPSO
observations are shown in panels (a)–(d). The last two rows are the difference plot. They are CloudSat–CALIPSO (CC) observations minus
ERA5 (e–h) or the CMIP6 model mean (i–l), where valid data occur, with green (pink) values showing underestimation (overestimation)
in ERA5 and the CMIP6 model mean concerning the satellite observations. Areas where the difference between CloudSat–CALIPSO and
CMIP6 model mean is not significant (< 95 %) are marked with hatches. The area-weighted averages for the study area where CloudSat–
CALIPSO have observations are displayed in the lower-left corner of each map. The red line(a–d) shows the average sea ice edge of the 20%
sea ice concentration (SIC) between 2007 and 2010 for the given season.
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Figure C2. Seasonal averages of fsLCC in the SH mid-to-high latitudes. Layout and differences are identical to Fig. C1.

Figure C3. The figure presents the seasonal average of fsnow in the NH. The layout and presentation resemble Fig. C1.
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Figure C4. Seasonal averages of fsnow in the SH. The layout and presentation resemble Fig. C1.

Appendix D: Zonal mean of 2 m temperature

Figure D1. Zonal mean 2 m temperature of ECMWF-AUX (black) and ERA5 (dashed orange) for mid-to-high latitudes.
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Appendix E: LWP threshold sensitivity – SH

Figure E1. Annual average difference plots (CloudSat–CALIPSO (CC) minus model) for fsLCC in the SH mid-to-high latitudes. The first
row represents ERA5 data (a–d), and the second row shows the CMIP6 model mean (e–h) difference. LWP thresholds of 3gm−2 (a, e),
5 g m−2 (b, f), 10gm−2 (c, g), and 15gm−2 (d, h) are applied. The analysis in this study focuses on the LWP threshold of 5gm−2. The
maps in each row are accompanied by area-weighted averages for the study area that are located in the lower-left corner of each map. The
layout and area-weighted averages are calculated in the same way as those in Fig. 10.

Appendix F: Supercooled liquid fraction in CMIP6
models

Figure F1. Supercooled liquid fraction (SLF) as a function of temperature for CALIPSO (black) and the CMIP6 models used in this study
(color). Error bars on the CALIPSO SLF values correspond to 1 standard deviation. All values represent an area-weighted average for
lat≥ 45° in the Northern Hemisphere (NH; solid lines) and Southern Hemisphere (SH; dashed lines).
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Figure F2. Interquartile range of the temperature at given supercooled liquid fractions (e.g., SLF 50%; representing 50% ice and 50%
liquid) for the different models used in this study for lat≥ 45° over the Northern Hemisphere (NH; a) and Southern Hemisphere (SH; b).

Code availability. The code used to analyze the satellite, ERA5,
and CMIP6 data and to produce the figures is available via
https://doi.org/10.5281/zenodo.14179823 (Hellmuth, 2024).

Data availability. ERA5 meteorological parameters down-
loaded via the ERA5 CDS tool for daily statistics
(https://doi.org/10.24381/cds.adbb2d47, Copernicus Climate
Change Service, 2018). The CMIP6 model variables (clw, tas, prsn,
areacella, and phalf) used in this study were retrieved from the
Earth System Grid Federation portal for the period between 2006
and 2009. The CMIP6 models used in this study include

– MIROC6 (https://doi.org/10.22033/ESGF/CMIP6.5603,
Tatebe and Watanabe, 2018),

– CanESM5 (https://doi.org/10.22033/ESGF/CMIP6.3610,
Swart et al., 2019b),

– AWI-ESM-1-1-LR (https://doi.org/10.22033/ESGF/CMIP6.9
328, Danek et al., 2020),

– MPI-ESM1-2-LR (https://doi.org/10.22033/ESGF/CMIP6.659
5, Wieners et al., 2019),

– UKESM1-0-LL (https://doi.org/10.22033/ESGF/CMIP6.6113,
Tang et al., 2019),

– HadGEM3-GC31-LL (https://doi.org/10.22033/ESGF/CMIP6.
6109, Ridley et al., 2019),

– CNRM-CM6-1 (https://doi.org/10.22033/ESGF/CMIP6.4066,
Voldoire, 2018),

– CNRM-ESM2-1 (https://doi.org/10.22033/ESGF/CMIP6.4068,
Seferian, 2018),

– IPSL-CM6A-LR (https://doi.org/10.22033/ESGF/CMIP6.5195,
Boucher et al., 2018), and

– IPSL-CM5A2-INCA (https://doi.org/10.22033/ESGF/CMIP6.
13661, Boucher et al., 2020b).

The standard CloudSat (Stephens et al., 2002) and CALIPSO
(Winker et al., 2010) data products (version R05) used in this
study were downloaded from the website of the CloudSat Data
Processing Center operated by the Cooperative Institute for
Research in the Atmosphere (CIRA) at Colorado State University,
Fort Collins. The datasets accessed include 2B-CLDCLASS-
LIDAR (https://www.cloudsat.cira.colostate.edu/data-products/
2b-cldclass-lidar, CIRA, 2019a), 2C-SNOW-PROFILE (https:
//www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile,
CIRA, 2018), and ECMWF-AUX (https://www.cloudsat.cira.
colostate.edu/data-products/ecmwf-aux, CIRA, 2019b). The sea
ice concentration data are from the Institute of Environmental
Physics (IUP), University of Bremen, based on the ARTIST Sea
Ice (ASI) algorithm (https://doi.org/10.1029/2005JC003384,
Spreen et al., 2008). The daily data sets
(https://doi.org/10.1594/PANGAEA.898400, Melsheimer and
Spreen, 2019a, https://doi.org/10.1594/PANGAEA.898399,
Melsheimer and Spreen, 2019b,
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https://doi.org/10.1594/PANGAEA.919778, Melsheimer and
Spreen, 2020a, https://doi.org/10.1594/PANGAEA.919777,
Melsheimer and Spreen, 2020b) were downloaded for the years
2007–2010 from the data publisher PANGAEA.
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