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Abstract. The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and backscat-
tering depolarization ratio (δ), were studied using a discrete dipole approximation (DDA) model. The three-
dimensional morphology of the dust particles was reconstructed in fine detail using the focused ion beam (FIB)
tomography technique. An index based on the symmetry of the scattering matrix was developed to assess the
convergence of random orientation computation using DDA. Both S and δ exhibit an asymptotic trend with dust
particle size: the S initially decreases, while the δ increases with size, before both approach their asymptotic
values. The lidar properties were found to have statistically insignificant dependence on effective sphericity.
The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the dust’s single-scattering
albedo and δ. Utilizing the robust asymptotic trend behavior, two parameterization schemes were developed: one
to estimate the δ of a single dust particle given its size and the other to estimate the δ of dust particles with a
lognormal particle size distribution given the effective radius. The parameterization scheme was compared with
results based on the TAMUdust2020 database, showing hexahedrons to reasonably represent realistic geometries
with similar physical properties.

1 Introduction

Dust aerosols are an important component of the Earth sys-
tem, interacting with Earth’s energy, water, and carbon cy-
cles. Directly, dust aerosols scatter and absorb both short-
wave and longwave radiation, influencing the planet’s energy
balance (Tegen et al., 1996; Miller and Tegen, 1998; Myhre
et al., 2013; Song et al., 2018, 2022). By scattering incom-
ing solar radiation, dust aerosols contribute to cooling the
atmosphere and surface regionally, impacting temperatures
and affecting atmospheric circulation patterns (Evan et al.,
2006; Lau and Kim, 2007; Zhang et al., 2022).

The transport of dust aerosols also has far-reaching im-
plications. The long-range transport of Asian dust is fre-
quently observed on the United States’ west coast with con-

siderable impacts on the air quality and climate (Yu et al.,
2012; Creamean et al., 2014; Wu et al., 2015). It is also ob-
served impacting Taiwan through similar transport mecha-
nisms (Lin et al., 2007). In fact, mineral dust from the Takli-
makan Desert has been found to be transported a full rotation
around the globe (Uno et al., 2009). Moreover, the deposition
of dust aerosol during the long-range transport brings essen-
tial nutrients such as iron and phosphorus from terrestrial
sources to marine ecosystems, being part of biogeochemi-
cal cycles across vast distances (Baker et al., 2003; Yu et al.,
2015b; Westberry et al., 2023). Asian dust deposition in the
East China Sea stimulates phytoplankton growth and primary
productivity, influencing marine food webs and carbon cy-
cling (Kong et al., 2022b).
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Lidar is an important tool for remote sensing measure-
ments of airborne dust particles. As demonstrated in many
previous studies (Omar et al., 2009; Burton et al., 2012),
it allows us to distinguish dust aerosols from clouds and
other types of aerosols, track their long-range transport,
and study their evolution as they interact with compo-
nents of the environment such as clouds, atmospheric gases,
and other aerosols. Elastic backscattering lidars are one of
the most widely used types of lidar. For example, Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) is a NASA–French satellite mission that im-
plements a two-wavelength elastic lidar, the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP), at 532 and
1064 nm wavelengths (Winker et al., 2009). Ground-based
lidar networks such as the NASA Micro-Pulse Lidar Net-
work (MPLNET) use single-wavelength measurements for
extinction, backscattering, and depolarization profiles (Wel-
ton et al., 2001). The EarthCARE mission utilizes ATmo-
spheric LIDar (ATLID), a 355 nm wavelength laser and high-
spectral-resolution receiver, allowing it to directly measure
both the lidar ratio and the extinction coefficient (Illingworth
et al., 2015; Donovan et al., 2024). Ground-based lidars op-
erating at 532 and 1064 nm throughout Eastern Asia are also
useful for monitoring dust transport and air quality, running
as part of the Asian Development Bank (ADB) and Global
Environment Facility (GEF) (Sugimoto et al., 2008).

2 Theoretical background

The lidar ratio (S) and depolarization ratio (δ) are two of the
most important parameters for lidar-based remote sensing of
aerosols and clouds. For a single dust particle, S, referred
to as the extinction-to-backscatter coefficient, is defined as
(Platt, 1979; Ansmann et al., 1992; Mattis et al., 2002; Liu
et al., 2002)

S = σ/β =
4π

ωP11(θs = π )
, (1)

where σ is the extinction coefficient and ω and P11 are the
single-scattering albedo and phase function of the dust parti-
cle, respectively. For the purposes of this paper, P11 is nor-
malized to 1 when integrating across all scattering directions.
β = P11(θs = π )Csca is the backscattering coefficient at the
exact backscattering direction. When considering a multitude
of particles,

β =

∫
∞

−∞

P11 (rv,θs = π )Csca(rv)n(rv)d lnrv , (2)

where rv is the volume-equivalent sphere radius and n(rv)=
dN/dlnrv defines a normalized particle size distribution
(n(rv)).

For Raman lidar and high-spectral-resolution lidar sys-
tems, the lidar ratio can be derived directly from the ob-
served extinction and backscatter without assumptions about

the composition (Müller et al., 2007; Bambha et al., 2016).
However, for elastic backscattering lidars, the lidar ratio can-
not be directly measured. As a result, assumptions need to
be made about the composition of the atmosphere. There-
fore, the lidar ratio is fundamentally important for elastic
lidars like CALIOP and MPLNET to convert the direct at-
tenuated backscatter observations into an extinction profile
(Young et al., 2018) and derive quantities such as dust aerosol
optical depth (Yu et al., 2015a; Song et al., 2021).

The depolarization ratio δ is the ratio of the perpendicular
or cross-polarized component to the parallel component of
the polarized backscattering signal. For backscattering lidar
the depolarization ratio is defined as

δ =
1− P22(θs=π )

P11(θs=π )

1+ P22(θs=π )
P11(θs=π )

, (3)

where Pij is the ij th element of the particle’s scattering ma-
trix (Kong et al., 2022a). δ is often used for aerosol type
(Kim et al., 2018) and cloud-phase classifications (Hu et al.,
2009). First, if lidar backscattering is dominated by single
scattering, δ is close to zero for spherical particles like sulfate
aerosols and water droplets. In contrast, δ is notably greater
for nonspherical particles like dust aerosols and ice crystals.
Moreover, the considerable δ differences between spherical
fine particles and nonspherical coarse dust particles also en-
able the separation of dust extinction from the total extinction
profile retrieved by CALIOP (Yu et al., 2015; Song et al.,
2021).

Because of the fundamental importance of S and δ for
lidar-based dust remote sensing, previous studies have made
substantial effort to understand the connection between dust
particle properties, e.g., shape and size, and their lidar char-
acteristics, in particular the S and δ (e.g., Dubovik et al.,
2006; Gasteiger et al., 2011; Liu et al., 2015a; Kahnert
et al., 2020; Saito et al., 2021; Saito and Yang, 2021; Kong
et al., 2022a). The common methodology used in these stud-
ies is to use light-scattering models, such as the T ma-
trix (Mishchenko et al., 1996; Bi and Yang, 2014b) and
discrete dipole approximation (DDA) model (Draine and
Flatau, 1994, 2013; Yurkin and Hoekstra, 2007, 2011), to
compute the scattering properties including S and δ of dust
aerosols and then study the potential dependence on parti-
cle properties. Although these studies have greatly improved
our understanding and paved the foundation for the current
aerosol retrieval algorithms, they share a common limita-
tion as they all use hypothetical dust particle shape models,
such as spheroid (Dubovik et al., 2006), irregular polyhe-
dron (Saito et al., 2021), Gaussian random sphere (Muinonen
et al., 1996; Liu et al., 2015a; Kahnert et al., 2020), tri-
axial spheroid (Meng et al., 2010; Huang et al., 2023), and
super-spheroid (Kong et al., 2022a), to simulate dust par-
ticle shapes that are weakly constrained or not constrained
by observations. The reason for this is probably twofold.
Most microscopic observations of dust particles in the lit-
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erature are two-dimensional (2-D) images based on scanning
or transmission electron microscopy (SEM or TEM), while
three-dimensional (3-D) observations are extremely rare. In
addition, the implementation of complex shapes in scatter-
ing models is also a challenging task. For example, until re-
cently the widely used T -matrix code based on the extended
boundary condition method (Mishchenko et al., 1996) has
primarily been applicable only to rotationally symmetric par-
ticles such as spheroids. It is worth noting that the T -matrix
method implementation based on the invariant imbedding T -
matrix method is applicable to arbitrary shapes (Bi and Yang,
2014a). Aware of the limitation of hypothetical dust parti-
cle shapes, these studies often use dust-scattering properties
from laboratory measurements as benchmarks to select an
optimal set of hypothetical shapes that can generate similar
scattering properties, e.g., lidar characteristics, as measure-
ments (Saito et al., 2021; Kong et al., 2022a). Nevertheless,
the use of a hypothetical instead of realistic dust shape in-
evitably leads to some important questions. Is the match of
the dust-scattering properties a result of a good shape model
or a fortunate coincidence? If an optimal shape model is se-
lected based on one set of dust-scattering observations (e.g., δ
at 532 nm), can this model automatically simulate other scat-
tering properties (e.g., δ at other wavelengths)? Obviously,
one way to address the above questions is to use realistic
shape models in the computation of dust-scattering proper-
ties. A few studies have made attempts in this direction. For
example, Lindqvist et al. (2014) developed a so-called stere-
ogrammetric surface retrieval method to construct 3-D dust
shapes from 2-D SEM dust images and Kemppinen et al.
(2015b) used a surface roughening model to add detail to the
model. Ishimoto et al. (2010) and Kemppinen et al. (2015
a) used a Voronoi tessellation-based algorithm to mimic dust
internal structure. Järvinen et al. (2016) compared the lidar
backscattering properties based on the constructed 3-D dust
shapes with laboratory measurements and found reasonable
agreement. An important finding from this study is that δ val-
ues of realistic dust particles at 532 nm first increase with par-
ticle size but seem to approach an asymptotic constant value
of ∼ 0.30 for coarse dust particles.

The main objective of this study is to better understand
the lidar backscattering properties of dust particles with re-
alistic shapes. The dust shape models used here are based
on the focused ion beam (FIB) tomography technique, aided
by energy-dispersive X-ray spectroscopy (EDX) and SEM
imaging, developed by Conny et al. (2014) and Conny and
Ortiz-Montalvo (2017), which as far as we know is the most
direct and faithful way to measure the shape and morphology
of single dust particles. In addition to shape measurement,
EDX is used to measure the mineral composition of dust par-
ticles, which in turn enables the estimation of the complex
refractive index (CRI) of dust particles. Based on the mea-
sured dust particle shape and estimated CRI, Conny et al.
(2019, 2020) simulated and studied the scattering properties
such as single-scattering albedo and phase functions of the

dust samples using the DDSCAT model (Draine and Flatau,
1994, 2013).

In this study, we focus on the lidar backscattering proper-
ties of realistic dust samples obtained from FIB tomography
measurements (Conny et al., 2019; Conny, 2018). For sim-
plicity, we will refer to these dust samples as “FIB dust sam-
ples”. We are particularly interested in the following ques-
tions: how do the S and δ of realistic dust samples vary with
particle size, shape, mineral composition, and lidar spectral
channel? The remaining portion of the paper is organized
as follows: first, in Sect. 3, we introduce the dust samples
used in this study, along with their origins and properties. We
also explain the Amsterdam Discrete Dipole Approximation
(ADDA) model and introduce a convergence index to deter-
mine the number of orientations necessary for calculating the
optical properties under the random orientation condition. In
Sect. 4, we examine how the lidar backscattering properties
of the dust samples depend on dust properties, including size,
shape, and mineral composition. In Sect. 5, we present two
dust δ parameterization schemes: one to estimate the δ of a
single dust particle based on its size and the other to estimate
the δ of dust particles with a lognormal particle size distri-
bution based on the effective radius. Finally, in Sect. 6, we
summarize the main findings and conclusions of this study.

3 Data and model

3.1 FIB dust samples

The 13 dust particles measured by FIB were obtained from
the Mauna Loa Observatory (19°32′10′′ N, 155°34′34′′W)
on the island of Hawaii between 15 March and 26 April
2011. Six of these particles were collected during the day-
time. Following Conny et al. (2019), these particles will
be referred to as the “D” sample (e.g., “3D” indicates that
the sample was collected during the daytime of day 3).
The other eight particles were collected at night and are
referred to as “N” samples. The properties of these parti-
cles, including their shape, size, and composition, as well
as the measurement techniques, have been extensively doc-
umented in Conny et al. (2019, 2020). Conny et al. (2019)
analyzed the back trajectories from the Mauna Loa Observa-
tory during this time interval, suggesting that their samples
likely originated as Asian dust. Out of curiosity, we collo-
cated the CALIOP observations with the back trajectories
from the Hybrid Single-Particle Lagrangian Integrated Tra-
jectory (HYSPLIT) model (Stein et al., 2015; Rolph et al.,
2017) from 25 March 2011, 00:00 UTC, to 18 March 2011,
00:00 UTC, starting from the Mauna Loa Observatory. The
lidar depolarization ratio observations and aerosol classifica-
tion (Fig. 1c and e) results show large amounts of dust along
the later portion of the projected path on 23 March 2011.
The back trajectories and CALIOP observations confirm that
the FIB dust samples are likely long-range-transported Asian
dust particles, more specifically from the Gobi Desert, con-
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sistent with Conny et al. (2019). This may be an important
distinction as Asian dust exhibits some differences in opti-
cal properties when compared to other regions such as the
Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly
in regard to the mineral composition discussion in Sects. 3.2
and 4.3. However, to our knowledge, there is no evidence to
suggest that the morphology of dust particles is strongly tied
to regional origin. Therefore, while these dust particles are
suspected to be of Gobi origin, we believe these dust sam-
ples to be useful for the characterization of atmospheric dust
more generally.

3.2 Dust particle shape and refractive index

As emphasized above, the primary advantage of using FIB
dust samples for this study is that the shape and composi-
tion of these samples are directly measured. To determine the
dust shape, the FIB uses a gallium ion beam, milling through
each particle in 15–20 nm increments. This process results in
a stack of 100–200 cross-sectional images with dimensions
of 1024 by 884 pixels for each particle. These cross-sectional
images are then combined to reconstruct highly detailed 3-D
dust shapes, composed of three-dimensional pixels or voxels,
as illustrated by an example in Fig. 2.

The collection of dust samples spans a range of sizes. In
this study, we quantify this range for irregular geometries us-
ing the volume-equivalent sphere radius (rv). Using this met-
ric, our library covers a range from 0.46 µm to 0.93 µm in
rv. The particle geometries are also assigned two aspect ra-
tios, where orientation is determined through principal com-
ponent analysis of the voxel coordinates. This analysis aligns
the longest axis along the z direction and the greatest vari-
ation from this axis with the x and y directions, aligning
with an intuitive understanding of defining aspect ratios in
three dimensions. The aspect ratios of these particles vary
from 0.629 and 0.398 (particle 2N Ca–S) to more symmet-
rical particles with aspect ratios of 0.582 and 0.575 (particle
4N1 Ca–Mg).

In addition to the FIB-based dust shape reconstruction,
Conny et al. (2019) also performed the element composi-
tion and mineral-phase analysis for the FIB dust samples us-
ing SEM and energy-dispersive X-ray spectroscopy (EDX).
They found that the dust samples can be loosely classified
into three categories based on the element compositions,
the mainly calcium–magnesium-based (Ca–Mg) ones, the
calcium-rich (Ca-rich) ones, and lastly those primarily com-
posed of calcium sulfide (Ca–S). In this study we follow this
naming convention of Conny et al. (2019). To determine the
refractive index of the dust samples, Conny et al. (2019) first
estimated the volume fractions of possible mineral phases
in the particles based on the composition analysis results.
Then, the complex refractive index of each particle was deter-
mined through the average Maxwell–Garnett dielectric func-
tion based on the estimated volume fraction of each mineral
phase. It should be noted that the iron-phase composition in

the particle was assumed to be either siderite, hematite, or
magnetite, which have different complex refractive indices.
Moreover, two sets of the complex refractive index were used
for each iron-phase mineral to account for the variability in-
duced by optical anisotropy. The combination of mineral dif-
ferences and refractive index variability leads to several sets
of the final refractive index after the Maxwell–Garnett aver-
aging. Take the 3D Ca-rich particle in Fig. 2 for example. Ta-
ble 1 provides the complex refractive indices at 589 nm from
Conny et al. (2019) for a single particle. Interested readers
are referred to their study for more information.

In this study, we are interested in the dust-scattering prop-
erties at three commonly encountered lidar wavelengths,
namely, 355, 532, and 1064 nm. For simplicity, we assume
the same refractive index from Conny et al. (2019) for all
three wavelengths, which is probably reasonable only for the
532 nm. On the other hand, because we assume the refractive
index to be invariant with wavelength, the wavelength varia-
tion essentially corresponds to the variation in the dust par-
ticle size parameter x = 2πr/λ, allowing us to focus on the
impact of the dust particle size on the lidar scattering prop-
erties. The impacts of the spectral variation in the refractive
index will be investigated in future studies.

3.3 ADDA model and convergence index of random
orientation

In this study, we utilize the ADDA model version 1.4.0
(Yurkin and Hoekstra, 2020) to compute the single-scattering
properties, including the extinction cross sectionCext, single-
scattering albedo ω, and scattering matrix P, of each FIB dust
particle. The scattering properties of dust particles depend on
not only their size, shape, and refractive index, but also their
orientations with respect to the incident light and the wave-
length of incident light. In this study we assume that dust
particles are randomly oriented. The theoretical basis and
numerical implementation of the ADDA model have been
well documented (Yurkin and Hoekstra, 2007, 2011). The
model has been used in numerous previous studies to com-
pute the scattering properties of aerosol and cloud particles
(Yang et al., 2013; Gasteiger, 2011; Collier et al., 2016). The
process to generate the inputs from the FIB shape measure-
ments for the discrete dipole approximation (DDA) model
has been described in detail in Conny et al. (2019). We use
the same inputs and configurations in this study. The only dif-
ference is that we use the ADDA model, while Conny et al.
(2019) used a different DDA model, DDSCAT, by Draine
and Flatau (1994). The reason we cannot directly use the
DDA simulation results from Conny et al. (2019) is twofold.
Firstly, their computations are conducted for an incident light
at the 589 nm wavelength, whereas we are interested in lidar
wavelengths of 355, 532, and 1064 nm. Secondly, as will be
explained later, we will need a greater number of orientations
to simulate random orientation for P and lidar backscattering
properties (Konoshonkin et al., 2020) than may be sufficient
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Figure 1. (a) NOAA HYSPLIT backward-trajectory paths from 25 March 2011, 00:00 UTC, to 18 March 2011, 00:00 UTC, starting from
Mauna Loa Observatory, shown in solid lines. North–south-running dashed lines show CALIPSO tracks intersecting with the modeled dust
paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting with modeled dust paths from the NOAA
HYSPLIT backward-trajectory paths for 19 and 23 March 2011 (b–e, respectively). Through δ and aerosol subtype classification, a dust
plume was found to be present. In subplots (b) and (c), yellow (labeled 2) corresponds to desert dust.

for the σe and ω to converge. In the remainder of this section,
we will introduce a practical method to determine if a suf-
ficient number of orientations have been used in the ADDA
simulations to ensure convergence in the results for random
orientation computations.

For a particle with an irregular shape and arbitrary orien-
tation, the scattering matrix P that relates the incident and
scattering Stokes parameters is a 4× 4 matrix with 16 ele-

ments:

P=


P11(θs) P12(θs) P13(θs) P14(θs)
P21(θs) P22(θs) P23(θs) P24(θs)
P31(θs) P32(θs) P33(θs) P34(θs)
P41(θs) P42(θs) P43(θs) P44(θs)

 , (4)

where θs is the scattering angle. If the particle is randomly
oriented, for any orientation its reciprocal orientation is
equally likely. Because of the reciprocal symmetry, the scat-
tering matrix for a randomly oriented particle with irregu-
lar shape reduces to (van de Hulst, 1981; Mishchenko et al.,
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Figure 2. Orthographic projection of a sample dust particle from the FIB-reconstructed database, 3D Ca-rich.

Table 1. The possible complex refractive index at 589 nm of the 3D Ca-rich particle in Fig. 2 from Conny et al. (2019).

Iron-phase Minimum refractive Minimum refractive Maximum refractive Maximum refractive
mineral index real index imaginary index real index imaginary

Magnetite 1.532 2.14× 10−2 1.660 2.36× 10−2

Hematite 1.544 2.32× 10−3 1.681 2.28× 10−3

Siderite 1.508 1.34× 10−5 1.648 1.34× 10−5

2002; Mishchenko and Yurkin, 2017)

P=


P11(θs) P12(θs) P13(θs) P14(θs)
P12(θs) P22(θs) P23(θs) P24(θs)
−P13(θs) −P23(θs) P33(θs) P34(θs)
P14(θs) P24(θs) −P34(θs) P44(θs)

 . (5)

The symmetry property of the P matrix for randomly ori-
ented particles in Eq. (5) provides a basis to assess the con-
vergence of random orientation simulations in ADDA. For
example, utilizing the fact that P41 = P14 for a randomly ori-
ented particle, we can define a convergence index (CI) for
random orientation as

CI=
∫ π

0

1
2

(P14(θs)−P41(θs))2dcos(θs) . (6)

As such, CI approaches zero when the random orientation
computation converges. It should be noted that CI can also be
defined based on other symmetric elements of the scattering
matrix such as P21 = P12, P31 =−P13. For practical appli-
cations, we usually assume that particles are randomly ori-
ented with an equal number of mirror particles. Under such a
condition or if the particle in question has mirror symmetry
itself, the scattering matrix has only 6 independent elements
in the form (van de Hulst, 1957; Mishchenko and Yurkin,
2017; Yang et al., 2023)

P=


P11(θs) P12(θs) 0 0
P12(θs) P22(θs) 0 0

0 0 P33(θs) P34(θs)
0 0 −P34(θs) P44(θs)

 , (7)

and a CI based on P12 = P21 or P34 =−P43 must be used.

In the context of ADDA, the orientation of a particle with
respect to the incidence is defined using three Euler angles:
α, β, and γ . To specify a certain orientation, the particle is
rotated first α on the z axis, then β on the y axis, and fi-
nally γ across the new z axis through the zyz convention
(Yurkin and Hoekstra, 2020). Then, to produce the scattering
properties for a randomly oriented particle, ADDA averages
across a large number of orientations. ADDA can do this in-
ternally through a specified number of evenly spaced inter-
vals across α, β, and γ . For α and β, ADDA calculates the
scattering properties for the new orientation, while for γ , or
the self-rotation angle, it equivalently rotates the scattering
plane to improve computational time. It calculates orienta-
tions in intervals of 2n+ 1 for each of α, β, and γ , resulting
in (2n+ 1)3 total orientations. To assess if the random ori-
entation convergence has been achieved, one can examine
the behavior of CI as well as other scattering properties of
interest as a function of the number of orientations. An ex-
ample using the 3D Ca-rich dust particle is shown in Fig. 3
for n= 1,2, . . ., 6. As expected, all properties converge to
asymptotic values as n increases from n= 1 (i.e., 27 orienta-
tions) to n= 6 (i.e., 274 625 orientations). On the other hand,
it is important to note that the scalar properties such as the ex-
tinction efficiency and asymmetry factor (Fig. 3a) and S and
δ (Fig. 3b) converged when n= 4, while the CI based on cer-
tain scattering matrix elements (Fig. 3c) only converged after
n= 5. Based on this result, we employ n= 5 for the compu-
tations in this study. The results in Fig. 3 clearly show that
although one can assess the convergence of random orien-
tation computation by observing the asymptotic behavior of
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Figure 3. (a) Change in the extinction efficiency and asymmetry factor with an increasing number of orientations for a representation of a
randomly oriented dust particle, 3D Ca-rich. (b) S and the linear depolarization ratio as a function of the number of orientations for the dust
particle 3D Ca-rich. (c) Convergence index for each of the dust particle 3D Ca-rich’s Mueller index pairs at 532 nm. Note that the panels start
at n= 2.

scalar properties, the CI based on scattering matrix elements
is a more robust index supported by fundamental physics.

Thus, the error in computations of optical properties
through ADDA is strongly tied to the number of orientations
used. We find in Sect. 4 that constraining the refractive index
through mineralogy and size through proper characterization
of the particle size distribution creates the largest potential
sources of error in these calculations, as ADDA’s integration
error has been set to less than 10−5 and the geometries used
are highly detailed, with individual dipole sizes on the order
of 103 nm3. This makes the numerical error negligible com-
pared to the error in chosen parameters, convergence level,
and sample size through the limited set of geometries. The
CI is a tool to minimize computational error while consider-
ing computational cost.

With the help of the newly developed CI, we computed
the scattering properties of the FIB dust samples for three
commonly encountered lidar wavelengths: 355, 532, and
1064 nm. For each wavelength, more than 60 ADDA sim-
ulations are carried out corresponding to different particles,
as well as different refractive indices for each particle as ex-
plained above (see Sect. 3.2). Figure 4 shows the scattering
matrix elements P11 and P22/P11 for the FIB dust samples
for the three lidar wavelengths for their minimum refractive
index for each mineral typing. Given the realistic morphol-
ogy of the FIB dust samples and extensive computational
methods of determining these optical properties, the FIB dust
samples can serve as a benchmark for future studies on sim-
ulated mineral dust-scattering properties. As one can see in
Fig. 4a–c, the values of P11 in the forward scattering direc-
tions increase systematically from 1064–532 nm and 355 nm,
which can be explained by the increase in the size parameter
as wavelength decreases. In Fig. 4d–f, P22(π )/P11(π ) shows
considerable decreases from 1064–532 nm, down ∼ 13% on
average. In contrast, the changes are relatively small from
532–355 nm. These features will help us understand the spec-
tral dependence of S and δ shown and discussed in the next
section.

4 Sensitivities of the lidar ratio and depolarization
ratio to particle properties

4.1 Sensitivity to dust particle size

In lidar-based aerosol remote sensing, the S–δ diagram is of-
ten used to classify aerosols into different types (Burton et
al., 2012; Illingworth et al., 2015). The S–δ diagram for the
FIB dust samples is shown in Fig. 5. Notably, S is negatively
correlated with δ when the results for all three wavelengths
are combined (correlation coefficient of 0.83). Specifically,
the δ at 1064 nm is smaller than the corresponding values at
532 and 355 nm, while the opposite is true for S. The results
for 532 and 355 nm largely overlap with each other. Recall
that the same CRI is used for all three wavelengths, so these
spectral differences are caused by the size parameter differ-
ence, i.e., the relative size of the particle with respect to the
lidar wavelength. To further illustrate this point, we plotted
the S and δ separately as a function of the dust particle size
parameter, shown in Fig. 6. Note that the size of the irregular
particle can be defined in different ways; here, we adopt the
volume-equivalent size.

Figure 6 reveals an interesting asymptotic behavior of li-
dar properties with respect to size, where S (Fig. 6a) first
decreases and δ (Fig. 6b) first increases with size parameters,
and then they seemingly approach their asymptotic values.
We use a locally weighted scatterplot smoothing regression
(or LOWESS) to fit the trend in lidar optical properties with
size parameters. We find that both S and δ plateau around
the size parameter x ≈ 8 and then approach their asymptotic
values, S = 35sr and δ = 0.41. These asymptotic values dif-
fer from the global averages of CALIPSO shown in Fig. 6
due to the differences between single scatterers and volu-
metric measurements produced by a lidar instrument in the
atmosphere where non-dust particles and a full particle size
distribution affect the results. Notably, these results span a
limited size distribution due to the sizes present in the dust
particles analyzed and the computational expense of produc-
ing simulations of larger particles. However, the asymptotic
behavior of lidar properties has also been reported in sev-
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Figure 4. P11 and P22/P11 for each particle geometry. Results for (a, b) 1064 nm, (c, d) 532 nm, and (e, f) 355 nm of each iron-containing
mineral phase’s minimum refractive index. Highlighted in black is the particle 3D Ca-rich.

Figure 5. S–δ graph of FIB dust particles at each of the 355, 532,
and 1064 nm wavelengths for the refractive index of each mineral
type found in the particle.

eral previous studies. For example, the S and δ based on the
so-called super-spheroid dust model in Kong et al. (2022a)
showed a similar asymptotic behavior for the size parame-
ter range between 2 and 20 (see their Fig. 3), and so did the
laboratory-measured dust δ in Järvinen et al. (2016) (see their
Fig. 9).

Since S is a function of both P11(π ) and ω, we investi-
gate their relative roles in determining the size dependence
of S. Figure 7a shows that the values of S lie closely around
the 1/P11(π ) line, with the r2 value around 0.97 for a simple
regression of S = 12.9/P11(π ). In contrast, single-scattering
albedo ω plays a lesser role in S among the particles tested
due to greater similarities in values (Fig. 7b). However, the
outliers in Fig. 7a correspond to points with much lower ω in
Fig. 7b, particularly the FIB sample 3D Ca-rich (see Fig. 2)
using the magnetite refractive index, which has an imaginary
refractive index of 0.021–0.024, an outlier with a magnitude
10 times greater than the other mineral types present (see Ta-
ble 1). In Fig. 7c and d, we plot the variation in P11(π ) and ω,
respectively, as a function of the size parameter. Although the
variability in P11(π ) is quite large, especially in the size pa-
rameter range between 5 and 10, it generally increases with
size parameter. In contrast, the ω in Fig. 7b shows a slight
decrease with size. These results indicate that P11(π ) plays
a more dominant role than ω in determining the size depen-
dence of S in these dust samples.

Following the same thought for the above S analysis, we
analyze the role of P11(π ) and P22(π ) in determining the
asymptotic behavior of δ in Fig. 6b. It is seen in Fig. 8a and b
that both P11(π ) and P22(π ) increase with dust size. Interest-
ingly, their ratio P22(π )/P11(π ) first decreases with size and
then seems to approach an asymptotic value of 0.4 when dust
particles are large. So, the result suggests that the asymptotic
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Figure 6. Relationship between the dust particle size parameter and (a) S and (b) δ. The orange lines represent a LOWESS fit of the data for
S and a sigmoid function for δ. The black lines correspond to (a) S = 44sr, the S used for CALIPSO’s aerosol classification of dust (Kim
et al., 2018), and (b) δ = 0.277, the median observed δ at 532 nm of the Atlantic dust transport region using CALIOP (Liu et al., 2015b).

Figure 7. S as a function of (a) P11 and (b) ω. (c) P11 and (d) ω as a function of the dust size parameter. The color of each dot corresponds
to the imaginary refractive index.

trend of δ with respect to dust size is a result of the asymp-
totic behavior of P22(π )/P11(π ).

4.2 Sensitivity to dust shape and sphericity

Several studies have shown that constraining particle mor-
phology is important for quantifying the δ of dust particles
(Dubovik et al., 2006; Saito et al., 2021; Liu et al., 2015a;

Kahnert et al., 2020; Kong et al., 2022a). As explained in
the introduction, most of these studies are based on sim-
ple hypothetical shape models such as ellipsoid and irreg-
ular hexahedrons. In this section, we investigate the depen-
dence of δ on dust sphericity based on the FIB dust samples.
As explained in Sect. 3.2, in the baseline simulations each
dust sample has different sizes and CRIs that correspond to
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Figure 8. (a) P11(π ), (b) P22(π ), and (c) P22(π )/P11(π ) as a function of the dust particle size parameter.

laboratory-measured dust mineralogy. As a result, the differ-
ences in δ between different sample particles in the baseline
simulations are caused by not only shape but also size and
CRI differences. To eliminate the influence of size and CRI
and focus on the effect of sphericity, we carried out an addi-
tional set of ADDA computations for the 532 nm wavelength,
where we used the same CRI of n= 1.5+ 0.005i and the
same volume-equivalent radius of 0.5 µm for all the FIB par-
ticles but kept the original shape of each particle. The use of
the common size and CRI allows us to investigate the depen-
dence of δ on the sphericity index defined as follows (Wadell,
1935; Saito and Yang, 2022):

9 =
π1/3(6V )2/3

As
, (8)

where 9 is the sphericity, V is the volume of the particle,
and As is the surface area. By definition, a sphere is 9 = 1,
and a perfectly spherical particle has a δ of 0. However, due
to the irregularity of the FIB dust sample geometries, their
9, more specifically the surface area, is heavily impacted by
the level of granularity in voxel size, similarly to the well-
known coastline paradox (Steinhaus, 1954). Therefore, we
employ the effective sphericity as the average projected area
of a particle is not susceptible to the same issues of increasing
value with precision (Vouk, 1948; Saito and Yang, 2022):

9eff =
π1/3(6V )2/3

4Aproj
, (9)

where 9eff is the effective sphericity and Aproj is the average
projected area across all projection directions. This gives us a
wide range of effective sphericity values between 0.49–0.89.
As shown in Fig. 9, we find no clear relationship between
effective sphericity and δ or S (null hypothesis rejected with
p > 0.05 for both S and δ). This may be a result of a lim-
ited set of geometries of the FIB dust samples. It could also
be due to the limitation of the effective sphericity index in
Eq. (9) failing to capture the subtle dependence of δ on dust
particle shape. Note that other previous studies have also
found a weak dependence of δ on particle sphericity (e.g.,
Kong et al., 2022a). Further studies are warranted to better

understand the relationship between δ and the morphology
of dust particles. But overall, our results seem to suggest that
the impact of particle sphericity on δ and S is less important
than particle size.

4.3 Sensitivity to dust mineralogy

Each particle from the study of Conny et al. (2019) was de-
termined to have different amounts of iron in its composi-
tion through their EDX spectroscopy tests. Using these data,
they determined the refractive index of each particle with the
Maxwell–Garnett dielectric function described in Sect. 3.2.
The tests resulted in the percentage of elements by mass
and volume but did not reveal the mineral phase within the
dust. To account for this, the study uses various possible iron-
containing mineral phases for each particle to determine the
refractive index, as these phases have the greatest variabil-
ity in the possible refractive index for these particles. They
also account for birefringence through a minimum and max-
imum value for the refractive index. Each particle was given
a hematite phase, while some had magnetite, ankerite, and/or
siderite present. Interested readers are directed to Conny
et al. (2019) for further details.

Each of these mineral phases has a different CRI, with
magnetite being the most absorbing of the iron-containing
phases present (see Table 1). This results in considerable
variations (up to 32 %) in single-scattering albedo (Fig. 10a),
particularly for the 3D Ca-rich particle, which has the high-
est iron content by mass, ranging from 11.4 % to 7.90 %
depending on the mineral phase used. In contrast, the next
most iron-dense particle (4N1 Ca–Mg) contains only 4.35 %
to 1.56 %. Accompanying the reduction in single-scattering
albedo, the S becomes systematically larger (Fig. 10b), and
the δ becomes smaller (Fig. 10c) when hematite is replaced
by magnetite. These results underscore the critical role of
dust mineralogy in influencing the single-scattering albedo
(SSA) of dust particles, as highlighted in previous studies
(Li et al., 2021; Song et al., 2022, 2024). However, the ef-
fects of mineralogy on lidar-derived δ and S are smaller than
the impacts of dust particle size. An important caveat to keep
in mind when interpreting these results is that the same dust
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Figure 9. (a) Effective sphericity dependence of δ. (b) Lidar ratio variance with effective sphericity. (c) S–δ graph of FIB dust particles
across effective sphericity. A common volume is used by constraining the volume-equivalent sphere radius to 0.5 µm for each particle as well
as a refractive index of n= 1.5+ 0.005i. A wavelength of 532 nm was used.

Figure 10. Variation in (a) ω, (b) S, and (c) δ for each particle with its magnetite phase and corresponding hematite phase.

CRI has been used for all three wavelengths, as mentioned
earlier. Dust absorption typically increases with decreasing
wavelength in the visible to ultraviolet spectral region, which
is not accounted for in our computations. Therefore, the im-
pacts of mineralogy on lidar properties at the 355 nm wave-
length, where dust can have strong absorption, may be un-
derestimated. We will leave this for future studies because
the spectral dependence of dust CRI is still highly uncertain
due to the lack of reliable observations.

5 Parameterization schemes for dust δ

The results in Sect. 4 indicate that particle size plays a dom-
inant role in determining the dust δ of FIB dust particles. As
shown in Sect. 4.1, the dust δ exhibits an asymptotic trend
with increasing size (see Fig. 6b), a pattern also noted in
several previous studies (Kong et al., 2022a; Järvinen et al.,
2016; Kemppinen et al., 2015a, b). The robustness of this
asymptotic trend inspired us to develop two parameterization
schemes for δ as a function of dust size, which will be intro-
duced in this section. This will allow us to extend the utility
of the dust particle data to a larger range of sizes, as the in-
dividual particles have a limited range of size parameters.
One scheme is designed for single particles, while the other
is intended for ensembles of particles with a particle size dis-
tribution. We hope that these parameterization schemes can
be used to efficiently estimate the δ of dust particles without
resorting to time-consuming scattering simulations.

The parameterization for single particles is straightfor-
ward. To model the asymptotic trend of individual particle
δ with dust particle size, we employed a sigmoid function as
follows:

δ(x)=
δ∞

1+ e−a(x+b) =
0.41

1+ e−1.09(x−3.7) . (10)

The sigmoid function has three parameters: δ∞ is the asymp-
totic value of δ when the size parameter is large. The other
two parameters a and b control the shape of the sigmoid
function. After a nonlinear curve fitting, we find δ∞ = 0.41,
a = 1.09, and b =−3.7 (R2

= 0.72). This simple parameter-
ization can be used to estimate the δ of a single dust particle
given its size and the wavelength of interest.

Next, we will use Eq. (10) to construct a parameteriza-
tion scheme for the volumetric depolarization ratio, 〈δ〉 of
a dust plume following the widely used lognormal parti-
cle size distribution (n(rv)), giving us a value for δ for the
ensemble of particles. To this end, we need to first make
an approximation. For a given dust particle size distribution
n(rv)= dN/dlnrv, the rigorous definition of the volumetric
δ is given by

〈δ〉 =
1−〈P22(π )〉/〈P11(π )〉
1+〈P22(π )〉/〈P11(π )〉

, (11)
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where 〈P11〉 and 〈P22〉 are the bulk-scattering matrix ele-
ments after the averaging over n(rv). For example,

〈P11〉 =

∫
∞

−∞
P11(rv)Csca(rv)n(rv)d lnrv∫
∞

−∞
Csca(rv)n(rv)d lnrv

, (12)

where Csca is the scattering cross section of dust particles
with the size of rv. We found that it is difficult to use Eq. (11)
to estimate 〈δ〉, because neither 〈P11〉 nor 〈P22〉 can be easily
parameterized with the size parameter. To avoid this diffi-
culty, we propose the following approximate way to estimate
the 〈δ〉 as

〈δ〉 ≈

∫
∞

−∞
δ(rv)Csca(rv)n(rv)d lnrv∫
∞

−∞
Csca(rv)n(rv)d lnrv

, (13)

which allows us to use the simple parameterization in
Eq. (10). The accuracy of this approximation will be eval-
uated momentarily. Here, we convert from the size param-
eter into volume median radius through xvg = 2πrvg/λ as
δ will vary with wavelength. Next, we need to specify the
Csca(rv) of single particles. Unfortunately, the size parame-
ter span of the FIB dust samples is too small to cover the
whole dust n(rv). To solve this problem, we use the TAUM-
dust2020 database to estimate Csca(rv). TAMUdust2020 is a
comprehensive database by Saito et al. (2021) that covers the
scattering properties of 20 irregular hexahedral-shape models
over the entire practical range of particle sizes, wavelengths,
and CRI values of mineral dust particles. Based on the re-
gional dust models recommended by Saito et al. (2021), an
ensemble-weighted degree of sphericity of 0.7 is selected to
represent the dust particles. For the dust CRI, we use the data
from Song et al. (2022) to interpolate the TAMUdust2020
and obtain the Csca(rv). In Song et al. (2022), three sets of
dust CRI values corresponding to the low, mean, and high
concentration of hematite (Di Biagio et al., 2019) were used
to compute the dust-scattering properties and their direct
radiative effects. Here we adopt the CRI corresponding to
the mean concentration of hematite. Note that the CRI from
Song et al. (2022) is spectrally dependent with increasing ab-
sorption and decreasing wavelength (see their Fig. 2), which
means that the 355 nm wavelength has the strongest absorp-
tion among the three lidar wavelengths considered here. Fi-
nally, for the dust n(rv), we use the lognormal distribution

n(rv)=
dN

dln(rv)
=

N0
√

2π (σg)
exp

[
−

(rv/rvg)
(σg)2

]
, (14)

where N0 is a constant and rvgis the volume median radius.
We use a fixed standard deviation of σg = 0.529, the same
standard deviation of the fine-mode dust from AERONET’s
n(rv) in Cabo Verde from Dubovik et al. (2002) shown in
Fig. 12, when creating the parameterization in Fig. 11.

Using a combination of the δ(x) parameterization in
Eq. (10) and the Csca(rv) from the TAMUdust2020 database

and the lognormal n(rv) in Eq. (14), we computed the vol-
umetric dust depolarization ratio 〈δ〉 based on the proposed
approximation in Eq. (13). The result for the 532 nm 〈δ〉 as a
function of the effective size parameter is shown in Fig. 11a.
It is not surprising to see that the volumetric dust depolariza-
tion ratio 〈δ(xvg)〉 resembles δ(x) for the single particles in
terms of its size dependence. Further simplification is pos-
sible through a fitting of the newly bulk-averaged depolar-
ization ratio. We find the depolarization of the FIB realistic
particles is well approximated by the following hyperbolic
tangent equation:

〈δ(xvg)〉 ≈ 0.41tanh(0.14xvg+ 0.09) , (15)

with an r2 value of 0.79, as shown in Fig. 11a. While this
function is fitted for a wavelength of 532 nm in particular,
we found that the results for the 355 and 1064 nm wave-
lengths are almost identical. This is probably because we
used the same δ(x) parameterization for all three wavelengths
and only different Csca values due to the use of the spectrally
dependent CRI in Song et al. (2022). It turns out that Csca
plays a minimal role in the δ value, making Eq. (15) a rea-
sonable approximation for all three lidar wavelengths given
an effective particle size parameter, xvg. This is supported
by the comparison results shown in Fig. 11b. The solid lines
correspond to the volumetric 〈δ〉 for the three wavelengths
predicted based on the parameterization Eq. (15). The dot-
ted line corresponds to the 〈δ〉 of irregular hexahedrons com-
puted based on the TAMUdust2020 database using the Song
et al. (2022) dust CRI. It is important to note that the com-
putation for irregular hexahedrons is based on the rigorous
definition of δ in Eq. (11) without any approximation. Evi-
dently, the two sets of 〈δ〉 agree reasonably well in terms of
both spectral and size parameter dependencies. Interestingly,
a decreasing trend was observed for the 355 nm δ based on
the irregular hexahedral shape when rvg is larger than about
2–3 µm, which is not seen in either our parameterization or
our hexahedral results for other wavelengths. As mentioned
above, in the computation for the irregular hexahedral shape,
we used the spectrally dependent CRI, which has a higher ab-
sorption at 355 nm. Recall the result in Fig. 10c that indicates
δ decreases with dust absorption. This decreasing-with-size
trend of δ for large rvg is a result of stronger absorption at
355 nm, as it is reflected in a decrease in SSA for those par-
ticles (Saito and Yang, 2021).

The utility of the simple parameterization scheme in
Eq. (15) is further demonstrated in terms of simulating the
spectral dependence of δ as shown in the following case.
Here, we use the climatological dust n(rv) retrieved by
AERONET at Cabo Verde as reported in Dubovik et al.
(2002) (Fig. 12a) to compute three sets of volumetric dust
〈δ〉 for the three lidar wavelengths using the following three
methods:

1. In the first method (solid black lines in Fig. 12b), dust-
scattering properties are based on the irregular hexahe-
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Figure 11. (a) Parameterization of realistic δ for the effective size parameter using a hyperbolic tangent function. (b) Depolarization ratio
predicted for a monomodal size distribution with varying volume-equivalent median radius. The δ for realistic geometries was derived
through Eq. (15), while hexahedral shapes used P11 and P22 parameters.

dral model from the TAMUdust2020 database. The dust
CRI is spectrally dependent and from Song et al. (2022).
The 〈δ〉 is computed based on the rigorous definition in
Eq. (11) with 〈P11〉 and 〈P22〉 averaged over n(rv).

2. The second method (solid blue lines in Fig. 12b) is the
same as the first method except that the 〈δ〉 is computed
based on the approximation method in Eq. (13).

3. In the third method (solid red lines in Fig. 12b), the 〈δ〉
for each wavelength is simply predicted using the pa-
rameterization in Eq. (15) by converting xvg into rvg.

As such, comparisons between the three methods enable us
to assess the uncertainty associated with each step of the ap-
proximation. For example, the comparison between method
1 and 2 can help us understand the uncertainty associated
with the 〈δ〉 computation using the approximation method in
Eq. (13). The comparison of method 3 to the other two meth-
ods helps us understand the overall accuracy of our simple
parameterization.

In order to use the full n(rv) with method 3, a weighting
by backscatter coefficient is utilized such that (Mamouri and
Ansmann, 2014)

〈δ〉 =
βfδf(1+ δc)+βcδc(1+ δf)
βf(1+ δc)+βc(1+ δf)

, (16)

where β is calculated from the TAMUdust2020 database.
The resulting comparison in Fig. 12 shows all three meth-

ods simulate a substantially smaller δ for the fine mode than
the coarse mode. Additionally, the fine-mode δ based on
all three methods exhibits a decreasing trend with wave-
length, which is a result of the fast-increasing trend of δ
with dust particle size parameter for fine-mode dust particles
(see Fig. 6). The differences in the fine-mode δ between the
three methods are mostly smaller than 0.05, with the method
3 result based on the simple parameterization scheme being
slightly larger than the results of the other two methods. Fi-
nally, for the coarse-mode dust δ, the results based on the

simple parameterization (method 3) are close to spectrally
neutral and smaller than the results for methods 1 and 2 for
355 and 532 nm, while the use of TAMUdust2020 decreases
δ at 1064 nm.

Interestingly, the full size distribution δ’s based on meth-
ods 1 and 2 exhibit an inverse “v” shape, with the maximum
at 532 nm and decreasing toward both 355 and 1064 nm.
Such an inverse “v”-shape spectral signature of dust δ has
also been observed recently by Haarig et al. (2022) over
Leipzig, Germany, in February and March 2021 during a
transported Sahara dust event (see their Fig. 5). As men-
tioned, our δ parameterization scheme using method 3 and
the parameterization of the FIB dust samples does not take
into account the spectral dependence of dust CRI and the
corresponding change in absorption. In methods 1 and 2, we
use the CRI from Song et al. (2022), which has a stronger
absorption at 355 nm and leads to a decrease in δ from 532–
355 nm. Therefore, our results indicate that the inverse “v”-
shape spectral signature of dust δ is a result of the competing
effects of dust size and absorption. The decrease in δ from
532–1064 nm is the result of dust size, while the decrease
from 532–355 nm is a result of dust absorption.

Despite the limitation of spectrally independent CRI, the
overall accuracy of our parameterization scheme is satisfy-
ing, partly due to the error cancellation between the overes-
timation of the fine-mode δ and underestimation of coarse-
mode δ. For example, after summation of the fine and coarse
modes, the δ of the whole n(rv) for the 532 nm wavelength is
〈δ〉 ≈ 0.335 based on method 1, while for method 3 based on
our simple parameterization it is 〈δ〉 ≈ 0.334.

Comparing the dust δ of the full n(rv) to that of fine-mode
δ and coarse-mode δ also gives us interesting results. Both
fine and coarse modes individually decrease with wavelength
despite the inverse “v”-shape spectral signature of the full
n(rv). This characteristic is quite nicely explained by an in-
terpretation of Eq. (16). Across each wavelength, βf < βc, so
〈δ〉 is greater than a simple average of both fine and coarse
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Figure 12. (a) Dust particle size distribution for Cabo Verde (Cape Verde in the figure) using AERONET, adapted from Dubovik et al.
(2002). (b) Depolarization ratio of the fine and coarse mode for hexahedral dust and FIB reconstruction using approximation methods 1, 2,
and 3 as described in the text.

modes. But βc increases with wavelength. Therefore, despite
δf and δc decreasing spectrally, δc has a greater weighting in
the equation. In other words, more of the backscattered sig-
nal is due to larger particles as wavelength increases, which
are the particles exhibiting greater depolarization. Compet-
ing factors of β and δ further reinforce the absorption and
size impact on δ. Thus, the comparisons shown in Fig. 12 are
promising.

The utility of this parameterization likely comes from the
inverse problem. Given the reliance on TAMUdust2020 for
β, reconstructing the δ from n(rv) still requires use of simpli-
fied theoretical geometries for some amount of the calcula-
tion. However, given a retrieved backscattering coefficient, δ,
and n(rv), using Eqs. (15) and (16) creates a succinct method
of retrieving βf and βc, separating the fine and coarse fraction
of dust according to Mamouri and Ansmann (2014).

Specifically in coarse-mode analysis, there are some limi-
tations of our study. The sigmoid parameterization leads to a
very flat parameterization of δ for particles greater than 1 µm
in volume-equivalent radius, which is seen in both Fig. 11b
and Fig. 12b and may be further refined with larger particles,
currently unavailable due to computational cost. It is also im-
portant to note our study uses a wavelength-independent re-
fractive index based on 589 nm, causing this work to miss
some spectral dependency that may cause the coarse-mode
differences in each wavelength when using the globally av-
eraged refractive index (see Fig. 11b). The competing effects
of the size and mineral composition of dust particles have
been observed in studies of spectral dependence of δ (Haarig
et al., 2022), which we will investigate in future studies.

6 Conclusions and summary

In this study, we utilized the ADDA model to compute the
scattering properties of FIB dust samples and derived the
S and δ at three widely used lidar wavelengths: 355, 532,
and 1064 nm. The advantage of this study compared to pre-

vious work is the use of realistic dust shapes reconstructed
through the FIB tomography technique. The characteriza-
tion of single-scattering properties of these realistic samples
through rigorous computational techniques should serve well
as benchmark data for the dust-scattering community. We in-
vestigated the dependence of dust S and δ on dust particle
size, shape, and mineral composition. The results lead to the
following conclusions.

– Both S and δ exhibit an asymptotic trend with dust par-
ticle size: the S initially decreases and the δ increases
with size, before both approach their asymptotic values.

– The lidar properties were found to have only a weak
dependence on effective sphericity.

– The presence of strongly absorbing minerals, such
as magnetite, can greatly reduce the dust’s single-
scattering albedo and δ while increasing S.

In addition to these scientific findings, the convergence index
introduced in Sect. 3.3 and the δ parameterization schemes
described in Sect. 5 may be useful for future research on
light scattering by nonspherical particles and lidar-based re-
mote sensing. The convergence index can be used to assess
the convergence of random orientation computation using the
DDA method. The δ parameterization scheme in Eq. (15) can
be used to estimate the δ of dust with a lognormal size dis-
tribution n(rv), which can help us understand the variation in
dust size based on δ observations and the separation of fine-
and coarse-mode dust (Mamouri and Ansmann, 2014).

Certain limitations of this study also need to be ad-
dressed, particularly regarding the parameterization scheme
of Sect. 5. This model’s parameterization leads to a flattened
coarse mode in an attempt to extrapolate from the limited
size range available due to computational limits of DDA.
Therefore, it may not have fully captured the optical prop-
erties for use with particularly large size parameters. Addi-
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tionally, the wavelength-independent complex refractive in-
dex based on 589 nm measurements was applied to all three
lidar wavelengths, simplifying the spectral differences in li-
dar properties, particularly at 355 nm where absorption from
iron-phase minerals is more significant. Future studies on the
coarse mode and spectral variation in dust lidar properties
will improve the parameterization and applicability of the
parameterization scheme and ability to utilize the FIB dust
samples for atmospheric observations.
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